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Abstract 

Monte Carlo calculations of k-eigenvalue problems are based on a power iteration 

procedure. To obtain correct results free of contamination from the initial guess 

for the fission distribution, it is imperative to determine when the iteration 

procedure has converged, so that a sufficient number of the initial batches are 

discarded prior to beginning the Monte Carlo tallies. In this paper, we examine 

the convergence behavior using both theory and numerical testing, demonstrating 

that keff may converge before the fission distribution for problems with a high 

dominance ratio. Thus, it is necessary to assess convergence of both keff and the 

fission distribution to obtain correct results. To this end, the Shannon entropy of 

the fission distribution has been found to be a highly effective means of 

characterizing convergence of the fission distribution. The latest version of 

MCNP5 includes new capabilities for computing and plotting the Shannon 

entropy of the fission distribution as an important new tool for assessing problem 

convergence. Examples of the application of this new tool are presented for a 

variety of practical criticality problems. 
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1. Introduction 

 

     Monte Carlo calculations of k-eigenvalue problems are based on a power iteration procedure 

[1,2], where single-generation random walks are carried out for a “batch” of neutrons to estimate 

keff and the next-generation fission distribution. The iteration process is repeated until the fission 

distribution has converged, at which point any previous results are discarded, tallies are started, 

and the iteration process is continued until acceptably small statistical uncertainties are obtained. 

To obtain correct results, free of contamination from the initial guess for the fission distribution, 

it is imperative to determine when the iteration procedure has converged, so that a sufficient 

number of the initial batches are discarded. Batches are thus divided into two types: inactive, 

where the distribution is not yet converged, and active, where stationarity has been reached and 

Monte Carlo tallies are accumulated. Determining convergence is complicated by the statistical 

noise inherent in the random walks of the neutrons in each generation; statistical variations in the 



single-generation estimates of keff and the fission distribution may be larger than the incremental 

changes from the power iteration procedure.  

The current method to determine convergence in MCNP5 [3] and other codes is to perform a 

preliminary calculation and assess convergence by post-processing examination of the resulting 

trends in single-generation keff estimators. After setting the number of inactive and active cycles, 

the calculation is then repeated to obtain results. The principal difficulty with this conventional 

approach is that convergence testing should include both keff and the fission source distribution, 

since the fission distribution will converge more slowly than keff.  

In Section 2, the theory of power iteration convergence is examined, to demonstrate the 

different convergence behavior of keff and the fission distribution. In Section 3, the Shannon 

entropy of the fission distribution is defined and discussed in terms of application to Monte Carlo 

k-eigenvalue calculations. In Section 4, numerical results are presented for assessing the 

convergence of both keff and the fission source distribution for several practical problems. 

Conclusions and recommendations for assessing convergence of criticality problems are 

presented in Section 5. 

 

2. Convergence of keff and the Fission Source Distribution 

 

The k-eigenvalue transport equation in standard form  
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Equation (3) may be solved numerically using the standard power iteration method [1,4]  
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Concerning the relative convergence of keff and the fission source distribution during the 

power iteration process, if 
(0)

 is expanded in terms of the eigenvectors uJ of Eq. (1), 

 
uJ = 1 kJ FuJ , with k0>k1>k2 >…, substituted into Eq. (4), and rearranged with some 

straightforward algebra, then 
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where  is the dominance ratio (k1/k0), k0 and 
  
u

0
are the fundamental mode eigenvalue (exact keff) 

and eigenfunction, k1 and 
  
u

1
are the first higher mode eigenvalue and eigenfunction, and a0, a1, 

and g1 are constants determined by the expansion of the initial fission distribution. Eq. (5) shows 

that higher-mode noise in the fission distribution dies off as 
n+1

, while higher-mode noise in keff 

dies off as 
n
(1- ). When the dominance ratio is close to 1, keff will converge sooner than the 

fission distribution due to the extra damping factor (1- ) which is close to 0. Thus, it is essential 

to monitor the convergence of both the fission source distribution and keff, not just that of keff. 

 

3. Shannon Entropy of the Fission Distribution 

 

     Recent research into assessing the convergence of the fission source distribution for MCNP5 

has involved computing a quantity called the Shannon entropy of the fission source distribution, 

Hsrc [5-7]. The Shannon entropy is a well-known concept from information theory and provides a 

single number for each batch to help characterize convergence of the fission source distribution. 

It has been found that the Shannon entropy converges to a single steady-state value as the source 

distribution approaches stationarity. Line-plots of Shannon entropy vs. batch are easier to 

interpret and assess than are 2D or 3D plots of the source distribution vs. batch.  

To compute Hsrc, it is necessary to superimpose a 3D grid on a problem encompassing all of 

the fissionable regions, and then to tally the number of fission sites in a batch that fall into each 

of the grid boxes. These tallies may then be used to form a discretized estimate of the source 

distribution, {PJ, J=1,Ns}, where Ns is the number of grid boxes in the superimposed mesh, and 

PJ = (number of source sites in J-th grid box)/(total number of source sites). Then, the Shannon 

entropy of the discretized source distribution for that batch is given by: 
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Hsrc varies between 0 for a point distribution to ln2(Ns) for a uniform distribution. Also note that 

as PJ approaches 0, PJln2(PJ) approaches 0.  

     MCNP5 computes and prints Hsrc for each batch of a criticality calculation. Plots of Hsrc vs. 

batch can also be obtained during or after a calculation, using the built-in plotting capabilities. 

The user may specify a particular grid to use in determining Hsrc or can let MCNP5 automatically 

determine a grid which encloses all of the fission sites for the batch. The number of grid boxes 

will be determined by dividing the number of histories per cycle by 20, and then finding the 

nearest integers which give that many equal-sized grid boxes, although not fewer than 4x4x4 will 

be used. 



     Upon completion of the problem, MCNP5 will compute the average value of Hsrc for the last 

half of the active cycles, as well as its (population) standard deviation. MCNP5 will then report 

the first cycle found (active or inactive) where Hsrc falls with one standard deviation of its 

average for the last half of cycles, along with a recommendation that at least that many cycles 

should be discarded (inactive). Plots of Hsrc vs. cycle should be examined to further verify the 

number of inactive cycles that are required for convergence. When running criticality 

calculations with MCNP5, it is essential that users examine the convergence of both keff and the 

fission source distribution (using Shannon entropy). If either keff or Hsrc is not converged prior to 

starting the active cycles, then results from the calculations will not be correct. 

 

4. Numerical Results 

 

     The convergence behavior of both keff and the fission source distribution have been examined 

for many practical criticality problems using MCNP5. One example is shown in Fig. 1, where keff 

and Hsrc are plotted vs. batch for a typical 3D -core PWR model. While it is difficult to 

determine precisely where keff has converged due to the statistical noise in the keff plot, a 

conservative estimate would be about 40 batches. Examining the Hsrc plot, it can be seen that 

about 70 cycles are required for the 3D fission source distribution to fully converge. 

     A second example for a 3D whole-core PWR model is shown in Fig. 2. For this example, keff 

appears to have converged after about 10 batches, whereas examining Hsrc indicates that it takes 

about 50 batches for the fission source to converge. 

     A third example is Benchmark Problem 1 from the OECD/NEA Source Convergence 

Benchmarks [8]. This problem represents a very large, loosely-coupled array of fuel assemblies 

in a fuel storage vault. Examining the plots in Fig. 3, it appears that keff converges almost 

immediately, whereas it takes about 1500 batches for the fission distribution to converge. Any 

power distributions or local reaction rates computed for this problem would show serious bias if 

fewer than 1500 batches were discarded in the Monte Carlo calculation. 

5. Conclusions 

 

     Based on both theory and numerical testing, it has been demonstrated that keff may converge 

before the fission distribution for Monte Carlo criticality problems, especially for those with a 

high dominance ratio. Thus, it is necessary to assess convergence of both keff and the fission 

distribution to obtain correct results. To this end, the Shannon entropy of the fission distribution 

has been found to be a highly effective means of characterizing convergence of the fission 

distribution. The latest version of MCNP5 includes capabilities for computing and plotting the 

Shannon entropy of the fission distribution as an important new tool for assessing problem 

convergence. 

    It is highly recommended that both keff and Hsrc be carefully checked for convergence in all 

Monte Carlo criticality calculations. The capability to calculate and plot Hsrc should be added to 

other Monte Carlo codes that are used for criticality calculations.  

  

 



 

 

 

 

 

 

 

 

 

 

Figure 2. Convergence plots of keff and Hsrc vs. batch for a 3D whole-core PWR  
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Figure 1. Convergence plots of keff and Hsrc vs. batch for a 3D -core PWR  
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Figure 3. Convergence plots of keff and Hsrc vs. batch for OECD Benchmark 1 

Keff vs cycle 

Hsrc vs batch 

1000 2000 3000 4000 5000 

1000 2000 3000 4000 5000 


