LA-UR-06-7094

Approved for public release; distribution is unlimited.

| Title:        | Monte Carlo Eigenvalue Calculations |
|---------------|-------------------------------------|
| Author(s):    | Forrest Brown                       |
| Intended for: | Monte Carlo lectures                |

Т



Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



LA-UR-06-7094

## Monte Carlo Eigenvalue Calculations

## **Forrest Brown**

Monte Carlo Codes (X-3-MCC) Los Alamos National Laboratory

fbrown@lanl.gov



#### Monte Carlo Eigenvalue Calculations

#### F Brown, X-3-MCC

This talk will cover 4 aspects of Monte Carlo eigenvalue calculations:

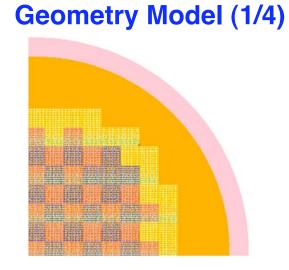
- 1. Formulation of the k- and alpha-eigenvalue equations from the timedependent linear Boltzmann transport equation
- 2. The power iteration method for solving the equations & its convergence behavior
- 3. The use of Shannon entropy of the fission source distribution for assessing convergence
- 4. A novel application of Wielandt's method to accelerate the convergence.

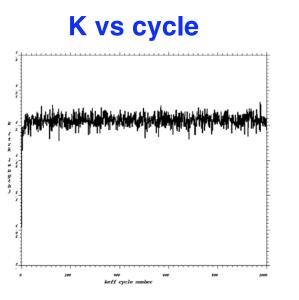


- K- and  $\alpha$ -Eigenvalue Equations
- Power Iteration & Convergence
- Shannon Entropy for Convergence Analysis
- Wielandt Acceleration

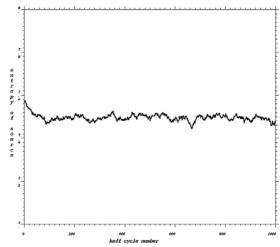
#### **Reactor Analysis with Monte Carlo**



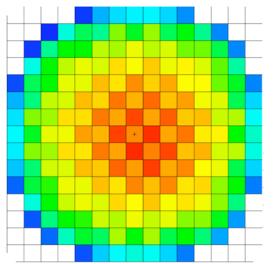




 $H_{src}$  vs cycle



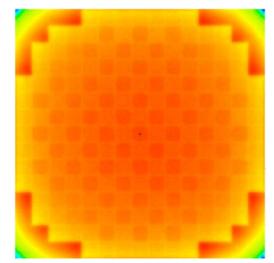
**Assembly Powers** 



**Fast Flux** 



**Thermal Flux** 





# K- and α-Eigenvalue Equations



• Time-dependent linear Boltzmann transport equation for neutrons, with prompt fission source & external source

$$\begin{aligned} \frac{1}{v} \frac{\partial \psi(\vec{r}, \mathsf{E}, \vec{\Omega}, t)}{\partial t} &= & \mathsf{Q}(\vec{r}, \mathsf{E}, \vec{\Omega}, t) + \iint \psi(\vec{r}, \mathsf{E}', \vec{\Omega}', t) \Sigma_{\mathsf{S}}(\vec{r}, \mathsf{E}' \to \mathsf{E}, \vec{\Omega} \cdot \vec{\Omega}', t) d\vec{\Omega}' d\mathsf{E}' \\ &+ \frac{\chi(\vec{r}, \mathsf{E}, t)}{4\pi} \iint v \Sigma_{\mathsf{F}}(\vec{r}, \mathsf{E}', t) \psi(\vec{r}, \mathsf{E}', \vec{\Omega}', t) d\vec{\Omega}' d\mathsf{E}' \\ &- \left[ \vec{\Omega} \cdot \nabla + \Sigma_{\mathsf{T}}(\vec{r}, \mathsf{E}, t) \right] \cdot \psi(\vec{r}, \mathsf{E}, \vec{\Omega}, t) \end{aligned}$$

Without material motion corrections

$$\frac{1}{v} \frac{\partial \psi(\vec{r}, E, \Omega, t)}{\partial t} = Q + [S + M] \cdot \psi - [L + T] \cdot \psi$$

- This equation can be solved directly by Monte Carlo, assuming:
  - Each neutron history is an IID trial (independent, identically distributed)
  - All neutrons must see same probability densities in all of phase space
  - Usual method: geometry & materials fixed over solution interval  $\Delta t$



$$\frac{1}{v} \frac{\partial \psi(\vec{r}, E, \vec{\Omega}, t)}{\partial t} = Q + [S + M] \cdot \psi - [L + T] \cdot \psi$$

#### • Monte Carlo solution (over $\Delta t$ , with fixed geometry & materials)

- Simulate time-dependent transport for a neutron history
- If fission occurs, bank any secondary neutrons.
- When original particle is finished, simulate secondaries till done.
- Tallies for time bins, energy bins, cells, ...
- At time t, the overall neutron level is N(t)

$$= \iiint_{\vec{r},E,\hat{\Omega}} \frac{\psi(\vec{r},E,\hat{\Omega},t)}{v} d\vec{r} dE d\hat{\Omega}$$

• Alpha can be defined by:  $N(t) = N(0) e^{\alpha t}$ 

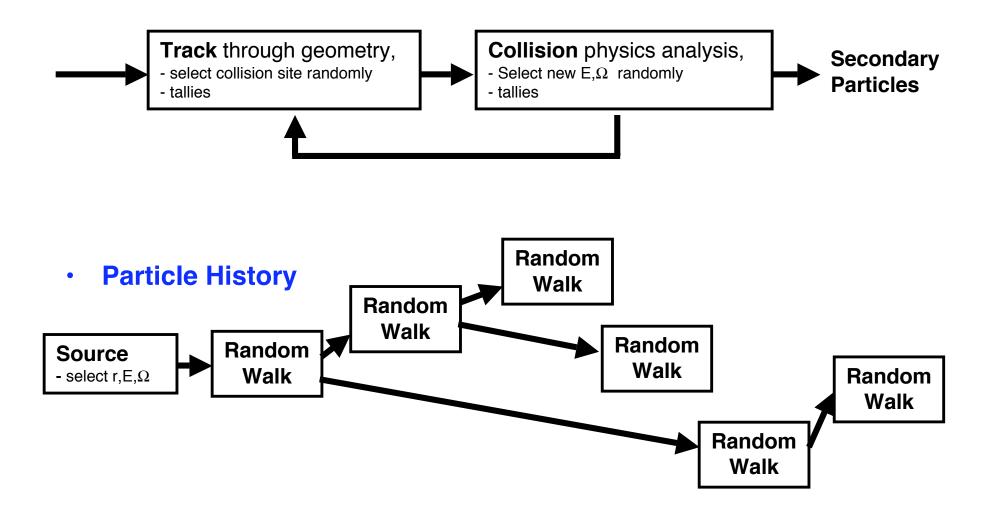
$$\alpha \approx \frac{\ln N_2 - \ln N_1}{t_2 - t_1}$$

This is the "dynamic alpha", NOT an eigenvalue !

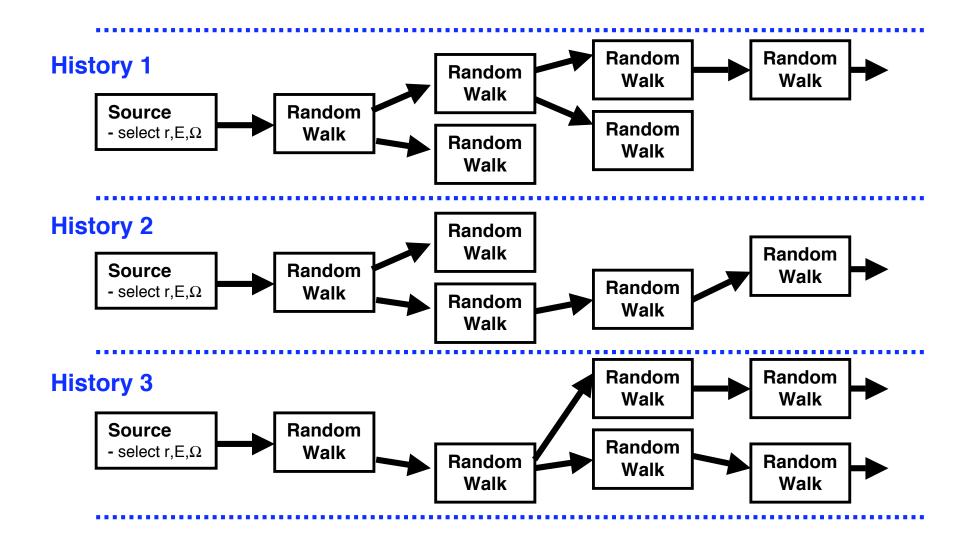
#### **Particle Histories**



#### Random Walk for particle







#### **Alpha Eigenvalue Equations**



- For problems which are separable in space & time, it may be advantageous to solve a **static eigenvalue problem**, rather than a fully time-dependent problem
- Assume:
  - 1. Fixed geometry & materials
  - 2. No external source:  $Q(r,E,\Omega,t) = 0$
  - 3. Separability:  $\psi(\mathbf{r},\mathbf{E},\Omega,\mathbf{t}) = \Psi_{\alpha}(\mathbf{r},\mathbf{E},\Omega) \mathbf{e}^{\alpha t}$
- Substituting  $\psi$  into the time-dependent transport equation yields

$$\begin{split} \left[ \vec{\Omega} \cdot \nabla + \Sigma_{T}(\vec{r}, \mathsf{E}) + \frac{\alpha}{\nu} \right] \Psi_{\alpha}(\vec{r}, \mathsf{E}, \vec{\Omega}) \ &= \iint \Psi_{\alpha}(\vec{r}, \mathsf{E}', \vec{\Omega}') \Sigma_{S}(\vec{r}, \mathsf{E}' \to \mathsf{E}, \vec{\Omega} \cdot \vec{\Omega}') d\vec{\Omega}' d\mathsf{E}' \\ &+ \frac{\chi(\mathsf{E})}{4\pi} \iint \nu \Sigma_{\mathsf{F}}(\vec{r}, \mathsf{E}') \Psi_{\alpha}(\vec{r}, \mathsf{E}', \vec{\Omega}') d\vec{\Omega}' d\mathsf{E}' \end{split}$$

- This is a static equation, an eigenvalue problem for  $\alpha$  and  $\Psi_\alpha$  without time-dependence
- $\alpha$  is often called the time-eigenvalue or time-absorption
- $\alpha$ -eigenvalue problems can be solved by Monte Carlo methods

#### **Keff Eigenvalue Equations**



- Another approach to creating a static eigenvalue problem from the timedependent transport equation is to introduce K<sub>eff</sub>, a scaling factor on the multiplication (v)
- Assume:
  - 1. Fixed geometry & materials
  - 2. No external source:  $Q(r,E,\Omega,t) = 0$
  - 3.  $\partial \psi / \partial t = 0$ :  $v \Rightarrow v / k_{eff}$
- Setting  $\partial \psi / \partial t = 0$  and introducing the  $K_{eff}$  eigenvalue gives  $\begin{bmatrix} \vec{\Omega} \cdot \nabla + \Sigma_{T}(\vec{r},E) \end{bmatrix} \Psi_{k}(\vec{r},E,\vec{\Omega}) = \iint \Psi_{k}(\vec{r},E',\vec{\Omega}') \Sigma_{S}(\vec{r},E' \rightarrow E,\vec{\Omega} \cdot \vec{\Omega}') d\vec{\Omega}' dE'$  $+ \frac{1}{K_{eff}} \cdot \frac{\chi(E)}{4\pi} \iint v \Sigma_{F}(\vec{r},E',\vec{\Omega}') \Psi_{k}(\vec{r},E',\vec{\Omega}') d\vec{\Omega}' dE'$
- This is a static equation, an eigenvalue problem for  $\mathsf{K}_{\mathsf{eff}}$  and  $\Psi_{\mathbf{k}}$  without time-dependence
- $K_{eff}$  is called the effective multiplication factor
- $K_{eff}$  and  $\Psi_k$  should **never** be used to model time-dependent problems.
- K<sub>eff</sub>-eigenvalue problems can be solved by Monte Carlo methods

#### Comments on $\mathbf{K}_{\text{eff}}$ and $\alpha~$ Equations



#### Criticality

| Supercritical: | α > 0        | or | $K_{eff} > 1$         |
|----------------|--------------|----|-----------------------|
| Critical:      | $\alpha = 0$ | or | $K_{eff} = 1$         |
| Subcritical:   | α < 0        | or | ${ m K}_{ m eff}$ < 1 |

## • $K_{eff}$ vs. $\alpha$ eigenvalue equations

- $\Psi_{\mathbf{k}}(\mathbf{r}, \mathbf{E}, \Omega) \neq \Psi_{\alpha}(\mathbf{r}, \mathbf{E}, \Omega)$ , except for a critical system
- $-\alpha$  eigenvalue & eigenfunction used for time-dependent problems
- $K_{eff}$  eigenvalue & eigenfunction used for reactor design & analysis
- Although  $\alpha = (K_{eff}-1)/\Lambda$ , where  $\Lambda = \text{lifetime}$ , there is **no** direct relationship between  $\Psi_k(r, E, \Omega)$  and  $\Psi_{\alpha}(r, E, \Omega)$
- K<sub>eff</sub> eigenvalue problems can be solved **directly** using Monte Carlo
- $\alpha$  eigenvalue problems are solved by Monte Carlo **indirectly** using a series of K<sub>eff</sub> calculations



| K equation        | [ L + T ] Ψ <sub>k</sub>           | = | [S + 1/k M ] Ψ <sub>k</sub>           |
|-------------------|------------------------------------|---|---------------------------------------|
| $\alpha$ equation | $[L + T + \alpha/v] \Psi_{\alpha}$ | = | [ <b>S</b> + <b>M</b> ]Ψ <sub>α</sub> |

- The factor 1/k changes the relative level of the fission source
- The factor  $\alpha/v$  changes the absorption & neutron <u>spectrum</u>
  - For  $\alpha > 0$ , more absorption at low E  $\Rightarrow$  harder spectrum
  - Double-density Godiva, average neutron energy <u>causing</u> fission:

| k calculation:        | 1.30 | MeV |
|-----------------------|------|-----|
| $\alpha$ calculation: | 1.68 | MeV |

- For separable problems,  $\psi(\mathbf{r}, \mathbf{E}, \Omega, \mathbf{t}) = \Psi_{\alpha}(\mathbf{r}, \mathbf{E}, \Omega) e^{\alpha t}$
- No similar equation for k, since not used for time-dependence



# Power Iteration & Convergence



$$(L+T)\Psi = S\Psi + \frac{1}{K_{eff}}M\Psi$$

where

- L = leakage operator
- T = collision operator

S = scatter-in operator M = fission multiplication operator

• Rearrange

$$(L + T - S)\Psi = \frac{1}{K_{eff}}M\Psi$$
$$\Psi = \frac{1}{K_{eff}} \cdot (L + T - S)^{-1}M\Psi$$
$$\Psi = \frac{1}{K_{eff}} \cdot F\Psi$$

 $\Rightarrow$  This eigenvalue equation will be solved by power iteration

$$\Psi^{(n+1)} = \frac{1}{\kappa_{eff}^{(n)}} \cdot F\Psi^{(n)}$$

#### **Power Iteration**



Diffusion Theory or Discrete-ordinates Transport

- 1. Initial guess for K<sub>eff</sub> and  $\Psi$ K<sub>eff</sub><sup>(0)</sup>,  $\Psi$ <sup>(0)</sup>
- **2. Solve for**  $\Psi^{(n+1)}$

Inner iterations over space or space/angle to solve for  $\Psi^{(n+1)}$ 

$$(L + T - S)\Psi^{(n+1)} = \frac{1}{\kappa_{eff}^{(n)}}M\Psi^{(n)}$$

3. Compute new K<sub>eff</sub>

$$K_{\text{eff}}^{(n+1)} = K_{\text{eff}}^{(n)} \cdot \frac{1 \text{-} M \Psi^{(n+1)}}{1 \text{-} M \Psi^{(n)}}$$

4. Repeat 1–3 until both  $K_{eff}^{(n+1)}$  and  $\Psi^{(n+1)}$  have converged

#### Monte Carlo

 Initial guess for K<sub>eff</sub> and Ψ K<sub>eff</sub><sup>(0)</sup>, Ψ<sup>(0)</sup>
 Solve for Ψ<sup>(n+1)</sup>
 Follow particle histories to solve for Ψ<sup>(n+1)</sup>

$$(L + T - S)\Psi^{(n+1)} = \frac{1}{K_{\text{eff}}^{(n)}} M\Psi^{(n)}$$

During histories, save fission sites to use for source in next iteration

3. Compute new K<sub>eff</sub>

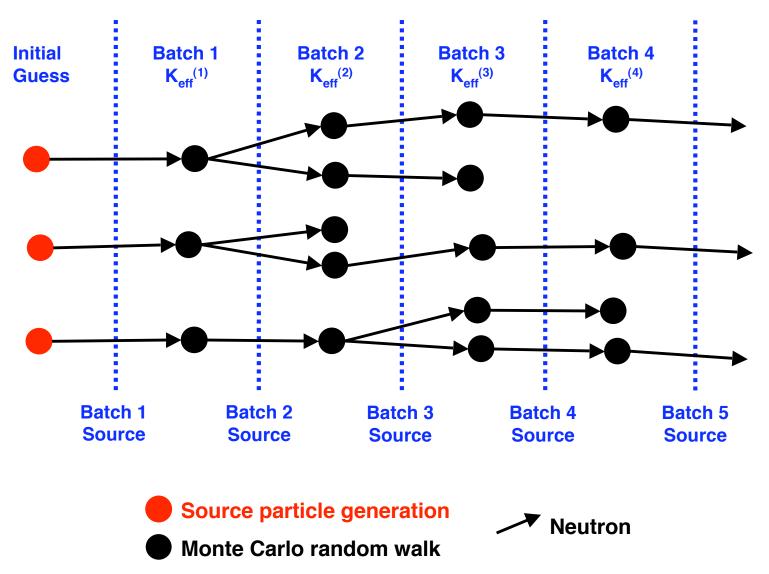
During histories for iteration (n+1), estimate  $K_{eff}^{(n+1)}$ 

$$\mathsf{K}_{\text{eff}}^{(n+1)} = \mathsf{K}_{\text{eff}}^{(n)} \cdot \frac{\int \mathsf{M} \Psi^{(n+1)} d\vec{r}}{\int \mathsf{M} \Psi^{(n)} d\vec{r}}$$

- 4. Repeat 1–3 until both  $K_{eff}^{(n+1)}$  and  $\Psi^{(n+1)}$  have converged
- 5. Continue iterating, to compute tallies



#### Power iteration for Monte Carlo k-effective calculation



#### **α-Eigenvalue Calculations**



- Eigenvalue equation with both  ${\rm K}_{\rm eff}$  &  $\alpha$ 
  - $-\alpha$  is a fixed number, not a variable
  - Find the k-eigenvalue as function of  $\alpha$ , **K**( $\alpha$ )

$$\begin{bmatrix} \vec{\Omega} \cdot \nabla + \Sigma_{T}(\vec{r},E) + \frac{\alpha}{v} \end{bmatrix} \Psi(\vec{r},E,\vec{\Omega}) = \iint \Psi(\vec{r},E',\vec{\Omega}')\Sigma_{S}(\vec{r},E' \to E,\vec{\Omega} \cdot \vec{\Omega}')d\vec{\Omega}'dE' + \frac{1}{K_{eff}} \cdot \frac{\chi(E)}{4\pi} \iint v\Sigma_{F}(\vec{r},E')\Psi(\vec{r},E',\vec{\Omega}')d\vec{\Omega}'dE'$$

- Note: If  $\alpha < 0$ 
  - Real absorption plus time absorption could be negative
  - Move  $\alpha$ /v to right side to prevent negative absorption,
  - $-\alpha/v$  term on right side is treated as a delta-function source
- Select a fixed value for  $\alpha$
- Solve the K-eigenvalue equations, with fixed time-absorption  $\alpha/v$
- Select a different  $\alpha$  and solve for a new Keff
- Repeat, searching for value of  $\alpha$  which results in Keff = 1

٠

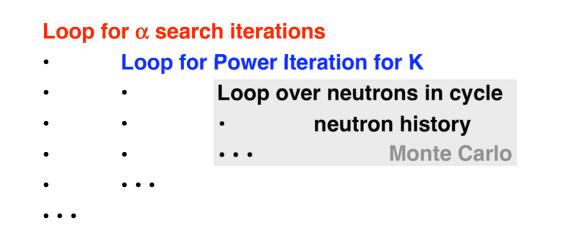
٠



K-eigenvalue solution

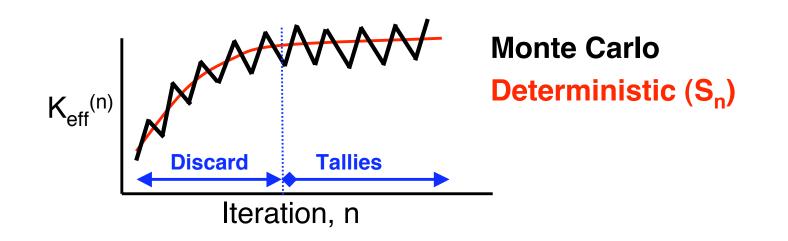
#### Loop for Power Iteration for K

- Loop over neutrons in cycle
- neutron history
- ••• Monte Carlo
- • •
- α-eigenvalue solution



 $\Rightarrow$  Find K( $\alpha$ ), then solve for  $\alpha$  that gives K( $\alpha$ )=1





- Guess an initial source distribution
- Iterate until converged

(How do you know ???)

- Then
  - For  $S_n$  code: done, print the results
  - For Monte Carlo: start tallies,
    - keep running until uncertainties small enough
- Convergence? Stationarity? Bias? Statistics?



• Expand  $\Psi$  in terms of eigenfunctions  $u_i(r, E, \Omega)$ 

$$\begin{split} \Psi &= \sum_{j=0}^{\infty} a_j \vec{u}_j = a_0 \vec{u}_0 + a_1 \vec{u}_1 + a_2 \vec{u}_2 + a_3 \vec{u}_3 + \dots \\ &\int \vec{u}_j \vec{u}_k dV = \delta_{jk} \qquad a_j = \int \Psi \cdot \vec{u}_j dV \\ &\vec{u}_j = \frac{1}{k_j} F \cdot \vec{u}_j \qquad k_0 > k_1 > k_2 > \dots \qquad k_0 \equiv k_{\text{effective}} \end{split}$$

• Expand the initial guess in terms of the eigenmodes

$$\Psi^{(0)} = \sum_{j=0} a_j^{(0)} \vec{u}_j$$

• Substitute the expansion for  $\Psi^{(0)}$  into power iteration equation

$$\begin{split} \Psi^{(n+1)} &= \frac{1}{K^{(n)}} F \cdot \Psi^{(n)} = \frac{1}{k^{(n)}} \cdot \frac{1}{k^{(n-1)}} \dots \frac{1}{k^{(0)}} \cdot F^n \cdot \Psi^{(0)} \\ &= \left[ \prod_{m=0}^n \frac{k_0}{K^{(m)}} \right] \cdot a_0^{(0)} \cdot \left[ \vec{u}_0 + \sum_{j=1}^{n} \left( \frac{a_j^{(0)}}{a_0^{(0)}} \right) \cdot \left( \frac{k_j}{k_0} \right)^{n+1} \cdot \vec{u}_j \right] \end{split}$$



$$\Psi^{(n+1)} \approx [\text{constant}] \cdot \left[ \vec{u}_0 + \left( \frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left( \frac{k_1}{k_0} \right)^{n+1} \cdot \vec{u}_1 + \ldots \right]$$
$$K^{(n+1)} \approx k_0 \cdot \left[ 1 + \left( \frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left( \frac{k_1}{k_0} \right)^n \cdot \left( \frac{k_1}{k_0} - 1 \right) \cdot G_1 + \ldots \right]$$

- Because  $k_0 > k_1 > k_2 > ...$ , all of the red terms vanish as  $n \rightarrow \infty$ 
  - $\Psi^{(n+1)} \rightarrow \text{ constant} \cdot u_0$
  - $\ \mathbf{K}^{(n+1)} \rightarrow \ \mathbf{k}_0$
- After the initial transient, error in  $\Psi^{(n)}$  is dominated by first mode
  - $(k_1 / k_0)$  is called the <u>dominance ratio</u>, DR or  $\rho$
  - Errors in  $\Psi^{(n)}$  die off as ~ (DR)<sup>n</sup>
- For problems with a high dominance ratio (e.g., DR ~ .99), the error in  $K_{eff}$  may be small, since the factor ( $k_1/k_0 1$ ) is small.
  - K<sub>eff</sub> may appear converged, even if the source distribution is <u>not</u> converged

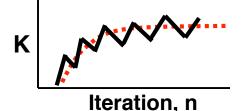
## **Typical K-effective convergence patterns**

- Higher mode error terms die out as  $(k_J / k_0)^n$ , for n iterations
- When initial guess is concentrated in center of reactor, initial K<sub>eff</sub> is too high (underestimates leakage)





 When initial guess is uniformly distributed, initial K<sub>eff</sub> is too low (overestimates leakage)

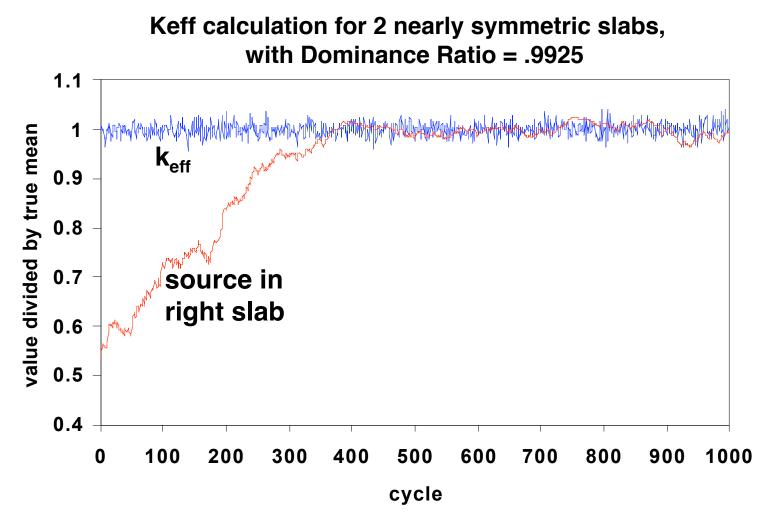


 The Sandwich Method uses 2 K<sub>eff</sub> calculations one starting too high & one starting too low.
 Both calculations should converge to the same result.





Keff is an integral quantity – converges faster than source shape





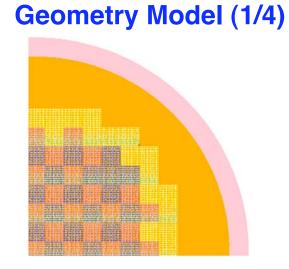
# Shannon Entropy of the Fission Source Distribution For Assessing Convergence

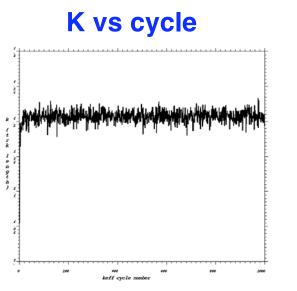


- In the old days, when people used Monte Carlo just to compute K-effective, plots of k<sub>cycle</sub> vs cycle were adequate to judge convergence
- Today, for computing power distributions & localized reaction rates, <u>new tools are needed to</u> judge local convergence of source distribution
  - K-effective converges before the source distribution converges
  - How do you tell if a 3D distribution has converged ?

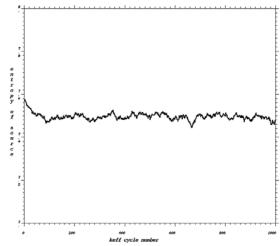
#### **Source Distribution Convergence**



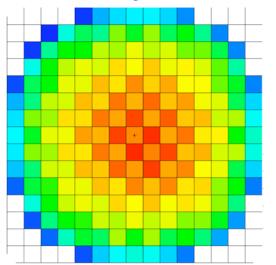




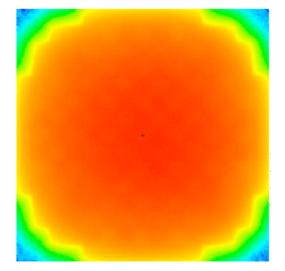




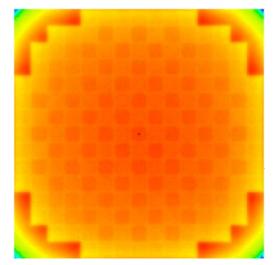
**Assembly Powers** 



**Fast Flux** 



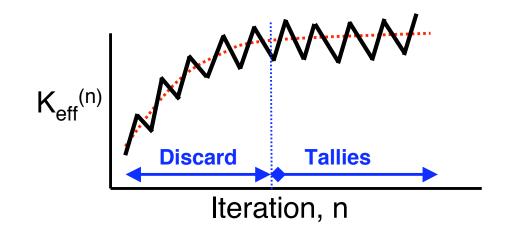
**Thermal Flux** 



#### **Keff Calculations**



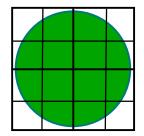
- Initial cycles of a Monte Carlo K-effective calculation should be discarded, to avoid contaminating results with errors from initial guess
  - How many cycles should be discarded?
  - How do you know if you discarded enough cycles?



- Analysis of the power iteration method shows that Keff is not a reliable indicator of convergence — K<sub>eff</sub> can converge faster than the source shape
- Based on concepts from <u>information theory</u> (not physics), Shannon entropy of the source distribution is useful for characterizing the convergence of the source distribution



- Divide the fissionable regions of the problem into  $N_s$  spatial bins
  - Spatial bins should be consistent with problem symmetry
  - Typical choices: 1 bin for each assembly
    - regular grid superimposed on core
  - Use dozens or hundreds of bins, not thousands



- During the random walks for a cycle, tally the fission source points in each bin
  - Provides a discretized approximation to the source distribution
  - $\{ p_J, J=1, N_S \}$
- Shannon entropy of the source distribution

 $H(S) = -\sum_{J=1}^{N_S} p_J \cdot ln_2(p_J), \text{ where } p_J = \frac{(\text{# source particles in bin J})}{(\text{total # source particles in all bins})}$ 



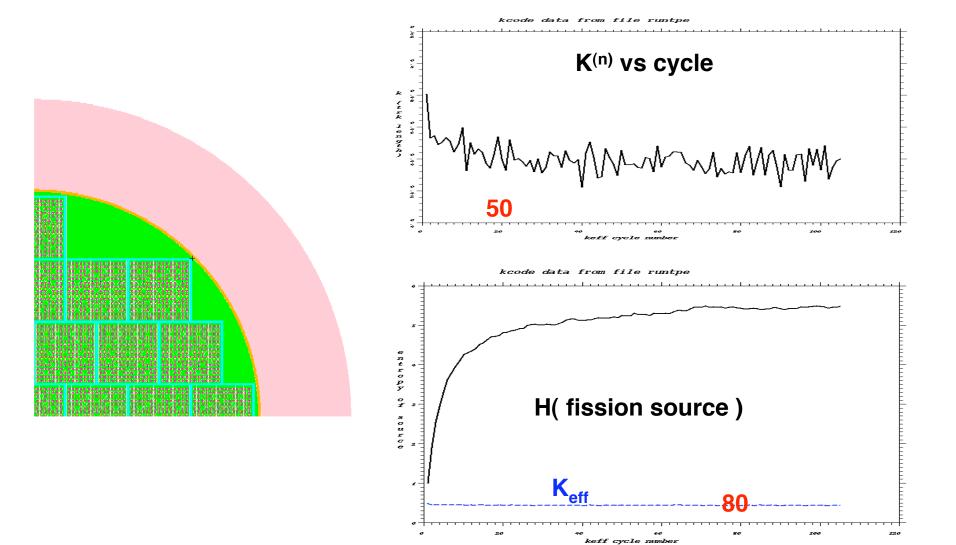
Shannon entropy of the source distribution

$$H(S) = -\sum_{J=1}^{N_S} p_J \cdot \ln_2(p_J), \text{ where } p_J = \frac{(\text{# source particles in bin J})}{(\text{total # source particles in all bins})}$$

- $0 \leq H(S) \leq In_2(N_S)$
- For a uniform source distribution,  $H(S) = In_2(N_S)$ since  $p_1 = p_2 = ... = p_{N_S} = 1/N_S$
- For a point source (in a single bin), H(S) = 0
- H(S<sup>(n)</sup>) provides a single number to characterize the source distribution for iteration n (no physics!)
  - $\Rightarrow$  As the source distribution converges in 3D space, a line plot of H(S<sup>(n)</sup>) vs. n (the iteration number) converges

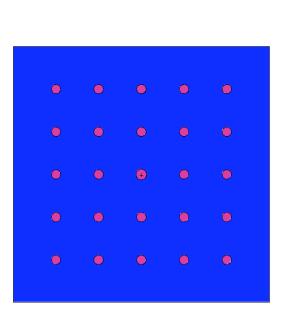


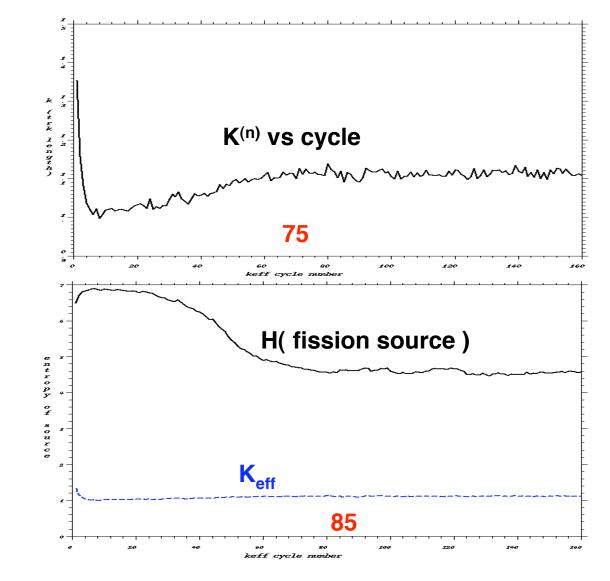
#### • Example – Reactor core (Problem inp24)





#### • Example – Loosely-coupled array of spheres (Problem test4s)

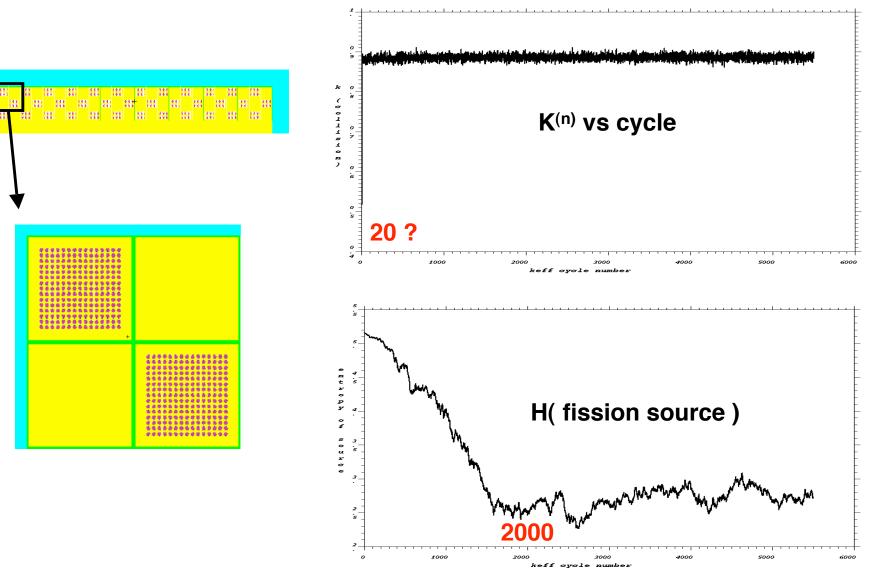




#### **K**<sub>eff</sub> Calculations – Stationarity Diagnostics



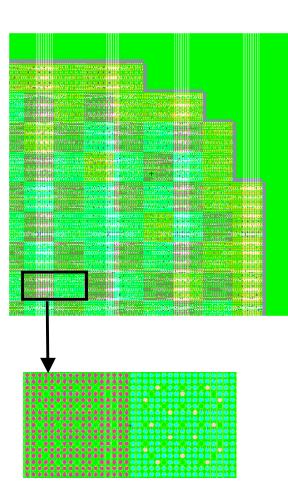
#### • Example – Fuel Storage Vault (Problem OECD\_bench1)

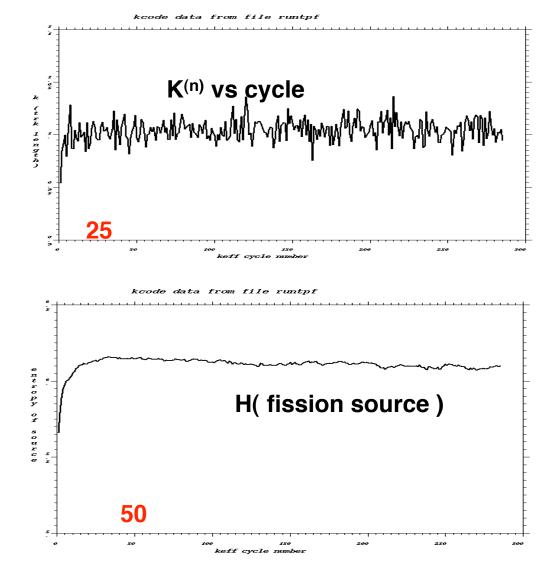


#### **K**<sub>eff</sub> Calculations – Stationarity Diagnostics



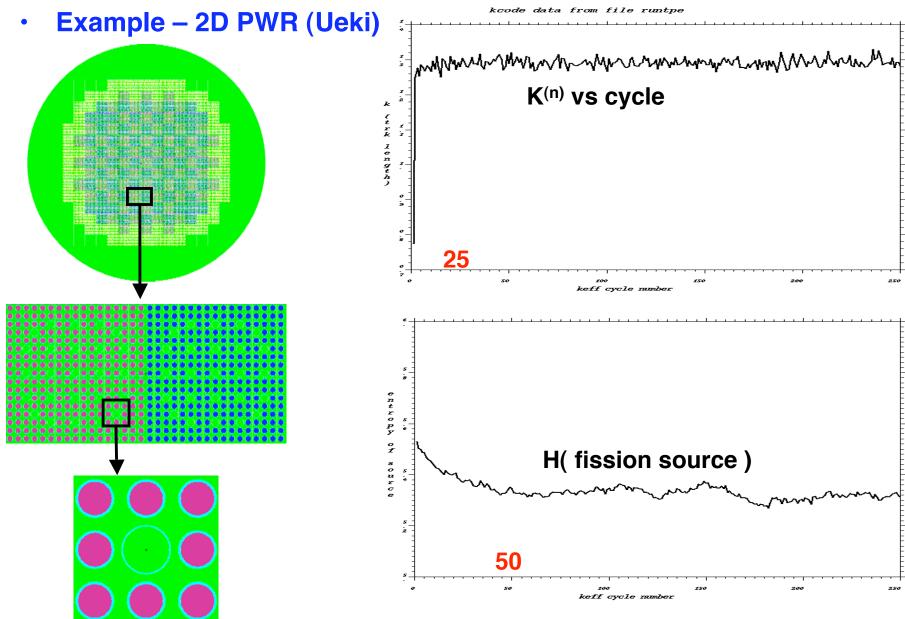
#### • Example – PWR 1/4-Core (Napolitano)





#### **K**<sub>eff</sub> Calculations – Stationarity Diagnostics







# • Grid for computing H<sub>src</sub>

- User can specify a rectangular grid in input

| hsrc    | n <sub>x</sub> | <b>X</b> <sub>min</sub> | <b>X</b> <sub>max</sub> |   | $\mathbf{n}_{\mathbf{y}}$ | $\mathbf{y}_{\min}$ | <b>y</b> <sub>m</sub> | ax | n <sub>z</sub> | Zn | nin | <b>Z</b> <sub>max</sub> |  |
|---------|----------------|-------------------------|-------------------------|---|---------------------------|---------------------|-----------------------|----|----------------|----|-----|-------------------------|--|
| example | ):             | ł                       | nsrc                    | 5 | 0.                        | 100.                | 5                     | 0. | 100.           | 1  | -2. | 50.                     |  |

- If hsrc card is absent, MCNP5 will choose a grid based on the fission source points, expanding it if needed during the calculation
- MCNP5 prints H<sub>src</sub> for each cycle
- MCNP5 can plot H<sub>src</sub> vs cycle
- Convergence check at end of problem
  - MCNP5 computes the average  $\rm H_{src}$  and its population variance  $\sigma_{\rm H}{}^2$  for the last half of the cycles
  - Then, finds the first cycle where  $\rm H_{src}$  is within the band  ${<}\rm H_{src}{>}\pm 2\sigma_{\rm H}$
  - Then, checks to see if at least that many cycles were discarded

## **Summary**



- Local errors in the source distribution decay as  $(k_J/k_0)^n$ 
  - Higher eigenmodes die out rapidly, convergence dominated by  $k_1/k_0$
  - High DR  $\rightarrow$  slow convergence
  - High DR  $\rightarrow$  large correlation  $\rightarrow$  large error in computed variances
- Errors in  $K_{eff}$  decay as  $(k_J/k_0 1) * (k_J/k_0)^n$ 
  - High DR  $\rightarrow k_J/k_0 \sim 1 \rightarrow \text{small error}$
- K<sub>eff</sub> errors die out faster than local source errors
  - K<sub>eff</sub> is an integral quantity positive & negative fluctuations cancel
- Shannon entropy of the fission source distribution (H<sub>src</sub>) is an effective diagnostic for source convergence
  - Now part of standard MCNP5 (beginning with version 1.40, November 2005)
  - Basis for initial source convergence tests more are coming

⇒ If <u>local</u> tallies are important (e.g., assembly power, pin power, ...), examine convergence using  $H_{src}$  - not just  $K_{eff}$  convergence



# Wielandt Acceleration



Basic transport equation for eigenvalue problems

$$(L + T - S)\Psi = \frac{1}{K_{eff}}M\Psi$$

- L = loss to leakageS = gain from scatter-inT = loss to collisionsM = gain from fission multiplication
- Define a fixed parameter  $\mathbf{k}_{e}$  such that  $\mathbf{k}_{e} > \mathbf{k}_{0}$  ( $\mathbf{k}_{0}$  = exact eigenvalue)
- Subtract  $\frac{1}{k_e}M\Psi$  from each side of the transport equation

$$(L + T - S - \frac{1}{k_e}M)\Psi = (\frac{1}{K_{eff}} - \frac{1}{k_e})M\Psi$$

• Solve the modified transport equation by power iteration

$$(\mathsf{L} + \mathsf{T} - \mathsf{S} - \frac{1}{\mathsf{k}_{\mathsf{e}}}\mathsf{M})\Psi^{(\mathsf{n}+1)} = (\frac{1}{\mathsf{K}_{\mathsf{eff}}^{(\mathsf{n})}} - \frac{1}{\mathsf{k}_{\mathsf{e}}})\mathsf{M}\Psi^{(\mathsf{n})}$$



• Power iteration for modified transport equation

$$\begin{split} (\mathsf{L} + \mathsf{T} - \mathsf{S} - \frac{1}{k_{e}}\mathsf{M})\Psi^{(n+1)} &= (\frac{1}{K_{eff}^{(n)}} - \frac{1}{k_{e}})\mathsf{M}\Psi^{(n)} \\ \Psi^{(n+1)} &= (\frac{1}{K_{eff}^{(n)}} - \frac{1}{k_{e}}) \cdot (\mathsf{L} + \mathsf{T} - \mathsf{S} - \frac{1}{k_{e}}\mathsf{M})^{-1}\mathsf{M}\Psi^{(n)} \\ \Psi^{(n+1)} &= \frac{1}{\tilde{K}^{(n)}} \cdot \tilde{\mathsf{F}}\Psi^{(n)} \\ & \text{where} \quad \tilde{\mathsf{K}}^{(n)} &= (\frac{1}{K_{eff}^{(n)}} - \frac{1}{k_{e}})^{-1} \quad \text{or} \quad \mathsf{K}_{eff}^{(n)} &= (\frac{1}{\tilde{K}^{(n)}} + \frac{1}{k_{e}})^{-1} \end{split}$$

- How to choose k<sub>e</sub>
  - $\mathbf{k}_{\mathbf{e}}$  must be larger than  $\mathbf{k}_{\mathbf{0}}$  (but, don't know  $\mathbf{k}_{0}$ !)
  - k<sub>e</sub> must be held constant for all of the histories in a batch, but can be adjusted between batches
    - Typically, guess a large initial value for  $k_e$ , such as  $k_e=5$  or  $k_e=2$
    - Run a few batches, keeping k<sub>e</sub> fixed, to get an initial estimate of K<sub>eff</sub>
    - Adjust  $k_e$  to a value slightly larger than the estimated  $K_{eff}$
    - Run more batches, possibly adjusting  $k_{\rm e}$  if the estimated  $K_{\rm eff}$  changes



#### Convergence

- Eigenfunctions for the Wielandt method are same as for basic power iteration
- Eigenvalues are shifted:

$$\tilde{\mathbf{k}}_{\mathrm{J}} = \left[\frac{1}{k_{\mathrm{J}}} - \frac{1}{k_{\mathrm{e}}}\right]^{-1} \qquad \mathbf{k}_{\mathrm{e}} > \mathbf{k}_{\mathrm{0}} > \mathbf{k}_{\mathrm{1}} > \dots$$

- Expand the initial guess, substitute into Wielandt method, rearrange to:

$$\begin{split} \Psi^{(n+1)} &\approx [\text{constant}] \cdot \left[ \vec{u}_0 + \left( \frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left( \frac{k_e - k_0}{k_e - k_1} \cdot \frac{k_1}{k_0} \right)^{n+1} \cdot \vec{u}_1 + \ldots \right] \\ K^{(n+1)} &\approx k_0 \cdot \left[ 1 + \left( \frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left( \frac{k_e - k_0}{k_e - k_1} \cdot \frac{k_1}{k_0} \right)^n \cdot \left( \frac{k_e - k_0}{k_e - k_1} \cdot \frac{k_1}{k_0} - 1 \right) \cdot G_1 + \ldots \right] \end{split}$$

- Additional factor  $(k_e - k_0)/(k_e - k_1)$  is less than 1 and positive, so that the red terms die out faster than for standard power iteration

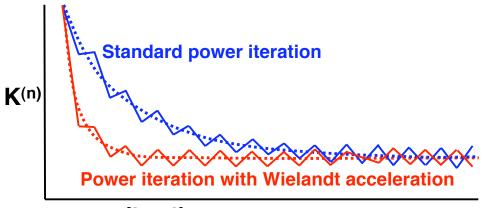


• The dominance ratio for this modified power iteration is

$$\mathsf{DR'} = \frac{\tilde{\mathsf{k}}_1}{\tilde{\mathsf{k}}_0} = \frac{\left[\frac{1}{\mathsf{k}_1} - \frac{1}{\mathsf{k}_e}\right]^{-1}}{\left[\frac{1}{\mathsf{k}_0} - \frac{1}{\mathsf{k}_e}\right]^{-1}} = \frac{\mathsf{k}_e - \mathsf{k}_0}{\mathsf{k}_e - \mathsf{k}_1} \cdot \frac{\mathsf{k}_1}{\mathsf{k}_0} = \frac{\mathsf{k}_e - \mathsf{k}_0}{\mathsf{k}_e - \mathsf{k}_1} \cdot \mathsf{DR}$$

- Since  $k_e > k_0$  and  $k_0 > k_1$ , **DR' < DR** 

- DR of Wielandt method is always **smaller** than standard power iteration
- Wielandt acceleration improves the convergence rate of the power iteration method for solving the k-eigenvalue equation



Iteration, n

# ⇒ Weilandt method converges at a faster rate than power iteration



Monte Carlo procedure for Wielandt acceleration

$$(\mathsf{L} + \mathsf{T} - \mathsf{S} - \frac{1}{\mathsf{k}_{\mathsf{e}}}\mathsf{M})\Psi^{(\mathsf{n}+1)} = (\frac{1}{\mathsf{K}_{\mathsf{eff}}^{(\mathsf{n})}} - \frac{1}{\mathsf{k}_{\mathsf{e}}})\mathsf{M}\Psi^{(\mathsf{n})}$$

- For standard Monte Carlo (power iteration) in generation n+1
  - When a collision occurs, the expected number of fission neutrons produced is

$$\mathbf{n}_{\mathsf{F}} = \left[ \mathsf{wgt} \cdot \frac{\mathbf{v} \Sigma_{\mathsf{F}}}{\Sigma_{\mathsf{T}}} \cdot \frac{1}{\mathsf{K}^{(\mathsf{n})}} + \xi \right]$$

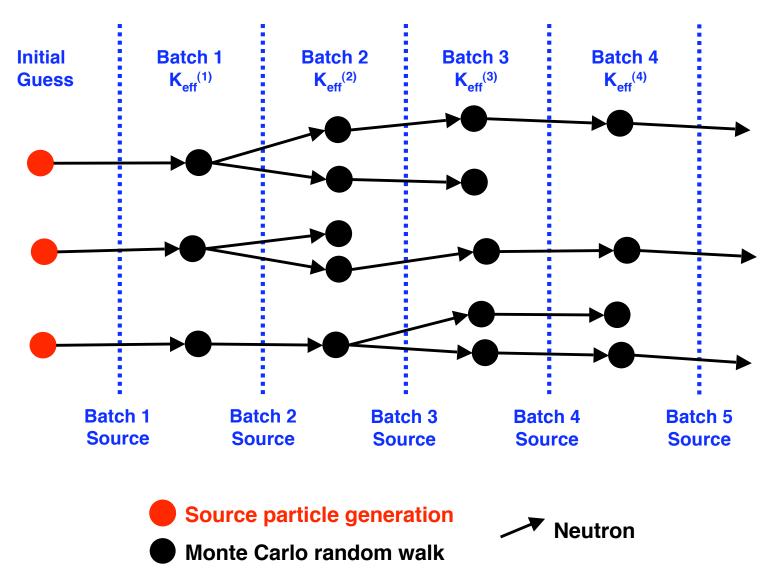
- Store  $n_F$  copies of particle in the fission-bank for the next generation (n+2)
- For Monte Carlo Wielandt method in generation n+1
  - When a collision occurs, compute 2 expected numbers of fission neutrons

$$n_{F}' = \left\lfloor wgt \cdot \frac{v\Sigma_{F}}{\Sigma_{T}} \cdot \left(\frac{1}{K^{(n)}} - \frac{1}{k_{e}}\right) + \xi \right\rfloor \qquad \qquad n_{e}' = \left\lfloor wgt \cdot \frac{v\Sigma_{F}}{\Sigma_{T}} \cdot \frac{1}{k_{e}} + \xi \right\rfloor$$

- Note that  $E[n'_F + n'_e] = E[n_F]$
- Follow n'<sub>e</sub> copies of the particle in the <u>current</u> generation (n+1)
- Store n'<sub>F</sub> copies of particle in the fission-bank for the <u>next</u> generation (n+2)

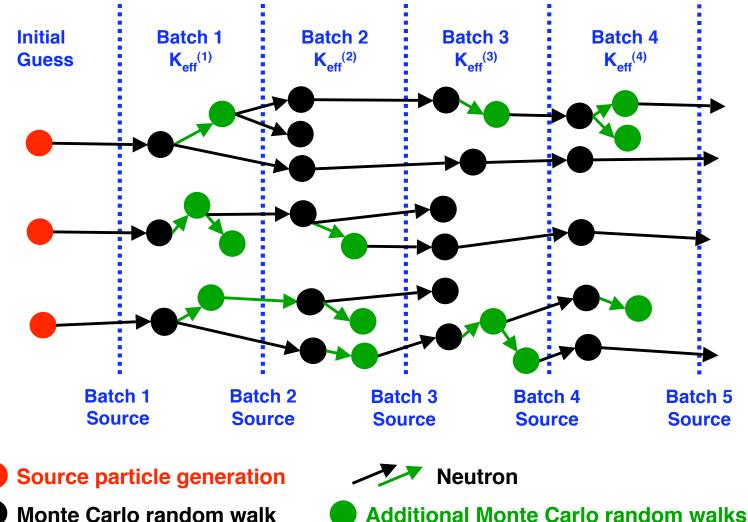


# Power iteration for Monte Carlo k-effective calculation





# Wielandt method for Monte Carlo k-effective calculation



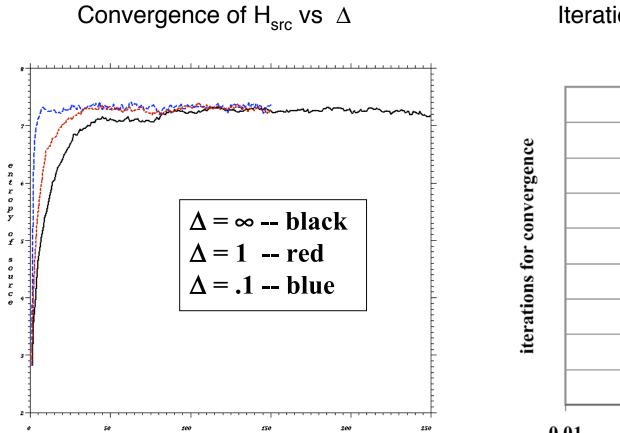
within generation due to Wielandt method

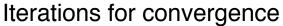


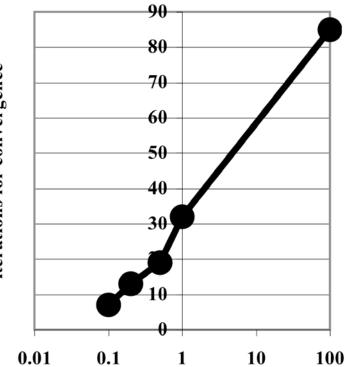
Wielandt shift parameter

keff cycle number

 $K_e^{(n+1)} = K^{(n)}_{collision} + \Delta$ 









# **Summary**

- Wielandt Method has a lower DR than power iteration
  - Faster convergence <u>rate</u> than power iteration  $\Rightarrow$  fewer iterations
  - Some of the particle random walks are moved from the next generation into the current generation ⇒ more work per iteration
  - Same total number of random walks  $\Rightarrow$  no reduction in CPU time
- Advantages
  - Reduced chance of false convergence for very slowly converging problems
  - Reduced inter-generation correlation effects on variance
  - Fission source distribution spreads more widely in a generation (due to the additional particle random walks), which should result in more interactions for loosely-coupled problems
- Wielandt method will be included in next version of MCNP5

### **References**



F. B. Brown, "Fundamentals of Monte Carlo Particle Transport," LA-UR-05-4983, available at http://mcnp.lanl.gov (2005).

#### Monte Carlo k-effective Calculations

- J. Lieberoth, "A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann Transport Equation," *Nukleonik* **11**,213 (1968).
- M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal Reactors," *Nucl. Sci Eng.* **32**, 319–331 (1968).
- H. Rief and H. Kschwendt, "Reactor Analysis by Monte Carlo," *Nucl. Sci. Eng.*, **30**, 395 (1967).
- W. Goad and R. Johnston, "A Monte Carlo Method for Criticality Problems," *Nucl. Sci. Eng.* **5**, 371–375 (1959).

#### **Superhistory Method**

R.J. Brissenden and A.R. Garlick, "Biases in the Estimation of Keff and Its Error by Monte Carlo Methods," *Ann. Nucl. Energy*, Vol 13, No. 2, 63–83 (1986).

### **Wielandt Method**

- T Yamamoto & Y Miyoshi, "Reliable Method for Fission Source Convergence of Monte Carlo Criticality Calculation with Wielandt's Method", *J. Nuc. Sci. Tech.*, **41**, No. 2, 99–107 (Feb 2004).
- S Nakamura, <u>Computational Methods in Engineering and Science</u>, R. E. Krieger Pub. Company, Malabar, FL (1986).