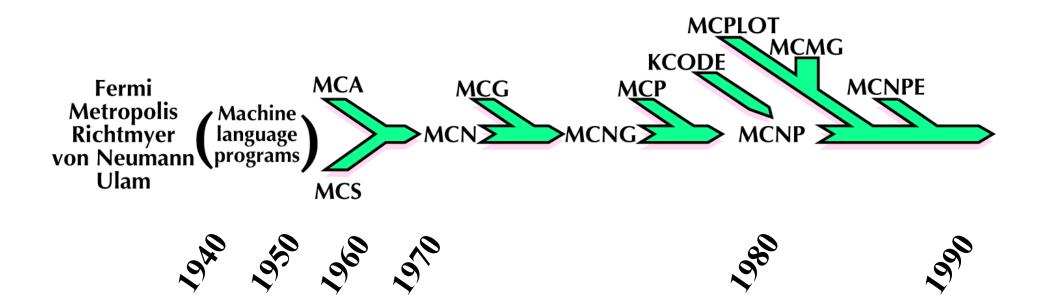
John S. Hendricks
Gregg W. McKinney
H. Grady Hughes
Richard E. Prael
John T. Goorley

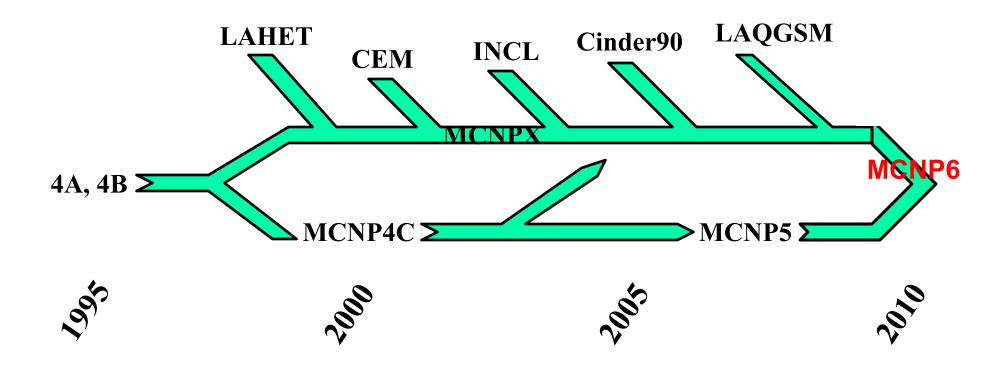
Los Alamos National Laboratory Los Alamos, NM,87545, USA

> ANS Annual Meeting Anaheim, CA June 8 - 12, 2008

> > LA-UR-08-3475



- Merger Project
- Demonstration
- Implications



MCNP - a history of integrating codes

MCNP / X – continued history of integrating codes

Overview

- Goal combine all features of MCNP5 and MCNPX into a single code to be released as MCNP6
- Level of support: \$3M

– FY07: 2.5 FTE

– FY08: 2.0 FTE

– FY09: 2.0 FTE

- Strategy: Integrate MCNPX capabilities into MCNP5 / 6 subroutine by subroutine
- Planned Milestones:
 - MCNP6 at MCNP / MCNPX workshops (May 2008)
 - Alpha (internal release): October 2008
 - Beta (limited external release): April 2009
 - RSICC Release: October 2009

Challenges

- ~ 1000 subroutines in 9 directories
 - ~500 new subroutines in 8 sub-directories
 - ~400 subroutines & modules in MCNP6
- ~400 subroutines in MCNPX /mcnpf/ directory
 - ~ 55 new MCNPX subroutines
 - ~200 subroutines nearly the same as MCNP5
 - ~150 subroutines require careful merging
- Phased approach with building & testing after each step

Challenges – 2 Teams / 2 Cultures

MCNP5 Team

MCNPX Team

Jeremy Sweezy

Gregg W. McKinney

J. Tim Goorley

Laurie S. Waters

Tom Booth

Joseph W. Durkee

Forrest B. Brown

Jay Elson

Jeff Bull

Michael L. Fensin

Avneet Sood

John S. Hendricks

Roger Martz

Michael R. James

Art Forster

Russell C. Johns

Denise B. Pelowitz

Richard Prael

Stepan Mashnik

Franz X. Gallmeier

Tony Zukaitis

M. William Johnson

Challenges - MCNPX 2.6.0 (April 2008)

Integrates: CEM03, CINDER90, LAQGSM

Extends MCNPX

- Beyond 34 particles to 2205 heavy ions;
- Beyond static nuclides to decaying & emitting;
- Beyond fixed materials to burnup / depletion / transmutation & dynamic materials;
- New variance reduction, sources, tallies, graphics, data

http://mcnpx.lanl.gov

Challenges - MCNPX 2.6.0 – Additional Capabilities

- Long file names;
- Tally stop on precision;
- Charged ions from neutron capture in table range (in addition to light-ion recoil from elastic);
- Weight-window MESH angles in radians and degrees;
- Piping PTRAK results;
- Spherical GRIDCONV;
- Proton step size control: HSTEP on M card;
- New photon emission data: PHTLIB;
- New S(α,β) scattering law;
- Differential data tallies extended to table physics;
- Separate printout/calculation of induced fission multiplicity;
- Interrupts in electron tracking;
- Extend ZAID identifiers;
- Neutron models produce light (A<4) nuclei <100 MeV;
- Additional enhancements and corrections.

Challenges – MCNP5 – Additional Capabilities

- Shannon Entropy for criticality convergence diagnostics;
- Pulse-height tallies with variance reduction, including DXTRAN;
- Electron physics enhancements;
- Long file names;
- Mesh tallies;
- Angles in radians and degrees;
- Prompt fission multiplicity;
- Supplemental random number generators;
- Extensive benchmark test set;
- Additional enhancements and corrections.

Strategy

Phase 1

Move MCNPX variables to MCNP6 (reconcile particles, common, etc.)

Phase 2

First half of IMCN (card reading)

Phase 3

Second half of IMCN (geometry, tallies materials)

Phase 4

XACT (Read / process cross sections, proton library, heating)

Phase 5

MCRUN - particle transport

Phase 6

MCRUN – sources and tallies

Phase 7

Tally and cross section plots

Phase 8

Geometry plot

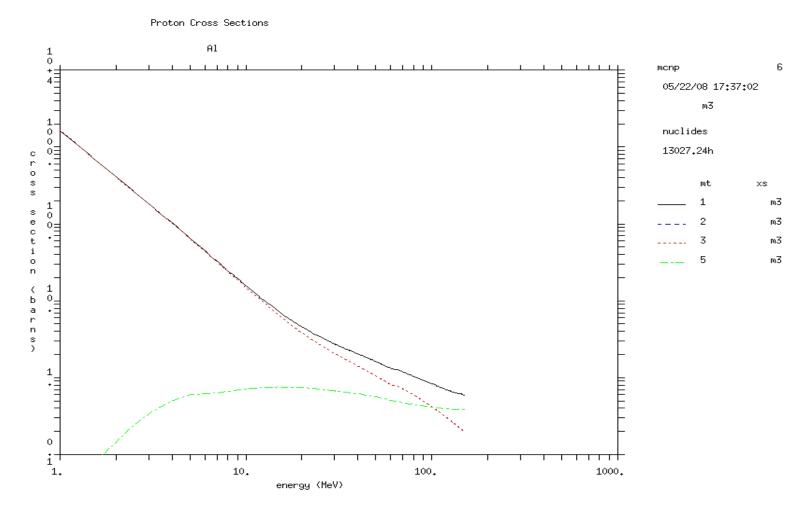
Phase 9

MCNPX 26 C, D, E, F, ... upgrade

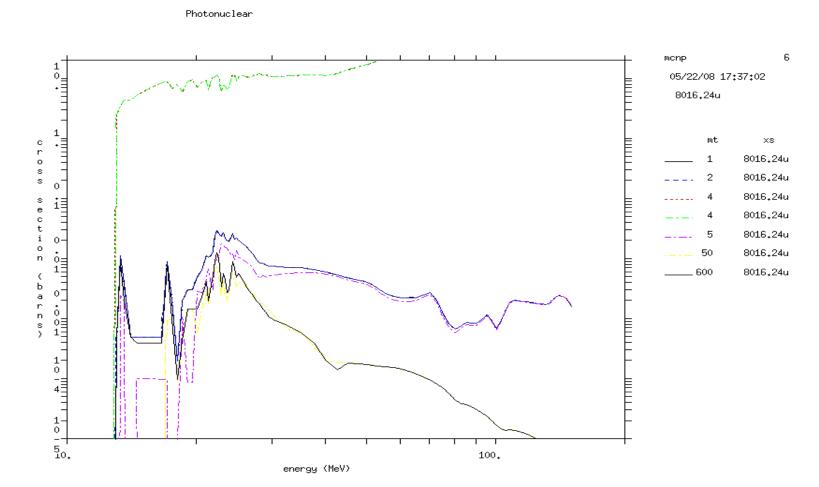
Phase 10

Debug

Quality control


Documentation

- Merger Project
- Demonstration
- Implications



Demonstration – Proton Cross Section Plot

Demonstration – Photonuclear cross section plot

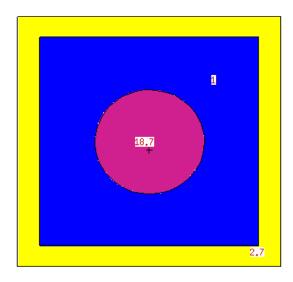
Demonstration- Geometry plot – new interactive buttons

05/22/08 17:45:35 file:handouts\geom2a sphere in a box in a box probid = 05/22/08 17:45:10 basis: YZ

(0,000000, 1,000000, 0,000000) (0,000000, 0,000000, 1,000000) origin:

(0.00, 0.00, -0.85) extent = (21.20, 21.20) cell labels are

mass densities


.

Value for den 18.7 in Cell 1

xyz = 0.00, 0.00, -0.85

CURSOR	Restore	CellLine
PostScript	ROTATE	
COLOR	SCALES 0	LEVEL
XY	YZ	ZX
LABELS	L1 off	L2 den
MBODY on		

UP RT DN LF Origin .1 .2 Zoom 5. 10

0

imp rho den vol fcl mas pwt mat tmp wwn ext pd dxc lat fill ijk nonu pac tal

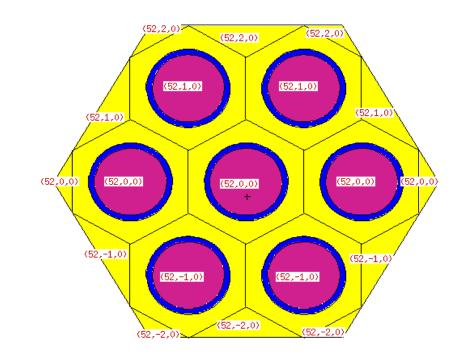
PAR N

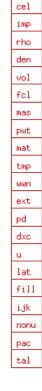
Redraw Plot> En	d

Slide 14

Demonstration- Geometry plot – ijk indices

05/22/08 17:49:06 PWR Core


UP RT DN LF Origin .1 .2 Zoom 5, 10


probid = 05/22/08 17:48:32
basis: XY
(1.000000, 0.000000, 0.000000)
(0.000000, 1.000000, 0.000000)
origin:
(0.02, -0.19, 49.23)
extent = (2.69, 2.69)
cell labels are
lattice indices ijk

.

Value for ijk (2,0,0) in Cell 41

xyz = 0,02, -0,19, 49,23			
CURSOR	Restore	CellLine	
PostScript	ROTATE		
COLOR	SCALES 0	LEVEL	
XY	YZ	ZX	
LABELS	L1 off	L2 ijk	
MBODY on			

PAR N

LOS A Click here or picture or menu

Redraw Plot> End

lide 15

- Merger Project
- Demonstration
- Implications

Secrets of MCNP / X Success

- It's Free & Available
 - Almost
- It Works
 - Gets right answers
- It Meets Your Needs
 - Repository of physics knowledge
 - Reasonably easy to use

Essentials for MCNP6 Success (prioritized)

Leadership:

- Jeremy E. Sweezy, Gregg W. McKinney,
- J. Tim Goorley, Laurie S. Waters

Quality:

- MCNPX Beta Testers
- MCNP4 / MCNPX Expert Code Review & Integration
- MCNP5 Benchmarks
- MCNP5 & MCNPX Extended Regression Test Sets

Value

- Free Availability
- Documentation, <u>interactive</u> Workshops
- Features new capabilities

- Merger Project major undertaking
- Demonstration works mostly
- Implications can succeed if it embodies the best of both MCNP5/X

