

LA-UR-05-5618

ANS Mathematics & Computation Topical Meeting Avignon, France, 11–15 September 2005

Advances in Monte Carlo Criticality Calculations

Forrest B. Brown & Russell D. Mosteller

X-5, Los Alamos National Laboratory fbrown@lanl.gov, mosteller@lanl.gov

1

LA-UR-05-5618

Advances in Monte Carlo Criticality Calculations

Forrest B. Brown & Russell D. Mosteller Diagnostics Applications Group (X-5), LANL

This workshop will focus on recent advances in methods, codes, and data for Monte Carlo criticality calculations, including: improvements to MCNP5 kcode calculations, source entropy as a convergence diagnostic, Weilandt acceleration, stochastic geometry for HTGRs, use of mesh tallies for reactor applications, pre-ENDF/B-VII data, Doppler broadening, material composition library, etc.

Advances in Monte Carlo Criticality Calculations

- Introduction
- Entropy of the Fission Source Distribution
- Mesh Tallies for Reactor Applications
- Nuclear Data for MCNP
- Monte Carlo Power Iteration & Weilandt Method
- HTGR Modeling & Stochastic Geometry

Entropy of the Fission Source Distribution & Stationarity Diagnostics

Keff Calculations

• Plots of single-cycle Keff or cumulative Keff are sometimes difficult to interpret when assessing convergence

Keff Calculations

- Initial cycles of a Monte Carlo K-effective calculation should be discarded, to avoid contaminating results with errors from initial guess
 - How many cycles should be discarded?
 - How do you know if you discarded enough cycles?

- Analysis of the power iteration method shows that Keff is not a reliable indicator of convergence — K_{eff} can converge faster than the source shape
- Based on concepts from information theory, Shannon entropy of the source distribution is useful for characterizing the convergence of the source distribution

- Divide the fissionable regions of the problem into N_s spatial bins
 - Spatial bins should be consistent with problem symmetry
 - Typical choices: 1 bin for each assembly

- regular grid superimposed on core

Rule-of-thumb for number of spatial bins:

N_s ~ (histories/batch) / 25 or less

Why?

- Would like to have >25 fission source sites per bin to get good statistics
- If source distribution were uniform, ~25 sites would be in each bin
- Shannon entropy of the source distribution

 $H(S) = -\sum_{J=1}^{N_S} p_J \cdot ln_2(p_J), \text{ where } p_J = \frac{(\text{# source particles in bin J})}{(\text{total # source particles in all bins})}$

• Shannon entropy of the source distribution

$$H(S) = -\sum_{J=1}^{N_S} p_J \cdot \ln_2(p_J), \text{ where } p_J = \frac{(\text{# source particles in bin J})}{(\text{total # source particles in all bins})}$$

Diagnostics

Los Alamos

mcnp5

- $0 \leq H(S) \leq In_2(N_S)$
- Note that $p_J \ln_2(p_J) = 0$ if $p_J=0$
- For a uniform source distribution, $p_1 = p_2 = ... = p_{Ns} = 1/N_s$, so that $H(S) = In_2(N_s)$
- For a point source (in a single bin), H(S) = 0
- H(S⁽ⁿ⁾) provides a single number to characterize the source distribution for iteration n

 \Rightarrow As the source distribution converges in 3D space, a line plot of H(S⁽ⁿ⁾) vs. n (the iteration number) converges

8

• Example – Reactor core (Problem inp24)

Diagnostics

Applications

Group (X-5)

Los Alamos

120

200

mcnp5

20

keff cycle number

• Example – Loosely-coupled array of spheres (Problem test4s)

Diagnostics

Applications

Group (X-5)

Los Alamos

mcnp5

• Example – Fuel Storage Vault (Problem OECD_bench1)

Diagnostics

Applications Group (X-5)

Los Alamos

mcnp5

• Example – PWR 1/4-Core (Napolitano)

			V	/													
٠	٠	٠	٠	٠	٠	٠	٠		٠			٠	٠	٠	٠		
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	
	٠	٠	٠			٠			٠			٠	٠			٠	
٠	٠	٠		٠	٠	٠	÷	٠	٠	٠	٠	٠		٠	٠	٠	
٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	
٠	٠		٠	٠		٠	٠		٠						٠	٠	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠		*************
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	*************
٠	٠		٠	٠		٠	٠		٠	٠		٠			*	٠	
٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠		۰	*	٠	٠	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
٠	٠		۰	٠		٠	۴		٠	٠		٠	٠		٠	٠	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	
٠	٠	٠		٠		٠	٠	٠	٠			٠		٠	٠	٠	
٠	٠	٠		٠		٠						٠	٠	٠			
٠	٠	٠	۲		٠	٠				٠		٠	٠	٠	۲	٠	55500000000000000000000000000000000000
٠	٠	٠	٠	٠	٠	٠	۲		٠	٠	٠			٠	٠	٠	***************

keff cycle number

mcnp5

Diagnostics

Applications

Group (X-5)

Los Alamos

• Grid for computing H_{src}

- User can specify a rectangular grid in input

hsrc $n_x x_{min} x_{max}$ $n_y y_{min} y_{max}$ $n_z z_{min} z_{max}$ example:hsrc50.100.50.100.1-2.50.

- If hsrc card is absent, MCNP5 will choose a grid based on the fission source points, expanding it if needed during the calculation
- MCNP5 prints H_{src} for each cycle
- MCNP5 can plot H_{src} vs cycle
- Convergence check at end of problem
 - MCNP5 computes the average $\rm H_{src}$ and its population variance $\sigma_{\rm H}{}^2$ for the last half of the cycles
 - Then, finds the first cycle where H_{src} is within the band $<H_{src}>\pm 2\sigma_{H}$
 - Then, checks to see if at least that many cycles were discarded

Mesh Tallies For Reactor Applications

Mesh tallies are track-length tallies that cover 3D regions of space, independent of the problem geometry

- Both rectangular and cylindrical meshes
- Bin on energy values
- Unlimited number of meshes
- Size of mesh limited by computer parameters
- Rotated by using a TR card
- Modified by DE/DF cards or an FM card
- Surface and cell flagging
- Plot results

Mesh Tally Plotting

Built-in plotter now plots mesh tally results on top of geometry outline

Proton Storage Ring at LANSCE accelerator Geometry Blue = concrete Yellow = air

Some calculations, such as energy deposition, require the use of the FM card. However, the FM card requires the user to identify a material whose reaction cross sections are used in the tally. This is impractical for a tally that contains several materials.

Diagnostics

Group (X-5)

Applications

Los Alamos

mcnp5

18

• Using "0" as the material number on an FM card for mesh tallies causes the mesh tallies to use the true materials from the geometry

FM card format: FMn C m R1 R2 <---- set m=0

• Can use this feature to edit power distributions (e.g., fission rates, energy deposition, ...)

FM134 0.069256 0 -6 -8

Mesh Tally - Power Distributions

• Fuel storage vault – fission distribution

Use SF and CF cards as for a regular tally, except:

- Only one tally (the flagged tally) is produced
- Negative cell or surface values interpreted as "anti-flag". Scores only those particles that do not cross the surface or leave the cell

Diagnostics

Applications

Group (X-5)

Los Alamos

mcnp5

By using a very fine mesh, particle tracks from individual histories can be plotted.

2000 x 1100 x 1 mesh

Nuclear Data for MCNP

- Nuclear data libraries for MCNP: ENDF/B-VI and Later
- Temperature-specific nuclear data libraries and the DOPPLER code
- MCNP Criticality Validation Suite
- Criticality Results with ENDF/B-VI and preliminary ENDF/B-VII nuclear data libraries

NUCLEAR DATA LIBRARIES FOR MCNP:

ENDF/B-VI AND LATER

293 K

ENDF60	1994	ENDF/B-VI.2	.60c	122	0	0	
ENDF66	2002	ENDF/B-VI.6	. <mark>64c, .65c</mark> , .66c	173	67	22	
ACTI	2002	ENDF/B-VI.8	. <mark>61c</mark> , .62c, . <mark>63c</mark>	41	4	0	
T16_2003	2004	LANL T-16	. <mark>67c</mark> , .69c, . <mark>68c</mark>	15	13	14	

Identifiers

Total

Nuclides

Continuous-energy Nuclear Data Libraries

Source

77 K

Library

Issued

Fissioning Nuclides

with

Delayed-

Neutron

Spectra

Nuclides with

Probability Tables

for Unresolved

Resonance

Region

3000 K

Continuous-energy Nuclear Data Libraries (cont'd) mcnp5

- The final release of ENDF/B-VI, ENDF/B-VI.8, was distributed in October 2001
- ACTI can be combined with ENDF66 to produce a nuclear data library that corresponds to the final release of ENDF/B-VI for almost all nuclides
- The combination of ACTI and ENDF66 hereafter will be referred to as ENDF/B-VI
- T16_2003 was developed by LANL nuclear physics group (T-16)
- T16_2003 contains data for ³H, the uranium isotopes, ²³⁷Np, ²³⁹Pu, ²⁴¹Am, and ²⁴³Am
- The most notable changes in T16_2003 involve inelastic and elastic scattering cross sections, fission spectra, and the average number of neutrons emitted per fission.

Nuclear Data Library for Thermal Scattering Laws mcnp5

- SAB2002, a library of thermal scattering laws S(α,β), was released in 2002
- Data in SAB2002 are derived from ENDF/B-VI (ENDF/B-VI.3)
- SAB2002 contains data for 15 combinations of nuclides and materials
- Typical temperature ranges are from 294 K to 1200 K, in increments of 200
- Data typically are tabulated at 16 angles and 64 energies for each temperature
- Data are provided at ~ 20 K for a limited number of nuclides

- CSEWG currently plans to release the initial version of ENDF/B-VII in December 2005
- LANL group T-16 has contributed new evaluations for ¹H, the uranium isotopes, ²³⁷Np, and ²³⁹Pu
- Principal change to data for ¹H is a slight reduction in its thermal capture cross section
- Changes to the data for the actinides are similar to those incorporated into T16_2003 but are more extensive
- Cross sections for ²³³U, ²³⁵U, and ²³⁸U incorporate revised resonance data from Oak Ridge National Laboratory

TEMPERATURE-SPECIFIC NUCLEAR DATA LIBRARIES

AND

THE DOPPLER CODE

• Temperature effects on Monte Carlo calculations

- Dimensions for geometry
- Density of materials
- Cross-section data
 - Doppler broadening of **resolved resonances** (explicit profiles)
 - Doppler broadening of **unresolved resonances** (probability tables)
 - Changes in **S**(α,β) thermal scattering kernel
 - Elastic scattering cross-section is Doppler broadened over entire energy range
- For most Monte Carlo codes, temperature effects must be handled explicitly by the code users
 - Input changes are required to account for dimension & density changes
 - Must use cross-section data generated at the correct problem temperatures
 - MCNP automatically Doppler broadens the elastic scattering cross-sections
 - MCNP does NOT adjust:
 - resolved resonance data
 - unresolved resonance data
 - thermal scattering kernels

• Generation of problem-dependent cross-section datasets

- Use NJOY (or similar cross-section processing code) to generate nuclear cross-section datasets (called ACE datasets for MCNP)
- Must generate a separate dataset for each nuclide at each problem temperature
- NJOY routines take care of Doppler broadening (resolved & unresolved) & thermal scattering kernels
- Can be done, but time-consuming & error-prone
- DOPPLER code (new)
 - Subset of NJOY routines, easy to use
 - For ACE datasets (for MCNP) performs
 - Doppler broadening of resolved resonance data (explicit profiles)
 - Interpolation of unresolved resonance data (probability tables) between ACE datasets at 2 different temperatures
 - Interpolation of thermal scattering kernels (S(α,β) data) between ACE datasets at 2 different temperatures
 - For now, DOPPLER is run external to MCNP
 - Plan to put the DOPPLER routines in-line with the MCNP coding

Kritz Benchmarks at 245 K

Case	Library	k _{eff}	Δk	
K	NJOY	0.9914 ± 0.0003		
Kritz:2-1	DOPPLER	0.9911 ± 0.0003	-0.0003 ± 0.0004	
Krit-12 12	NJOY	0.9944 ± 0.0003	_	
KIIIZ.2-13	DOPPLER	0.9942 ± 0.0003	-0.0002 ± 0.0004	
Krit-12.40	NJOY	1.0005 ± 0.0003		
Kniz:2-19	DOPPLER	1.0009 ± 0.0003	0.0004 ± 0.0004	

Diagnostics

Applications

Group (X-5)

Los Alamos

mcnp5

Conclusion: DOPPLER produces nuclear data that are consistent with those generated directly with NJOY

DOPPLER Input File

path=(loca	tion of initia	I data file)
1001.66c	0 4.386e-8	1001.01c
5010.66c	0 4.386e-8	5010.01c
5011.66c	0 4.386e-8	5011.01c
8016.66c	0 4.386e-8	8016.01c
8017.66c	0 4.386e-8	8017.01c
24050.66c	0 4.386e-8	24050.01c
24052.66c	0 4.386e-8	24052.01c
24053.66c	0 4.386e-8	24053.01c
24054.66c	0 4.386e-8	24054.01c
26054.66c	0 4.386e-8	26054.01c
26056.66c	0 4.386e-8	26056.01c
26057.66c	0 4.386e-8	26057.01c
26058.66c	0 4.386e-8	26058.01c
28058.66c	0 4.386e-8	28058.01c
28060.66c	0 4.386e-8	28060.01c

28061.66c	0 4.386e-8	28061.01	С
28062.66c	0 4.386e-8	28062.01	С
28064.66c	0 4.386e-8	28064.01	С
40000.66c	0 4.386e-8	40000.01	C
92235.66c	92235.65c	4.386e-8	92235.01c
92238.66c	92238.65c	4.386e-8	92238.01c
94239.66c	94239.65c	4.386e-8	94239.01c
94240.66c	94240.65c	4.386e-8	94240.01c
94241.66c	94241.65c	4.386e-8	94241.01c
94242.66c	94242.65c	4.386e-8	94242.01c
95241.66c	95241.65c	4.386e-8	95241.01c
lwtr.61t lv	vtr.62t 4.38	86e-8 lwti	r.01t
end			

- DOPPLER currently is in use by LANL, LANL contractors, and other DOE laboratories
- It is anticipated that DOPPLER will be included, in some form, in future MCNP distributions

Approximate Temperature Dependence

• "Pseudo-materials" for temperature dependence

- Also called "stochastic interpolation"
- To approximate the cross-sections for nuclide X at temperature T, use a weighted combination of nuclide X at lower temperature T₁ & higher temperature T₂

$$W_2 = \frac{\sqrt{T} - \sqrt{T_1}}{\sqrt{T_2} - \sqrt{T_1}}, \qquad W_1 = 1 - W_2$$

 $\Sigma(\mathsf{T}) = \mathsf{W}_1 \cdot \Sigma_1 + \mathsf{W}_2 \cdot \Sigma_2$

- Example: ²³⁵U at 500 K

Existing datasets for MCNP:

dataset for ²³⁵U at **293.6** K: **92235.66c**

dataset for ²³⁵U at **3000.1** K: **92235.65c**

Weight the datasets using T^{1/2} interpolation

 $W_2 = \frac{\sqrt{500} - \sqrt{293.6}}{\sqrt{3000.1} - \sqrt{293.6}} = .138845, \quad W_1 = .861155$

In the MCNP input:

m1 92235.66c .861155 92235.65c .138845

Diagnostics

Applications Group (X-5)

Los Alamos

mcnp5

Pseudo-material Example

• VHTGR model, with temperatures from the ATHENA code

- For pseudo-materials, explicit MCNP datasets at 100 K intervals used for temperature interpolation
- Reference calculation used explicit MCNP datasets from NJOY at exact problem temperatures

Figure 1. Comparison of keff between normal and pseudo materials with the VHTGR geometry.

JL Conlin, W Ji, JC Lee, WR Martin, "Pseudo-Material Construct for Coupled Neutronic-Thermal-Hydraulic Analysis of VHTGR", Trans. ANS <u>91</u> (2005)

• Pseudo-material method – Advantages

- Save memory storage

If 100s or 1000s of temperatures are needed, can "interpolate" between datasets at just 2 temperatures, rather than storing 100s or 1000s of datasets

No data preprocessing required

• Pseudo-material method – Disadvantages

- Approximate treatment

During the Monte Carlo calculation, picking one or the other dataset - not really interpolating

- Can't be used for $S(\alpha,\beta)$ thermal scattering kernels Need to pick $S(\alpha,\beta)$ dataset at nearest temperature

MCNP CRITICALITY VALIDATION SUITE

- Cases were selected to encompass a wide variety of
 - Fissile isotopes :
 - Spectra
 - Compositions :
 - Configurations :

- ²³³U, ²³⁵U, and ²³⁹Pu
- Fast, intermediate, and thermal
- Metals, oxides, and solutions
- Bare and reflected spheres and cylinders,2-D and 3-D lattices, and infinitehomogeneous and heterogeneous regions
- ²³⁵U Cases were subdivided into HEU, IEU, and LEU
- Input specifications for all 31 cases are taken from the *International* Handbook of Evaluated Criticality Safety Benchmark Experiments

Cases in the MCNP Criticality Validation Suite

Spectrum	Fast			Intermed	The	rmal
Geometry	Bare	Heavy Reflector	Light Reflector	Any	Lattice of Fuel Pins	Solution
²³³ U	Jezebel-233	Flattop-23	U233-MF-05	Falstaff-1*	SB-21/2	ORNL-11
HEU	Godiva Tinkertoy-2	Flattop-25	Godiver	Zeus-2 UH₃	SB-5	ORNL-10
IEU	IEU-MF-03	BIG TEN	IEU-MF-04	Zebra-8H [†]	IEU-CT-02	STACY-36
LEU					B&W XI-2	LEU-ST-02
Pu	Jezebel Jezebel-240 Pu Buttons	Flattop-Pu THOR	Pu-MF-11	HISS/HPG [†]	PNL-33	PNL-2

Diagnostics Applications Group (X-5)

Los Alamos

mcnp5

* Extrapolated to critical

 † k₂ measurement

Criticality Validation Suite

Name		Spectrum Handbook ID	Description
Jezebel-233	Fast	U233-MET-FAST-001	Bare sphere of ²³³ U
Flattop-23	Fast	U233-MET-FAST-006	Sphere of ²³³ U reflected by normal U
U233-MF-05	Fast	U233-MET-FAST-005, case 2	Sphere of ²³³ U reflected by beryllium
Falstaff-1	Intermediate	U233-SOL-INTER-001, case 1	Sphere of uranyl fluoride solution enriched in ²³³ U
SB-21/2	Thermal	U233-COMP-THERM-001, case 3	Lattice of ²³³ U fuel pins in water
ORNL-11	Thermal	U233-SOL-THERM-008	Large sphere of uranyl nitrate solution enriched in ²³³ U
Godiva	Fast	HEU-MET-FAST-001	Bare HEU sphere
Tinkertoy-2	Fast	HEU-MET-FAST-026, case C-11	3 x 3 x 3 array of HEU cylinders in paraffin box
Flattop-25	Fast	HEU-MET-FAST-028	HEU sphere reflected by normal U
Godiver	Fast	HEU-MET-FAST-004	HEU sphere reflected by water
Zeus-2	Intermediate	HEU-MET-INTER-006, case 2	HEU platters moderated by graphite and reflected by coppe
UH₃	Intermediate	HEU-COMP-INTER-003, case 6	UH ₃ cylinders reflected by depleted uranium
SB-5	Thermal	U233-COMP-THERM-001, case 6	Lattice of HEU fuel pins in water, with blanket of ThO ₂ pins
ORNL-10	Thermal	HEU-SOL-THERM-032	Large sphere of HEU nitrate solution
IEU-MF-03	Fast	IEU-MET-FAST-003	Bare sphere of IEU (36 wt.%)
BIG TEN	Fast	IEU-MET-FAST-007	Cylinder of IEU (10 wt.%) reflected by normal uranium
IEU-MF-04	Fast	IEU-MET-FAST-004	Sphere of IEU (36 wt.%) reflected by graphite
Zebra-8H	Intermediate	MIX-MET-FAST-008, case 7	IEU (37.5 wt.%) reflected by normal U and steel
IEU-CT-02	Thermal	IEU-COMP-THERM-002, case 3	Lattice of IEU (17 wt.%) fuel rods in water
STACY-36	Thermal	LEU-SOL-THERM-007, case 36	Cylinder of IEU (9.97 wt.%) uranyl nitrate solution
B&W XI-2	Thermal	LEU-COMP-THERM-008, case 2	Large lattice of LEU (2.46 wt.%) fuel pins in borated water
LEU-ST-02	Thermal	LEU-SOL-THERM-002, case 2	Sphere of LEU (4.9 wt.%) uranyl fluoride solution
Jezebel	Fast	PU-MET-FAST-001	Bare sphere of plutonium
Jezebel-240	Fast	PU-MET-FAST-002	Bare sphere of plutonium (20.1 at.% ²⁴⁰ Pu)
Pu Buttons	Fast	PU-MET-FAST-003, case 103	3 x 3 x 3 array of small cylinders of plutonium
Flattop-Pu	Fast	PU-MET-FAST-006	Plutonium sphere reflected by normal U
THOR	Fast	PU-MET-FAST-006	Plutonium sphere reflected by thorium
PU-MF-11	Fast	PU-MET-FAST-011	Plutonium sphere reflected by water
HISS/HPG	Intermediate	PU-COMP-INTER-001	Infinite, homog. mixture of plutonium, hydrogen, & graphite
PNL-33	Thermal	MIX-COMP-THERM-002, case 4	Lattice of mixed-oxide fuel pins in borated water
PNL-2	Thermal	PU-SOL-THERM-021, case 3	Sphere of plutonium nitrate solution

Purpose & Use of the MCNP Criticality Validation Suite

- The MCNP Criticality Validation Suite was developed to assess the reactivity impact of future improvements to MCNP as well as changes to its associated nuclear data libraries
- Suite is *not* an absolute indicator of the accuracy or reliability of a given nuclear data library, nor is it intended to be
- Suite can provide a general indication of the overall performance of a nuclear data library
- Suite can provide an early warning of unexpected or unintended consequences resulting from changes to nuclear data

CRITICALITY RESULTS WITH

ENDF/B-VI AND PRELIMINARY ENDF/B-VII

NUCLEAR DATA LIBRARIES

MCNP5 Calculations for Criticality Val. Suite Mcnp5 Applications Group (X-5) Los Alamos

Diagnostics

- Each calculation employed 550 generations with 10,000 neutrons per generation (SB-5 and Zebra-8H employed 350 generations)
- Results from first 50 generations were excluded from the statistics
- Results therefore are based on 5,000,000 active histories for each case (3,000,000 for SB-5 and Zebra-8H)
- All calculations with thermal scattering laws used SAB2002
- ENDF/B-VI data were used for nuclides not present in T16_2003 and initial ENDF/B-VII libraries when those calculations were performed

mcnp5	Diagnostics Applications Group (X-5)	• Los Alamos
		NATIONAL LADORATORY

	Benchmark		Calculated k _{eff}			
Case	k _{eff}	ENDF/B-VII	T16_2003	ENDF/B-VI	ENDF60	
Jezebel-233	1.0000±0.0010	0.9997±0.0003	0.9989±0.0002	0.9926±0.0002	0.9928±0.0003	
Flattop-23	1.0000±0.0014	0.9994±0.0003	0.9985±0.0003	1.0003±0.0003	1.0008±0.0003	
U233-MF-05	1.0000±0.0030	0.9979±0.0003	0.9972±0.0005	0.9972±0.0003	0.9971±0.0003	
Falstaff-1	1.0000±0.0083	0.9906±0.0005	0.9873±0.0005	0.9895±0.0005	0.9890±0.0005	
SB-21/2	1.0000±0.0024	0.9988±0.0004	0.9951±0.0005	0.9964±0.0005	0.9978±0.0005	
ORNL-11	1.0006±0.0029	1.0041±0.0002	1.0006±0.0002	0.9974±0.0002	0.9956±0.0002	

$1\sigma < \Delta k \le 2\sigma$ $\Delta k > 2\sigma$

- ENDF/B-VII and T16_2003 produce significant improvements relative to ENDF/B-VI and ENDF60
- ENDF/B-VII and T16_2003 eliminate reactivity swings between Jezebel-233 and Flattop-23

	Benchmark		Calculated k _{eff}			
Case	k _{eff}	ENDF/B-VII	T16_2003	ENDF/B-VI	ENDF60	
Godiva	1.0000±0.0010	0.9994±0.0003	0.9990±0.0003	0.9963±0.0003	0.9965±0.0003	
Tinkertoy-2	1.0000±0.0038	1.0004±0.0003	1.0001±0.0003	0.9973±0.0003	0.9987±0.0003	
Flattop-25	1.0000±0.0030	1.0029±0.0003	1.0023±0.0005	1.0021±0.0003	1.0027±0.0003	
Godiver	0.9985±0.0011	0.9978±0.0003	0.9969±0.0004	0.9948±0.0003	0.9970±0.0003	
UH₃	1.0000±0.0047	0.9952±0.0003	0.9925±0.0003	0.9914±0.0003	1.0080±0.0004	
Zeus-2	0.9997±0.0008	0.9958±0.0004	0.9951±0.0003	0.9942±0.0003	1.0088±0.0004	
SB-5	1.0015±0.0028	0.9957±0.0005	0.9941±0.0005	0.9965±0.0005	0.9972±0.0005	
ORNL-10	1.0015±0.0026	0.9989±0.0002	0.9986±0.0002	0.9992±0.0002	0.9970±0.0002	

- ENDF/B-VII and T16_2003 produce significant improvements for fast cases
- ENDF/B-VII produces additional improvements for Godiver, epithermal cases, and ORNL-10 (probably due to improved representation for low-lying resonances)

	Benchmark		Calculated k _{eff}			
Case	k _{eff}	ENDF/B-VII	T16_2003	ENDF/B-VI	ENDF60	
IEU-MF-03	1.0000±0.0017	1.0027±0.0003	1.0029±0.0003	0.9987±0.0003	1.0001±0.0003	
BIG TEN	0.9948±0.0013	0.9952±0.0003	0.9952±0.0003	1.0071±0.0003	1.0043±0.0002	
IEU-MF-04	1.0000±0.0030	1.0072±0.0003	1.0080±0.0003	1.0036±0.0003	1.0044±0.0003	
Zebra-8H	1.0300±0.0025	1.0198±0.0002	1.0197±0.0002	1.0406±0.0002	1.0304±0.0002	
IEU-CT-02	1.0017±0.0044	1.0008±0.0003	0.9998±0.0003	1.0004±0.0003	1.0010±0.0003	
STACY-36	0.9988±0.0013	0.9994±0.0003	0.9973±0.0003	0.9986±0.0003	0.9964±0.0003	

ENDF/B-VII and T16_2003 produce much better results for BIG TEN but worse results for other fast cases

	Benchmark		Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII	T16_2003	ENDF/B-VI	ENDF60
B&W XI-2	1.0007±0.0012	1.0000±0.0003	0.9978±0.0003	0.9968±0.0003	0.9965±0.0003
LEU-ST-02	1.0024±0.0037	0.9961±0.0003	0.9944±0.0003	0.9953±0.0003	0.9916±0.0003

- ENDF/B-VII produces significant improvement for B&W XI-2 (eliminates long-standing problem with capture in low-lying ²³⁸U resonances)
- Combination of slightly lower ¹H thermal capture cross section and improved resonance data in ENDF/B-VII produce improved result for LEU-ST-02

Los Alamos

	Benchmark		Calculated k _{eff}			
Case	k _{eff}	ENDF/B-VII	T16_2003	ENDF/B-VI	ENDF60	
Jezebel	1.0000±0.0020	0.9998±0.0003	1.0003±0.0003	0.9971±0.0003	0.9974±0.0003	
Jezebel-240	1.0000±0.0020	1.0003±0.0003	1.0000±0.0003	0.9980±0.0003	0.9985±0.0003	
Pu Buttons	1.0000±0.0030	0.9984±0.0003	0.9994±0.0003	0.9962±0.0003	0.9969±0.0003	
Flattop-Pu	1.0000±0.0030	1.0004±0.0003	1.0008±0.0004	1.0016±0.0003	1.0032±0.0003	
THOR	1.0000±0.0006	1.0079±0.0003	1.0079±0.0003	1.0057±0.0003	1.0062±0.0003	
Pu-MF-11	1.0000±0.0010	0.9992±0.0004	0.9987±0.0003	0.9966±0.0003	0.9980±0.0004	
HISS/HPG	1.0000±0.0110	1.0106±0.0002	1.0104±0.0002	1.0106±0.0003	1.0105±0.0002	
PNL-33	1.0024±0.0021	1.0063±0.0003	1.0051±0.0003	1.0029±0.0003	1.0015±0.0003	
PNL-2	1.0000±0.0065	1.0029±0.0005	1.0036±0.0005	1.0031±0.0005	1.0006±0.0005	

- ENDF/B-VII and T16_2003 produce improved results for fast cases except THOR
- JEFF 3.1 cross sections for ^{232}Th reduce k_{eff} for THOR to 1.0025 \pm 0.0003

SUMMARY OF RESULTS FOR MCNP CRITICALITY VALIDATION SUITE

Range	ENDF/B-VII	T16_2003	ENDF/B-VI	ENDF60
∆k <u><</u> σ	21	15	13	12
$\sigma < \Delta \mathbf{k} \le 2\sigma$	5	9	9	10
∆k > 2σ	5	7	9	9

• ENDF/B-VII produces best overall results, by far

Data testing with MCNP5 has identified several areas of concern for ENDF/B-VII:

- Unresolved resonance region for ²³⁵U
- Fast cross sections for ²³²Th
- Fast cross sections for ²³⁷Np
- Fast cross sections for Cu
- Thermal cross sections for ²³³U and ²³⁹Pu
- Angular scattering distribution for ²H

Monte Carlo Criticality Calculations -Power Iteration, Convergence, & Weilandt's Method

$$\begin{split} \left[\vec{\Omega} \cdot \nabla + \Sigma_{T}(\vec{r},E) \right] \Psi_{k}(\vec{r},E,\vec{\Omega}) &= \iint \Psi_{k}(\vec{r},E',\vec{\Omega}') \Sigma_{S}(\vec{r},E' \to E,\vec{\Omega} \cdot \vec{\Omega}') d\vec{\Omega}' dE' \\ &+ \frac{1}{K_{eff}} \cdot \frac{\chi(E)}{4\pi} \iint v \Sigma_{F}(\vec{r},E') \Psi_{k}(\vec{r},E',\vec{\Omega}') d\vec{\Omega}' dE' \end{split}$$

where

 K_{eff} = k-effective, eigenvalue for fundamental mode $\Psi_k(\vec{r}, E, \vec{\Omega})$ = angular flux, for fundamental k-eigenmode

 $\vec{\Omega} \cdot \nabla \Psi_k(\vec{r}, E, \vec{\Omega}) = \text{loss term, leakage}$ $\Sigma_T(\vec{r}, E) \Psi_k(\vec{r}, E, \vec{\Omega}) = \text{loss term, collisions}$

$$\begin{split} &\iint \Psi_{k}(\vec{r},E',\vec{\Omega}')\Sigma_{s}(\vec{r},E'\to E,\vec{\Omega}\cdot\vec{\Omega}')d\vec{\Omega}'dE' \\ &= \text{gain term, scatter from }E',\Omega' \text{ into }E,\Omega \\ &\frac{1}{K_{\text{eff}}}\cdot\frac{\chi(E)}{4\pi}\iint v\Sigma_{F}(\vec{r},E')\Psi_{k}(\vec{r},E',\vec{\Omega}')d\vec{\Omega}'dE' \\ &= \text{gain term, production from fission} \end{split}$$

 \Rightarrow Jointly find K_{eff} and $\Psi_{k}(\mathbf{r},\mathbf{E},\Omega)$ such that equation balances

K-eigenvalue equation

• Use operator (or matrix) form to simplify notation

$$(L + T)\Psi = S\Psi + \frac{1}{K_{eff}}M\Psi$$

where

L = leakage operatorS = scatter-in operatorT = collision operatorM = fission multiplication

operator

• Rearrange

$$(L + T - S)\Psi = \frac{1}{K_{eff}}M\Psi$$
$$\Psi = \frac{1}{K_{eff}} \cdot (L + T - S)^{-1}M\Psi$$
$$\Psi = \frac{1}{K_{eff}} \cdot F\Psi$$

 \Rightarrow This eigenvalue equation will be solved by <u>power iteration</u>

Eigenvalue equation

$$\Psi = \frac{1}{K_{\text{eff}}} \cdot F\Psi$$

1. Assume that k_{eff} and Ψ on the right side are known for iteration n, solve for Ψ on left side (for iteration n+1)

$$\Psi^{(n+1)} = \frac{1}{K_{eff}^{(n)}} \cdot F \Psi^{(n)}$$

Note: This requires solving the equation below for $\Psi^{(n+1)}$, with $K_{eff}^{(n)}$ and $\Psi^{(n)}$ fixed

$$(L + T - S)\Psi^{(n+1)} = \frac{1}{K_{eff}^{(n)}}M\Psi^{(n)}$$

2. Then, compute $K_{eff}^{(n+1)}$

$$K_{eff}^{(n+1)} = K_{eff}^{(n)} \cdot \frac{\int M \Psi^{(n+1)} d\vec{r}}{\int M \Psi^{(n)} d\vec{r}}$$

(other norms could be used)

Diagnostics
Applications
Group (X-5)Los Alamos

- Power iteration procedure:
 - 1. Initial guess for K_{eff} and $\Psi = K_{eff}^{(0)}, \Psi^{(0)}$

Source points for Ψ⁽⁰⁾

Source points for $\Psi^{(n+1)}$

2. Solve for $\Psi^{(n+1)}$ [Monte Carlo random walk for N particles]

$$\Psi^{(n+1)} = \frac{1}{K_{eff}^{(n)}} \cdot F \Psi^{(n)}$$

3. Compute new K_{eff}

$$K_{eff}^{(n+1)} = K_{eff}^{(n)} \cdot \frac{\int M \Psi^{(n+1)} d\vec{r}}{\int M \Psi^{(n)} d\vec{r}}$$

4. Repeat 1–3 until both $K_{eff}^{(n+1)}$ and $\Psi^{(n+1)}$ have converged

Power Iteration

• Power iteration for Monte Carlo k-effective calculation

Diagnostics

Applications

Group (X-5)

Los Alamos

mcnp5

Power Iteration

Diffusion Theory or Discrete-ordinates Transport

1. Initial guess for K_{eff} and Ψ $K_{eff}^{(0)}, \Psi^{(0)}$

2. Solve for $\Psi^{(n+1)}$

Inner iterations over space or space/angle to solve for $\Psi^{(n+1)}$

$$(L + T - S)\Psi^{(n+1)} = \frac{1}{\kappa_{eff}^{(n)}}M\Psi^{(n)}$$

3. Compute new K_{eff}

$$K_{eff}^{(n+1)} = K_{eff}^{(n)} \cdot \frac{1iM\Psi^{(n+1)}}{1iM\Psi^{(n)}}$$

4. Repeat 1–3 until both $K_{eff}^{(n+1)}$ and $\Psi^{(n+1)}$ have converged

Monte Carlo

 Initial guess for K_{eff} and Ψ K_{eff}⁽⁰⁾, Ψ⁽⁰⁾
 Solve for Ψ⁽ⁿ⁺¹⁾
 Follow particle histories to solve for Ψ⁽ⁿ⁺¹⁾

$$(L + T - S)\Psi^{(n+1)} = \frac{1}{K_{eff}^{(n)}}M\Psi^{(n)}$$

During histories, save fission sites to use for source in next iteration

3. Compute new K_{eff} During histories for iteration (n+1),

$$\mathsf{K}_{\mathsf{eff}}^{(\mathsf{n+1})} = \mathsf{K}_{\mathsf{eff}}^{(\mathsf{n})} \cdot \frac{\int \mathsf{M} \Psi^{(\mathsf{n+1})} d\vec{r}}{\int \mathsf{M} \Psi^{(\mathsf{n})} d\vec{r}}$$

- 4. Repeat 1–3 until both $K_{eff}^{(n+1)}$ and $\Psi^{(n+1)}$ have converged
- 5. Continue iterating, to compute tallies

- Guess an initial source distribution
- Iterate until converged

(How do you know ???)

- Then
 - For S_n code: done, print the results
 - For Monte Carlo: start tallies,
 - keep running until uncertainties small enough
- Convergence? Stationarity? Bias? Statistics?

Power Iteration – Convergence

• Expand Ψ in terms of eigenfunctions $u_j(r, E, \Omega)$

$$\Psi = \sum_{j=0}^{\infty} a_j \vec{u}_j = a_0 \vec{u}_0 + a_1 \vec{u}_1 + a_2 \vec{u}_2 + a_3 \vec{u}_3 + \dots$$

Diagnostics Applications Group (X-5)

Los Alamos

mcnp5

$$\int \vec{u}_{j}\vec{u}_{k}dV = \delta_{jk}$$

$$a_j = \int \Psi \cdot \vec{u}_j dV$$

$$\vec{u}_{j} = \frac{1}{k_{j}} F \cdot \vec{u}_{j} \qquad k_{0} > k_{1} > k_{2} > \dots$$
$$k_{0} \equiv k_{effective}$$

• Expand the initial guess in terms of the eigenmodes

$$\Psi^{(0)} = \sum_{j=0} a_{j}^{(0)} \vec{u}_{j}$$

• Substitute the expansion for Ψ into eigenvalue equation

$$\Psi^{(n+1)} = \frac{1}{K^{(n)}} F \cdot \Psi^{(n)} = \frac{1}{k^{(n)}} \cdot \frac{1}{k^{(n-1)}} \dots \frac{1}{k^{(0)}} \cdot F^n \cdot \Psi^{(0)}$$

$$= \left[\prod_{m=0}^{n} \frac{k_0}{K^{(m)}}\right] \cdot a_0^{(0)} \cdot \left[\vec{u}_0 + \sum_{j=1}^{n} \left(\frac{a_j^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_j}{k_0}\right)^{n+1} \cdot \vec{u}_j\right]$$

$$\approx \left[\text{constant}\right] \cdot \left[\vec{u}_0 + \left(\frac{a_1^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_1}{k_0}\right)^{n+1} \cdot \vec{u}_1 + \left(\frac{a_2^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_2}{k_0}\right)^{n+1} \cdot \vec{u}_2 + \dots\right]$$

Diagnostics

Applications Group (X-5)

Los Alamos

mcnp5

Los Alamos

Power Iteration – Convergence

$$\Psi^{(n+1)} \approx [\text{constant}] \cdot \left[\vec{u}_0 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_1}{k_0} \right)^{n+1} \cdot \vec{u}_1 + \left(\frac{a_2^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_2}{k_0} \right)^{n+1} \cdot \vec{u}_2 + \dots \right]$$

$$\mathsf{K}^{(n+1)} \approx \mathsf{k}_{0} \cdot \frac{\left[1 + \left(\frac{\mathsf{a}_{1}^{(0)}}{\mathsf{a}_{0}^{(0)}}\right) \cdot \left(\frac{\mathsf{k}_{1}}{\mathsf{k}_{0}}\right)^{n+1} \cdot \mathsf{G}_{1} + \left(\frac{\mathsf{a}_{2}^{(0)}}{\mathsf{a}_{0}^{(0)}}\right) \cdot \left(\frac{\mathsf{k}_{2}}{\mathsf{k}_{0}}\right)^{n+1} \cdot \mathsf{G}_{2} + \dots\right]}{\left[1 + \left(\frac{\mathsf{a}_{1}^{(0)}}{\mathsf{a}_{0}^{(0)}}\right) \cdot \left(\frac{\mathsf{k}_{1}}{\mathsf{k}_{0}}\right)^{n} \cdot \mathsf{G}_{1} + \left(\frac{\mathsf{a}_{2}^{(0)}}{\mathsf{a}_{0}^{(0)}}\right) \cdot \left(\frac{\mathsf{k}_{2}}{\mathsf{k}_{0}}\right)^{n} \cdot \mathsf{G}_{2} + \dots\right]}\right]$$

where
$$G_m = \frac{\int M \vec{u}_m d\vec{r}}{\int M \vec{u}_0 d\vec{r}}$$

 $\begin{array}{ll} \Rightarrow \text{Because} \quad k_0 > k_1 > k_2 > \ldots, & \text{all of the red terms vanish as } n \rightarrow \infty, \\ \text{thus} \qquad & \Psi^{(n+1)} \rightarrow \text{ constant} \cdot u_0 \\ & \mathsf{K}^{(n+1)} \rightarrow \mathbf{k}_0 \end{array}$

- After n iterations, the J-th mode error component is reduced by the factor $(k_J/k_0)^n$
- Since $1 > k_1/k_0 > k_2/k_0 > k_3/k_0 > ...,$ after the initial transient, error in $\Psi^{(n)}$ is dominated by first mode:

$$\Psi^{(n)} \approx [\text{constant}] \text{ i} \left[\vec{u}_0 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_1}{k_0} \right)^n \cdot \vec{u}_1 + \dots \right]$$

- (k_1 / k_0) is called the <u>dominance ratio</u>, DR or ρ
 - Errors die off as ~ (DR)ⁿ
 - − To reduce 10% error \rightarrow .1% error
 - DR~.9 \rightarrow 44 iterations DR~.99 \rightarrow 458 iterations DR~.999 \rightarrow 2301 iterations

Typical K-effective convergence patterns

- Higher mode error terms die out as $(k_J / k_0)^n$, for n iterations
- When initial guess is concentrated in center of reactor, initial K_{eff} is too high (underestimates leakage)

Diagnostics

Los Alamos

mcnp5

• When initial guess is uniformly distributed, initial K_{eff} is too low (overestimates leakage)

 The Sandwich Method uses 2 K_{eff} calculations one starting too high & one starting too low.
 Both calculations should converge to the same result.

Power Iteration – Convergence

$$\Psi^{(n+1)} \approx [\text{constant}] \cdot \left[\vec{u}_0 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_1}{k_0} \right)^{n+1} \cdot \vec{u}_1 + \dots \right]$$

$$K^{(n+1)} \approx k_0 \cdot \frac{\left[1 + \left(\frac{a_1^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_1}{k_0}\right)^{n+1} \cdot G_1 + ...\right]}{\left[1 + \left(\frac{a_1^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_1}{k_0}\right)^n \cdot G_1 + ...\right]} \approx k_0 \cdot \left[1 + \left(\frac{a_1^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_1}{k_0}\right)^{n+1} \cdot G_1\right] \cdot \left[1 - \left(\frac{a_1^{(0)}}{a_0^{(0)}}\right) \cdot \left(\frac{k_1}{k_0}\right)^n \cdot G_1\right] + ...\right]}$$

$$\approx \mathbf{k}_0 \cdot \left[\mathbf{1} + \left(\frac{\mathbf{a}_1^{(0)}}{\mathbf{a}_0^{(0)}} \right) \cdot \left(\frac{\mathbf{k}_1}{\mathbf{k}_0} \right)^n \cdot \left(\frac{\mathbf{k}_1}{\mathbf{k}_0} - \mathbf{1} \right) \cdot \mathbf{G}_1 + \ldots \right]$$

- For problems with a high dominance ratio (e.g., DR ~ .99), the error in K_{eff} may be small, since the factor (k₁/k₀ – 1) is small.
 - ⇒ K_{eff} may appear converged, even if the source distribution is <u>not</u> converged

 Keff is an integral quantity – converges faster than source shape

Diagnostics

Group (X-5)

Applications

Los Alamos

mcnp5

Power Iteration – Convergence

 For Monte Carlo power iteration, statistical fluctuations in source shape die out gradually over a number of successive iterations.

- Persistence of the noise over successive iterations gives correlation among source distributions in successive iterations. (<u>Positive</u> correlation)
- Correlation directly affects confidence intervals:
 Serial correlation in the source distribution → larger confidence intervals

⇒ Most Monte Carlo codes ignore these correlation effects & incorrectly <u>underestimate</u> the confidence intervals

Summary

- Local errors in the source distribution decay as (k_J/k₀)ⁿ
 - Higher eigenmodes die out rapidly, convergence dominated by k_1/k_0
 - High DR \rightarrow slow convergence
 - High DR \rightarrow large correlation \rightarrow large error in computed variances
- Errors in K_{eff} decay as $(k_J/k_0 1) * (k_J/k_0)^n$
 - High DR $\rightarrow k_J/k_0 \sim 1 \rightarrow \text{small error}$
- K_{eff} errors die out faster than local source errors
 - K_{eff} is an integral quantity positive & negative fluctuations cancel
- High DR is common for
 - Large reactors, with small leakage
 - Heavy-water moderated or reflected reactors
 - Loosely-coupled systems

 \Rightarrow If <u>local</u> tallies are important (e.g., assembly power, pin power, ...), examine their convergence – not just K_{eff} convergence

• Basic transport equation for eigenvalue problems

$$(L + T - S)\Psi = \frac{1}{K_{eff}}M\Psi$$

- L = loss to leakageS = gain from scatter-inT = loss to collisionsM = gain from fission multiplication
- Define a fixed parameter \mathbf{k}_{e} such that $\mathbf{k}_{e} > \mathbf{k}_{0}$ (\mathbf{k}_{0} = exact eigenvalue)
- Subtract $\frac{1}{k_e}M\Psi$ from each side of the transport equation

$$(L + T - S - \frac{1}{k_e}M)\Psi = (\frac{1}{K_{eff}} - \frac{1}{k_e})M\Psi$$

• Solve the modified transport equation by power iteration

$$(\mathsf{L} + \mathsf{T} - \mathsf{S} - \frac{1}{\mathsf{k}_{\mathsf{e}}}\mathsf{M})\Psi^{(\mathsf{n}+1)} = (\frac{1}{\mathsf{K}_{\mathsf{eff}}^{(\mathsf{n})}} - \frac{1}{\mathsf{k}_{\mathsf{e}}})\mathsf{M}\Psi^{(\mathsf{n})}$$

Wielandt Method

$$\begin{split} (L + T - S - \frac{1}{k_e}M)\Psi^{(n+1)} &= (\frac{1}{K_{eff}^{(n)}} - \frac{1}{k_e})M\Psi^{(n)} \\ \Psi^{(n+1)} &= (\frac{1}{K_{eff}^{(n)}} - \frac{1}{k_e}) \cdot (L + T - S - \frac{1}{k_e}M)^{-1}M\Psi^{(n)} \\ \Psi^{(n+1)} &= \frac{1}{\tilde{K}^{(n)}} \cdot \tilde{F}\Psi^{(n)} \\ & \text{ where } \quad \tilde{K}^{(n)} &= (\frac{1}{K_{eff}^{(n)}} - \frac{1}{k_e})^{-1} \quad \text{ or } \quad K_{eff}^{(n)} &= (\frac{1}{\tilde{K}^{(n)}} + \frac{1}{k_e})^{-1} \end{split}$$

Diagnostics

Applications

Los Alamos

mcnp5

- How to choose k_e
 - $\mathbf{k}_{\mathbf{e}}$ must be larger than $\mathbf{k}_{\mathbf{0}}$ (but, don't know \mathbf{k}_{0} !)
 - k_e must be held constant for all of the histories in a batch, but can be adjusted between batches
 - Typically, guess a large initial value for k_e , such as k_e =5 or k_e =2
 - Run a few batches, keeping k_e fixed, to get an initial estimate of K_{eff}
 - Adjust k_e to a value slightly larger than the estimated K_{eff}
 - Run more batches, possibly adjusting k_e if the estimated K_{eff} changes

Wielandt Method

• Convergence

- Eigenfunctions for the Wielandt method are same as for basic power iteration
- Eigenvalues are shifted:

$$\tilde{\mathbf{k}}_{\mathsf{J}} = \left[\frac{1}{\mathsf{k}_{\mathsf{J}}} - \frac{1}{\mathsf{k}_{\mathsf{e}}}\right]^{-1} \qquad \mathbf{k}_{\mathsf{e}} > \mathbf{k}_{\mathsf{0}} > \mathbf{k}_{\mathsf{1}} > \dots$$

- Expand the initial guess, substitute into Wielandt method, rearrange to:

$$\begin{split} \Psi^{(n+1)} &\approx [\text{constant}] \cdot \left[\vec{u}_0 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_e - k_0}{k_e - k_1} \cdot \frac{k_1}{k_0} \right)^{n+1} \cdot \vec{u}_1 + \ldots \right] \\ K^{(n+1)} &\approx k_0 \cdot \left[1 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_e - k_0}{k_e - k_1} \cdot \frac{k_1}{k_0} \right)^n \cdot \left(\frac{k_e - k_0}{k_e - k_1} \cdot \frac{k_1}{k_0} - 1 \right) \cdot G_1 + \ldots \right] \end{split}$$

- Additional factor $(k_e-k_0)/(k_e-k_1)$ is less than 1 and positive, so that the red terms die out faster than for standard power iteration

Wielandt Method

• The **dominance ratio** for this modified power iteration is

$$\mathsf{DR'} = \frac{\tilde{\mathsf{k}}_1}{\tilde{\mathsf{k}}_0} = \frac{\left[\frac{1}{\mathsf{k}_1} - \frac{1}{\mathsf{k}_e}\right]^{-1}}{\left[\frac{1}{\mathsf{k}_0} - \frac{1}{\mathsf{k}_e}\right]^{-1}} = \frac{\mathsf{k}_e - \mathsf{k}_0}{\mathsf{k}_e - \mathsf{k}_1} \cdot \frac{\mathsf{k}_1}{\mathsf{k}_0} = \frac{\mathsf{k}_e - \mathsf{k}_0}{\mathsf{k}_e - \mathsf{k}_1} \cdot \mathsf{DR}$$

- Since $k_e > k_0$ and $k_0 > k_1$, **DR' < DR**

- DR of Wielandt method is always **smaller** than standard power iteration
- Wielandt acceleration improves the convergence rate of the power iteration method for solving the k-eigenvalue equation

Iteration, n

⇒ Weilandt method converges at a faster rate than power iteration

• Monte Carlo procedure for Wielandt acceleration

$$(\mathsf{L} + \mathsf{T} - \mathsf{S} - \frac{1}{k_{e}}\mathsf{M})\Psi^{(n+1)} = (\frac{1}{\mathsf{K}_{eff}^{(n)}} - \frac{1}{k_{e}})\mathsf{M}\Psi^{(n)}$$

- For standard Monte Carlo (power iteration) in generation n+1
 - When a collision occurs, the expected number of fission neutrons produced is

$$n_{F} = \left\lfloor wgt \cdot \frac{\nu \Sigma_{F}}{\Sigma_{T}} \cdot \frac{1}{K^{(n)}} + \xi \right\rfloor$$

- Store n_F copies of particle in the "fission bank"
- Use the fission bank as the source for the next generation (n+2)
- For Monte Carlo Wielandt method in generation n+1
 - When a collision occurs, compute 2 expected numbers of fission neutrons

$$n_{\mathsf{F}}' = \left\lfloor wgt \cdot \frac{\nu \Sigma_{\mathsf{F}}}{\Sigma_{\mathsf{T}}} \cdot \left(\frac{1}{\mathsf{K}^{(n)}} - \frac{1}{\mathsf{k}_{\mathsf{e}}} \right) + \xi \right\rfloor \qquad \qquad n_{\mathsf{e}}' = \left\lfloor wgt \cdot \frac{\nu \Sigma_{\mathsf{F}}}{\Sigma_{\mathsf{T}}} \cdot \frac{1}{\mathsf{k}_{\mathsf{e}}} + \xi \right\rfloor$$

- Note that $E[n'_F + n'_e] = E[n_F]$
- Store n'_F copies of particle in the "fission bank"
- Follow n'_e copies of the particle in the current generation (n+1)
- Use the fission bank as the source for the next generation (n+2)

Wielandt Method

• <u>Power iteration</u> for Monte Carlo k-effective calculation

Wielandt Method

• <u>Wielandt method</u> for Monte Carlo k-effective calculation

Additional Monte Carlo random walks within generation due to Wielandt method

Summary

- <u>Wielandt Method has a lower DR than power iteration</u>
 - Faster convergence <u>rate</u> than power iteration \Rightarrow fewer iterations
 - Some of the particle random walks are moved from the next generation into the current generation ⇒ more work per iteration
 - Same total number of random walks \Rightarrow no reduction in CPU time
- Advantages
 - Reduced chance of false convergence for very slowly converging problems
 - Reduced inter-generation correlation effects on variance
 - Fission source distribution spreads more widely in a generation (due to the additional particle random walks), which should result in more interactions for loosely-coupled problems

Superhistory Method

• Standard generation model, solved by power iteration

$$\Psi^{(n+1)} = \frac{1}{K_{eff}^{(n)}} \cdot F \Psi^{(n)}$$

- Superhistory method
 - Follow several generations (L) before recomputing K_{eff} and renormalizing

$$\Psi^{(n+1)} = \frac{1}{\tilde{K}^{(n)}} \cdot \tilde{F} \Psi^{(n)}, \quad \text{with} \quad \tilde{F} = F^{\mathsf{L}}, \quad \tilde{K}^{(n)} = (K_{\text{eff}}^{(n)})^{\mathsf{L}}$$

• Convergence

- Same eigenfunctions as standard power iteration
- Eigenvalues are k_0^L , k_1^L , k_2^L , ...
- DR' = DR^L, where DR = dominance ratio for power iteration
- Fewer iterations, but L generations per iteration \Rightarrow same work as power iteration
- Same convergence rate as power iteration

Advantages

- Reduced correlation between iterations
- Fewer renormalizations

Superhistory Method

Superhistory Method for Monte Carlo k-effective calculation

Monte Carlo k-effective Calculations

- J. Lieberoth, "A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann Transport Equation," *Nukleonik* **11**,213 (1968).
- M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal Reactors," *Nucl. Sci Eng.* **32**, 319–331 (1968).
- H. Rief and H. Kschwendt, "Reactor Analysis by Monte Carlo," *Nucl. Sci. Eng.*, **30**, 395 (1967).
- W. Goad and R. Johnston, "A Monte Carlo Method for Criticality Problems," *Nucl. Sci. Eng.* 5, 371–375 (1959).

Superhistory Method

R.J. Brissenden and A.R. Garlick, "Biases in the Estimation of Keff and Its Error by Monte Carlo Methods," *Ann. Nucl. Energy*, Vol 13, No. 2, 63–83 (1986).

Wielandt Method

- T Yamamoto & Y Miyoshi, "Reliable Method for Fission Source Convergence of Monte Carlo Criticality Calculation with Wielandt's Method", *J. Nuc. Sci. Tech.*, **41**, No. 2, 99–107 (Feb 2004).
- S Nakamura, <u>Computational Methods in Engineering and Science</u>, R. E. Krieger Pub. Company, Malabar, FL (1986).

Sandwich Method

J Yang & Y. Naito, "The Sandwich Method for Determining Source Convergence in Monte Carlo Calculations", *Proc. 7th Int. Conf. Nuclear Criticality Safety, ICNC2003, Tokaimura, Iburaki, Japan, Oct 20–24, 2003*, JAERI-Conf 2003–019, 352 (2003).

HTGR Modeling & Stochastic Geometry With MCNP5

• Very High Temperature Gas-Cooled Reactor

- One of the Next Generation Nuclear Reactors
- Average coolant temperatures above 900 C, operational fuel temperatures above 1250 C
- Higher energy conversion efficiency
- Thermochemical hydrogen production

• Two types of Reactor Design

- Prismatic fuel type reactor design, with fuel "compacts"
- Pebble bed fuel type reactor design
- "Double Heterogeneity" due to the fuel kernels inside fuel compacts/pebbles in the core

Example – Very High Temperature Gas Cooled Reactor

~1 mm -

Pyrolytic Carbon Silicon Carbide Porous Carbon Buffer Uranium Oxycarbide

TRISO Coated fuel particles (left) are formed into fuel rods (center) and inserted into graphite fuel elements (right).

Diagnostics

Group (X-5)

Applications

Los Alamos

mcnp5

P. E. MacDonald, et al., "NGNP Preliminary Point Design – Results of the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03", INEEL/EXT-03–00870 Rev. 1, Idaho National Engineering and Environmental Laboratory (2003).

HTGR Modeling with MCNP5

• Existing MCNP geometry can handle:

- 3D description of core
- Fuel compacts or lattice of pebbles
 - Typically, hexagonal lattice with close-packing of spherical pebbles
 - Proteus experiments: ~ 5,000 fuel pebbles
 - ~ 2,500 moderator pebbles
- Lattice of fuel kernels within compact or pebble
 - Typically, **cubic lattice** with kernel at center of lattice element
 - Proteus experiments: ~ 10,000 fuel kernels per pebble
 - ~ 50 M fuel kernels, total
- Could introduce random variations in locations of a few thousand cells in MCNP input, but **not** a few million.
- See papers by: Difilipo, Plukiene et al, Ji-Conlin-Martin-Lee, etc.

- When a neutron enters a new lattice element, a transformation is made to the neutron's position & direction to the local coordinates of the universe embedded in that lattice element. [standard MCNP]
- Users can flag selected universes as "stochastic" [new]
 - A neutron entering a lattice element containing a stochastic universe undergoes the normal transformations.
 - Then, additional **random translations** are made:

$$\begin{aligned} \mathbf{x} &\leftarrow \mathbf{x} + (2\xi_1 - 1) \cdot \delta_{\mathbf{x}} \\ \mathbf{y} &\leftarrow \mathbf{y} + (2\xi_2 - 1) \cdot \delta_{\mathbf{y}} \\ \mathbf{z} &\leftarrow \mathbf{z} + (2\xi_3 - 1) \cdot \delta_{\mathbf{z}} \end{aligned}$$

 Then, tracking proceeds normally, with the universe coordinates fixed until the neutron exits that lattice element

MCNP5 Stochastic Geometry

• Neutron on lattice edge, about to enter embedded universe

• Embedded universe,

• Track normally, until neutron exits the lattice element

• On-the-fly random translations of embedded universes in lattice

- Does not require any extra memory storage
- Very little extra computing cost only 3 random numbers for each entry into a stochastic universe
- For K-effective calculations (KCODE problems)
 - If fission occurred within fuel kernel, should have source site in next cycle be at same position within fuel kernel
 - Need to save $\delta_x, \delta_y, \delta_z$ along with neutron coordinates in fission bank
 - On source for next cycle, apply δ_x , δ_y , δ_z after neutron pulled from bank

87

• To preserve mass exactly, rather than on the average stochastically, must choose $\delta_x, \delta_y, \delta_z$ so that fuel kernels are not displaced out of a lattice element

MCNP5 stochastic geometry

Fuel kernels displaced randomly on-the-fly within a lattice element each time that neutron enters

RSA placement of fuel kernels

Fuel kernels placed randomly in job input, using Random Sequential Addition
Standard MCNP5 – geometry is fixed for entire calculation (Does not use stochastic geometry)

MCNP5 Results for Infinite Lattices of Fuel Kernels

Method	K-effective
Fixed 5x5x5 lattice with centered spheres	1.1531 ± 0.0004
Fixed 5x5x5 lattice with randomly located spheres ("on the fly")	1.1515 ± 0.0004
Multiple (25) realizations of 5x5x5 lattice with randomly located spheres	1.1513 ± 0.0004
Multiple (25) realizations of randomly packed (RSA) fuel "box"	1.1510 ± 0.0003

- ⇒ Small but significant effect from stochastic geometry
- \Rightarrow New MCNP5 stochastic geometry matches multiple realizations
- \Rightarrow New MCNP5 stochastic geometry matches true random (RSA)

HTGR Fuel Kernels

• TRISO fuel kernels in graphite matrix

 Fuel kernel geometry & composition taken from the NGNP Point Design (MacDonald et al. 2003)

TRISO Fuel Kernel Geometry and Composition

Region	Name	Outer radius	Composition	Density
#		(µ)		(g/cc)
1	Uranium oxycarbide	175	UCO (UC ^{.5} O ^{1.5})	10.5
2	Porous carbon buffer	275	С	1.0
3	Inner pyrolytic carbon	315	С	1.9
4	Silicon carbide	350	SiC	3.2
5	Outer pyrolytic carbon	390	С	1.9

- Fuel kernel packing fraction = .289

Fuel Kernels – Simplified Model

Six-region Heterogeneous

Two-Region Heterogeneous

Reflecting b.c. on all sides of cubes

Configuration	Kernel location	keff	std dev
Homogeneous microsphere cell		1.0995	.0004
Two-region heterogeneous microsphere cell	Centered	1.1535	.0004
Six-region heterogeneous microsphere cell	Centered	1.1533	.0003

Diagnostics

Group (X-5)

Applications

Los Alamos

mcnp5

- \Rightarrow Essential to model the microsphere heterogeneity
- ⇒ Homogenizing the coatings into the matrix does not introduce any significant errors, & can reduce model complexity
- \Rightarrow Adequate to explicitly represent just the UCO spheres

Fuel Kernels – Radial Flux Profiles

Six-Region Heterogeneous

Two-Region Heterogeneous

Reflecting b.c. on all sides of cubes

Radial Neutron Flux Profile in 6-region Kernel mcnp5

Los Alamos

Radial Neutron Flux in Resonance Range

• Resonance Energy Range: 6.57eV – 6.77eV

Diagnostics

Group (X-5)

Applications

Los Alamos

mcnp5

• MCNP5 calculations for infinite geometry, fuel kernels in graphite matrix

Configuration	K-effective $\pm 1\sigma$
Homogenized matrix & fuel kernel	1.0996 ± .0008
Simple cubic lattice pitch = 0.09501 cm	1.1531 ± .0004
Body centered cubic lattice pitch = 0.119705 cm	1.1534 ± .0003
Face centered cubic lattice pitch = 0.150819 cm	1.1526 ± .0003

⇒ Large errors for homogenized model
 ⇒ Essentially same results for all lattice models

- If an <u>infinite</u> lattice of fuel kernels is embedded in a compact or pebble, clipping by the enclosing cylinder or sphere results in fragments of kernels. This is not correct modeling
- A <u>finite</u> lattice of fuel kernels should be used, so that there are no fragments. Vertical pitch of the lattice should be adjusted to preserve total mass or packing fraction.

HTGR Fuel Compact

Infinite lattice of kernels, truncated by cylinder

Finite lattice of kernels, no intersections with cylinder

Six-region Heterogeneous (clipped)

Two-Region Heterogeneous (clipped)

Two-Region Heterogeneous (unclipped)

Reflecting b.c. on all surfaces of fuel compact cell

MCNP5 Simulations of Fuel Compact Cells

fuel compact	keff*	std dev
Homogenized fuel kernels		.0004
Six-region centered fuel kernels (clipped)	1.3401	.0004
Six-region centered fuel kernels (not clipped) _{.24%$\Delta\rho$}	1.3445	.0002
Two-region centered fuel kernels (not clipped) _{.22%Δρ}	1.3447	.0002

Diagnostics

Group (X-5)

Applications

Los Alamos

mcnp5

- ⇒ Homogenizing the fuel kernel coatings into the graphite matrix is a reasonable approximation – saves significant computer time and simplifies input
- ⇒ Correct modeling of compacts, using a finite lattice to avoid partial kernels at boundary, is important

Full-core Calculations

- Homogenized core
- Homogenized compacts, heterogeneous core
- Heterogeneous core, explicit fuel kernel lattice

Case	Configuration	K-effective $\pm 1\sigma$
Α	Fully homogenized core	1.0155 ± .0004
В	Heterogenous core, with homogenized fuel kernels & matrix in fuel cylinders	1.0583 ± .0004
F	Heterogeneous core, with simple cubic fixed finite lattice (with no partial kernels at cylinder boundary)	1.0974 ± .0002

 \Rightarrow Homogenization is so bad, it should <u>never</u> be used for HTGRs

Full-core Calculations

- Heterogeneous core, with simple cubic infinite lattice of kernels (with partial kernels at cylinder boundary)
- Heterogeneous core, with simple cubic finite lattice of kernels (with no partial kernels at cylinder boundary)

Case	Configuration	K-effective $\pm 1\sigma$
E	Heterogeneous core, with simple cubic fixed <u>infinite</u> lattice (with partial kernels at cylinder boundary)	1.0948 ± .0002
F	Heterogeneous core, with simple cubic fixed <u>finite</u> lattice (with <u>no</u> partial kernels at cylinder boundary)	1.0974 ± .0002

⇒ Correct modeling of compacts, using a finite lattice to avoid partial kernels at boundary, is important

Full-core Calculations

- Heterogeneous core, simple cubic infinite lattice
- Heterogeneous core, simple cubic infinite lattice, with new MCNP5 **stochastic** geometry

Case	Configuration	K-effective ± 1σ
F	Heterogeneous core, with simple cubic fixed finite lattice (with no partial kernels at cylinder boundary)	1.0974 ± .0002
G	New MCNP5 stochastic geometry, on-the- fly random location of kernels within simple cubic finite lattice elements (with no partial kernels at cylinder boundary)	1.0968 ± .0002

⇒ Stochastic effects are small for full-core calculations, may or may not be important

Conclusions

mcnp5 Diagnostics Applications Group (X-5) Los Alamos

- The new stochastic geometry treatment for MCNP5 provides an accurate and effective means of modeling the particle heterogeneity in TRISOL particle fuel
 - Same results as (brute-force) multiple realizations of random geometry input with standard MCNP
 - Negligible difference from "truly random" multiple realizations
- The results indicate that:
 - Homogenizing the fuel or core introduces very large errors (~8%)
 - Double heterogeneity important only in resonance energy range
 - Increased resonance self-shielding due the neighboring particles, so this is "particle shadowing". The effect may be explained as an increase in the Dancoff factor
 - The effect is more pronounced at fuel kernel or compact calculations, and decreases as one goes to full core due to increased moderation hence decreased effect of resonance absorption
 - The neutronic effect of using a fixed lattice is negligible
 - The effect of choosing either centered spheres or randomly located spheres is small
 - Can introduce significant errors by using an infinite lattice truncated by compact or pebble (clipped), rather than a finite lattice
 - Homogenizing the fuel coatings into the graphite matrix is a reasonable approximation

References - HTGR Models & Stochastic Geometry

- mcnp5 Diagnostics Applications Group (X-5) Los Alamos
- W. Ji, J.L. Conlin, G. Yesilyurt, W.R. Martin, J.C. Lee, and F.B. Brown, "Neutronic Analysis to Support Validation of Safety Analysis Codes for the VHTR", *Trans. Am. Nucl. Soc.* **93** (Nov 2005)
- Wei Ji, J.L. Conlin, W.R. Martin, J.C. Lee, and F.B. Brown, "Explicit Modeling of Particle Fuel for the Very-High Temperature Gas-Cooled Reactor", *Trans. Am. Nucl. Soc.* **92** (June, 2005)
- F.B. Brown, W.R. Martin, W. Ji, J.L. Conlin, & J.C. Lee, "Stochastic Geometry and HTGR Modeling for MCNP5", ANS Monte Carlo 2005 Topical Meeting, Chattanooga TN, April 17–21, 2005 (April, 2005).
- W. Ji, J. Conlin, W.R. Martin, and J.C. Lee, "Reactor Physics Analysis of the VHTGR Core," *Trans. Am. Nucl.Soc.* **91**, 171–173 (Nov. 2004).
- P.E. MacDonald, et al., "NGNP Preliminary Point Design Results of the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03," INEEL/EXT-03–00870 Rev. 1. Idaho National Engineering and Environmental Laboratory (2003).
- F.C. Difilippo, "Monte Carlo Calculations of Pebble Bed Benchmark Configurations of the PROTEUS Facility," *Nucl. Sci. Eng.* **143**, 240–253 (2003).
- R. Plukiene and D. Ridikas, "Modelling of HTRs with Monte Carlo: from a homogeneous to an exact heterogeneous core with microparticles," *Annals of Nuclear Energy* **30**, 1573–1585 (2003).
- I. Murata, T. Mori, and M. Nakagawa, "Continuous Energy Monte Carlo Calculations of Randomly Distributed Spherical Fuels in High-Temperature Gas-Cooled Reactors Based on a Statistical Geometry Model," *Nucl. Sci. Eng.* **123**, 96–109 (1996).
- M. Armishaw, N. Smith, and E. Shuttlesworth, E., "Particle Packing Considerations for Pebble Bed Fuel Systems," *Proc. ICNC 2003 Conference, JAERI-Conf-2003–019, Tokai-mura, Japan* (2003).
- Z. Karriem, C. Stoker, and F. Reitsma, "MCNP Modeling of HTGR Pebble-Type Fuel," *Proc. Monte Carlo 2000 Conference*, Lisbon, 841–846 (2000).
- S. Widom, "Random Sequential Addition of Hard Spheres to a Volume," *J. Chem. Phy.* **44**, 3888-3894 (1966).