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ABSTRACT 

 
Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue 

(keff) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed 

method for accelerating convergence of the Monte Carlo power iteration using Wielandt’s method 

has been implemented in a test version of MCNP5. The method is shown to provide dramatic 

improvements in convergence rates and to greatly reduce the possibility of false convergence 

assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for 

many problems. In addition, the method should eliminate most of the underprediction bias in 

confidence intervals for Monte Carlo criticality calculations. 

 

Key Words: Wielandt method, Monte Carlo, criticality, MCNP 

 

 

1. INTRODUCTION 

 

Monte Carlo-based criticality calculations make use of the basic numerical method called power 

iteration [1,2]. Given a fission neutron source distribution and an estimate of keff, single-

generation random walks are carried out for a “batch” of neutrons to estimate a new keff and 

source distribution. Iterations continue until both keff and the source distribution have converged. 

Upon convergence, tallies are started and iterations continued until statistical uncertainties 

become small enough.  

 

The power iteration method may converge slowly for many criticality problems, especially those 

having a dominance ratio close to 1.0. Deterministic codes based on discrete-ordinates or 

diffusion theory methods also use the power method to determine keff and the fundamental mode 

source distribution, but apply acceleration methods to improve the convergence rate. Standard 

acceleration methods used in deterministic codes have not been successfully applied to Monte 

Carlo criticality calculations, however, due to difficulties in treating the statistical noise. 

Recently, a novel Monte Carlo technique was proposed [3] for applying Wielandt’s method [1,2] 

to accelerate the convergence of Monte Carlo eigenvalue calculations. While the improvements 

in convergence rate reported in [3] were impressive, the increased computing costs appeared 

prohibitive. This paper presents the results of recent efforts to provide an efficient 

implementation of Wielandt’s method into the MCNP5 Monte Carlo code [4]. Similar to [3], we 

have found that the method provides dramatic improvements in convergence rates and greatly 

reduces the possibility of false convergence assessment. The current implementation in MCNP5, 

however, is effective and efficient, improving the Monte Carlo figure-of-merit for some 
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problems and roughly matching the unaccelerated performance for other problems. In addition, 

the method has the potential to eliminate most of the underprediction bias in confidence intervals 

for Monte Carlo criticality calculations. This paper summarizes the recent work on implementing 

Wielandt’s method and performing numerical tests of its effectiveness. 

 

 

2. THEORY FOR WIELANDT’S METHOD 

 

Wielandt’s method, also called fractional iteration, was first applied to accelerate the solution of 

diffusion theory reactor calculations in the 1950s and 1960s. The method is analyzed in detail in 

[1,2], and is briefly described here. The k-eigenvalue transport equation in standard form is 
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This can be written as 
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Subtracting a fixed fission source from each side of the transport equation gives 
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where ke must be chosen to be greater than keff. The amazing insight from [3] which permits the 

method to be applied to standard Monte Carlo criticality calculations concerns the treatment of 

the additional fission terms on each side of Eq. (3):  The (1/ke)M  term on the left side 

corresponds to fission sources which will be followed within the current iteration, while the same 

term on the right side corresponds to fission sources which will be banked for the next iteration. 

With this interpretation, a modified power iteration is obtained: 
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While the eigenfunctions of the modified power iteration given by Eq. (4) are identical to those 

of standard power iteration, the eigenvalues are shifted and the convergence rate is increased. 

The dominance ratio of the modified power iteration is given by 
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where =(k1/k0) is the dominance ratio for standard power iteration. The modified dominance 

ratio given by Eq. (5) is always less than  since ke>k0>k1, so that Eq. (4) converges at a faster 

rate than standard power iteration. 
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3. IMPLEMENTATION IN MCNP5 

 

For this work, implementing Wielandt’s method into MCNP5 was done somewhat differently 

from [3] so that existing and efficient MCNP5 coding could be used for banking fission neutrons 

for the current generation and next generation. For conventional MCNP5 criticality calculations, 

the number of fission neutrons placed into the next-generation fission bank on a collision is 

given by 

 nnext = wgt F

T

1

kcollision
(n 1)

+        (6) 

For Wielandt’s method, a reduced number of fission neutrons are placed into the next-generation 

fission bank on each collision, and some additional fission neutrons are placed into the particle 

bank for the active neutron at each collision: 

 

%nnext = wgt F

T

1

%k
(n 1)

+ , %ncurrent = wgt F

T

1

ke
+    (7) 

Note that 
 
E(n

next
) = E( %n

next
) + E( %n

current
) . With this approach, the fission neutrons for the current 

generation are banked away as secondary particles and then retrieved and followed as part of the 

current history. Thus, the existing banking mechanisms built into MCNP5 are used efficiently. 

Another important consideration is that the “chain” of current-generation neutrons followed in 

this manner will be treated as part of the same initial history in the iteration, so that correlation 

effects will be handled correctly between successive fissions. This improved statistical treatment 

should serve to reduce the underprediction bias in confidence intervals for criticality 

calculations. 

 

The effect of using Eq. (7) for generating fission neutrons in both the current and next iterations, 

as opposed to using Eq. (6) to generate fission neutrons only in the next iteration, is shown 

schematically in Figure (1). The standard power iteration method corresponds to a “generation 

model,” where there is a one-to-one correspondence between fission generations and power 

iterations. In Wielandt’s method, each iteration contains (partial) fission chains, spanning more 

than one generation. There is a distribution of chain lengths, realized by sampling ncurrent in Eq. 

(7) for successive collisions. The average length of these fission chains within an iteration can 

readily be shown to be 

 L 1+
k
0 , where = k

e
k
0

       (8) 

Thus for k0 1, L 1 for = ,  L 2 for =1,  L 11 for =0.1,  L 101 for =0.01. As  

approaches 0 (i.e., ke approaches k0), the chains within each iteration become longer, and there is 

correspondingly less correlation between different iterations. It is well-known that inter-iteration 

correlation causes an underestimation of the confidence intervals in Monte Carlo k-effective 

calculations [5]. The reduced correlation between iterations in Wielandt’s method should 

eliminate much of the underprediction and result in more accurate (but larger) confidence 

intervals. (See Section 8 of [5] for discussion. Although the discussion in [5] was directed toward 

the superhistory method, it applies as well to Wielandt’s method. In rough terms, the 

superhistory method uses a fixed number of generations per iteration, a fixed value of L, whereas 
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Wielandt’s method determines the number of generations for each chain stochastically according 

to Eqs. (7), with the average L given by Eq. (8).)  In addition, longer fission chains within an 

iteration permit the source distribution to “spread out” more in a single iteration, leading to the 

faster convergence rate for Wielandt’s method. The average computing cost for each iteration is 

roughly proportional to L, however, so that the faster convergence is offset by a higher 

computing cost per iteration. 

 

The initial implementation of Wielandt’s method into MCNP5 used a fixed value of  ke or 

.  Numerical testing for several problems showed that this approach often led to large 

fluctuations in the neutron population in the early stages of the iterations, especially for small 

values of . To avoid this difficulty, =1 was used for the first 2 iterations, and then  was 

reduced on subsequent iterations according to the ad hoc prescription in Table (1), until it 

reached a user-specified value. Following that,  was held constant at the user-specified value.  

 

Table 1. Variation in  for the initial iterations, until  is reduced to user-specified value 

 

 Iteration  Iteration  Iteration   

1 1.0 7 0.20 13 0.035 

2 1.0 8 0.15 14 0.025 

3 0.75 9 0.125 15 0.020 

4 0.50 10 0.100 16 0.015 

5 0.35 11 0.075 17 0.0125 

6 0.25 12 0.050 18 0.0100 

 

Using this scheme for varying , there were no subsequent instabilities in the neutron population 

during the iterations. 

 

 

Standard power iteration - generation model Wielandt iteration - chain model 

Figure 1. Comparison of standard power iteration & Wielandt iteration 
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3. NUMERICAL RESULTS  

 

Figure (2) shows the convergence of the Shannon entropy of the fission source distribution for a 

typical PWR reactor calculation in 2D for standard power iteration and for Wielandt’s method 

using =1 and =0.1.  A dramatic improvement in convergence can be seen for =0.1, with the 

source distribution converging in about 5 iterations vs about 80 iterations for standard power 

iteration. Figure (3) shows the number of iterations required for source convergence for different 

choices of the shift parameter  for the same calculation. For this calculation, the Figure-Of-

Merit (FOM=1/(
2
T), where 

2
 is the variance in keff and T is the cpu-time) provided by MCNP5 

for its final iterations was 168x10
3
 for standard power iteration, 188x10

3
 for Wielandt’s method 

using =1, and 184x10
3 
using =.1, indicating slightly improved code performance when using 

Wielandt’s method. 

 

A number of other test problems were calculated using Wielandt’s method, including a 3D  

core PWR, 1D slab problems, and a large loosely-coupled fuel storage vault. The improvements 

in convergence in all cases were comparable to that for the problem discussed above. The FOM 

varied, showing improvement for some tests and moderate (~10-20%) degradation for others. 

The cause for the variation in FOM behavior is currently unknown and is the subject for 

continuing investigation.  

 

4. WORK IN PROGRESS 

 

While Wielandt’s method appears to be very effective in accelerating the convergence of keff and 

the fission source distribution, there are many questions remaining before a robust, automated 

implementation is made available in a production version of MCNP5: 

Figure 3.  Iterations required 

          for convergence, for 

          different values of   

Figure 2.  Convergence of Hsrc vs iteration  

                  for 2D PWR test 
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• The optimal choice for  is not known. Smaller values of  result in faster convergence, 

at the expense of increased computing cost per iteration.  

• The scheme for varying  as a function of iteration number (cf. Table 1) works well for 

the problems tested, but may need modification for other cases. 

• To date, numerical testing has focused on the convergence of keff and the Shannon 

entropy of the source distribution. Further examination into the convergence of local 

reaction rates (e.g., assembly or pin powers) is needed. 

• Because Wielandt’s method changes the total number of neutrons followed during an 

iteration, there are questions concerning the proper weighting of tally data. For example, 

should variance be based on the scores for fission chains in an iteration, or on the 

individual scores for each neutron? 

• It was stated above and in [5] that following more than 1 fission generation in each 

iteration should reduce the inter-generation correlation and thus eliminate the 

underprediction bias in confidence intervals. It remains to be proven that these assertions 

are correct, and to determine the practical effects of  computing accurate (but larger) 

confidence intervals. 

All of these questions (and more) are under investigation. In addition, there is a larger question to 

be considered: If Wielandt’s method is effective in accelerating the convergence of Monte Carlo 

criticality calculations, what other acceleration schemes might be adapted for use with Monte 

Carlo, using techniques similar to those described above? 

 

Despite the questions noted here, it is expected that an initial implementation of Wielandt’s 

method into the standard MCNP5 distribution will be made during 2007. 

    

 

5. CONCLUSIONS  

 

Wielandt’s method has been implemented into a test version of the MCNP5 Monte Carlo code. 

Numerical testing has shown that the method provides dramatic improvements in convergence 

rates and greatly reduces the possibility of false convergence assessment. The current 

implementation in MCNP5 is effective and efficient, improving the Monte Carlo figure-of-merit 

for many problems, and roughly matching the unaccelerated performance for other problems. In 

addition, the method has the potential to eliminate most of the underprediction bias in confidence 

intervals for Monte Carlo criticality calculations.  
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