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ABSTRACT

A technique has been developed to aid in weight-window parameter estimation in problems with mul-
tiple tallies using a linear combination of tallies. This technique has been implemented as a patch to
MCNP5 RSICC version 1.40 and effectively weights the adjoint source term for each tally in the com-
bination. Optimizing weight-window parameters for the linear tally combination allows the user to
optimize weight windows for multiple regions at once and optimize globally by using a mesh tally. In
this work, the authors present results of solutions to verification problems, test and challenge problems,
and a global calculation of a 1e5 voxel oil-well logging tool problem.
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1. INTRODUCTION

Current research in accelerating Monte Carlo radiation transport calculations uses deterministic
calculations (diffusion or transport) to estimate weight windows [1] or importances to be used in a
second Monte Carlo calculation [2, 3]. These hybrid techniques avoid some of the problems with
Monte Carlo weight-window generators[4] such as failing to fully populate the weight windows,
even with multiple iterations, because of the weight-window generator’s statistical nature.

This work uses existing Monte Carlo methods and focuses on the development of a techniques to
estimate importances. A linear tally combination has been added to a research version of MCNP5.
The linear tally combination is a linear sum of tallies with multipliers specified by the user. Using
that combination with the existing weight-window generator in MCNP allows weight-window pa-
rameters to be estimated for difficult problems, where weight-window parameters would have been
difficult to obtain previously. Initial findings of this work were presented in [5, 6]. Results of the
initial test problems were promising in that weight-window generation for the linear combination
produced a more efficient calculations than other techniques investigated.

Herein, the linear tally combination and weight-window generation is applied to test problems and
verification problems. Additional focus is placed on the use of the linear tally combination with a
mesh tally for global problem optimization.
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2. BACKGROUND

2.1. Importance Estimation

With good variance reduction, the weight and importance of a particle typically vary inversely to
each other. As a particle is transported it may, while undergoing variance reduction games, gain or
lose weight and, in general, loses weight as it moves farther from the source. As the particle moves
farther from the source toward the tally it becomes increasingly important, thus establishing the
inverse relation between weight and importance.

The importance need not depend on all of phase space P = (r, Ω̂, E, t), but may also depend on a
subset of the phase space variables. For example, the average importance at r is given by

I(r) =

∫
4π

∫ ∞
0

∫ ∞
0

N(r, Ω̂, E, t)I(r, Ω̂, E, t) dt dE dΩ∫
4π

∫ ∞
0

∫ ∞
0

N(r, Ω̂, E, t) dt dE dΩ
. (1)

Here, N(r, Ω̂, E, t) is a weighting function, typically the forward particle density. Similarly, the
average importance in a region of space S is given by

IS =
∫
S
N(P)I(P) dP

/∫
S
N(P) dP , S ∈ P. (2)

Booth [7] realized that, with some bookkeeping, the average importance in a region IS can be
calculated in a forward Monte Carlo calculation as

IS =
∑
i

Ti

/∑
i

wi , (3)

where Ti is the score due to particle i (and any of its progeny) after particle i’s first entry into S,
and wi is the weight of particle i upon its first entry into S. In other words, N(P) of Eq. (2) is
taken to be the forward particle densisty entering region S the first time. This statistical technique
of estimating the importance has become known as the “weight-window generator” [1].

The weight-window generator produces an estimate of the importances, given the score definition
and weights required in Eq. (3), for any score definition. The weight-window generator keeps track
of where the particles are and their eventual scores; it does not matter how that score is defined
(surface flux or current, volume flux, reaction rate, etc.), hence, its functionality with multiple tally
types. Equation (3) indicates that it is possible to generate weight windows for a linear combination
of tallies, not just single tallies. The linear tally combination simply defines a new score which the
generator tries to optimize. It is an important distinction that use of the weight-window generator
and the linear tally combination is not generating an importance function for multiple tallies; rather,
it is generating an importance function for a single tally that happens to be composed of other
tallies.
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2.2. Adjoint Sources

When a forward calculation is performed, particles are emitted from a source and tallies of those
particles are made as they transport through the geometry. Often, the desired tallies are modified
by a response function. One defines the total detector/tally response R as

R =
∫
S

∫
4π

∫ ∞
0
R(r, Ω̂, E)φ(r, Ω̂, E)dE dΩ dS, (4)

where S is some spatial region andR is the detector/tally response function, which in general could
depend on position, direction, and energy of the particles. Fundamentally, R does two things: (1)
it determines what particles are “accepted” as part of the response, and (2) it scales the response
for incoming particles.

In an adjoint calculation, adjoint particles are emitted from an adjoint source (at the forward tally
location) and tallies of the adjoint particles (at the forward source location) are made as they trans-
port through the geometry. The adjoint source is determined by the forward response function.

As an example of determining the response or adjoint source distribution, consider a tally of surface
current (an MCNP F1 tally) where the response RC is given by

RC =
∫
S

∫
4π

∫ ∞
0

φ(r, Ω̂, E)
∣∣∣Ω̂·n̂

∣∣∣ dE dΩ dS, (5)

where S is now the area of the surface, and n̂ is the unit normal vector to the surface. If one then
lets µ = Ω̂·n̂ = |Ω̂||n̂| cos(θ) = cos(θ), where θ is measured from the normal of the surface, then
the response becomes

RC =
∫
S

∫
4π

∫ ∞
0
|µ|φ(r, Ω̂, E) dE dΩ dS, (6)

so the response function is R = |µ|1. For the response of Eq. (6), the adjoint source emits uni-
formly in all energies but not uniformly in all directions. The directional distribution of particle
emission is proportional to the absolute value of the cosine between the direction of emission and
the surface normal vector.

If the flux, either surface (F2 in MCNP) or volume (F4 in MCNP), is the response, then the adjoint
source emits particles of all energies isotropically over the detector region. This can be seen by
observing that the flux response RF is

RF =
∫
S

∫
4π

∫ ∞
0

φ(r, Ω̂, E) dE dΩ dS, (7)

so thatR = 1, a uniform distribution of all adjoint source variables.

For the verification problems discussed below, it is necessary to create MCNP models using Eq. (6)
to compute the adjoint flux. The adjoint sources for these models are constructed by considering
what the response R is in the forward calculation. Once R is defined, the correct adjoint source
distribution is then a normalized form ofR over the source emission variables.

1|µ| is used because particles contribute a positive value regardless of the direction they are crossing the surface. MCNP’s
“current tally” is really more of a particle density tally and not a net current tally as the name might imply.
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3. METHOD

A linear tally combination was recently added to a research version of MCNP (patch to RSICC
MCNP5 1.40) to test the generation of weight-window parameters for the combined tally TLC
[5, 6]

TLC = m1T1 +m2T2 + . . .+mkTk, (8)

where mi represents the multiplier for tally Ti, 1 ≤ i ≤ k. All MCNP tallies, except the pulse
height tallies, may be used in the linear tally combination. The mesh tally may also be used with
the linear tally combination, where, each individual voxel of the mesh tally is treated as a volume
flux tally having its own multiplier. The resulting scores from each of the tallies can then be passed
to the generator as the numerator of Eq. (3).

3.1. Selection of Multipliers

The selection of multipliers is crucial to generating efficient weight-window lower bounds. Con-
sider a source with a near tally and a far tally and the importance functions shown in Fig. 1. The
importance functions shown are representative of what would be produced by the weight-window
generator for each tally alone. If one desires a importance function for both detectors in single
calculation and chooses a simple sum of the individual importance functions, a particle in between
the two tallies moving away from the near tally and toward the far tally will likely be rouletted
because the importance along its current direction is dropping. This rouletting is less than ideal if
one is interested in scores to the far detector as well.

Far DetectorNear Detector
Source

Particle

Im
p
o
rt

a
n
c
e
 F

u
n
c
ti
o
n

Figure 1. Importance splitting example .

If the importance function were not to drop so dramatically after passing the first detector, then
more of the particles would survive to reach the second detector. The large drop in importance
after the first detector is a result of the lower scores from lower weight particles contributing to
the far detector instead of the near detector. If larger scores contribute to the far detector from the
same lower weight particles then the importance will be higher, as exhibited by Eq. (3). The linear
tally combination’s multipliers provide a method of weighting the contribution of individual tallies
to obtain a desired higher importance. If each detector is included in the linear tally combination,
the tallies over those detectors become a single tally with its own importance function. If both of
the tallies in this example are used in the linear tally combination and the far detector’s multiplier
is selected such that, on average, it contributes the same score as the near detector, the resulting
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importance produced by the generator will be higher toward the far detector. Selecting multipliers
in the manner above minimizes variation in the average scores for the linear tally combination.

One way to minimize each average score variation is to select all the tally multipliers inversely to
the respective tally mean, namely

mi ∝ 1
/
Ti . (9)

By choosing multipliers that are inversely proportional to the tally mean, then on average the
contribution Ci to the linear tally combination from the ith tally on the jth history is

Cj
i = miT

j
i =

k

Ti
T ji , (10)

where k is a constant of proportionality. The Monte Carlo estimate of the expected value of the
contribution is then

Ci =
k

TiN

N∑
j=1

T ji . (11)

As N →∞ the summation approaches the mean of the tally Ti, which gives as the contribution

Ci = k. (12)

One finds that, by selecting the multipliers inversely to the tally mean, the ith tally’s contribution
to the linear combination is constant in the limit of large N , thereby, minimizing fluctuations in
the combination’s score. For the purposes of this research, k is chosen to be the largest tally mean
so that the multiplier for the largest tally is one and all others are greater than one.

The process of obtaining multipliers and generating weight windows is almost always iterative. It
has been observed from repeated application of weight window generation using the linear tally
combination that a short calculation to obtain initial “order of magnitude” multipliers should be
performed first. Then, the multipliers obtained should be used for an initial generation of weight
windows. Those weight windows should then be used to refine the multiplier estimates, which in
turn should be used to further refine the weight windows. This process should be repeated until
multipliers and weight window stop improving, followed by hand adjustement if necessary.

3.2. Multiplier Effect on Generated Weight Windows

The weight-window generator, based on Eq. (3), estimates a normalized average adjoint flux of
the problem because φ†(P) = I(P). The weight-window generator performs well given adequate
sampling of the phase space regions important to the tally. The adjoint flux scales linearly with
an increase in the adjoint source strength, thus, the adjoint flux resulting from the linear tally
combination given in Eq. (8) is

φ†TLC
= m1φ

†
T1

+m2φ
†
T2

+ . . .+mkφ
†
Tk
, (13)

where φ†TLC
represents the adjoint flux for the linear combination and φ†Ti

is the adjoint flux for
tally Ti. It is the adjoint flux of Eq. (13) that the weight-window generator is estimating.
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The multiplier in front of the individual tally adjoint fluxes in Eq. (13) effectively scales the adjoint
source because of the linearity of the adjoint Boltzmann transport equation. Thus, using the linear
multipliers as a weighting for the linear-tally-combination tallies and generating weight-window
parameters based on that linear combination is essentially estimating the importance/adjoint flux
resulting from multiple adjoint sources, each scaled by its respective multiplier. Put differently, it
is weighting each of the adjoint sources’ flux contributions to the combined adjoint flux at a given
phase space location.

4. ONE GROUP VERIFICATION PROBLEMS

Two one-group verification problems are used to demonstrate the weighting of the adjoint source
via the multipliers. One of the problems is a purely-absorbing infinite medium with infinite
plane source, which has a closed form analytic solution that can be compared to the liner-tally-
combination method. The other problem is a scattering and absorbing media problem. Both of
these problems are run using MCNP’s multigroup transport mode [8].

4.1. Geometry

The geometry of these two verification problems is the same and is illustrated in Fig. 2. The
geometry simulates an infinite slab as a specularly reflecting cylinder bounded by non-reflecting
planes at the ends of the cylinder. The end surfaces are positioned at x = −10 cm and x = 24 cm
and are placed sufficiently many mean free paths away to account for any backscattering into the
regions of interest (in and around the source and tallies). The source for the forward calculation is
a plane located at x = 1 cm sampled uniformly over area. The source emits isotropically into only
the single group.
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Figure 2. One dimensional geometry used in all verification problems .

The adjoint source must be correctly described to make a fair comparison to the weight-window
results from the forward calculation. In the forward calculation, the responses are current tallies
located at 6 cm, 8 cm, and 10 cm. The response, integrating over energy, to an MCNP current tally
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is, from Eq. (6),

R =
∫
S

∫ 1

−1
|µ|φ(x, µ) dµ dS x ∈ S. (14)

From this response one finds that the adjoint source must be angularly distributed as |µ|. More
specifically, the direction of adjoint particle emission must be distributed as µ about both the posi-
tive and negative surface normal directions.

4.2. One-Group Pure Absorber

Our research version of MCNP5 was used to generate spatial weight windows for the linear com-
bination of the three tallies as well as to compute the adjoint flux density. The multipliers for the
linear combination were selected inversely to the tally means so as to minimize the variation to
the linear combination, as discussed above. The analytic adjoint solution, continuous in space and
direction,

I(x, µ) = e−(x−xd)/µ (15)

was weighted by the forward particle density

N(x, µ) =
1

2
e−(x−xs)/µ (16)

and numerically integrated over direction to find the importance and adjoint flux as a function of
position as specified by Eq. (2), namely,

Ianalytic =
∫ 1

0
N(x, µ)I(x, µ)dµ

/∫ 1

0
N(x, µ)dµ . (17)

Only the contribution from 0 ≤ µ ≤ 1 needed to be considered because particles are incapable of
backscattering in the pure absorber.

Figure 3(a) compares the results of the weight-window generation using the linear tally combina-
tion to the analytic solution for the simulated infinite medium problem. The line labeled “fltc-wwg
importance” is the importance generated using the linear tally combination in MCNP5 with the
linear-tally-combination patch. The histogram structure arises from the fact that importances es-
timated in MCNP5 are averaged over spatial regions. The agreement between the analytic impor-
tance and linear tally combination weight-window generation importance is excellent.

Fig. 3(b) shows the calculated adjoint fluxes (normalized to unity at the physical source location)
for the weighted adjoint sources discussed above using MCNP5, the analytic solution, and PAR-
TISN. The adjoint calculation using MCNP is performed in multigroup mode. Because only one
energy group is considered and the forward transport process is the same as the adjoint transport
process for one group, the problem may be run as a forward calculation with the correct adjoint
source [9, chapter 4]. Technical difficulties running MCNP in adjoint mode with a purely absorb-
ing medium prevented running the problem using actual multigroup transport. The MCNP adjoint
calculation is therefore labeled “f-adjoint” to denote that it is the adjoint computed using a forward
calculation. The agreement between all of these solutions is excellent, thus indicating that, be-
cause the calculated importance is dependent on the adjoint flux, the importance being calculated
is indeed the importance for the weighted adjoint source.
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Figure 3. (a) Comparison of the spatial analytic importance function to the importance func-
tion generated using MCNP’s weight-window generator and the linear tally combination, and
(b) a similar comparison of the adjoint fluxes. All results are normalized to unity in the cell
containing the physical source.

4.3. One-Group Absorbing and Scattering Medium

The one-group absorption and scattering medium calculation was performed with MCNP to com-
pare the weight windows generated using a linear-tally-combination tally to those obtained by
weighting the adjoint flux by the forward particle density, as in Eq. (2). The total cross section
for the one-group medium is Σt = 1 cm−1, and the absorption and scattering cross sections are
Σa = Σs = 0.5 cm−1.

The one-dimensional geometry was subdivided into multiple smaller cells with planes parallel to
the source and tallies and at the same positions as the planes of the weight-window mesh. The
weight-window generation using the linear tally combination was performed, thereby determining
the appropriate multipliers. Each of the dividing planes was used as surface current tallies and
binned by the cosine of the direction the particle crosses the surface for both an adjoint calculation
and a forward calculation. Both calculations were performed using multigroup transport in MCNP
with adjoint sources appropriately weighted by the multiplier values. [For a discussion of why
and how to appropriately weight the adjoint calculation see 8]. The adjoint response (or expected
score) at each of the dividing surfaces, as a finely histogrammed function of particle direction, was
then calculated. For this calculation Eq. (2) was used with N(P) equal to the density of particles
crossing surface S for the first time.

MCNP does not have a obvious method of determining what crosses a surface the first time, so to
obtain the desired first crossing score to each surface a non-standard calculation is performed for
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each surface. For each calculation, the importances of all cells on the opposite side of the surface
to the source are given zero importances. In this way, when a particle crosses the surface for the
first time it is counted and then immediately killed because of the zero importance on the other
side.

The adjoint particle density computed using MCNP was weighted by the forward particle density
computed using MCNP with a external script to obtain an average importance using Eq. (2). The
importance obtained using this averaging was compared to that produced using the weight-window
generator and the linear tally combination. A comparison of the importance calculated from the
adjoint (labeled “calculated”) and that from the weight-window generator (labeled “fltc+wwg”)
are presented in Fig. 4, and excellent agreement exists between the two sets of data.
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Figure 4. Comparison of the spatial importance function generated by the
MCNP weight-window generator and linear tally combination and the spatial
importance obtained by computing the forward particle density and adjoint
response and combining them via Eq. (2) .

5. TEST AND CHALLENGE PROBLEMS

The linear tally combination and weight-window generation was applied to a set of problems to
test its capabilities. Specifically, a plain water cube geometry was used to test simultaneously
generating neutron and photon weight windows. A concrete sphere problem with high optical
thickness was chosen to test the capabilities of the method applied to deep penetration problems.
For this sphere problem, weight windows are generated with the linear tally combination in one
case using a set of intermediate surfaces and in another case using a mesh tally over the entire
problem. Additionally, the technique is applied to a gamma-gamma density probe problem to
obtain a global flux solution throughout the geometry using a mesh tally with the linear tally
combination. For all of these problems the iterative method described in Section 3.1 is used to
generate multipliers and weight windows.
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5.1. Concrete Sphere Deep Penetration Problem

This problem is designed to be a difficult deep penetration problem. The tally and source are
sufficiently separated, such that, using the weight-window generator on the single tally does not
produce a weight-window estimate because very few particles contribute to the tally.

5.1.1. Problem geometry

The problem consists of a concrete sphere with 1-MeV neutrons nearly tangentially incident on one
end. The desired surface current tally is located on the opposite end of the sphere, approximately
80 mfp away at the source energy.

Weight windows are generated in one case using a linear tally combination of the intermediate
surface current tallies and in another case using a mesh tally overlayed on the problem. The initial
goal was to obtain a well converged result of the surface current tally. However, using the mesh
tally over the entire problem with the linear tally combination provides a global solution for the flux
in addition to the initially desired tally. When the mesh tally is used, it has the same 8000-voxel
mesh geometry as the weight-window mesh.

5.1.2. Deep penetration results

Fig. 5 shows the weight windows produced when intermediate surfaces and the mesh tally are used
for weight-window generation. When the linear combination of surface current tallies through
the sphere are used for weight-window generation, the weight windows decrease predominantly
toward the tally. However, when the mesh tally is used the generated weight-window lower bounds
decrease in all directions from the region particles enter the sphere.

Using the linear tally combination for weight-window generation makes it possible to generate
weight windows for a difficult problem in 5 iterations of 2e6 particles for the linear tally combi-
nation of intermediate surface tallies and 4 iterations of 2e6 particles for the linear combination of
the mesh tally. Table I shows the tally results for the two different methods of weight window gen-
eration and the analog case, which required 5e8 histories to get even an initial estimate of the tally.
Using the weight windows generated by the linear combination of intermediate surfaces produces
the highest figure of merit.

Use of the linear tally combination with the mesh tally optimizes the flux calculation throughout the
problem geometry. Fig. 6 presents the mesh tally values and relative errors for the yz-plane at x =
0 cm. All of the relative errors in the mesh tally calculation are less than 0.10 and predominantly
less that 0.05. The mesh tally in combination with the linear tally combination and weight-window
generator produces a weight window that optimizes the calculation for a “global” combination of
voxels not only for the individual tally.
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Figure 5. Linear tally combination lower weight-window bounds in concrete
sphere for (a) plane tallies through sphere, and (b) a mesh tally .

Table I. Resulting tally values, relative errors, and figures of merit for the concrete sphere
problem.

Analog
Mean Rel. Err. FOM

5.5142E-09 0.9119 4.4E-03

LTC+WWG with Surface Tallies
Mean Rel. Err. FOM

1.8459E-09 0.0045 381

LTC+WWG with Mesh Tally
Mean Rel. Err. FOM

1.8491E-09 0.0068 125
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(a) (b)

Figure 6. Mesh tally (a) values and (b) relative error after generation of weight windows using the
mesh tally on the linear tally combination.

5.2. Simultaneous Neutron and Gamma Generated Windows

Typically in a Monte Carlo calculation only a weight window optimized for a tally of a single
particle type can be used. For example, a tally for gamma flux may be influenced by neutrons
through (n,γ) reactions, which will be optimized by a neutron weight window and a gamma weight
window. However, only the single tally for gamma flux is being optimized even though a neutron
weight window is generated and used. This problem includes a gamma tally and a neutron tally in
the linear tally combination in attempt to generate a weight window that favors both tallies.

5.2.1. Problem geometry

The problem geometry is a 30 cm× 30 cm× 30 cm water cube with a 1-MeV point isotropic neu-
tron source at its center. A gamma surface flux tally is performed across the surface perpendicular
to the y-axis in the positive direction and a neutron flux tally is performed across the surface per-
pendicular to the y-axis in the negative direction. The problem is subdivided into a series a cells in
the y direction by planes perpendicular to the y-axis. A 1-MeV point isotropic source is located at
the center of the cube and cell-based weight windows are generated for a linear tally combination
containing both the gamma-flux tally and the neutron-flux tally.

5.2.2. Simultaneous weight-window results

Figure 7 presents the resulting weight windows for this problem in the case that only the neutron
tally is optimized, only the photon tally is optimized, and the linear tally combination is optimized.
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When only the neutron tally is optimized, the generated weight windows favor neutrons moving
in the negative y direction, and, even after multiple iterations of weight-window generation, an
estimate of the neutron weight window for the cells near the photon tally is not obtained.

Fig. 7(b) shows that the photon weight window favors photons moving in the positive y direction.
The neutron weight window also favors neutrons moving in the positive y direction except in the
cells at the problem boundaries. The neutron weight window preferentially move neutrons toward
the photon tally because (n,γ) reactions are the source of the photons and as the neutron move
nearer the photon tally, photons produced in those locations are more likely to contribute to the
tally.

When the linear tally combination is use to generate weight windows a very different neutron
weight window is obtained. Figure 7(a) shows that, for the linear tally combination, the neutrons
are favored to move in the negative y direction toward the neutron tally but are not as strongly
discouraged from moving in the positive y direction as in the case of optimizing only the neutron
tally. Little difference is observed in the behavior of the photon weight windows for optimization
of the linear tally combination.

Table II shows the tally results for the neutron and photon tallies in the problem for three different
cases. The resulting figures of merits are 1031 for the neutron tally and 53 for the photon tally
when only the weight window generated with the neutron tally is used. Interestingly, the photon
tally does well even though no photon weight window is uses as a result of the simplistic problem
and the low photon attenuation. The weight window produced using only the photon tally with
the weight-window generator gives a fugure of merit of 20547 for the photon tally and 3.3 for
the neutron tally. The weight window produced generating with the linear tally combination gives
figures of merit of 3242 for the neutron tally and 6861 for the photon tally, which is less efficient
than either calculation alone but requiring less weight-window generation time.

Table II. Resulting tally values, relative errors, and figures of merit for the simultaneous
weight window generation problem.

Neutron Tally Alone WWG
Tally Mean Rel. Err. FOM

Neutron 1.6699E-06 0.0013 1031
Photon 2.1298E-04 0.0058 53

Photon Tally Alone WWG
Tally Mean Rel. Err. FOM

Neutron 1.6412E-06 0.0671 3.3
Photon 2.1344E-04 0.0009 20547

Neutron & Photon Tallies LTC+WWG
Tally Mean Rel. Err. FOM

Neutron 1.6696E-06 0.0017 3242
Photon 2.1290E-04 0.0012 6861

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/17



Solomon, et. al.

5.3. Application To A Gamma-Gamma Density Tool Problem

Weight-window generation using a linear tally combination was also applied to a gamma-gamma
density well-logging tool model [10] (Fig. 8). In this study, the technique generates weight-window
parameters for the combination of both the near and far detectors and a mesh tally over the entire
problem for a global importance map. A flux tally mesh (with over 100,000 mesh cells) is overlaid
on the entire problem with the goal of obtaining a well converged flux estimate in each voxel.
An iterative process is used to determine the weight-window parameters for each voxel where
each iteration consists of refining the estimate of not only the weight-window parameters but also
the multipliers. Five iterations of 5e7 histories were needed to obtain weight-window estimates
throughout the problem.

Figure 9(a) shows the voxel relative error for an MCNP calculation using default variance reduction
and 1 × 108 histories. Note that only the region directly around the source has well converged
flux estimates. Using the linear tally combination and weight-window generation with the mesh
tally, one finds (Fig. 9(b)) that it is possible to obtain values throughout the problem and that the
relative errors are dramatically reduced compared to the default case. Previously in MCNP5 it
was not possible to generate weight-window parameters for a mesh tally; but this new technique
allows weight-window parameters to be generated that work with the mesh tally on a global basis.
Figure 10 shows the fraction of voxels having less that a specified relative error for the gamma-
gamma density tool problem as a function of the number of histories run. As expected, the more
histories used the more voxels having low relative errors produced.

6. CONCLUSIONS

A new technique has been devised by implementing a linear tally combination in MCNP, which, in
conjunction with MCNP’s weight-window generator, is capable of optimizing a linear combination
of tallies. This technique is shown to be equivalent to increasing the adjoint source strengths of
detectors by means of the linear multiplier. A comparison to two verifications problems is made to
demonstrate that the linear multiplier is equivalent to increasing the adjoint source-strength. The
results of the comparison problem show excellent agreement between the analytic or calculated
importances and the computed importances using the weight-window generator with the linear
tally combination.

In addition, the technique has been employed to generating global importances in conjunction with
MCNP’s mesh tally capabilities. In the oil-well logging problem considered, it is possible to obtain
a flux throughout the problem domain with relative errors less than 10% in the majority of voxels.
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Figure 7. (a) neutron and (b) photon weight windows as a function of the tally
being optimized .

Figure 8. gamma-gamma density oil-well logging tool model geometry.
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(a) (b)

Figure 9. (a) Voxel relative error after default mesh tally production run of 1 × 108 histo-
ries, and (b) voxel relative error after mesh tally weight-window generation using linear tally
combination and production run of 5 × 107 histories.
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