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Abstract

Monte Carlo Eigenvalue Calculations

F Brown, X-3-MCC

This talk will cover 4 aspects of Monte Carlo eigenvalue calculations:

1. Formulation of the k- and alpha-eigenvalue equations from the time-
dependent linear Boltzmann transport equation

2. The power iteration method for solving the equations & its convergence
behavior

3. The use of Shannon entropy of the fission source distribution for assessing
convergence

4. A novel application of Wielandt's method to accelerate the convergence.

LA-UR-06–7094
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Monte Carlo Eigenvalue Calculations

• K-  and  -Eigenvalue Equations

• Power Iteration & Convergence

• Shannon Entropy for Convergence Analysis

• Wielandt Acceleration
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Reactor Analysis with Monte Carlo

Geometry Model (1/4)          K vs cycle           Hsrc vs cycle

Assembly Powers           Fast Flux           Thermal Flux
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K-  and  -
Eigenvalue Equations
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Time-dependent Transport

• Time-dependent linear Boltzmann transport equation for
neutrons,  with prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial    (independent, identically distributed)

– All neutrons must see same probability densities in all of phase space
– Usual method:   geometry & materials fixed over solution interval t

 

1
v

(r,E, ,t)
t

= Q(r,E, ,t) + (r,E , ,t) S(r,E E, ,t)d dE

+
(r,E,t)
4 F(r,E ,t) (r,E , ,t)d dE

+ T(r,E,t) (r,E, ,t)

1
v

(r,E, ,t)
t

= Q + [S +M] [L + T]

Without material
motion corrections
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Time-dependent Transport

• Monte Carlo solution   (over t, with fixed geometry & materials)
– Simulate time-dependent transport for a neutron history
– If fission occurs, bank any secondary neutrons.
– When original particle is finished, simulate secondaries till done.

– Tallies for time bins, energy bins, cells, …

• At time  t,  the overall neutron level is

• Alpha can be defined by:    N(t) =  N(0) e t

This is the "dynamic alpha",  NOT an eigenvalue !

 

1
v

(r,E, ,t)
t

= Q + [S +M] [L + T]

ln N2 ln N1
t2 t1

 

N(t) =
(r,E, ˆ ,t)
v

r,E, ˆ

drdEd ˆ
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• Random Walk for particle

• Particle History

Particle Histories

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E,   randomly
- tallies

Secondary
Particles

Source
- select r,E,

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk
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Fixed-source Monte Carlo Calculation

Source
- select r,E,

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E,

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E,

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

History 1

History 2

History 3
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Alpha Eigenvalue Equations

• For problems which are separable in space & time, it may be advantageous
to solve a static eigenvalue problem, rather than a fully time-dependent
problem

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E, ,t) = 0
3. Separability: (r,E, ,t) =  (r,E, ) e t,

• Substituting  into the time-dependent transport equation yields

• This is a static equation,  an eigenvalue problem for  and  without
time-dependence

•   is often called the time-eigenvalue or time-absorption
• -eigenvalue problems can be solved by Monte Carlo methods

 

+ T(r,E) + v
(r,E, ) = (r,E , ) S(r,E E, )d dE

+
(E)
4 F(r,E ) (r,E , )d dE
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Keff Eigenvalue Equations

• Another approach to creating a static eigenvalue problem from the time-
dependent transport equation is to introduce Keff, a scaling factor on the
multiplication ( )

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E, ,t) = 0
3. / t = 0:   /keff

• Setting  / t = 0   and   introducing the  Keff   eigenvalue gives

• This is a static equation,  an eigenvalue problem for Keff and k without
time-dependence

• Keff  is called the effective multiplication factor
• Keff  and  k should never be used to model time-dependent problems.
• Keff-eigenvalue problems can be solved by Monte Carlo methods

 

+ T(r,E) k(r,E, ) = k(r,E , ) S(r,E E, )d dE

+
1
Keff

(E)
4 F(r,E ) k(r,E , )d dE
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Comments on Keff and   Equations

• Criticality
Supercritical:  > 0 or Keff > 1

Critical:  = 0 or Keff = 1

Subcritical:  < 0 or Keff < 1

• Keff  vs.    eigenvalue equations

– k(r,E, )  (r,E, ),   except for a critical system

–      eigenvalue & eigenfunction used for   time-dependent problems
– Keff  eigenvalue & eigenfunction used for   reactor design & analysis
– Although   = (Keff-1)/ ,  where   = lifetime,

there is no direct relationship between k(r,E, ) and (r,E, )

• Keff eigenvalue problems can be solved directly using Monte Carlo

•   eigenvalue problems are solved by Monte Carlo indirectly using a
series of Keff calculations
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Comments on Keff and   Equations

K equation [ L + T ] k =   [S  +  1/k M ] k

 equation [ L + T +  /v ] =   [S  +  M ] 

• The factor  1/k  changes the relative level of the fission source

• The factor   /v   changes the absorption  &   neutron spectrum
– For  > 0,  more absorption at low E    harder spectrum
– Double-density Godiva, average neutron energy causing fission:

k calculation: 1.30  MeV
 calculation: 1.68  MeV

• For separable problems,   (r,E, ,t) =  (r,E, ) e t

• No similar equation for k,  since not used for time-dependence
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Power Iteration
&

Convergence



15

K-eigenvalue equation

where
L = leakage operator S = scatter-in operator
T = collision operator M = fission multiplication operator

• Rearrange

 This eigenvalue equation will be solved by power iteration

(L + T) = S +
1
Keff
M

(L + T S) =
1
Keff
M

=
1
Keff

(L + T S) 1M

=
1
Keff

F

(n+1)
=

1
Keff
(n) F (n)
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Power Iteration

Diffusion Theory or
Discrete-ordinates Transport

1. Initial guess for Keff and 
Keff

(0),   (0)

2. Solve for (n+1)

Inner iterations over space or
 space/angle to solve for (n+1)

3. Compute new Keff

4. Repeat 1–3 until both Keff
(n+1) and

(n+1)  have converged

Monte Carlo

1. Initial guess for Keff and 
Keff

(0),   (0)

2. Solve for (n+1)

Follow particle histories
 to solve for (n+1)

During histories, save fission sites
to use for source in next iteration

3. Compute new Keff

During histories for iteration (n+1),
  estimate Keff

(n+1)

4. Repeat 1–3 until both Keff
(n+1) and

(n+1)  have converged
5. Continue iterating, to compute tallies

(L + T S) (n+1)
=

1
Keff
(n) M (n) (L + T S) (n+1)

=
1
Keff
(n) M (n)

 

Keff
(n+1)

= Keff
(n)

M (n+1)dr

M (n)dr 

Keff
(n+1)

= Keff
(n) 1iM

(n+1)

1iM (n)
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Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Power Iteration

• Power iteration for Monte Carlo k-effective calculation

Source particle generation

Monte Carlo random walk
Neutron
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-Eigenvalue Calculations

• Eigenvalue equation with both Keff & 
–  is a fixed number, not a variable

– Find the k-eigenvalue as function of ,   K( )

• Note: If  < 0
– Real absorption plus time absorption could be negative

– Move /v to right side to prevent negative absorption,
– - /v term on right side is treated as a delta-function source

– Select a fixed value for 
– Solve the K-eigenvalue equations, with fixed time-absorption /v

– Select a different  and solve for a new Keff
– Repeat, searching for value of    which results in   Keff = 1

 

+ T(r,E) + v
(r,E, ) = (r,E , ) S(r,E E, )d dE

+
1
Keff

(E)
4 F(r,E ) (r,E , )d dE
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Monte Carlo

Monte Carlo

K- and -Eigenvalue Calculations

• K-eigenvalue solution

Loop for Power Iteration for K
• Loop over neutrons in cycle
• • neutron history
• • • •

• • •

• -eigenvalue solution

Loop for  search iterations
• Loop for Power Iteration for K
• • Loop over neutrons in cycle
• • • neutron history
• • • • •
• • • •

• • •

  Find   K( ),   then  solve for    that gives  K( )=1
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Power Iteration

• Guess an initial source distribution
• Iterate until converged (How do you know ???)
• Then

– For Sn code:  done, print the results
– For Monte Carlo:  start tallies,

keep running until uncertainties small enough

• Convergence?  Stationarity?  Bias?  Statistics?

Monte Carlo
Deterministic (Sn)

Discard Tallies

Keff
(n)

Iteration, n
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• Expand  in terms of eigenfunctions  uj(r,E, )

• Expand the initial guess in terms of the eigenmodes

• Substitute the expansion for (0) into power iteration equation

 

= ajuj
j=0

= a0u0 + a1u1 + a2u2 + a3u3 + .....

ujukdV = jk aj = ujdV

uj =
1
kj
F uj k0 > k1 > k2 > ... k0 keffective

Power Iteration – Convergence

 

(0)
= aj

(0)uj
j=0

 

(n+1)
=
1
K(n)

F (n)
=
1
k(n)

1
k(n 1)

...
1
k(0)

Fn (0)

=
k0
K(m)m=0

n

a0
(0) u0 +

aj
(0)

a0
(0)

kj
k0

n+1

uj
j=1
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Power Iteration – Convergence

• Because   k0 > k1 > k2 > …,    all of the red terms vanish as n
– (n+1)    constant  u0

– K(n+1)    k0

• After the initial transient,  error in (n) is dominated by first mode
– ( k1 / k0 )   is called the dominance ratio,  DR  or  
– Errors in (n) die off as   ~ (DR)n

• For problems with a high dominance ratio (e.g.,  DR ~ .99),
the error in Keff may be small,  since the factor (k1/k0 – 1) is small.
– Keff may appear converged,

even if the source distribution is not converged

 

(n+1) [cons tant] u0 +
a1
(0)

a0
(0)

k1
k0

n+1

u1 + ...

K(n+1) k0 1 +
a1
(0)

a0
(0)

k1
k0

n
k1
k0

1 G1 + ...
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Power Iteration – Convergence

Typical K-effective convergence patterns

• Higher mode error terms die out as  ( kJ / k0 )n,    for n iterations

• When initial guess is concentrated in center
of reactor, initial Keff is too high
(underestimates leakage)

• When initial guess is uniformly distributed,
initial Keff is too low (overestimates leakage)

• The Sandwich Method uses 2  Keff calculations -
one starting too high & one starting too low.
Both calculations should converge to the same result.

K

Iteration, n

K

Iteration, n
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Power Iteration – Convergence

• Keff is an integral quantity – converges faster than source
shape
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Shannon Entropy of the
Fission Source Distribution
For Assessing Convergence
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The Challenge

– In the old days, when people used Monte Carlo
just to compute K-effective,  plots of   kcycle vs
cycle   were adequate to judge convergence

– Today, for computing power distributions &
localized reaction rates, new tools are needed to
judge local convergence of source distribution

• K-effective converges before the source
distribution converges

• How do you tell if a 3D distribution has
converged ?
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Source Distribution Convergence

Geometry Model (1/4)          K vs cycle           Hsrc vs cycle

Assembly Powers           Fast Flux           Thermal Flux



28

Keff Calculations

• Initial cycles of a Monte Carlo K-effective calculation should be
discarded, to avoid contaminating results with errors from initial guess
– How many cycles should be discarded?
– How do you know if you discarded enough cycles?

• Analysis of the power iteration method shows that Keff is not a reliable
indicator of convergence — Keff can converge faster than the source
shape

• Based on concepts from information theory (not physics),
Shannon entropy of the source distribution is useful for
characterizing the convergence of the source distribution

Discard Tallies

Keff
(n)

Iteration, n
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Keff Calculations – Stationarity Diagnostics

• Divide the fissionable regions of the problem into  NS  spatial bins
– Spatial bins should be consistent with problem symmetry
– Typical choices: — 1 bin for each assembly

— regular grid superimposed on core
– Use dozens or hundreds of bins, not thousands

• During the random walks for a cycle, tally the fission source points in
each bin
– Provides a discretized approximation to the source distribution
– { pJ,   J=1,NS }

• Shannon entropy of the source distribution

H(S) = pJ ln2(pJ ), where pJ =
(# source particles in bin J)

(total # source particles in all bins)J=1

NS
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Keff Calculations – Stationarity Diagnostics

• Shannon entropy of the source distribution

– 0    H(S)    ln2( NS )

– For a uniform source distribution, H(S) = ln2( NS )
since  p1 = p2 = … = pNs  =  1/NS

– For a point source (in a single bin), H(S) = 0

• H(S(n))  provides a single number to characterize
             the source distribution for iteration n         (no physics!)

 As the source distribution converges in 3D space,
a line plot of H(S(n)) vs. n (the iteration number) converges

H(S) = pJ ln2(pJ ), where pJ =
(# source particles in bin J)

(total # source particles in all bins)J=1

NS
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Keff Calculations – Stationarity Diagnostics

• Example – Reactor core  (Problem inp24)

K(n) vs cycle

H( fission source )

Keff

50

80
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Keff Calculations – Stationarity Diagnostics

• Example – Loosely-coupled array of spheres  (Problem test4s)

K(n) vs cycle

H( fission source )

Keff

75

85
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Keff Calculations – Stationarity Diagnostics

• Example – Fuel Storage Vault  (Problem  OECD_bench1)

K(n) vs cycle

H( fission source )

20 ?

2000



34

Keff Calculations – Stationarity Diagnostics

• Example – PWR 1/4-Core    (Napolitano)

K(n) vs cycle

H( fission source )

25

50
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Keff Calculations – Stationarity Diagnostics

• Example – 2D PWR (Ueki)

K(n) vs cycle

H( fission source )

25

50
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Source Entropy & MCNP5

• Grid for computing Hsrc

– User can specify a rectangular grid in input
hsrc nx  xmin  xmax ny  ymin  ymax nz  zmin  zmax

example: hsrc    5  0.  100.    5  0. 100.   1  -2.  50.

– If hsrc card is absent,  MCNP5 will choose a grid based on the fission
source points, expanding it if needed during the calculation

• MCNP5 prints Hsrc for each cycle

• MCNP5 can plot Hsrc vs cycle

• Convergence check at end of problem
– MCNP5 computes the average Hsrc and its population variance H

2

for the last half of the cycles
– Then, finds the first cycle where Hsrc is within the band <Hsrc> ± 2 H

– Then, checks to see if at least that many cycles were discarded
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Summary

• Local errors in the source distribution decay as  ( kJ/k0 )n

– Higher eigenmodes die out rapidly, convergence dominated by k1/k0

– High DR  slow convergence
– High DR  large correlation  large error in computed variances

• Errors in Keff decay as   (kJ/k0 – 1) * ( kJ/k0 )n

– High DR    kJ/k0 ~ 1    small error

• Keff errors die out faster than local source errors
– Keff is an integral quantity – positive & negative fluctuations cancel

• Shannon entropy of the fission source distribution (Hsrc) is an effective
diagnostic for source convergence
– Now part of standard MCNP5   (beginning with version 1.40, November 2005)
– Basis for initial source convergence tests — more are coming

 If local tallies are important (e.g., assembly power, pin power, …),
examine convergence using Hsrc - not just Keff convergence
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Wielandt
Acceleration
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Wielandt Method

• Basic transport equation for eigenvalue problems

L = loss to leakage S = gain from scatter-in
T = loss to collisions M = gain from fission multiplication

• Define a fixed parameter   ke  such that    ke > k0      (k0 = exact
eigenvalue)

• Subtract                from each side of the transport equation

• Solve the modified transport equation by power iteration

(L + T S) =
1
Keff
M

1
ke
M

(L + T S 1
ke
M) = ( 1

Keff
1
ke
)M

(L + T S 1
ke
M) (n+1)

= ( 1
Keff
(n)

1
ke
)M (n)
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Wielandt Method

• Power iteration for modified transport equation

• How to choose ke

–  ke  must be larger than k0       (but, don't know k0!)
–  ke must be held constant for all of the histories in a batch,

 but can be adjusted between batches
• Typically, guess a large initial value for ke,  such as  ke=5  or  ke=2
• Run a few batches, keeping ke fixed, to get an initial estimate of Keff

• Adjust ke to a value slightly larger than the estimated Keff

• Run more batches, possibly adjusting ke if the estimated Keff changes

 

(L + T S 1
ke
M) (n+1)

= ( 1
Keff
(n)

1
ke
)M (n)

(n+1)
= ( 1

Keff
(n)

1
ke
) (L + T S 1

ke
M) 1M (n)

(n+1)
=

1
K(n)

F (n)

where K(n)
= ( 1

Keff
(n)

1
ke
) 1 or Keff

(n)
= ( 1

K(n)
+

1
ke
) 1
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Wielandt Method

• Convergence
– Eigenfunctions for the Wielandt method are same as for basic power iteration
– Eigenvalues are shifted:

– Expand the initial guess, substitute into Wielandt method, rearrange to:

– Additional factor   (ke-k0)/(ke-k1)  is less than 1 and positive, so that the red
terms die out faster than for standard power iteration

 

(n+1) [cons tant] u0 +
a1
(0)

a0
(0)

ke k0
ke k1

k1
k0

n+1

u1 + ...

K(n+1) k0 1 +
a1
(0)

a0
(0)

ke k0
ke k1

k1
k0

n
ke k0
ke k1

k1
k0

1 G1 + ...

 
kJ =

1
kJ

1
ke

1
ke > k0 > k1 > ...
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Wielandt Method

• The dominance ratio for this modified power iteration is

– Since   ke > k0   and  k0 > k1,     DR' < DR
– DR of Wielandt method is always smaller than standard power iteration

• Wielandt acceleration improves the convergence rate of the power
iteration method for solving the k-eigenvalue equation

 Weilandt method converges at a faster rate than power iteration

 

DR =
k1
k0

=
[ 1k1

1
ke
] 1

[ 1k0
1
ke
] 1

=
ke k0
ke k1

k1
k0

=
ke k0
ke k1

DR

Standard power iteration

K(n)

Iteration, n

Power iteration with Wielandt acceleration
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Wielandt Method

• Monte Carlo procedure for Wielandt acceleration

• For standard Monte Carlo (power iteration) in generation n+1
– When a collision occurs, the expected number of fission neutrons produced is

– Store nF copies of particle in the fission-bank for the next generation (n+2)

• For Monte Carlo Wielandt method in generation n+1
–  When a collision occurs, compute 2 expected numbers of fission neutrons

– Note that   E[ n'F + n'e ] = E[ nF ]
– Follow n'e copies of the particle in the current generation (n+1)
– Store n'F copies of particle in the fission-bank for the next generation (n+2)

(L + T S 1
ke
M) (n+1)

= ( 1
Keff
(n)

1
ke
)M (n)

nF = wgt F

T

1
K(n)

+

nF = wgt F

T

1
K(n)

1
ke

+ ne = wgt F

T

1
ke

+
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Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Wielandt Method

• Power iteration for Monte Carlo k-effective calculation

Source particle generation

Monte Carlo random walk
Neutron



45

Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Wielandt Method

• Wielandt method for Monte Carlo k-effective calculation

Source particle generation

Monte Carlo random walk

Neutron

Additional Monte Carlo random walks
 within generation due to Wielandt method
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MCNP5 Testing of Wielandt's Method

• Wielandt shift parameter
Ke

(n+1)  =   K(n)
collision  +  

Convergence of Hsrc vs          Iterations for convergence

 

 =  -- black

 = 1  -- red

 = .1 -- blue
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Wielandt Method

Summary

• Wielandt Method has a lower DR than power iteration
– Faster convergence rate than power iteration  fewer iterations

– Some of the particle random walks are moved from the next
generation into the current generation  more work per iteration

– Same total number of random walks  no reduction in CPU time

• Advantages
– Reduced chance of false convergence for very slowly converging

problems

– Reduced inter-generation correlation effects on variance

– Fission source distribution spreads more widely in a generation (due
to the additional particle random walks), which should result in more
interactions for loosely-coupled problems

• Wielandt method will be included in next version of MCNP5
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