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ABSTRACT 

 
Determining convergence of Monte Carlo criticality problems is complicated by the statistical 

noise inherent in the random walks of the neutrons in each generation. The latest version of 

MCNP5 incorporates an important new tool for assessing convergence: the Shannon entropy of 

the fission source distribution, Hsrc. Shannon entropy is a well-known concept from information 

theory and provides a single number for each iteration to help characterize convergence trends for 

the fission source distribution. MCNP5 computes Hsrc for each iteration, and these values may be 

plotted to examine convergence trends. Convergence testing should include both keff and Hsrc, 

since the fission distribution will converge more slowly than keff, especially when the dominance 

ratio is close to 1.0. 
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1. INTRODUCTION 

 

Monte Carlo-based criticality calculations make use of the basic numerical method called power 

iteration [1,2]. Given a fission neutron source distribution and an estimate of keff, single-

generation random walks are carried out for a “batch” of neutrons to estimate a new keff  and 

source distribution. Iterations continue until both keff  and the source distribution have converged. 

Upon convergence, tallies are started and iterations continued until statistical uncertainties 

become small enough.  

 

Determining convergence of Monte Carlo criticality problems is complicated by the statistical 

noise inherent in the random walks of the neutrons in each generation. In the early years of 

Monte Carlo criticality calculations (roughly, from the 1950s through the 1970s), computers 
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were slow enough that most calculations sought results just for keff  and did not compute detailed 

power distributions. As a result, nearly all computational tools for assessing convergence were 

based on the trends in keff  as a function of the number of iterations. With the faster computers of 

the 1980s through the present, it has become routine to compute detailed power distributions in 

2D or 3D Monte Carlo criticality calculations. Unfortunately, most Monte Carlo codes still 

assess convergence only using keff, without examining convergence of the source distribution. 

This practice can lead to significant errors in the computed power distributions, since the source 

distribution will converge more slowly than keff  [1,3,4]. 

 

Recent research into the convergence of Monte Carlo criticality calculations [4-7] has established 

that the Shannon entropy of the fission source distribution, Hsrc, is an effective diagnostic 

indicator. In 2006, the MCNP5 Monte Carlo code [8] was enhanced to compute and plot Hsrc  as 

a function of iteration to assess the convergence of the fission source distribution [3]. In this 

paper, we review the theory of Hsrc and convergence, examine the behavior of Hsrc for different 

iteration schemes, and investigate candidate techniques for automated convergence testing. 

 

 

2. THEORY FOR CONVERGENCE AND SHANNON ENTROPY 

 

It can be readily shown [1,3,4] that keff and the fission source distribution will converge during 

power iteration as 
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where  is the dominance ratio (k1/k0), k0 and 
  
r
u

0
are the fundamental mode eigenvalue (exact keff) 

and eigenfunction, k1 and 
  
r
u

1
are the first higher mode eigenvalue and eigenfunction, and a0, a1, 

and g1 are constants determined by the expansion of the initial fission distribution. Eq. (1) shows 

that higher-mode noise in the fission distribution dies off as 
n+1

, while higher-mode noise in keff 

dies off as 
n
(1- ). When the dominance ratio is close to 1, keff will converge sooner than the 

fission distribution due to the extra damping factor (1- ) which is close to 0. Thus, it is essential 

to monitor the convergence of both the fission source distribution and keff, not just that of keff. 

 

Shannon entropy is a well-known concept from information theory and provides a single number 

for each iteration to help characterize convergence of the fission source distribution. It has been 

found that the Shannon entropy converges to a single steady-state value as the source distribution 

approaches stationarity. Line-plots of Shannon entropy vs. batch are easier to interpret and assess 

than are 2D or 3D plots of the source distribution vs. iteration. The Shannon entropy of the 

discretized source distribution for an iteration is given by: 
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where N is the number of tally bins for the source distribution, and PJ is the fraction of the source 

distribution occurring in bin J. That is, PJ is found by integrating 
(n+1)

 from Eq. (1) over the 

volume of tally bin J.  Hsrc varies between 0 for a point distribution to ln2N for a uniform 

distribution. Also note that as PJ approaches 0, PJln2PJ approaches 0. 

 

 

3. NUMERICAL RESULTS: Hsrc FOR DIFFERENT ITERATION STRATEGIES  

 

For a given iteration, determining Hsrc from Eq. (2) involves choices for the number and 

configuration of spatial tally bins, and for the number of neutrons followed per iteration. To 

determine the effects of these choices on assessing convergence using Hsrc, four different 

criticality test problems were used. These test problems were run with different numbers of 

neutrons per iteration to determine confidently when keff  and Hsrc had converged, and then were  

repeated using different numbers and sizes of spatial tally bins for Eq. (2).  

 

Figure (1) provides an example of increasing the number of spatial bins used in computing Hsrc.  

The test problem was Benchmark 3 from the OECD/NEA benchmarks for source convergence 

[9], with slabs of 18 cm of fuel on the left, 20 cm of water in the middle, and 20 cm of fuel on 

the right. Using 100 or 1000 bins in computing Hsrc results in convergence plots which are easy 

to interpret. Using a very large number of bins, 10000 or more, leads to a loss of detail and 

makes it more difficult to assess convergence. Other test problems show similar results. It is thus 

recommended that a few dozen or hundred bins be used, rather than many thousands, in 

computing Hsrc.    

 

Figure (2) shows the behavior of Hsrc for a 2D vs 3D layout of the spatial tally bins for a standard 

MCNP test problem (inp24, [8]) that represents a 3D ,  core PWR. Using a 2D binning 

arrangement for computing Hsrc, where the z-dependence is integrated out, results in seemingly 

faster convergence of Hsrc, compared to the 3D binning where the axial variations affect Hsrc. 

However, since both runs had exactly the same Monte Carlo distribution of source points in each 

cycle, hence the same actual convergence behavior of the source distribution, it is clear that 3D 

binning should be used for computing Hsrc for 3D problems. Using a 2D binning for a 3D 

problem can give an incorrect assessment of convergence.  

Figure 1.  Hsrc convergence for different  

                  numbers of spatial tally bins 

 

Figure 2.  Hsrc convergence for 2D vs  

                  3D  spatial tally bins 

 

2D bin layout 

3D bin layout 

100 bins 

1000 bins 

10000 bins 
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Figure (3) shows the behavior of Hsrc for the 3D MCNP test problem inp24 when different 

numbers of neutrons per cycle are used with a fixed grid for the Hsrc computation. Since 

convergence does not depend on the number of neutrons per cycle, Hsrc converges to the same 

value, independent of the number of neutrons per cycle. With smaller numbers per cycle, 

however, more noise is present in the Hsrc plots, making it more difficult to assess convergence. 

 

 

4. NUMERICAL RESULTS: CONVERGENCE TESTING USING Hsrc 

 

To investigate the feasibility of completely automating the determination of convergence, six 

different convergence tests were created and applied to both keff  and Hsrc in MCNP5 criticality 

calculations for five different test problems.  The goal was to enable MCNP to determine the 

iteration at which convergence is reached for both keff and Hsrc.  This series of tests was 

successful in all but the most difficult cases, i.e. problems with a very high dominance ratio. The 

six tests were as follows: 

• Check if value has not increased/decreased 5 times in a row 

• Check if average of previous q values has not increased/decreased 5 times in a row 

• Check if slope of previous q values has not changed sign 

• Check if slope of previous q values is zero within t-statistic test 

• Check rate of change of average of previous q values is < 0.001 

• Normality check over previous q values, using the Shapiro-Wilk test [10] 

Neutrons per Cycle 

 

  1000 – green 

  3000 – red 

  5000 – blue 

  7000 - black 

Figure 3.   Hsrc convergence for different numbers of particles per cycle 
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For these numerical tests,  q was varied among 10, 20, and 30 cycles for back-averaging. The six 

tests were applied separately to keff and Hsrc, and convergence was declared only if all six tests 

were satisfied. 

 

Figure (4) shows the geometry and convergence behavior for the inp24 test problem. Using q=10 

results in quite reasonable estimates of convergence, as seen in the plots of keff and Hsrc vs cycle, 

while q=20 or q=30 results in overly conservative convergence criteria. Tests for other typical 

PWR or BWR problems show results similar to those in Figure (4) and suggest that it is not 

difficult to reliably automate the convergence assessment for “ordinary” reactor problems. 

 

Figure (5) shows the geometry and convergence behavior for Benchmark 1 from the 

OECD/NEA benchmarks for source convergence [9], similar to a large, loosely-coupled fuel 

storage vault. The convergence tests work reasonably well for keff, which converges within 15 or 

20 cycles, but fail miserably for Hsrc, where over 1000 cycles are needed for actual source 

convergence, rather than the 36-78 estimated by the tests. Other criticality-safety types of 

problems showed similar behavior: For loosely-coupled problems or problems with unusual 

arrangements of materials, the 6 tests on keff and Hsrc did not reliably predict convergence. 

 

As a result of these initial numerical experiments in assessing convergence, it was decided to not 

incorporate the tests into the standard versions of MCNP5. While the tests performed well for 

routine reactor problems, they sometimes badly misjudged the convergence of more difficult 

problems. More research and numerical testing are needed before convergence testing can be 

fully automated. 

 

 

Figure 4.  Convergence tests for inp24 test problem 

Hsrc vs cycle 

Keff vs cycle 
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5. CONCLUSIONS  

 

Shannon entropy of the fission distribution has been found to be a highly effective means of 

characterizing convergence of the fission distribution. The latest version of MCNP5 (version 

1.40) includes capabilities for computing and plotting the Shannon entropy of the fission 

distribution as an important new tool for assessing problem convergence. The recommended 

MCNP5 procedures for defining spatial tally bins and computing Hsrc have been shown to be 

effective for a variety of typical criticality problems. Automation of convergence testing shows 

promise, but further research in this area is needed to improve robustness. It is highly 

recommended that both keff and Hsrc be carefully checked for convergence in all Monte Carlo 

criticality calculations.  
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