LA-UR- (. -1 25 ¢

Approved for pubic reiease.
degtrbution 5 unimded

Title:

Author(s):

Intended for:

o
. Los Alamos

NATIONAL LABORATORY
EST 1943

Los Alamos National Laboratory. an affirmative action‘equal opportumty employer. is operated by the Los Alamos National Security. LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.5 Government retains a nonexclusive. royalty-free license to publish or reproduce the
published form of this contribution. or to allow others to do so. for U.S. Government purposes. Los Alamos Nationa! Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos Nationat
Laboratory strongly supports academic freedom and a researcher's right to publish: as an instdution. however, the Laboratory does not

CBTS (Continuous Build and Test System)

Charles N. Zeeb
Antony J. Zukaitis

NECDC|06

endorse the viewpaint of a publication or guarantee its technical correciness.

Form 836 (7/06)

(BTS (Continuous Build and Test System)
Charles N. Zeeb and Anthony J. Zukatitis
Abstract LA-UR: LA-UR-06-5774

Since codes need tc¢ run on an ever changing number of machines and
environments, there has long been an interest in automated testing
environments and several have been developed. Unfortunately, the use of
these systems has often been limited and usually require constant upkeep.

There are several features that would make an automated test system more
appealing. One is that past results shculd be easy to store and search.
Another is that the test system should transfer easily from one platform
to another. Third, it should be possible to control the environment in
which the tests are run.

To attempt to implement these features, (BTS (Continuous Build and Test
System) was created. While efforts have been made to make (BTS general,
currently it is integrated with the current MCNP Make system. To handle
the storing and searching of past results, (BTS is tightly integrated with
a SQL database (PostgreSQL).

(BTS is written in Perl which reduces but does not eliminate platform
specific problems. A particular emphasis of the system is to make it
relatively easy to define the environment as needed. The system has been
shown to work on a variety of platforms including Linux, OSF1, and Mac 0S X
in both serial and parallel. Also, it has been run with and without the
LSF queueing system.

CBTS (Continuous Build and
Test System)

Charles N. Zeeb
(czeeb@lanl.gov)

Anthony J. Zukaitis
(zukaitis@lanl.gov)

Types of Tests Done by CBTS

“« Database run of a test set

— Test set description is read from the
database

— Results of builds and tests stored in the
database

— Builds and tests are done using the latest
version of the code checked out from CVS

- Done after new code is committed or on a
regular schedule such as nightly

Types of Tests (Cont.)

» Developer run of a test set

— Test set description |s read from the
database

— Results of builds and tests are NOT stored
in the database but are compared to the
expected results in the database

— Builds and tests done on a user specified
copy of the code, usually the user’s current
work on the code

Types of Tests (Cont.)

« A program exists allowing the developer
to do individual builds or tests in a
CBTS defined shell environment

* Independent run of a test set

— Test set description is read from a test set
description (ts) file

— No information is read from or stored to the
database

S ——

Features of CBTS

* Flexible system for specifying
conditions for builds and runs

* Results stored in a database
— Easy storage and searching of results

— Automatically tracks changes in build and
run environments

— Able to define exceptions which describe
acceptable results for individual tests

Build and Run Environments

 Perl files specify possible environments
for each machine (compilers etc.)

* All builds and runs are done In
environments created “from scratch”
— Remove problems from undesired

environment variables

— A program exists to allow users to do
individual builds and runs in this
environment

MCNP Tests

CBTS currently used with MCNP
Tests done using MCNP’s Makefiles

Results compared by diff command to

templates

— Linux, OSF1, Windows

— If not same machine as template, a “fuzzy diff’ that
- ignores the last significant figure is used

Many machines do not match templates

Exceptions

» Database can store exception for each
test which is an expected diff file

o If a test’s diff file matches its exception,
that is a “defined pass”

* While it is hoped to remove all “defined
passes’, this allows changes in results
to be identified and corrected until that
occurs

Sample CBTS Hierarchy

 TestSet |

Buld =~ Build @ Build

‘Test Target ‘Test Target Test Target i

A | R R
l 1

Test Suite Test Suite | Test Suite Test Suite |

J’W [{ 1 [Jl - J_]__J

Test Test Test Test| ‘Test% Test Test Test gTest:: %Test'i

Sample CBTS Test Set
Description (ts) File

machine=flash test_set=nightly

B "pgi 5.2-4 lampi/gcc latest rossi plot cheap” CONFIG="portland rossi lampi cheap'
FC_VER=5.2-4 MP| VER=1.5.14 CC_VER=3.4.3 | '

T -C ROSS| test1
T -C ELECTRONS test1
T test

B "intel/lampi/gcc iatest rossi cheap” CONFIG="intel rossi lampi cheap"
FC_VER=9.1.033-f MP|_VER=1.5.14 CC_VER=3.4.3

T -C RQOSSI test1

R NMP!=4 NTRD=4

T -C ELECTRONS test1
R NMPI[=4 NTRD=4

T test

R NMPI=4 NTRD=4

Hierarchy |:. Test Set

Highest level of the hierarchy

Two parts
— Test set name
— Machine

Specified on the first line of a ts file
Database automatically records changes to

the basic machine description (from the
“uname -a” command)

Hierarchy II: Build

Two classes of options to “make build” (for
building the code)

— CONFIG="....” MCNP specific compile options
— Other environment variables such as FC

Specified by lines starting with “B” in a ts file
“B” line also includes a build name for
identification (entered in double quotes)
Builds can pass or falil

Database automatically records changes to

the shell variables describing the environment
for the build

Hierarchy lll: Test Target

e Suites of tests require two arguments
for make command

— Test target such as test1

— Specify the directory where the tests are
(e.g. -C ROSSI)

» Specified by lines starting with “T” in a
ts file

Hierarchy IV: Run

Can specify any number of MPI processes
and/or OMP threads

Defaults to a sequential run
Specified by lines starting with “R” in a ts file

If errors are serious enough, target/run make
command itself can fail to complete

Database automatically records changes to
the shell variables describing the environment
for the run

Hierarchy V: Test Suite

* One test target can run several test suites

« CBTS describes a test suite as all results in a
directory

« Test suite states:
— Pass: All tests results give zero-sized diffs
— Defined pass: At least one test a defined pass

— Fail: At least one test does not match the template
or the exception

Hierarchy VI. Test

. Level at which exceptions are stored

* Three possible outcomes of a test
— Pass: Zero-sized diff file
— Defined pass: Diff file matches exception

— Fail: Nonzero-sized diff file that doesn’t
match the exception

m aet_guts tost_sats_dune]
) TEXT + Bt gNT 00000 T [wet sm dore o NT 1
) [™achne TEXT ~||. Wl set id T o
| ™ set TEXT O cO st TMESTAMPTZ |
{ ! [Wt oot schve s TRMESTAMETZ o o wme WT
| mat set nemve aeet TIMESTAMPT,
=
maching_rio_d NT
maching TEXT {2 ’
onems wio TEXT , [nilile] bullds_done
o ma shelt TEXY ! ———— buld @ NT ” bac core © NT 4
orv i pan TEXT | I rr 1 1 et set cone d NT 1]
om. onw mhel TEXT ; T uid swng TEXT i Dt aart TREESTAMET
com onw path TEXT , [tuad_schve seant TREESTAMTZ | D e WT
______ TEXT ; . B, achve ona TRESTAMPTZ | buid mana TEXT
| mactene w0 _scuve st TMESTAMPTZ |
| macwne nio scive end TRESTAMPTZ '
(ol callys |
i bumd w NT 03 butd @ NT i p————————
{ ore VEXT || ome TEXT
8 []
H | et tergst o N1
| buke @ NT —
[l senvivonments : ;. Sdeectory TEXT
| buad. envirowmens 10 NT L | \wepm TEXT _
[wweaa _ O e TBT_
{__ buied_ erwwronmenm TEXT i e et gnng TEXT
went TEXT i | wet yoget actve sert TMESTAMPTZ
DS erveonmen actve st TIMESTAMPTZ [test mrget acke end TRESTAMPTZ
Dudd environment aCive ond TIMESTAMPTZ
n_sevirensisats] Y runs_dons: |
ron emwwonmen 9 INT — yur 0 INT donse WT -
| rn A NT — ,,T’ll.dln!« i — m”.ﬂ.o:-\l!ﬂ —
vn srwyonment TEXT | nmo WY — NT
TN envisonment actve stert TIMESTAMPTZ | | wa W7 no men TIMESTAMPTZ
un_emwrorment active end TMESTAMPTZ {1 meng TEXT o wme W7

]
D orun d WNT o Oone b INT R
T 8 dwectory TEXT Is§§l
! xn type TEXT . n-«“g',
T est 3o mtve ment TMESTAWPTZ . sote mets TEXT
=g et sl actw end TIMESTAMPT?
T comdg vae 0 NT
ooy veeTEXT
00y codnn TEXT [seees ¥
corig actve sen TRMESTAMPTZ _w_llnx!. e Sone © INT
ooy acove end TIMESTAMPTZ T teet sute 0 NT e T et wum aore d NT
ot reme TEXT == v‘ll‘(..-«#.x.ﬂ
oo TEXT - et ma MEA
dten TEXT oty TEXT
ase TEXT ot TEXT
n T o TEXT
o TEXT o TEX
et achve s TRESTASTZ o= TEX

Database Schema

 Middle column: Definition of the test
sets in the database

* Right column: Results of the runs of the
test sets

* Left Column: “Everything else” including
automatic tracking of
machine/environment changes

