
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

05-4983

FUNDAMENTALS OF MONTE CARLO
PARTICLE TRANSPORT

FORREST B. BROWN

Lecture notes for Monte Carlo course

LA-UR-04–88171 -1

FundamentalsFundamentals
 of Monte Carlo of Monte Carlo

Particle TransportParticle Transport

Forrest B. Brown
Monte Carlo Group (X-3)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 1

LA-UR-04–88171 -2

Abstract

Fundamentals of Monte Carlo Particle Transport

Solving particle transport problems with the Monte Carlo method is simple -
just simulate the particle behavior. The devil is in the details, however. This
course provides a balanced approach to the theory and practice of Monte
Carlo simulation codes, with lectures on transport, random number
generation, random sampling, computational geometry, collision physics,
tallies, statistics, eigenvalue calculations, variance reduction, and parallel
algorithms. This is not a course in how to use MCNP or any other code, but
rather provides in-depth coverage of the fundamental methods used in all
modern Monte Carlo particle transport codes. The course content is suitable
for beginners and code users, and includes much advanced material of
interest to code developers. (10 lectures, 2 hrs each)

The instructor is Forrest B. Brown from the X-5 Monte Carlo team. He has 25 years experience in
developing production Monte Carlo codes at DOE laboratories and over 200 technical publications on
Monte Carlo methods and high-performance computing. He is the author of the RACER code used by the
DOE Naval Reactors labs for reactor design, developed a modern parallel version of VIM at ANL, and is a
lead developer for MCNP5, MCNP6, and other Monte Carlo codes at LANL.

LA-UR-04–88171 -3

Topics

1. Introduction
– Monte Carlo & the Transport Equation
– Monte Carlo & Simulation

2. Random Number Generation
3. Random Sampling

4. Computational Geometry
5. Collision Physics
6. Tallies & Statistics

7. Eigenvalue Calculations – Part I
8. Eigenvalue Calculations – Part II
9. Variance Reduction

10.Parallel Monte Carlo

11.References

LA-UR-04–88171 -4

Introduction

• Von Neumann invented scientific computing in the 1940s
– Stored programs, "software"
– Algorithms & flowcharts
– Assisted with hardware design as well
– "Ordinary" computers today are called "Von Neumann machines"

• Von Neumann invented Monte Carlo methods for particle transport in
the 1940s (with Ulam, Fermi, Metropolis, & others at LANL)
– Highly accurate – no essential approximations
– Expensive – typically the "method of last resort"
– Monte Carlo codes for particle transport have been proven to work

effectively on all types of computer architectures:

SIMD, MIMD, vector, parallel, supercomputers,
 workstations, PCs, Linux clusters, clusters of anything,…

LA-UR-04–88171 -5

Introduction

• Two basic ways to approach the use of Monte Carlo methods for
solving the transport equation:
– Mathematical technique for numerical integration
– Computer simulation of a physical process

 Each is "correct"

Mathematical approach is useful for:

Importance sampling, convergence, variance reduction,
random sampling techniques, eigenvalue calculation schemes, …..

Simulation approach is useful for:

collision physics, tracking, tallying, …..

• Monte Carlo methods solve integral problems, so consider the integral
form of the Boltzmann equation

• Most theory on Monte Carlo deals with fixed-source problems.
Eigenvalue problems are needed for criticality and reactor physics
calculations.

LA-UR-04–88171 -6

Introduction

x

g(x)

Simple Monte Carlo Example

Evaluate

• Mathematical approach:
For k = 1, …, N: choose randomly in (0,1)

• Simulation approach:
"darts game"
For k = 1, …, N: choose randomly in (0,1),

 , tally a "hit"

 G = [area under curve]

G = g(x)dx, with g(x) = 1 x2

0

1

x̂k

G = (1 0) [average value of g(x)] 1
N g(x̂k) = 1

N 1 xk
2

k=1

N

k=1

N

x̂k, ŷk
if x̂2k + ŷ

2
k 1

(1 1)
number of hits

N

x

y

1

00 1

+ miss

+ hit

LA-UR-04–88171 -7

Introduction

Monte Carlo is often the method-of-choice for applications
with integration over many dimensions

Examples: high-energy physics, particle transport,
financial analysis, risk analysis, process engineering, …..

LA-UR-04–88171 -8

Introduction – Probability Density Functions

• Continuous Probability Density

• Discrete Probability Density

f(x) = probability density function (PDF)

f(x) 0

Probability{a x b} = f(x)dx
a

b

Normalization: f(x)dx = 1
-

{ fk }, k = 1,...,N, where fk = f(xk)

fk 0

Probability{ x = x k } = fk

Normalization: fk = 1
k=1

N

LA-UR-04–88171 -9

Introduction – Basic Statistics

LA-UR-04–88171 -10

Introduction

The key to Monte Carlo methods is the notion of
random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of 's.
The 's should be distributed in the same manner as f(x).

• The use of random sampling distinguishes Monte Carlo from other
methods

• When Monte Carlo is used to solve the integral Boltzmann transport
equation:
– Random sampling models the outcome of physical events

(e.g., neutron collisions, fission process, sources, …..)
– Computational geometry models the arrangement of materials

x̂
x̂

LA-UR-04–88171 -11

Monte Carlo
&

Transport Equation

LA-UR-04–88171 -12

Monte Carlo & Transport Equation

Boltzmann transport equation — time-independent, linear

LA-UR-04–88171 -13

Monte Carlo & Transport Equation

Source term for the Boltzmann equation:

LA-UR-04–88171 -14

Monte Carlo & Transport Equation

• Assumptions
– Static, homogeneous medium
– Time-independent
– Markovian – next event depends only on current (r,v,E),

 not on previous events
– Particles do not interact with each other
– Neglect relativistic effects
– No long-range forces (particles fly in straight lines between events)
– Material properties are not affected by particle reactions
– Etc., etc.

 Can use the superposition principle

(r,v) = (r ,v) C(v v,r)dv +Q(r ,v) T(r r,v)dr

LA-UR-04–88171 -15

Basis for the Monte Carlo Solution Method

Monte Carlo & Transport Equation

Let p = (r,v) and R(p p) = C(v v,r) T(r r,v)

Expand into components having 0,1,2,...,k collisions

(p) = k(p)
k=0

, with 0 (p) = Q(r ,v)T(r r,v)dr

By definition,

k(p) = k 1(p) R(p p)dp

Note that collision k depends only on the results of collision k-1,

and not on any prior collisions k-2, k-3, ...

LA-UR-04–88171 -16

Histories

• After repeated substitution for k

• A "history" is a sequence of states (p0, p1, p2, p3, …..)

• For estimates in a given region, tally the occurrences for
each collision of each "history" within a region

Monte Carlo & Transport Equation

k(p) = k 1(p) R(p p)dp

= ... 0 (p0) R(p0 p1) R(p1 p2)...R(pk 1 p)dp0...dpk 1

p0

p1

p2
p3

p4p1

p0

p2
p3

History 1
History 2

LA-UR-04–88171 -17

Monte Carlo approach:

• Generate a sequence of states (p0, p1, p2, p3, …..) [i.e., a
history] by:
– Randomly sample from PDF for source: 0(p0)
– Randomly sample from PDF for kth transition: R(pk-1 pk)

• Generate estimates of results by averaging over states for M
histories:

Monte Carlo & Transport Equation

k(p) = ... 0 (p0) R(p0 p1) R(p1 p2)...R(pk 1 p)dp0...dpk 1

A = A(p) (p)dp
1
M

A(pk,m)
k=1m=1

M

LA-UR-04–88171 -18

Monte Carlo
&

Simulation

"Simulation is better than reality"
Richard W. Hamming, 1991

LA-UR-04–88171 -19

Simulation approach to particle transport:

Faithfully simulate the history of a single particle
from birth to death.

• Random-walk for a single particle
– Model collisions using physics equations & cross-section data
– Model free-flight between collisions using computational geometry
– Tally the occurrences of events in each region
– Save any secondary particles, analyze them later

Monte Carlo & Simulation

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E, randomly
- tallies

Secondary
Particles

LA-UR-04–88171 -20

Monte Carlo & Simulation

• A "history" is the simulation of the original particle & all of its
progeny

• Repeat for many histories, accumulating tallies

• Fundamental rule: Think like a particle !

Source
- select r,E,

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

LA-UR-04–88171 -21

Monte Carlo & Simulation

LA-UR-04–88171 -22

Monte Carlo & Simulation

LA-UR-04–88171 -23

LA-UR-04–88171 -24

LA-UR-04–88172 -1

Random NumberRandom Number
GenerationGeneration

"Randomness is a negative property; it is the absence of any pattern."
Richard W. Hamming, 1991

"…random numbers should not be generated by a method chosen at random."
Donald Knuth, 1981

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 2

LA-UR-04–88172 -2

Random Number Generators

Random Number Generators (RNGs)

• Numbers are not random; a sequence of numbers can be.
• Truly random sequences are generally not desired on a computer.
• Pseudo-random sequences:

– Repeatable (deterministic)
– Pass statistical tests for randomness

• RNG
– Function which generates a sequence of numbers which appear to have

been randomly sampled from a uniform distribution on (0,1)
– Probability density function for f(x)

– Typical usage in codes: r = ranf()
– Also called "pseudo-random number generators"

• All other random sampling is performed using this basic RNG

LA-UR-04–88172 -3

Random Number Generators

Most production-level Monte Carlo codes for particle
transport use linear congruential random number
generators:

Si+1 = Si • g + c mod 2m

 Si = seed, g = multiplier, c = adder, 2m = modulus

• Robust, over 40 years of heavy-duty use

• Simple, fast

• Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)

• Not the "best" generators, but good enough – RN's are used in unpredictable
ways during particle simulation

• To achieve reproducibility of Monte Carlo calculations, despite vectorization
or varying numbers of parallel processors, there must be a fast, direct
method for skipping ahead (or back) in the random sequence

LA-UR-04–88172 -4

Linear Congruential RNGs

LA-UR-04–88172 -5

Simple RNG – Example #1

LA-UR-04–88172 -6

Simple RNG – Examples #2 & #3

LA-UR-04–88172 -7

Selecting Parameters for Linear Congruential RNGs

LA-UR-04–88172 -8

Typical Linear Congruential RNGs

MCNP5 (LANL) 263 263 (varies) 1

LA-UR-04–88172 -9

Linear Congruential RNGs

LA-UR-04–88172 -10

RNG Example (old)

LA-UR-04–88172 -11

MCNP5 Random Number Generator

Module mcnp_random
 ! Multiplier, adder, mask (to get lower bits)
 integer(I8), PRIVATE, SAVE :: RN_MULT, RN_ADD, RN_MASK
 ! Factor for normalization to (0,1)
 real(R8), PRIVATE, SAVE :: RN_NORM

 ! Private data for a single history
 integer(I8), PRIVATE :: RN_SEED, RN_COUNT, RN_NPS
 common /RN_THREAD/ RN_SEED, RN_COUNT, RN_NPS
 !$OMP THREADPRIVATE (/RN_THREAD/)

 CONTAINS

 function rang()
 ! MCNP5 random number generator
 implicit none
 real(R8) :: rang

RN_SEED = iand(RN_MULT*RN_SEED, RN_MASK)
RN_SEED = iand(RN_SEED+RN_ADD, RN_MASK)

 rang = RN_SEED * RN_NORM
 RN_COUNT = RN_COUNT + 1
 return
 end function rang

LA-UR-04–88172 -12

MCNP5 Random Number Generator – Usage

Program mcnp5

 ! Initialize RN parameters for problem
 call RN_init_problem(new_seed= ProblemSeed)

 do nps = 1, number_of_histories

 ! Analyze one particle history
 call RN_init_particle(nps)

 if(rang() > xs) . . .

 ! Terminate history
 call RN_update_stats

LA-UR-04–88172 -13

Random Number Generators

LA-UR-04–88172 -14

Random Number Generators – Reproducibility

LA-UR-04–88172 -15

Random Number Generators – Reproducibility

LA-UR-04–88172 -16

Random Number Generators – Skip Ahead

LA-UR-04–88172 -17

Random Number Generators – Skip Ahead

LA-UR-04–88172 -18

Random Number Generators – Skip Ahead

LA-UR-04–88172 -19

Random Number Generators – Skip Ahead

LA-UR-04–88172 -20

RNG & Skip Ahead – Example

LA-UR-04–88172 -21

RNG & Skip Ahead – Example

LA-UR-04–88172 -22

Random Number Generators – Skip Ahead

MCNP5 —- LANL —- all machines

LA-UR-04–88172 -23

LA-UR-04–88172 -24

LA-UR-04–88172 -25

MCNP5

Random Number

Generation & Testing

– Knuth statistical tests
– Marsaglia's DIEHARD test suite
– Spectral test
– Performance test
– Results

F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”,
 Trans. Am. Nucl. Soc. [also, LA-UR-02–3782] (November, 2002).

LA-UR-04–88172 -26

MCNP5 RNG: History

• MCNP & related precursor codes
– 40+ years of intense use

– Many different computers & compilers
– Modern versions are parallel: MPI + threads
– History based: Consecutive RNs used for primary particle,

then for each of it’s secondaries in turn, etc.
– RN generator is small fraction of total computing time (~ 5%)

• Traditional MCNP RN Algorithm
– Linear congruential, multiplicative

Sn+1 = g Sn mod 248, g = 519

– 48-bit integer arithmetic, carried out in 24-bit pieces

– Stride for new histories: 152,917
– Skip-ahead: crude, brute-force
– Period / stride = 460 x 106 histories

– Similar RN generators in RACER, RCP, MORSE, KENO, VIM

LA-UR-04–88172 -27

MCNP5 RNG: Requirements

• Algorithm
– Robust, well-proven
– Long period: > 109 particles x stride 152,917 = 1014 RNs
– >109 parallel streams

– High-precision is not needed, low-order bits not important
– Must have fast skip-ahead procedure
– Reasonable theoretical basis, no correlation within or between histories

• Coding
– Robust !!!! Must never fail.

– Rapid initialization for each history
– Minimal amount of state information
– Fast, but portable – must be exactly reproducible on any

computer/compiler

LA-UR-04–88172 -28

• Linear congruential generator (LCG)

Sn+1 = g Sn + c mod 2m,

Period = 2m (for c>0) or 2m-2 (for c=0)

Traditional MCNP: m=48, c=0 Period=1014, 48-bit integers

MCNP5: m=63, c=1 Period=1019, 63-bit integers

How to pick g and c ???

• RN Sequence & Particle Histories
••••••••••••••• ••••••••••••••• •••••••••••••••
1 2 3 etc.

– Stride for new history: 152,917

MCNP5 RNG: Algorithm

LA-UR-04–88172 -29

MCNP5 RNG: Coding

• RN Generation in MCNP-5

– RN module, entirely replaces all previous coding for RN generation

– Fortran-90, using INTEGER(I8) internally,
where I8=selected_int_kind(18)

– All parameters, variables, & RN generator state are PRIVATE,
accessible only via “accessor” routines

– Includes “new” skip-ahead algorithm for fast initialization of histories,
greatly simplifies RN generation for parallel calculations

– Portable, standard, thread-safe

– Built-in unit test, compile check, and run-time test

– Developed on PC, tested on SGI, IBM, Sun, Compaq, Mac, alpha

LA-UR-04–88172 -30

Extended generators : 63-bit LCGs

• Selection of multiplier, increment and modulus

Sn+1 = 519 Sn + 0 mod 248 (MCNP4)

• Multiplicative LCG(g, 0, 2)

 g ±3 mod 8, S0 = odd Period : 2 2

• Mixed LCG(g, c, 2)

 g 1 mod 4, c = odd Period : 2

• MCNP5 – Extension of multiplier
– 519 = 45-bit integer in the binary representation
– 519 seems to be slightly small in 63-bit environment.
– Odd powers of 5 satisfy both conditions above.
– Try these: (519,0,263), (523,0,263), (525,0,263),

(519,1,263), (523,1,263), (525,1,263)

523, 525 1 263

LA-UR-04–88172 -31

L’Ecuyer’s 63-bit LCGs

• L’Ecuyer suggested 63-bit LCGs with good lattice structures.
 Math. Comp., 68, 249–260 (1999)

– Good multipliers were chosen based on the spectral test.

– Multiplicative LCGs
• LCG(3512401965023503517, 0, 263)

• LCG(2444805353187672469, 0, 263)
• LCG(1987591058829310733, 0, 263)

– Mixed LCGs
• LCG(9219741426499971445, 1, 263)
• LCG(2806196910506780709, 1, 263)

• LCG(3249286849523012805, 1, 263)

LA-UR-04–88172 -32

Tests for RNGs

• 13 different LCGs were tested:
– Traditional MCNP RNG, (519, 0, 248)
– 6 – Extended 63-bit LCGs
– 6 – L’Ecuyer’s 63-bit LCGs

•• Theoretical testsTheoretical tests :
– Analyze the RNG algorithm of based on number theory and the theory of

statistics.

– Theoretical tests depend on the type of RNG. (LCG, Shift register,
Lagged Fibonacci, etc.)

– For LCGs, the Spectral test is used

•• Empirical testsEmpirical tests :
– Analyze the uniformity, patterns, etc. of RNs generated by RNGs.

– Standard tests – reviewed by D. Knuth, SPRNG test routines

– DIEHARD tests – Bit level tests by G. Marsaglia, more stringent
– Physical tests – RNGs are used in a practical application. The exact

solutions for the tests are known. (not performed in this work)

LA-UR-04–88172 -33

Spectral test

• LCGs have regular patterns (lattice structures) when overlapping t-
tuples of a random number sequence are plotted in a hypercube.
(Marsaglia, 1968).

• all the t-tuples are covered with families of parallel (t-1)-dimensional
hyperplanes.

• The spectral test determines the maximum distance between adjacent
parallel hyperplanes.

LA-UR-04–88172 -34

Illustration of the spectral test

• Example: Sn+1 = 137 Sn + 187 mod 256

 0.26562, 0.12109, 0.32031, 0.61328, 0.75000, …

pair pair

pair pair

LA-UR-04–88172 -35

Measures for Spectral Test Criterion & Ranking

• μ value proposed by Knuth
– Represent the effectiveness of a multiplier.

Knuth’s criterion

• S value
– Normalized maximum distance.

– The closer to 1 the S value is, the better the RNG is.

Failμt(m,g) 0.1

Pass0.1 μt(m,g) 1

Pass with flying colorsμt(m,g) > 1

Resultμt(m,g) for 2 t 6

()

(,)

t
t

t

d m
S

d m g
=

(,) :td m g
Maximum distance between adjacent parallel
hyperplanes.

() :
t
d m Lower bound on .(,)td m g

LA-UR-04–88172 -36

Spectral test for extended LCGs

 LCG(523,0,263)

6.62860.28950.33275.48582.46551.91450.0028μt(m,g)

0.75180.49860.49060.81900.70700.68630.0280St(m,g)

0.6998

3.1053

0.6573

2.0043

7

0.2598

0.0450

0.7284

2.7781

4

0.6733

1.8083

0.7085

2.1068

3

0.2973

0.3206

0.6910

1.7321

2

0.5356

0.4400

0.7414

5.9276

8

0.4892

0.3270

0.3888

0.0825

6

0.7265St(m,g)

3.0128μt(m,g)

1.4379μt(m,g)

 LCG(525,0,263)

0.6266St(m,g)

5

 LCG(519,0,263)
Dimension(t)

 LCG(523,1,263)
4.29191.81314.59313.12712.52562.85110.0007μt(m,g)

0.71210.64800.75980.73190.71120.78370.0140St(m,g)

0.5740
0.7763

0.5392
0.5011

0.6033
1.3077

0.7036
2.4193

0.8361
3.4624

0.7904
2.9253

0.1486
0.0801

0.6910
1.7321

0.6163
1.3524

0.6316
1.6439

0.6266
1.4452

0.3086
0.0206

0.5923St(m,g)

1.0853μt(m,g)

0.3595μt(m,g)

 LCG(525,1,263)

0.4749St(m,g)

 LCG(519,1,263)

LA-UR-04–88172 -37

Spectral test for L’Ecuyer’s 63-bit LCGs

 LCG(2444805353187672469,0,263)
4.61805.42743.04142.93646.40212.44302.2588μt(m,g)

0.71860.75790.70940.72280.89740.74430.7891St(m,g)

0.6582

2.0222

0.7818

6.7498

7

0.6449

1.7071

0.7493

3.1105

4

0.8369

3.4724

0.7883

2.9016

3

0.8285

2.4898

0.8951

2.9062

2

0.7080

4.1014

0.7608

7.2874

8

0.6682

2.1243

0.7806

5.3992

6

0.7037St(m,g)

2.5687μt(m,g)

4.0325μt(m,g)

 LCG(1987591058829310733,0,263)

0.7701St(m,g)

5
 LCG(3512401965023503517,0,263)
Dimension(t)

 LCG(2806196910506780709,1,263)

3.79473.01113.07283.11524.45914.02041.9599μt(m,g)

0.70120.69670.71060.73140.81990.87880.7350St(m,g)

0.6991

3.0844

0.7763

6.4241

0.7829

3.7081

0.7757

3.5726

0.7428

2.4281

0.7794

2.8046

0.8234

2.4594

0.8865

2.8509

0.6451

1.9471

0.7544

6.8114

0.7350

3.7633

0.7371

3.8295

0.7176St(m,g)

2.8333μt(m,g)

3.8380μt(m,g)

 LCG(3249286849523012805,1,263)

0.7625St(m,g)

 LCG(9219741426499971445,1,263)

LA-UR-04–88172 -38

Results of spectral test

• Results for the traditional MCNP RNG

• All extended 63-bit LCGs fail with Knuth’s criterion.
• All L’Ecuyer’s 63-bit LCGs pass with flying colors.
• Comparison of minimum S values

1.29310.88021.85970.94831.88700.19703.0233μt(m,g)

0.61290.58440.65350.57650.66130.32160.9129St(m,g)

7432 865Dimension(t)

0.3216LCG(519,0,248)

0.6449LCG(1987591058829310733,0,263)

0.7094LCG(2444805353187672469,0,263)

0.7493LCG(3512401965023503517,0,263)

0.6451

0.6967

0.7371

LCG(2806196910506780709,1,263)

LCG(3249286849523012805,1,263)

Minimum St(m,g)

LCG(9219741426499971445,1,263)

RNG

LA-UR-04–88172 -39

Standard test suite in SPRNG

• SPRNG (Scalable Parallel Random Number Generators)
– Test programs are available. http://sprng.cs.fsu.edu

• Standard test suite (Knuth)
– Equidistribution
– Serial
– Gap
– Poker
– Coupon collector’s
– Permutation
– Runs-up
– Maximum-of-t
– Collision tests

• Choice of test parameters
– L’Ecuyer’s test suite : Comm. ACM 31 p.742 (1988)
– Vattulainen’s test suite : Comp. Phys. Comm. 86 p.209 (1995)
– Mascagni’s test suite : Submitted to Parallel Computing

LA-UR-04–88172 -40

Equidistribution test

• Check whether RNs are uniformly generated in [0, 1).
• Generate random integers in [0,d-1].
• Each integer must have the equal probability 1/d.

 0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, …

 0, 5, 3, 7, 2, 0, 2, 3, 1, 4, …

*
i

d

Count frequencies of 0 ~ d-1.

0

5

10

15

20

25

0 1 2 3 4 5 6 7

Random integer

F
re

q
u

e
n

c
y

2

1

()k
s s

s s

Y np
V

np=

=

Cumulative chi-square distribution

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
Chi-square statistic

p
-v

a
lu

e

LA-UR-04–88172 -41

Criterion of “Pass or Failure”

• All empirical tests score a statistic.
• A goodness-of-fit test is performed on the test statistic and yield a p-value.

(Chi-sqaure or Kolmogorov-Smirnov test)
• If the p-value is close to 0 or 1, a RNG is suspected to fail.
• Significance level : 0.01(1%)

• Repeat each test 3 times.
• All 3 p-values are suspicious, then the RNG fails.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2.5 5 7.5 10 12.5 15 17.5 20

Test Statistic

P
ro

b
a

b
il

it
y

Area

=Significance level

LA-UR-04–88172 -42

DIEHARD test suite

• DIEHARD test
– A battery of tests proposed by G. Marsaglia.
– Test all bits of random integers, not only the most significant bits.
– More stringent than standard Knuth tests.
– Default test parameters were used in this work.
– Test programs are available. http://stat.fsu.edu/~geo/diehard.html

• Included tests:
– Birthday spacings
– Overlapping 5-permutation
– Binary rank
– Bitstream
– Overlapping-pairs-sparse-occupancy (OPSO)
– Overlapping-quadruples-sparse-occupancy (OQSO)
– DNA
– Count-the-1's test on a stream of bytes
– Count-the-1's test for specific bytes
– Parking lot
– Minimum distance
– 3-D spheres
– Squeeze
– Overlapping sums
– Runs
– Craps

LA-UR-04–88172 -43

Overlapping-pairs-sparse-occupancy test (1)

• OPSO = Overlapping-Pairs-Sparse-Occupancy test
• Preparation of 32-bit integers

 0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, …

 454158374, 2856527213, 2002411287, 4034027575, …

 11011000100011110100000100110,
 10101010010000110010010101101101, …

• Letter : a designated string of consecutive 10 bits
 11011000100011110100000100110,

 10101010010000110010010101101101, …

32
2 *

i

Binary representation

Letter : 210 = 1024 patterns
(letters)

LA-UR-04–88172 -44

Overlapping-pairs-sparse-occupancy test (2)

• 2-letter words are formed from an alphabet of 1024 letters.
 0000100110, 0101101101, 1100010111, 0000110111, …

 38, 365, 791, 55, …

• Count the number of

missing words (=j).

• The number of missing
words should be very closely
normally distributed with

mean 141,909,
standard deviation 290.

Decimal representation

2-letter word 2-letter word

0.0

0.5

1.0

-4.000 -2.000 0.000 2.000 4.000

z

p
-v
a
lu
e

Cumulative normal distribution

141909

290

j
z =

LA-UR-04–88172 -45

Overlapping-quadruples-sparse-occupancy test

• OQSO = Overlapping-Quadraples-Sparse-Occupancy test
• Similar to the OPSO test.

• Letter : a designated string of consecutive 5 bits
 11011000100011110100000100110,
 10101010010000110010010101101101, …

• 4-letter words are formed from an alphabet of 32 letters.
 00110, 01101, 10111, 10111, …

• The number of missing words should be very closely normally distributed
with mean 141909, standard deviation 295.

Letter : 25 = 32 letters

4-letter word

LA-UR-04–88172 -46

DNA test

• Similar to the OPSO and OQSO tests.
• Letter : a designated string of consecutive 2 bits

 11011000100011110100000100110,
 10101010010000110010010101101101, …

• 10-letter words are formed from an alphabet of 4 letters.
 10, 1, 11, 11, 11, 1, 10, 0, 11, 10, …

• The number of missing words should be very closely normally distributed
with mean 141909, standard deviation 399.

Letter : 22 = 4 letters

10-letter word

LA-UR-04–88172 -47

DIEHARD Test Suite

• Criterion for DIEHARD test

– If the p-value is close to 0 or 1, a RNG is suspected to fail.

– Significance level : 0.01(1%)

– A RNG fails the test if we get six or more p-values less than 0.01 or more
than 0.99.

• Results for standard & DIEHARD tests

– All 13 RNGs pass all standard tests with L’Ecuyer’s, Vattulainen’s and
Mascagni’s test parameters.

– Extended and L’Ecuyer’s 63-bit LCGs pass all the DIEHARD tests.

– The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the
DIEHARD test suite.

LA-UR-04–88172 -48

Result of OPSO test for traditional MCNP RNG

0.7277

0.3253

0.1792

0.2914

0.7490

0.6319

0.0011

0.4597

0.1122

0.0598

0.7457

p-value

bits 1 to 10

bits 2 to 11

bits 3 to 12

bits 4 to 13

bits 5 to 14

bits 6 to 15

bits 7 to 16

bits 8 to 17

bits 9 to 18

bits 10 to 19

bits 11 to 20

Tested bits

0.0000bits 23 to 32

0.0717bits 12 to 21

0.1077bits 13 to 22

0.0125bits 16 to 25

0.9712bits 14 to 23

0.7683bits 15 to 24

0.0445

0.6639

0.0001

0.0000

0.0000

0.0000

p-value

bits 17 to 26

bits 18 to 27

bits 19 to 28

bits 20 to 29

bits 21 to 30

bits 22 to 31

Tested bits

LA-UR-04–88172 -49

Result of OQSO test for traditional MCNP RNG

0.7421bits 1 to 50.2518bits 15 to 19

0.8554bits 2 to 60.8394bits 16 to 20

0.1943bits 3 to 70.3823bits 17 to 21

0.0868

0.4955

0.5535

0.8554

0.9191

0.3759

0.2096

0.6600

0.1634

0.5575

0.6487

p-value

bits 4 to 8

bits 5 to 9

bits 6 to 10

bits 7 to 11

bits 8 to 12

bits 9 to 13

bits 10 to 14

bits 11 to 15

bits 12 to 16

bits 13 to 17

bits 14 to 18

Tested bits

1.0000bits 28 to 32

0.0011bits 18 to 22

0.0000bits 21 to 25

0.1906bits 19 to 23

0.0000bits 20 to 24

0.0000

1.0000

1.0000

1.0000

1.0000

1.0000

p-value

bits 22 to 26

bits 23 to 27

bits 24 to 28

bits 25 to 29

bits 26 to 30

bits 27 to 31

Tested bits

LA-UR-04–88172 -50

Result of DNA test for traditional MCNP RNG

0.8440

0.2803

0.0309

0.7171

0.7377

0.0197

0.0925

0.4831

0.2383

0.0613

0.4937

p-value

bits 10 to 11

bits 11 to 12

bits 12 to 13

bits 13 to 14

bits 14 to 15

bits 15 to 16

bits 16 to 17

bits 17 to 18

bits 18 to 19

bits 19 to 20

bits 20 to 21

Tested bits

0.5407

0.8986

0.3972

0.3438

0.8959

0.4063

0.7834

0.4737

0.4550

p-value

bits 1 to 2

bits 2 to 3

bits 3 to 4

bits 4 to 5

bits 5 to 6

bits 6 to 7

bits 7 to 8

bits 8 to 9

bits 9 to 10

Tested bits

1.0000bits 31 to 32

0.0000bits 21 to 22

0.0000bits 24 to 25

0.0000bits 22 to 23

0.0000bits 23 to 24

0.0000

0.1777

1.0000

1.0000

1.0000

1.0000

p-value

bits 25 to 26

bits 26 to 27

bits 27 to 28

bits 28 to 29

bits 29 to 30

bits 30 to 31

Tested bits

LA-UR-04–88172 -51

Comments on results for OPSO, OQSO, DNA

• Less significant (lower) bits of RNs fail the tests.

• These failures in less significant bits are caused by the shorter period
than the significant bits.

• However, these failures do not have a significant impact in the practical
use.

The (r+1)-th most significant bit has period length
at most 2-r times that of the most significant bit.

Drawback of LCGs with power-of-two modulus

LA-UR-04–88172 -52

Performance test

• Test program

 integer(8) :: i

 integer(8), parameter :: NumGeneratedRNs = 1000000000

 !real(8) :: rang ! For MCNP4

 real(8) :: RN_initial, RN_last

 real(8) :: dummy

 !call random ! For MCNP4

 call RN_init_problem(new_standard_gen = 1)

 RN_initial = rang()

 do i = 2, NumGeneratedRNs-1

 dummy = rang()

 end do

 RN_last = rang()

LA-UR-04–88172 -53

Results of performance test

• Comparison between MCNP4 and MCNP5
• Generate 1 billion RNs.

Platform : Windows 2000, Intel Pentium III 1GHz

Compiler : Compaq Visual Fortran Ver.6.6

2.478.1188.4 CPU (sec)
 Full optimization

 (/optimization:4)

2.577.2191.7 CPU (sec)
 Local optimization

 (/optimization:1)

3.097.1290.0 CPU (sec)
 No optimization
 (/optimization:0)

MCNP4/MCNP5MCNP5MCNP4

LA-UR-04–88172 -54

Summary

• The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the
DIEHARD test suite.

• The 63-bit LCGs extended from the MCNP RNG fail the spectral test.

• L'Ecuyer's 63-bit LCGs pass all the tests and their multipliers are
excellent judging from the spectral test.

• These 63-bit LCGs are implemented in the RNG package for MCNP5

• The MCNP5 RNG is ~2.5 times faster than the MCNP4 RNG.

LA-UR-04–88172 -55

LA-UR-04–88172 -56

LA-UR-04–88173 -1

Random SamplingRandom Sampling

"Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

John Von Neuman, 1951

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 3

LA-UR-04–88173 -2

Probability ?

What are the odds of …..

• Being audited by the IRS this year 100 to 1

• Losing your luggage on a U.S. flight 176 to 1

• Being dealt 4 aces on an opening poker hand 4,164 to 1

• Being struck by lightning in your lifetime 9,100 to 1

• Being hit by a baseball at a major league game 300,000 to 1

• Drowning in your bathtub this year 685,000 to 1

• Winning Lotto in the Illinois lottery with 1 ticket 12,900,000 to 1

• Winning the grand prize in the Reader's

Digest sweepstakes 199,500,000 to 1

Introduction

LA-UR-04–88173 -3

Introduction – Probability Density Functions

• Continuous Probability Density

• Discrete Probability Density

f(x) = probability density function (PDF)

f(x) 0

Probability{a x b} = f(x)dx
a

b

Normalization: f(x)dx = 1
-

{ fk }, k = 1,...,N, where fk = f(xk)

fk 0

Probability{ x = x k } = fk

Normalization: fk = 1
k=1

N

LA-UR-04–88173 -4

Introduction

The key to Monte Carlo methods is the notion of
random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of 's.
The 's should be distributed in the same manner as f(x).

• The use of random sampling distinguishes Monte Carlo from other methods

• When Monte Carlo is used to solve the integral Boltzmann transport equation:
– Random sampling models the outcome of physical events

(e.g., neutron collisions, fission process, sources, …..)
– Computational geometry models the arrangement of materials

x̂
x̂

LA-UR-04–88173 -5

Monte Carlo & Random Sampling

• Probability Density Function (PDF)

• Cumulative Distribution Function (CDF)

F(x) = f(x)dx
-

x

0 F(x) 1

dF(x)
dx

0

F() = 0, F() = 1

f(x) = probability density function (PDF)

f(x) 0

Probability{a x b} = f(x)dx
a

b

Normalization: f(x)dx = 1
-

LA-UR-04–88173 -6

Monte Carlo & Random Sampling

Monte Carlo Codes

Categories of random sampling
• Random number generator uniform PDF on (0,1)
• Sampling from analytic PDFs normal, exponential, Maxwellian, …
• Sampling from tabulated PDFs angular PDFs, spectrum, …

For Monte Carlo codes…
• Random numbers, , are produced by the RN generator on (0,1)
• Non-uniform random variates are produced from the ’s by:

– Direct inversion
– Rejection methods
– Transformations
– Composition (mixtures)
– Sums, products, ratios, …
– Table lookup + interpolation
– Lots (!) of other tricks

• Typically < 10% of total CPU time

LA-UR-04–88173 -7

Random Sampling Methods

• Pseudo-Random Numbers
– Not strictly "random", but good enough

• Pass statistical tests for randomness

• Reproducible sequence

– Uniform PDF on (0,1)

– Must be easy to compute

• Linear Congruential Method
– Algorithm

S0 = initial seed, odd integer, < M
Sk = G Sk-1 + c mod M, k = 1,2, …..

k = Sk / M

• Usage
– In algorithms, usually denote RN uniform on (0,1) by

– In codes, invoke basic RN generator by: r = ranf()
– Each new usage of or ranf() generates a new RN

LA-UR-04–88173 -8

Random Sampling Methods

Direct Sampling

• Direct solution of

• Sampling procedure
– Generate
– Determine such that F() =

• Advantages
– Straightforward mathematics & coding
– "High-level" approach

• Disadvantages
– Often involves complicated functions
– In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

x̂ = F 1()

Solve for x̂: = f(x)dx
-

x̂

x̂ x̂

LA-UR-04–88173 -9

Random Sampling Methods

LA-UR-04–88173 -10

Random Sampling — Discrete PDFs

LA-UR-04–88173 -11

Random Sampling — Discrete PDFs

LA-UR-04–88173 -12

Random Sampling — Discrete PDFs

LA-UR-04–88173 -13

• Multigroup Scattering

– Scatter from group g to group g', where 1 g' G

• Selection of scattering nuclide for a collision

– K = number of nuclides in composition

Random Sampling — Discrete PDFs

fg =
g g

g k
k=1

G

f k =
N(k) s

(k)

N(j) s
(j)

j=1

K

LA-UR-04–88173 -14

Random Sampling — Discrete PDFs

LA-UR-04–88173 -15

Random Sampling — Discrete PDFs

LA-UR-04–88173 -16

Random Sampling — Continuous PDFs

Example – Sampling from uniform PDF in range (a,b),
Histogram with 1 bin

x a + (b-a)

a b

1/(b-a)

LA-UR-04–88173 -17

Random Sampling — Continuous PDFs

Example – Sampling from histogram with 2 bins

A1 = (x1-x0) f1

A2 = (x2-x1) f2

p1 = Prob{ x0 < x < x1 } = A1 / (A1+A2)
p2 = Prob{ x1 < x < x2 } = A2 / (A1+A2)
p1 + p2 = 1

Two-step sampling procedure:
1. Select a bin, b:

If 1 < p1, select b = bin 1
otherwise, select b = bin 2

2. Sample x within bin:
x xb-1 + 2 (xb-xb-1)

x0 x1 x2

 f(x)
Bin 1 Bin 2

 f1

 f2

LA-UR-04–88173 -18

Random Sampling — Continuous PDFs

Example – Sampling from Histogram PDF

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

• Discrete PDF: pk = fk (xk-xk-1), k = 1, …, N, pk = 1
– Generate 1

– Use table search or alias method to select k

• Uniform sampling within bin k
– Generate 2

– Then, x xk-1 + (xk-xk-1) 2

LA-UR-04–88173 -19

Random Sampling — Continuous PDFs

LA-UR-04–88173 -20

Random Sampling — Continuous PDFs

LA-UR-04–88173 -21

Random Sampling — Continuous PDFs

LA-UR-04–88173 -22

Random Sampling — Continuous PDFs

Examples – Sampling from an Exponential PDF

Direct sampling:
Solve for x: F(x) =

Although (1-) ,
both and (1-) are uniformly distributed on (0,1),
so that we can use either in the random sampling procedure.
(I.e., the numbers are different, but the distributions are the same)

f(x) =
1
e x/ , 0 x

F(x) = f(x)dx = 1 e x/

0

x

Solving = 1 e x/ gives: x ln(1)

or

x ln

LA-UR-04–88173 -23

Random Sampling — Direct vs. Rejection

LA-UR-04–88173 -24

Random Sampling — Direct vs. Rejection

LA-UR-04–88173 -25

Random Sampling — Direct vs. Rejection

LA-UR-04–88173 -26

Random Sampling — Direct vs. Rejection

LA-UR-04–88173 -27

Random Sampling — Machine Considerations

LA-UR-04–88173 -28

Random Sampling — Software Considerations

LA-UR-04–88173 -29

Random Sampling — Stratified Sampling

LA-UR-04–88173 -30

Random Sampling — Rejection Method

• Rejection sampling methods are useful when it is difficult or
impossible to invert F(x), or when F(x) is no known

• Example – Selection of initial source sites in a reactor

– Select a trial site:

– If (x',y') is inside a fuel pin (shaded
region), then accept (x',y').

– Otherwise, reject (x',y') and repeat

– Efficiency of rejection sampling ~ (volume source region) / (total volume)

x x1 + (x2 x1) 1

y y1 + (y2 y1) 2

LA-UR-04–88173 -31

Random Sampling — Weighted Sampling

LA-UR-04–88173 -32

Random Sampling – Splitting & Russian Roulette

LA-UR-04–88173 -33

Random Sampling — Example

LA-UR-04–88173 -34

Random Sampling – Examples

LA-UR-04–88173 -35

LA-UR-04–88173 -36

Random Sampling — References

Every Monte Carlo code developer who works with random sampling should
own & read these references:

– D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical
Algorithms, 3rd Edition, Addison-Wesley, Reading, MA (1998).

– L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY
(1986).

– J. von Neumann, "Various Techniques Used in Conjunction with Random Digits,"
J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36–38 (1951).

– C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS,
Los Alamos National Laboratory, Los Alamos, NM (1983).

– H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa
Monica, CA (1954).

LA-UR-04–88174 -1

ComputationalComputational
GeometryGeometry

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 4

LA-UR-04–88174 -2

Engineering Model vs. Computational Model

• Model Generation
– Focus on engineering productivity
– Describes “reality” to computer
– Interactive, batch, or CAD

• Large-scale Computation
– Focus on efficiency & capabilities
– Data structures should be compact & regular
– Computational model often hidden from user

• Post-Processing
– Interpretation of results
– Visualization

Model Generation Large-scale Computation Post-processing

Engineering Model Computational Model Engineering Model

LA-UR-04–88174 -3

Modeling vs. Computation

• Element geometry

• Elements —> assemblies

• Assemblies —> core

• Core + peripherals
 —> 3D model M

o
d

el
 c

o
n

st
ru

ct
io

n

G
eo

m
et

ry
 c

o
m

p
u

ta
ti

o
n

LA-UR-04–88174 -4

Monte Carlo Geometry

Development of particular geometric capabilities is driven by applications:

– Shielding & experiment analysis
• Irregular geometry

• Moderate number of regions & compositions

– Reactor core analysis
• Regular geometry

• Very many regions & compositions

 Physics
• How far to collision?
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

 Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

 Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

 mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..

LA-UR-04–88174 -5

Computational Algorithm – Geometric View

Repeat for all cycles
. Repeat for all histories in cycle
. . Repeat until collision
. . . Repeat for each universe level
. . . . Repeat for surfaces of 3D region
. Distance calculation
.
.
. . . Boundary crossing
. . . Neighbor search
. . . Roulette/split
.
. . Collision analysis
. . Roulette/split
. . . .
. . .

1 reactor calculation requires
~1010 distance calculations

LA-UR-04–88174 -6

Computational Geometry

• Every point in space that a particle could possibly reach must be defined in the
geometry model

• 3D volumes are defined by their bounding surfaces
– Boundary representation
– Combinatorial geometry, with either surfaces or primitive bodies

– CSG – constructive solid geometry, tree structure with boolean operators

– Mesh geometry

• A cell number is assigned to each 3D volume
– For some codes, disjoint volumes must have different cell numbers

– For MCNP & others, disjoint volumes may have the same cell number

• A material number is assigned to each cell
– Composition is assumed to be uniform & homogeneous within cell

• Tallies are defined for particular cells or surfaces, reaction types, & estimator types

LA-UR-04–88174 -7

Basic Geometry Operations

• Locate
Given a point in space, determine what cell it is in

• Distance to surface
Given a point & direction in a particular cell,

 determine the distance to the next surface of that cell

• Neighbor search
For a particle which has hit a bounding surface of a cell,
 determine the cell to be entered next

• Boundary conditions
For a particle which has hit a cell bounding surface

 declared to be periodic or reflecting,
 determine the new position & direction and cell to be entered next

LA-UR-04–88174 -8

Simple Case – Mesh Geometry

• Particle
Position = (x,y,z), Direction = (u,v,w)

• Cell number

(i,j,k), indices in mesh

• Locate

 i: binary search to find x-interval containing x
 j: binary search to find y-interval containing y
 k: binary search to find z-interval containing z

• Distance
– Use signs of (u,v,w) to select surfaces,

then compute 3 distances:

if u>0, dx = (xi+1-x)/u, otherwise dx = (xi-x)/u

… similar for dy & dz

– Distance: d = min(dx, dy, dz)
• Neighbor search
• Boundary conditions xi xi+1

yJ+1

yJ

(x,y,z)

(u,v,w)

x1

y3

x2 x3 x4

y1

y4

y2

LA-UR-04–88174 -9

MCNP Geometry

• MCNP uses a "combinatorial geometry" based on surfaces

– Define surfaces

– Define cells using surfaces & operators (intersection, union, complement)

– Can also group cells together into a universe, and embed that universe inside
another cell

– Can also group cells together into a universe, repeat that universe in a lattice
arrangement, and embed that universe inside another cell

– Assign materials to cells

– Assign other properties to cells (e.g., importance weights)

– Define tallies using cell or surface numbers

LA-UR-04–88174 -10

Surfaces

• In MCNP, surface types include:
1st order: planes

2nd order: spheres, cylinders, cones, ellipsoid,
hyperboloid, paraboloid, general quadric

4th order: elliptical & circular torus (axes parallel to x, y, or z)

[see tables on next 2 slides]

• Quadratic polynomial for surface:

F(x,y,z) = ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + jz + k

– Surface is defined by: F(x,y,z) = 0
– Surface is either infinite or closed
– Normalization convention: factor of leading 2nd order term is positive

LA-UR-04–88174 -11

MCNP Surfaces

LA-UR-04–88174 -12

MCNP Surfaces

LA-UR-04–88174 -13

Sense

• For a given point in space, (x,y,z), and surface equation, F(x’,y’,z’)=0, the
sense of the point with respect to the surface is defined as:

Inside the surface, sense < 0, if F(x,y,z) < 0

Outside the surface, sense > 0, if F(x,y,z) > 0

On the surface, sense = 0, if F(x,y,z) = 0

[Must be careful to consider computer roundoff!]

- +0

LA-UR-04–88174 -14

Sides

• A surface divides space into positive & negative sides

– MCNP convention: +1 = positive side of surface 1

-1 = negative side of surface 1

– If not sure which side is + or -, pick a point & substitute
into surface function, F(x,y,z) — see if result is + or -

-1

+1

+1 -1

+1

-1

LA-UR-04–88174 -15

Intersection of Sides

MCNP convention: +1 -2 == intersection of positive side of surface 1
 and negative side of surface 2

+1 -2 +1 +2

-1 -2 -1 +2

Surface 1 Surface 2

Surface 2

Surface 1

-1 +2

LA-UR-04–88174 -16

Union of Sides

– MCNP convention: colon signifies a union operator

-1 : 2 == union of negative side of surface 1
 with positive side of surface 2

Surface 2

-1 +2
Surface 1 -1 : +2

LA-UR-04–88174 -17

Cells

• A cell is defined to be the
– Intersection of half-spaces defined by a list of signed surface numbers

Example: cell 1 -5
cell 2 +1 -2 +3 -4 +5

– Union of half-spaces defined by signed surface numbers

Example: cell 1 +1 : -2

– The complement of another cell (i.e., volume NOT in other cell)

Example: cell 1 #5

– A combination of the above

Example: cell 1 (+1 -2) : 3 #5

1 2

4

3

5
1

2

LA-UR-04–88174 -18

Cells

• Cells do not have to be convex

• Cells may involve discontiguous regions

21

3

(-3 +1) : (-3 -2 -1)

 or

(-3 +1) : (-3 -2)

 or

-3 (+1 : -2)

1 2 3
Cell 1 -1 : -2 : -3

Cell 2 #1
 or 1 2 3

LA-UR-04–88174 -19

Locate Operations

Given point (x,y,z), determine which cell it is contained in:

For(cell = 1 … n_cells) {

Foreach surf in cell {

 Evaluate Ssurf = sign{ Fsurf(x,y,z) }

 Does Ssurf match the sense from the cell definition?
}

If all surface-senses for (x,y,z) matched the cell definition,
 then exit & return cell as the result

}

LA-UR-04–88174 -20

Distance Calculation

Given point (x,y,z) in cell I,
determine the distance to the cell boundary

d <— infinity

Foreach surf in cell I {

 If surf is part of the external boundary of cell I {

 Evaluate dsurf = smallest positive root of
Fsurf(x+du, y+dv, z+dw) = 0

 d = min(d, dsurf)
 }

}
return the value of d

LA-UR-04–88174 -21

Neighbor Search

• When a cell boundary is reached, what's on the other side?

• Most codes build "neighbor lists" during tracking
– For each bounding surface of cell, remember list of neighbors

– Initially, neighbor lists are empty
– Check all cells having surface in common, until one is found satisfying all sense

conditions for the particle position

– Save it
– Later, check neighbor lists first, only do search if necessary

• Neighbor search is expensive at first, cheap later

• Tracking speeds up as calculation progresses

1 2

Easy case

1
2

Hard case

3
4

LA-UR-04–88174 -22

Embedded Geometry – Universes

• In most real-world applications, there is a need for modeling detailed
geometry with many repeating units

• All production Monte Carlo codes provide capabilities for multiple levels of
nested geometry
– Called "universes" in MCNP
– A collection of cells may be grouped into a "universe"

– Universe may be embedded in another cell,
with the universe 'clipped' by the cell boundaries

LA-UR-04–88174 -23

Universes & Lattices

Universe 1 – cells for detailed fuel pin

Universe 2 – lattice of cells for fuel assembly

Universe 2, with cells filled by Universe 1

Universe 3 – lattice of cells for reactor

"Real world" – final geometry

LA-UR-04–88174 -24

Body Geometry

• Some Monte Carlo codes use primitive bodies rather than surfaces for
defining cells (e.g., MORSE, KENO, ITS, VIM)

SPH – sphere ELL – ellipsoid

BOX – box REC – right elliptic cylinder
RPP – box RHP – hexagonal prism
RCC – cylinder HEX – hexagonal prism

WED – wedge ARB – arbitrary polyhedron
TRC – truncated cone

• Usually called "combinatorial geometry"
– Invented by MAGI in ~1956, used in SAM-CE & other codes

– Space inside the body has a negative sense, outside a positive sense
– Boolean operators AND, OR, NOT may be used to combine bodies

(like MCNP's intersection, union, & complement operators)
– MCNP allows body geometry input (calls them "macrobodies"),

but internally converts them to lists of surfaces

LA-UR-04–88174 -25

Special Topics – Simple Cells

• Simple cells are those which can be constructed using only intersections,
with no union operators

• Some Monte Carlo codes require that all cells be simple cells. Union
operators are not allowed.

• Tracking through simple cells is fast, at the expense of more complex
geometry input & setup
– For simple cells, the logic to find the distance to boundary is simple – check the

distance to each of the cell surfaces & keep only the smallest positive distance

LA-UR-04–88174 -26

Special Topics – Simple Cells

Consider the example at the left.

Using the union operator, the cell is described by: +1 : -2

Without the union operator, separate cells must be defined & then
assigned the same material properties:

+1, -1 -2
or -2, +1 +2
or +1 -2, +1 +2, -1 -2

1

2

LA-UR-04–88174 -27

Special Topics -Distance Calculations

• 3D Surface
– F(x,y,z) = 0

• Linear: F = constant
• Quadratic: F = f(x,y,z), 2F = constant

• Distance calculation
– S = directed distance from (x0,y0,z0) along (u,v,w) to F(x,y,z)=0

 = smallest positive root of F(x0+su, y0+sv, z0+sw) = 0

– General form: As2 + 2Bs + C = 0, D = B2 – AC
• 27 combinations of A, B, C >0, =0, <0

• Only 12 yield valid solutions:

s = -C/(2B) if (A=0, C<0, B>0) or (A=0, C>0, B<0)

s = (-B- D)/A if (A>0, C>0, B<0, D>0) or (A<0, C>0, B>0, D>0)

 or (A<0, C>0, B<0, D>0) or (A<0, C>0, B=0, D>0)

s = (-B+ D)/A if (A>0, C<0, B>0, D>0) or (A>0, C<0, B<0, D>0)

 or (A>0, C<0, B=0, D>0) or (A<0, C<0, B>0, D>0)
 or (A>0, C=0, B<0, D>0) or (A<0, C=0, B>0, D>0)

s = otherwise

LA-UR-04–88174 -28

Special Topics -Distance Calculations

– Noting that C = F(x0,y0,z0) = sense at (x0,y0,z0),
the valid solutions can be simplified using the known surface sense §:

s' = -C/(2B) if (A=0, D>0)

s' = (-B- D)/A if (A 0, D>0, §>0)

s' = (-B+ D)/A if (A 0, D>0, §<0)

s' = otherwise

And

s = s' if s'>0
 = otherwise

LA-UR-04–88174 -29

Special Topics – Common Surfaces

• If 2 surfaces coincide,
neighbor searches become
more complicated & tracking
can slow down significantly

• Most MC codes check for coincident surfaces & eliminate one of them
(replacing it by the other)

• The tolerance for coincident surfaces usually defaults to a small separation
distance (e.g., 1.e-4 cm). For problems with unusual geometry (very small
or very large), this may have to be changed in the code or code input.

Surface 2Surface 1

LA-UR-04–88174 -30

LA-UR-04–88174 -31

Stochastic Geometry
& HTGR Modeling

Forrest B. Brown
X-5, Los Alamos National Laboratory

fbrown@lanl.gov

LA-UR-04–88174 -32

Introduction

• Much interest lately in analyzing HTGRs
– Fuel kernels with several layers of coatings
– Very high temperatures
– Contain fission products
– Safety aspects …

• Double heterogeneity problem
– Fuel kernels randomly located within fuel elements
– Fuel elements may be "compacts" or "pebbles" (maybe random)
– Challenging computational problem

• Monte Carlo codes can faithfully model HTGRs
– Full 3D geometry
– Multiple levels of geometry, including embedded lattices
– Random geometry ?????

LA-UR-04–88174 -33

Example – Very High Temperature Gas Cooled Reactor

P. E. MacDonald, et al., "NGNP Preliminary Point Design – Results of the Initial Neutronics
and Thermal-Hydraulic Assessments During FY-03", INEEL/EXT-03–00870 Rev. 1, Idaho
National Engineering and Environmental Laboratory (2003).

—
—

—
—

—
—

 ~
1

m
m

 —
—

—
—

-

LA-UR-04–88174 -34

Example – GT-MHR Modeling

Plukiene, R. and Ridikas, D.,
Modeling of HTGRs with Monte
Carlo: from a homogeneous to an
exact heterogeneous core with
microparticles. Annals of Nuclear
Energy 30, 1573–1585 (2003).

kernelscompactassemblyactive core

core

LA-UR-04–88174 -35

Example – Pebble Bed Experiments at Proteus Facility

Difilippo, F.C., Monte
Carlo Calculations of
Pebble Bed Benchmark
Configurations of the
PROTEUS Facility. Nucl.
Sci. Eng. 143, 240–253
(2003).

Fuel kernelFuel kernel latticePebbles

Core

LA-UR-04–88174 -36

MCNP Models for HTGRs

• Existing MCNP geometry can handle:
– 3D description of core

– Fuel compacts or lattice of pebbles
• Typically, hexagonal lattice with close-packing of spherical pebbles

• Proteus experiments: ~ 5,000 fuel pebbles
 ~ 2,500 moderator pebbles

– Lattice of fuel kernels within compact or pebble
• Typically, cubic lattice with kernel at center of lattice element

• Proteus experiments: ~ 10,000 fuel kernels per pebble

~ 50 M fuel kernels, total

– Could introduce random variations in locations of a few thousand cells in MCNP
input, but not a few million.

– See papers by: Difilippo, Plukiene et al, Ji-Conlin-Martin-Lee, etc.

LA-UR-04–88174 -37

MCNP5 Stochastic Geometry

• When a neutron enters a new lattice element, a transformation is made to
the neutron's position & direction to the local coordinates of the universe
embedded in that lattice element. [standard MCNP]

• Users can flag selected universes as "stochastic" [new]
– A neutron entering a lattice element containing a stochastic universe undergoes

the normal transformations.

– Then, additional random translations are made:

– Then, tracking proceeds normally, with the universe coordinates fixed until the
neutron exits that lattice element

x x + (2 1 1) x

y y + (2 2 1) y

z z + (2 3 1) z

LA-UR-04–88174 -38

MCNP5 Stochastic Geometry

• Neutron on lattice edge, about to enter embedded universe

• Embedded universe,
before random translation after random translation

• Track normally, until neutron exits the lattice element

LA-UR-04–88174 -39

MCNP5 Stochastic Geometry

• On-the-fly random translations of embedded universes in lattice
– Does not require any extra memory storage

– Very little extra computing cost -
only 3 random numbers for each entry into a stochastic universe

• For K-effective calculations (KCODE problems)
– If fission occurred within fuel kernel, should have source site in next cycle be at

same position within fuel kernel
– Need to save along with neutron coordinates in fission bank

– On source for next cycle, apply after neutron pulled from bank

• To preserve mass exactly, rather than on the average stochastically, must
choose so that fuel kernels are not displaced out of a lattice
element

x, y, z

x, y, z

x, y, z

maximum x

LA-UR-04–88174 -40

Numerical Results — HTGR Fuel Kernels

• Infinite array of TRISO fuel kernels in graphite matrix
– Fuel kernel geometry & composition taken from the NGNP Point Design

(MacDonald et al. 2003)

• Calculations run 4 ways:
1. Fixed lattice with centered kernels
2. Fixed lattice with random kernels [MCNP stochastic geometry]
3. Multiple lattice realizations
4. Box of randomly place kernels

TRISO Fuel Kernel Geometry and Composition

Region

Name Outer radius
()

Composition Density
(g/cc)

1 Uranium oxycarbide 175 UCO (UC.5O1.5) 10.5
2 Porous carbon buffer 275 C 1.0
3 Inner pyrolytic carbon 315 C 1.9
4 Silicon carbide 350 SiC 3.2
5 Outer pyrolytic carbon 390 C 1.9

LA-UR-04–88174 -41

Calculations – Case #1

• Fixed lattice with centered kernels
– 5x5x5 cubical lattice
– Lattice edge chosen to preserve the specified packing fraction.

– Fuel kernels centered within the cubical cells
– Reflecting boundaries on the outer surfaces
– Essentially same as Difilipo, Plukiene et al, Ji-Conlin-Martin-Lee

– No random geometry, standard MCNP5 calculations

LA-UR-04–88174 -42

Calculations – Case #2

• Fixed lattice with random kernels [MCNP stochastic geometry]
– 5x5x5 cubical lattice

– Lattice edge chosen to preserve the specified packing fraction.
– Fuel kernels randomly placed on-the-fly within the cubical cells
– Reflecting boundaries on the outer surfaces

– Uses new MCNP5 stochastic geometry

Fuel kernel displaced randomly
 within lattice element each time
 that neutron enters

LA-UR-04–88174 -43

Calculations – Case #3

• Multiple lattice realizations
– 5x5x5 cubical lattice

– Lattice edge chosen to preserve the specified packing fraction.
– Fuel kernels randomly placed in job input within the cubical cells
– Reflecting boundaries on the outer surfaces

– Uses standard MCNP5
– 25 separate calculations, each with different location of kernels in the input
files

1 realization, fixed lattice
 with kernel locations chosen
 randomly in problem input
 & held constant during
 each MCNP calculation

LA-UR-04–88174 -44

Calculations – Case #4

• Box of randomly placed fuel kernels
– Single box with 125 fuel kernels
– Box size chosen to preserve the specified packing fraction.

– Fuel kernels randomly placed in job input within the box (using RSA algorithm,
Random Sequential Addition)

– Reflecting boundaries on the outer surfaces

– Uses standard MCNP5
– 25 separate calculations, each with different location of kernels in the input
files

2 different realizations of "truly random" cases:

LA-UR-04–88174 -45

Numerical Results

MCNP5 Results for Infinite Lattices of Fuel Kernels

1.1510 ± 0.0003Multiple (25) realizations of
randomly packed (RSA) fuel
"box"

4

1.1513 ± 0.0004Multiple (25) realizations of
5x5x5 lattice with randomly
located spheres

3

1.1515 ± 0.0004Fixed 5x5x5 lattice with randomly
located spheres ("on the fly")

2

1.1531 ± 0.0004Fixed 5x5x5 lattice with centered
spheres

1

K-effectiveMethod#

LA-UR-04–88174 -46

Conclusions

• The new stochastic geometry treatment for MCNP5 provides an
accurate and effective means of modeling the particle heterogeneity in
TRISOL particle fuel
– Same results as (brute-force) multiple realizations of random geometry

input with standard MCNP
– Negligible difference from "truly random" multiple realizations

• The results indicate that:
– The neutronic effect of using a fixed lattice is negligible
– The effect of choosing either a centered spheres or randomly located

spheres is also small, at least for the specific fuel geometry that was
analyzed during this study

• Future work
– Examination of finite geometries, including cylindrical fuel compacts,

hexagonal fuel blocks, and full core configurations.
– We will also consider lattices other than simple cubic lattices, such as BCC,

FCC, and HCP lattices.

LA-UR-04–88174 -47

References – HTGR Models & Stochastic Geometry

• Armishaw, M., Smith, N., and Shuttlesworth, E., Particle Packing Considerations for Pebble Bed Fuel Systems.
Proc. ICNC 2003 Conference, JAERI-Conf-2003–019, Tokai-mura, Japan (2003).

• Brown, F.B., Sweezy, J.E., and Hayes, R., Monte Carlo Parameter Studies and Uncertainty Analyses with MCNP5.
Proc. PHYSOR 2004, Chicago, Illinois (2004).

• Brown, F.B. and Martin, W.R., Stochastic Geometry in MCNP5 for the Analysis of Particle Fuel. Annals of Nuclear
Energy, (2004).

• Difilippo, F.C., Monte Carlo Calculations of Pebble Bed Benchmark Configurations of the PROTEUS Facility. Nucl.
Sci. Eng. 143, 240–253 (2003).

• Donovan, T. and Danon, Y., Application of Monte Carlo Chord-Length Sampling Algorithms to Transport Through a
Two-Dimensional Binary Statistical Mixture. Nucl. Sci. Eng. 143, 226–239 (2003).

• Donovan, T., Sutton, T., and Danon, Y., Implementation of Chord Length Sampling for Transport Through a Binary
Stochastic Mixture. Proc. ANS Topical Conf. in Mathematics and Computation, Gatlinburg, TN (2003).

• Donovan, T. and Danon, Y., HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling. Trans. Am.
Nucl. Soc. 89, 37–39 (2003).

• Ji, W., Conlin, J., Martin, W.R., and Lee, J.C., Reactor Physics Analysis of the VHTGR Core. Submitted for
presentation at the Winter Meeting of the American Nuclear Society (2004).

• Johnson, J.R., Lebenhaft, J.R., and Driscoll, M.J., Burnup Reactivity and Isotopics of an HTGR Fuel Pebble.
Trans. Am. Nucl. Soc. 85, 273–274 (2001).

• MacDonald, P.E., et al., NGNP Preliminary Point Design – Results of the Initial Neutronics and Thermal-Hydraulic
Assessments During FY-03, INEEL/EXT-03–00870 Rev. 1. Idaho National Engineering and Environmental
Laboratory (2003).

• Massimo, L., Physics of High-Temperature Reactors. Pergamon Press (1976).

LA-UR-04–88174 -48

References – HTGR Models & Stochastic Geometry

• MICROX-2, Code System to Create Broad-Group Cross Sections with Resonance Interference and Self-Shielding
from Fine-Group and Pointwise Cross Sections, PSR-374. Oak Ridge National Laboratory (1999).

• Mori, T., Okumura, K., and Nagaya, Y., Status of JAERI’s Monte Carlo Code MVP. Proc. Monte Carlo 2000
Conference, Lisbon, 625–630 (2000).

• Murata, I., Mori, T., and Nakagawa, M., Continuous Energy Monte Carlo Calculations of Randomly Distributed
Spherical Fuels in High-Temperature Gas-Cooled Reactors Based on a Statistical Geometry Model. Nucl. Sci. Eng.
123, 96–109 (1996).

• Murata, I., et al., New Sampling Method in Continuous Energy Monte Carlo Calculation for Pebble Bed Reactors.
J. Nucl. Sci. Tech. 34, 734–744 (1997).

• Plukiene, R. and Ridikas, D., Modelling of HTRs with Monte Carlo: from a homogeneous to an exact
heterogeneous core with microparticles. Annals of Nuclear Energy 30, 1573–1585 (2003).

• Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag
(2002).

• Widom, S., Random Sequential Addition of Hard Spheres to a Volume. J. Chem. Phy. 44, 3888–3894 (1966).

• X-5 Monte Carlo Team, MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: Overview
and Theory, LA-UR-03–1987. Los Alamos National Laboratory (2003).

LA-UR-04–88175 -1

CollisionCollision
PhysicsPhysics

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 5

LA-UR-04–88175 -2

Monte Carlo Calculations

• Geometry routines determine the cell & material in that cell

• Collision routines model the physical interactions with the material

– Random sampling from PDFs determined by cross-section data
• Continuous: flight distance, exit E & direction, …..

• Discrete: select nuclide, select interaction type, secondaries, …..

 Physics
• How far to collision?
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

 Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

 Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

 mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..

LA-UR-04–88175 -3

Collision Physics

Free-flight distance
to next collision, s

Collision isotope,
Reaction type,
Exit E' & (u',v',w'),
Secondary particles

LA-UR-04–88175 -4

Monte Carlo Calculations

• After a particle emerges from source or collision, or if the
particle is on a cell bounding surface:

– Randomly sample the free-flight distance to the next
interaction

– If the distance-to-interaction is less than the distance to cell
boundary, then move the particle to the interaction point

– Collision physics at the interaction point:
• Determine which isotope the interaction is with
• Determine which interaction type for that isotope
• Determine the energy & direction of the exiting particle
• Determine if secondary particles were produced
• Biasing + weight adjustments
• Tallies of quantities of interest

LA-UR-04–88175 -5

Sampling the Flight Distance

• Given a particle at (x0,y0,z0) with direction (u,v,w) in cell I containing
material M, sample the free-flight distance to the next interaction

– T = total macroscopic cross-section in material M
 = sum{ Nj

T
j }, where j = isotopes in material M

 = probability of any interaction per unit distance, units cm-1

– PDF for flight distance s, where 0 s ,
f(s) = {prob interaction p.u.d} • {prob travelling dist s w/o interact}

 = T exp(- T s)

– Sampling procedure
F(s) = 1 – exp(- T s) —> s = -ln(1-) / T

We are assuming here that material M
is uniform & homogeneous

LA-UR-04–88175 -6

Selecting the Collision Isotope

• where j = isotopes in material M

• Probability that collision is with isotope j

• { pj } = set of discrete probabilities for selecting collision isotope

• { Pj } = discrete CDF, Pj = sum{ pi, i=1,j }, P0=0

• Discrete sampling for collision isotope k
table search to determine k such that Pk-1 Pk

T = N(j) T
(j)

j

pj =
N(j) T

(j)

N(k) T
(k)

k

LA-UR-04–88175 -7

Selecting the Reaction Type

• For collision isotope k,

T = elastic + inelastic + capture + fission + …..

• pj = j/ T = probability of reaction type j for isotope k

• { pj } = set of discrete probabilities for selecting reaction type j

• { Pj } = discrete CDF, Pj = sum{ pi, i=1,j }, P0=0

• Discrete sampling for reaction type j
table search to determine j such that Pj-1 Pj

LA-UR-04–88175 -8

Selecting the Reaction Type – Modified

• In many applications, survival biasing is an effective variance reduction technique

– Survival biasing is also called implicit absorption, nonabsorption
weighting, or (loosely) implicit capture

– T = absorption + scatter (absorption = disappearance)

– Probability that particle survives collision = Psurv = scatter/ T

– Probability that particle is absorbed (killed) = 1 – Psurv

• Disallow absorption of particle, & then adjust particle weight to ensure a fair game

– Tally absorption of wgt•(1-Psurv)
– Multiply particle weight by Psurv

– When selecting reaction type, don't consider probability of absorption

LA-UR-04–88175 -9

Sampling Exit Energy & Direction

• Given a collision isotope k & reaction type j, the random sampling
techniques used to determine the exit energy and direction, E' and
(u',v',w'), depend on
– Conservation of energy & momentum
– Scattering laws – either equations or tabulated data

• Examples
– Isotropic scattering in lab system
– Multigroup scattering

– Elastic scattering, target-at-rest
– Inelastic scattering, MCNP
– Other collision physics, MCNP

LA-UR-04–88175 -10

Isotropic Scatter in Lab System

• Elastic scattering from infinite-mass target nucleus

– No change in energy:

E' = E

– Sample direction from isotropic scattering PDF, f(u',v',w') = 1 / 4

 = 2 1

u' = 2 2 – 1
v' = sqrt(1-u'2) cos()
w' = sqrt(1-u'2) sin()

LA-UR-04–88175 -11

Multigroup Scattering

• Multigroup approach
– Divide energy range into intervals (groups)
– Use average cross-sections for each group,

Tg = total cross-section for group g

– Use discrete transfer matrix for group-to-group scatter,

gg' = cross-section for scatter from group g to group g'

• Multigroup scattering
– For particle with energy E, determine initial energy group g
– Select exit energy group g' by discrete sampling from gg'

– Sample exit energy uniformly within bound of group g'
– Direction

• For P0 scattering – use procedure for isotropic lab scatter

• For P1 scattering – sample mu from linear PDF, then select new direction
(see next section on elastic scatter)

pg =
g g

g k
k=1

G

LA-UR-04–88175 -12

Elastic Scattering, Target-at-rest

• Sample μcm from tabulated PDF data, f(μcm)

• Use kinematics to get E'lab & μlab

• Sample polar angle uniformly on (0,2)

• Rotate particle direction using μlab &

lab

μlab = cos lab

LA-UR-04–88175 -13

Sampling the Scattering Direction-cosine, μcm

• Typical representations for f(μcm)

– Histogram or Equiprobable Histogram PDF

– Piecewise linear PDF

-1 +1
μcm

-1 +1
μcm

LA-UR-04–88175 -14

Elastic Scatter – E' & μlab

• Target-at-rest elastic scatter in lab system – kinematics

E

E'

lab
μlab = cos lab

E' = E •
A

2
+ 2Aμcm + 1

(A + 1)2

μlab =
1+ Aμcm

A
2

+ 2Aμcm + 1

Where A = (mass target)/(mass particle)

LA-UR-04–88175 -15

Exit Direction

• Rotation from (u,v,w) to (u',v',w') using μlab &

= 2

u' = μu +
1 μ

2 (uw cos vsin)

1 w
2

v' = μv +
1 μ

2 (vw cos + usin)

1 w
2

w' = μw 1 μ
2

1 w
2 cos

lab

μ = μlab

If μ close to 1,
 special coding may be
 used to avoid roundoff

LA-UR-04–88175 -16

Inelastic Scattering – MCNP

– Law 1 ENDF law 1 – Equiprobable energy bins

– Law 2 Discrete photon energies
– Law 3 ENDF law 3 – Inelastic scatter from nuclear levels
– Law 4 ENDF law 4 – Tabular distribution

– Law 5 ENDF law 5 – General evaporation spectrum
– Law 7 ENDF law 7 – Simple Maxwell fission spectrum
– Law 9 ENDF law 9 – Evaporation spectrum

– Law 11 ENDF law 11 – Energy dependent Watt spectrum
– Law 22 UK law 2 – Tabular linear functions of incident energy out
– Law 24 UK law 6 – Equiprobable energy multipliers

– Law 44 ENDF law 1, lang 2, Kalbach-87 correlated energy-angle scatter
– Law 61 ENDF law 11, lang 0,12, or 14 – correlated energy-angle scatter
– Law 66 ENDF law 6 – N-body phase space distribution

– Law 67 ENDF law 7 – correlated energy-angle scatter

LA-UR-04–88175 -17

Other Collision Physics – MCNP

– Emission from fission
– Delayed neutron emission
– S(,) scattering for thermal neutrons

– Free-gas scattering for neutrons
– Probability tables for the unresolved resonance energy range for neutrons

– Photoelectric effect
– Pair production

– Compton scattering (incoherent)
– Thomson scattering (coherent)
– Fluorescent emission

– Photonuclear reactions

– Electron interactions – condensed history approach
• Stopping power, straggling, angular deflections

• Bremsstrahlung
• K-shell impact ionization & Auger transitions

• Knock-on electrons

LA-UR-04–88175 -18

Secondary Particle Creation

• Consider a collision which results in fission
 wgt • F/ T = expected number of fission neutrons

produced per collision

• To sample the number of neutrons produced in the collision

Let r = wgt • F/ T

n = int[r]

Then, Produce n fission neutrons with probability 1
 and an additional fission neutron with probability r-n

 Assign a weight of r/n to each

Example: wgt• F/ T = 1.75

If < .75, produce 2 neutrons, otherwise produce 1
 or

Produce int[1.75 +] neutrons

LA-UR-04–88175 -19

LA-UR-04–88175 -20

Alternative Schemes for Flights/Collisions

• Conventional scheme
– Particle weight constant during flight
– Use T to determine distance-to-collision, s = -ln / T

– Change weight only on collisions
– For pathlength absorption estimator, tally wgt s A

– Most common scheme for reactors & shielding applications

• Continuous absorption
– Particle weight decreases continuously during flight, due to absorption

– Use S to determine distance-to-scattering, s = -ln / s

– For pathlength absorption estimator, tally
– No absorption in collision

– Typical use in astrophysics (Implicit Monte Carlo codes)

wgt(s) = wgt0 e As

wgt0 (1 e As)

LA-UR-04–88175 -21

LA-UR-04–88175 -22

Random Sampling — Flight Distance

Sampling the free-flight distance, s
• To simulate the free-flight of particles through the problem geometry,

need to randomly sample the distance to collision
• PDF for free-flight distance, s, along the current direction:

– If T(x) is constant within a region, the PDF simplifies to

– Sampling procedure is then:

• For multiple regions, can stop particle at each boundary & resample s.
Why is this OK ?
– Note that prob. of traversing region is

– For 2 regions, note that
= prob. of traversing both regions

f(s) = T(s) exp T(x)dx
0

s

f(s) = T exp T s()

ŝ
ln

T

Prob ŝ s{ } = 1 Te Txdx = e Ts

0

s

e x1 e x2 = e (x1+x2)

LA-UR-04–88175 -23

“Regular” Tracking
• Move particles through one region at a time, until collision occurs
• Can be expensive if many regions must be traversed before collision

• “Regular” tracking procedure, when T constant within each region:
– Sample a flight distance, s', using T for current region:

– If s' < dboundary, move particle by s', then analyze the collision

– Otherwise, move particle by dboundary, enter next region,
repeat until collision occurs

Random Sampling — Tracking

f(s) = T(s) exp T(x)dx
0

s

T

s

s
ln

T

LA-UR-04–88175 -24

Random Sampling — Tracking

Delta Tracking
• A type of rejection method for sampling the free-flight distance
• Also called Woodcock tracking, fast tracking, or hole tracking
• Useful when T varies rapidly over the flight path

• For delta tracking, a fictitious cross-section * is used, rather than T(s)
– * should be chosen to be T(s) for all possible points along path
– * may be a function of energy, or region, or not
– * = T(s) + (s) = constant, (s) 0 for all s>0

where (s) = cross-section for "delta-scattering",
i.e., scatter with no change in energy or direction,
a fictitious scattering event, or "pseudo-collision"

T

s

*

f(s) = * exp * s()

LA-UR-04–88175 -25

Special Topic – Delta Tracking

• For many problems of interest, T varies within a cell
– Charged particle transport – continuous slowing down along the flight

path due to interactions with electron field in material

– T increases along the flight path

• For most MC codes, a procedure called delta tracking is used in
sampling the free-flight distance
– Also called Woodcock tracking, fast tracking, pseudo-collision method,

hole tracking, …
– Involves biased sampling using a larger T, followed by rejection

sampling to assure a fair game

T(s)

Flight distance, s

LA-UR-04–88175 -26

Special Topic – Delta Tracking

• Introduce for a "delta" collision
– Let * = T(s) + (s) = constant,

where (s) 0

(s) = cross-section for "delta" collision -
no change in E, (u,v,w), or wgt

* T(s)

– T(s) / * = probability of a "real" collision
– (s) / * = probability of a "delta" collision

• Basic idea: Sample flight distance using *,
 then reject collision point if > T(s) / *

• Using * rather than T(s) gives an interaction probability per unit
distance that is too large, hence a flight distance that is too short.
Rejection scheme compensates for this.

T(s)

Flight distance, s

*

LA-UR-04–88175 -27

Special Topic – Delta Tracking

• Sampling procedure
– Sample s' from f(s) = * exp(- *s): s' = -ln(1- 1)/ *

– Move the particle a distance s'
– if 2 < T(s')/ * , "real" collision: do collision physics

otherwise, "delta" collision: no change in E, (u,v,w), wgt
– Repeat until a real collision occurs

• Delta tracking can be effective if * is not too different from the
"average" T(s)

• Delta tracking can be ineffective if * >> T(s) for most values of
s, so that sampling efficiency is low

• Delta tracking is also frequently used for tracking through
reactor fuel assemblies, where the geometry is a regular lattice.

LA-UR-04–88175 -28

Special Topic – Delta Tracking

Proof: Delta tracking is an unbiased method for
sampling the free-flight distance

Consider the probability of traversing a distance s along the flight path without undergoing a
(real) collision, P(s)

– * = T(s)+ (s) = constant, * T(s) and (s) 0 for all s>0

– For convenience, define optical thickness for real & delta scatter:

Note that, by definition,

(s) = T (x)dx
0

s

(s) = (x)dx
0

s

*s = (s)+ (s), *s (s)

LA-UR-04–88175 -29

Special Topic – Delta Tracking

For a particular flight, there could be exactly 0, 1, 2, …, delta-collisions before a real collision
occurs

Let P(s|n) = probability of traversing distance s along the flight path
with exactly n delta collisions

Then,

P(s) = P(s |n)
n=0

P(s | 0) = e
*s

P(s |1) = P(x | 0) (x)P(s x | 0)dx = e
*x

0

s

(x)
0

s

e
* (s x)dx = (s)e

*s

P(s | n) = P(x | n 1) (x)P(s x | 0)dx
0

s

=
[(s)]n

n!
e

*s

P(s | 2) = P(x |1) (x)P(s x | 0)dx = (x)e
*x

0

s

(x)
0

s

e
* (s x)dx

= (x) (x)e
*s

0

s

dx =
[(x)]2

2
e

*s

LA-UR-04–88175 -30

Special Topic – Delta Tracking

Then, the total probability of traversing a distance s
without undergoing a (real) collision is

This is the correct result, identical to the normal sampling of the flight path (without delta
tracking)

P(s)= P(s | n) =
[(s)]n

n!n=0n=0

e
*s
= e (s) *s

= e (s)
= exp T(x)dx

0

s

LA-UR-04–88175 -31

LA-UR-04–88175 -32

Varying Material Properties

For many problems of interest, T varies within a cell

• Charged particle transport
– Continuous slowing down along

the flight path due to interactions
with electron field in material

– T increases along the flight path

• Atmospheric transport
– Air density varies with altitude

• Depleted reactor
– Fuel & poison distribution varies

due to burnup

T(s)

Flight distance, s

(h)

Altitude, h

B10

Radius in control rod, r

LA-UR-04–88175 -33

Conventional techniques for handling varying material properties:

• Stepwise approximation
– Subdivide geometry
– Constant material properties

within each step

• Woodcock tracking
– Also called delta tracking, fast tracking, pseudo-collision method, hole

tracking, …
– Involves biased sampling the flight distance using a larger T,

followed by rejection sampling to assure a fair game

Varying Material Properties

T(s)

Flight distance, s

LA-UR-04–88175 -34

• Optical depth along flight path

– T(x) is finite, T(x) 0

– Note that

• To explicitly allow for the case of no collision,
– PNC = probability of no collision

–

• Probability density function (pdf) for the flight distance s:

– Where

f (s) = PNC (s =) + (1 PNC)

1

G

d

ds
e (s)

(s) = T (x)d x

x

x+s

d (s)

ds
= T (x + s), 0

d

ds

 PNC = e
()

G =
d (s)

ds
e

(s)
ds = 1 e

()
= 1 PNC

0

Sampling the flight distance in varying media

LA-UR-04–88175 -35

• Random sampling of the Monte Carlo free-flight path requires solving the
following equation for s, the flight path:

• Common case: T independent of x

– With solution:

= f (x)dx

0

s

or

= PNC H (s,) + (1 PNC)
1

G
1 e (s)()

(s) = T s,

d

ds
= T , PNC = 0, G = 1, f (s) = T e T s

s =
ln(1)

T

Sampling the flight distance in varying media

LA-UR-04–88175 -36

Direct Numerical Sampling for the free-flight distance:

Step [1]
If < PNC, Then: No collision, set s= , exit

Otherwise: Do Steps 2 & 3
Step [2]

Define

Sample by solving

 That is, sample from a truncated exponential PDF:

Step [3]
Solve for s:

Analytic solution if possible, otherwise use Newton iteration

 ̂ = (s)

ˆ

=
1

G
e d

0

ˆ

, with 0 ˆ ()

ˆ =
ln(1 G)

T

ˆ = (s) = T (x + s)d s

0

s

Sampling the flight distance in varying media

LA-UR-04–88175 -37

s0 = ˆ / T (x0)

n = 0

Iterate :

n = n+ 1

g = ˆ (sn 1)

 g = dg / ds = T (x0 + sn 1)

sn = sn 1 g / g

Stop if sn sn 1 <

Sampling the flight distance in varying media

• Newton iteration to numerically solve for s:

• Notes:
– Because g'<0, g(s) is monotone & there can be only one root
– For cases where T>0, Newton iteration guaranteed to converge
– If T(x)=0 or very small, g' may be 0, leading to numerical difficulties

– Remedied by combining Newton iteration with bisection if g' near zero
– Typically only 1–5 iterations needed to converge s to within 10–6

LA-UR-04–88175 -38

• Represent material density by high-order, orthogonal polynomial expansion
within each cell
– Legendre polynomial representation for material density in cell

• Sample the free-flight distance to next interaction using a direct numerical
sampling scheme (Brown & Martin)

– Use Newton iteration to solve nonlinear equation for flight path

(x) = 2n +1

2
an Pn

2

x
(x xmin) 1[]

n =0

N

an = 2

x
(x)Pn

2

x
(x xmin) 1[]dx

xmin

xmax

(x) =
(x)

0

0, (s) = 0

0

(x) d x

μ
x

x+s

Varying Material Properties

LA-UR-04–88175 -39

References – Continuous Materials & Tallies

• FB Brown, D Griesheimer, & WR Martin, "Continuously Varying Material Properties and Tallies for Monte
Carlo Calculations", PHYSOR-2004, Chicago, IL (April, 2004)

• FB Brown & WR Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously Varying
Cross-sections", ANS Mathematics & Computation Topical Meeting, Gatlinburg, TN (April, 2003).

• DP Griesheimer & WR Martin, "Estimating the Global Scalar Flux Distribution with Orthogonal Basis
Function Expansions", Trans. Am. Nucl. Soc. 89 (Nov, 2003)

• DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte Carlo
Simulations," PHYSOR-2004, Chicago, IL (April, 2004)

• ER Woodcock, T Murphy, PJ Hemmings, TC Longworth, “Techniques Used in the GEM Code for Monte
Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry,” Proc. Conf.
Applications of Computing Methods to Reactor Problems, ANL-7050, p. 557, Argonne National Laboratory
(1965).

• LL Carter, ED Cashwell, & WM Taylor, “Monte Carlo Sampling with Continuously Varying Cross Sections
Along Flight Paths”, Nucl. Sci. Eng. 48, 403–411 (1972).

• J. Spanier, “Monte Carlo Methods for Flux Expansion Solutions of Transport Problems,” Nucl. Sci. Eng.,
133, 73 (1999).

LA-UR-04–88175 -40

LA-UR-04–88176 -1

TalliesTallies
&&

StatisticsStatistics

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 6

LA-UR-04–88176 -2

Monte Carlo Calculations

• During a history, tally the events of interest

• Upon completing a history, accumulate total scores & squares

• After completing all histories, compute mean scores & standard deviations

 Physics
• How far to collision?
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

 Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

 Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

 mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..

LA-UR-04–88176 -3

Monte Carlo Estimates of Integrals

Given a function R(x), where x is a random variable with PDF f(x),

– Expected value of R(x) is

– Variance of R(x) is

Monte Carlo method for estimating μ

– make N random samples from f(x)

– Then

– Central Limit Theorem states that for large N, the PDF of
approaches a Gaussian distribution

– That is, if the Monte Carlo problem is repeated, will be normally
distributed

μ = R(x) f(x) dx

R
1

N
R(ˆ x j)

j= 1

N

ˆ x j

2

= R
2 (x) f(x) dx μ

2

 R

 R

LA-UR-04–88176 -4

Laws of Large Numbers

Let x1, x2, …, xN be a sequence of independent, identically distributed random variables
each with a finite mean E[xj]=μ and let

• Weak Law of Large Numbers
For any > 0

Tells how a sequence of probabilities converges

• Strong Law of Large Numbers

Tells how the sequence of IID random variables behaves in the limit

x N =
1

N
xj

j= 1

N

lim

N

P(x N μ >) = 0

P lim

N

x N μ >

 = 0

LA-UR-04–88176 -5

Central Limit Theorem

• Central Limit Theorem

– If a = b = 1,

Note: 32% of the time, should be outside range

– If a = b = 2,

Note: 5% of the time, should be outside range

 N
lim Prob μ a

N
x μ + b

N

=
1

2
e

t
2

dt

a

b

Prob μ
N

x μ +
N

= 68%

Prob μ
2

N
x μ +

2

N

= 95%

μ ±
N

μ ±
2

N

 x

 x

LA-UR-04–88176 -6

Tallies & Statistics

• For a given history, tally events of interest
– Example – surface crossings

• For each particle crossing surface A, accumulate the weight each time a particle crosses that
surface

• A particular particle may cross the surface more than once

• Progeny of that particle (e.g., another particle created by splitting) may also cross that surface
one or more times

• When the history is complete, add the score & score2 to
accumulators for the problem

S1problem = S1problem + (Shistory)
S2problem = S2problem + (Shistory)

2

• When all N histories are complete, compute final mean score &
standard deviation

 mean score =
1

N
• S1

std dev of mean =
1

N 1

S2

N

S1

N

2

LA-UR-04–88176 -7

Variance of the Population vs. Mean

• Given a set of random samples, x1, x2, …, xN,

– Mean

– Population variance

– Variance of the mean

x =
1

N
xj

j= 1

N

2
=

1

N
xj

2

j= 1

N
1

N
xj

j= 1

N

2

=
1

N
xj

2

j= 1

N

x 2

x

2
=

2

N

LA-UR-04–88176 -8

Tally Bins

• Tallies can be made for selected events & portions of phase space:

– Range of energies, E1 – E2

– Range of particle times, t1 – t2
– Specified cells

– Specified surfaces
– Specified range of n for surface crossings
– Specified reaction cross-sections x

– Secondary particle production
– Energy deposited in cell
– Conditional events, e.g., absorption in cell B due to source in cell A

– Energy of neutrons causing fission
– Scattering from energy range E1-E2 to range E3-E4

– Etc.

LA-UR-04–88176 -9

Flux & Current

• Angular flux

• Flux

– Scalar quantity
– Total distance traveled by all particles in a cm3 per second
– Units: distance / cm3-sec = 1 / cm2-sec

• Current
– Number of particles crossing surface per second per unit area
– Units: 1 / cm2-sec

– Partial current: in + or – direction only, J+ or J-

– Net current = J = J+ – J-

(r) = dE

E1

E2

d (r,E,)
4

J(r) = dE

E1

E2

d

n • (r,E,)
4

J
+ (r) = dE

E1

E2

d

n • (r,E,)

n • > 0

J (r) = dE

E1

E2

d

n • (r,E,)

n • < 0

 (r,E,)

LA-UR-04–88176 -10

Reaction Rates

• For a particular reaction "x"

– Reactions per cm3 per sec

• Collision density

• Energy deposition (average per collision)

Rx (r) = dE

E1

E2

d (r,E,) x (r,E)
4

C(r) = dE

E1

E2

d (r,E,) T (r,E)
4

Edeposited (r) = dE
E1

E2

d (r,E,) T (r,E)
4

(r,E)

where (r,E) = average E deposited per collision

LA-UR-04–88176 -11

Analog vs. Weighted Monte Carlo

• Analog Monte Carlo
– Faithful simulation of particle histories

– No alteration of PDFs (I.e., no biasing or variance reduction)
– At collision, particle is killed if absorption occurs
– Particle is born with weight = 1.0

– Weight unchanged throughout history until particle is killed
– Score 1.0 when tallying events of interest

• Weighted Monte Carlo (non-analog)
– Alter the PDFs to favor events of interest

– Particle is born with weight = 1.0
– Weight is altered if biased PDF is used
– Typically, particle always survives collision & weight is reduced by Psurv

– Weight can also be changed by Russian roulette/splitting & other variance
reduction techniques

– Score wgt when tallying events of interest

LA-UR-04–88176 -12

Tally Types

• Current tallies
– Surface crossing estimator

• Flux tallies
– Pathlength estimator

– Collision estimator
– Surface crossing estimator
– Next event estimator (point detector)

• Reaction rate tallies
– Any of the above flux estimators times a cross-section

• Energy deposition tallies
– Any of the above flux estimators times T times energy deposited per

collision

LA-UR-04–88176 -13

Current Tallies

• For each particle crossing surface, tally the particle weight

• Divide by total starting weight & surface area to get current

W = total starting weight

A = surface area

• Typically, keep separate tally for outward partial current for each surface of a
cell

• Can get net current by combining partial currents

wgt1

wgt2

wgt3

J =
1

W A
wgt j

all
particles
crossing
surface

LA-UR-04–88176 -14

Flux Tally – Pathlength

• For each particle flight within a cell, tally (pathlength*weight)

• Divide by cell volume & total starting weight to get flux estimate

W = total starting weight

V = cell volume

wgt2 wgt3

wgt1

d2

d1

d3

=
1

W V
• dj • wgt j

all
particle
flights
in cell

LA-UR-04–88176 -15

Flux Tally – Collisions

• Since (T) is collision rate, for each collision,
tally (wgt/ T) to estimate flux

• Divide by total starting weight & cell volume

wgtj = weight of particle entering collision

W = total starting weight
V = cell volume

wgt2

wgt1

=
1

W V
•

wgt j

T (Ej)all
collisions
in cell

LA-UR-04–88176 -16

Flux Tally – Surface Crossing

• Consider particles crossing a surface
– Put a "box" of thickness a around the surface
– Pathlength estimate of flux in the box

– Note that a cancels out

– Take the limit as a—>0

• Surface crossing estimate of flux

wgt1

wgt2

wgt3

a

2

1

3

=
1

W aA
• wgt j •

a

μ jall
particles
crossing
surface

where μ j = cos j

=
1

W A
•

wgt j

μ jall
particles
crossing
surface

where μ j = j •

S

LA-UR-04–88176 -17

Flux Tally – Surface Crossing

• Complication: wgtj/μj can be very large for small μj

– Usual solution, based on theory from FH Clark, "Variance of Certain
Flux Estimators Used in Monte Carlo Calculations", Nucl.Sci. Eng. 27,
235–239 (1967)

– For small |μ|, that is, - <μ< , (where is small), if it is assumed that
the flux is only isotropic or linearly anisotropic, then the expected value
of 1/|μ| is 2/ .

• Actual tally procedure:
– If |μ|< , then replace |μ| by /2 to score an expected flux.
– This results in a reliable variance, without affecting the flux estimate

significantly.

• MCNP uses =.1. Many other codes use =.01

LA-UR-04–88176 -18

Flux at a Point

• Instead of estimating flux for a cell or surface, it may be useful to estimate
flux at a point
– Probability of a history trajectory going through a particular point is zero

• Use a "next event estimator" to get flux at a point

– Regardless of the actual outcome of simulating a collision, estimate what
would happen if the particle scattered exactly in the direction of a point
detector

μ

Actual path
after collision

Path to
point detector

R

Expected score = wg t •
psc (μ)

2 R2
• exp T (E')ds

0

R

where wg t = weight after collision

psc (μ) = scatter PDF evaluated at μ

 E = energy corresponding to μ

LA-UR-04–88176 -19

Flux at a Point

• Expected score has 1/R2 singularity – collisions close to detector can result in large
scores

– Point detector estimator has finite mean, but infinite variance due to 1/R2

singularity

• To keep variance finite:

– For collisions within radius of detector, replace the factor

by volume average assuming uniform collisions inside sphere

– Typically choose to be ~half a mean free path

exp T (E)ds

0

R

R
2

e T (E)s
ds

0

s
2
ds

0

=
1 e T (E)

1

3

3

T (E)

LA-UR-04–88176 -20

Reaction Rate Tallies

• Tally (flux-estimator)•(cross-section)
• Example – pathlength tallies

After each flight, tally

– Flux

– Total absorption

– Nu-fission

– U235 absorption

 wgt • dj

 wgt • dj • A

 wgt • dj • F

 wgt • dj • NU235

A
U235

LA-UR-04–88176 -21

Mesh Tallies & Fission Matrix

• Mesh Tallies
– Impose a grid over the problem & tally flux or reaction rates in each grid

cell

• Fission matrix
– Impose a grid over problem

– Tally F(I—>J) for source in cell I causing fission in cell J
– For N cells in grid, N2 tallies

LA-UR-04–88176 -22

RE & FOM

• Some codes (e.g., MCNP) report the mean score & relative error

• Some codes report a Figure-of-Merit for selected tallies

Where T = computer time used

– RE2 ~ 1/N, where N is the total number of histories
– T ~ N
– Therefore, FOM should be roughly constant

– Used for comparing effectiveness of different variance reduction schemes

RE =

x

x

FOM =
1

RE2 • T

LA-UR-04–88176 -23

Cautions

• RE should decrease smoothly with 1/ N dependence as more histories are run

• Tallies are reliable only if "enough" histories traverse the portions of problem phase
space being tallied

– Undersampling can lead to questionable or erroneous values of the
mean score & relative error

– Indicators of undersampling:
• Large RE, RE > .1
• RE does not decrease smoothly as 1/ N

• A few histories have very large scores

• MCNP performs statistical checks on selected tallies to try to detect undersampling
effects

– Large RE
– Variance of the variance (VOV)

– Tally fluctuation charts (distribution of scores)
– Slope of tails in tally fluctuation charts
– Etc.

LA-UR-04–88176 -24

Combining Independent MC Results

Given N sets of (mean,std-dev) for independent Monte Carlo
calculations, (x1, 1), (x2, 2), …, how should the results be
combined?

Weighting factors ~ 1/ 2

w j =
1

j
2

W =
1

j
2

j= 1

N

x =
w j

W
xj

j= 1

N

x
2

=
w j

W2
=

1

W
j= 1

N

LA-UR-04–88176 -25

Combining Correlated Tallies

• Suppose 2 estimators, x and y, are correlated, such as the path & collision estimator
for Keff

Minimum variance combination of x & y

x =
1
N

xj

j= 1

N

y =
1
N

y j

j= 1

N

x
2

=
1
N

xj
2 x 2

j= 1

N

y
2

=
1
N

y j
2 y 2

j= 1

N

xy
2

=
1
N

xjy j x y
j= 1

N

=
y
2

xy
2

x
2 2 xy

2
+ y

2

meanx,y = x + (1) y

std devx,y =

2
x
2

+ 2 (1) xy
2

+ (1)2 y
2

N 1

LA-UR-04–88176 -26

LA-UR-04–88176 -27

Continuously Varying Tallies

• Conventional Monte Carlo codes tally integral results
– Tallies summed into bins
– Zero-th order quantities
– Stepwise approximation to results

• Higher order tallies
– Represent results by high-order, orthogonal polynomial expansion within

each cell
– Make tallies for expansion coefficients
– Legendre polynomial representation for continuous tallies

(x)

x

(x) = 2n +1

2
bn Pn

2

x
(x xmin) 1[]

n =0

N

bn = 2

x
(x)Pn

2

x
(x xmin) 1[]dx

xmin

xmax

LA-UR-04–88176 -28

Continuously Varying Tallies

• Make tallies for the Legendre coefficients at each collision or flight:

• At collisions, tally for n=1..N

• At flights, tally for n=1,N

• Reconstruct (x) and 2(x) from tallied coefficients

bn = 2

x
(x)Pn

2

x
(x xmin) 1[]dx

xmin

xmax

wgt

T

Pn
2

x
(x xmin) 1[]

wgt
1

μ
Pn

2

x
(x xmin) 1[]

x

x+s

d x

LA-UR-04–88176 -29

Continuous 2D Tallies – Example

DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte
Carlo Simulations," PHYSOR-2004, Chicago, IL (2004)

LA-UR-04–88176 -30

References – Continuous Materials & Tallies

• FB Brown, D Griesheimer, & WR Martin, "Continuously Varying Material Properties and Tallies for
Monte Carlo Calculations", PHYSOR-2004, Chicago, IL (April, 2004)

• FB Brown & WR Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously
Varying Cross-sections", ANS Mathematics & Computation Topical Meeting, Gatlinburg, TN (April,
2003).

• DP Griesheimer & WR Martin, "Estimating the Global Scalar Flux Distribution with Orthogonal
Basis Function Expansions", Trans. Am. Nucl. Soc. 89 (Nov, 2003)

• DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte Carlo
Simulations," PHYSOR-2004, Chicago, IL (April, 2004)

• ER Woodcock, T Murphy, PJ Hemmings, TC Longworth, “Techniques Used in the GEM Code for
Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry,” Proc.
Conf. Applications of Computing Methods to Reactor Problems, ANL-7050, p. 557, Argonne
National Laboratory (1965).

• LL Carter, ED Cashwell, & WM Taylor, “Monte Carlo Sampling with Continuously Varying Cross
Sections Along Flight Paths”, Nucl. Sci. Eng. 48, 403–411 (1972).

• J. Spanier, “Monte Carlo Methods for Flux Expansion Solutions of Transport Problems,” Nucl. Sci.
Eng., 133, 73 (1999).

LA-UR-04–88176 -31

LA-UR-04–88176 -32

LA-UR-04–88177 -1

EigenvalueEigenvalue
CalculationsCalculations

Part IPart I

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 7

LA-UR-04–88177 -2

Time-dependent Transport

• Time-dependent neutron transport with (prompt) fission source

This equation can be solved directly by Monte Carlo
– Simulate time-dependent transport for a neutron history

– If fission occurs, bank any secondary neutrons. When original particle is finished,
simulate secondaries till done.

– Tallies for time bins, energy bins, cells, …

Overall time-behavior (r,E, ,t) = (r,E,) e t can be estimated by

1

v

(

r ,E,

 , t)

t
=

 T (

r ,E)[] + (

r , E ,

 , t) S (

r , E E,

)d

 d E

+
(E)

4
F (

r , E) (

r , E ,

 , t)d

 d E + S(

r ,E,

 , t)

lnW2 lnW1

t2 t1

where Wj = wgtk (t j)
k= 1

Nparticles

LA-UR-04–88177 -3

Alpha Eigenvalue Equations

• For problems which are separable in space & time, it may be advantageous
to solve a static eigenvalue problem, rather than a fully time-dependent
problem

• If it is assumed that (r,E, ,t) = (r,E,) e t,
then substitution into the time-dependent transport equation yields

• This is a static equation, an eigenvalue problem for and without
time-dependence

• is often called the time-eigenvalue or time-absorption
• -eigenvalue problems can be solved by Monte Carlo methods

+ T(r,E) + v
(r,E,) = (r,E ,) S(r,E E,)d dE

+
(E)
4 F(r,E) (r,E ,)d dE

LA-UR-04–88177 -4

Keff Eigenvalue Equations

• Another approach to creating a static eigenvalue problem from the time-
dependent transport equation is to introduce Keff, a scaling factor on the
multiplication ()

• Setting / t = 0 and introducing the Keff eigenvalue gives

• This is a static equation, an eigenvalue problem for Keff and k without
time-dependence

• Keff is called the effective multiplication factor

• Keff and k should never be used to model time-dependent problems.
[Use and instead]

• Keff-eigenvalue problems can be solved by Monte Carlo methods

+ T(r,E) k(r,E,) = k(r,E ,) S(r,E E,)d dE

+
1
Keff

(E)
4 F(r,E) k(r,E ,)d dE

LA-UR-04–88177 -5

Comments on Keff and Equations

• Criticality
Supercritical: > 0 or Keff > 1

Critical: = 0 or Keff = 1

Subcritical: < 0 or Keff < 1

• Keff vs. eigenvalue equations

– k(r,E,) (r,E,), except for a critical system

– eigenvalue & eigenfunction used for time-dependent problems

– Keff eigenvalue & eigenfunction used for reactor design & analysis
– Although = (Keff-1)/ , where = lifetime,

there is no direct relationship between k(r,E,) and (r,E,)

• Keff eigenvalue problems can be simulated directly using Monte Carlo
methods

• eigenvalue problems are solved by Monte Carlo indirectly using a series
of Keff calculations

LA-UR-04–88177 -6

K-Eigenvalue Calculations

• Eigenvalue problems – reactor analysis & criticality safety

Iterative solution, using power iteration method

• Monte Carlo approach:
– Guess (0), Keff

(0)

– Follow a "batch" of histories, estimate (i), Keff
(i)

– Repeat until converged (discard tallies)
– After converging, begin tallies, iterate until variances small enough

(p) = (p)R(p p)d p +
1

Keff

(p)F(p p)d p

= R• +
1

Keff

F•

(i+1)
= R•

(i+1)
+

1

Keff
(i)

F•
(i)

(i+1)
=

1

Keff
(i)

I R[]
1

F•
(i) Keff

i
= F•

(i)dpd p

LA-UR-04–88177 -7

• Random Walk for particle

• Particle History

Particle Histories

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E, randomly
- tallies

Secondary
Particles

Source
- select r,E,

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

LA-UR-04–88177 -8

Fixed-source Monte Carlo Calculation

Source
- select r,E,

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E,

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E,

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

History 1

History 2

History 3

LA-UR-04–88177 -9

Monte Carlo Eigenvalue calculation

Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Source
- select r,E,

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E,

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E,

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

LA-UR-04–88177 -10

Monte Carlo Solution of Keff Problems

Note: batch = cycle = iteration = generation

• Initialize
– Assume a value for the initial Keff (usually, K0 = 1)
– Sample M fission sites from the initial source distribution

• For each cycle n, n = 1 … N+D
– Follow histories for all source particles in cycle

• If fissions occur, bank the sites for use as source in next cycle
• Make tallies for Kcycle

(n) using path, collision, & absorption estimators
• If n D, discard any tallies

• If n > D, accumulate tallies

– Estimate Kcycle
(n)

• Compute final results & statistics using last N cycles

LA-UR-04–88177 -11

K-Calculations — Convergence

• Guess an initial source distribution
• Iterate until converged (How do you know ???)
• Then

– For Sn code: done, print the results

– For Monte Carlo: start tallies, keep running until uncertainties small enough

• Batch size? Convergence? Stationarity? Bias? Statistics?

Monte Carlo

Deterministic (Sn)

Discard Tallies

K(i)

Iteration, i

LA-UR-04–88177 -12

K-Calculations — Banking Fission Sites

• During a particle random walk,

= expected number of fission neutrons
created at collision point

• Averaged over all collisions for all histories, the expected value for wgt· F/

T is Keff.

• In order to bank approximately the same number of fission sites in each
cycle, the current value of Keff is used to bias the selection of fission sites at
a collision:

wgt F

T

R = wgt F

T

1

K
, n = R

If < R n, store n + 1 sites in bank with wg t = K

Otherwise, store n sites in bank with wg t = K

LA-UR-04–88177 -13

K-Calculations — Renormalization

• NJ = number of particles starting cycle J,

N'J = number of particles created by fission in cycle J
(number of particles stored in fission bank)

– The expected value for N'J is: E[N'J] = Keff• NJ

– (N'J/NJ) is a single-cycle estimator for Keff

• To prevent the number of particles per cycle from growing exponentially (for
K>1) or decreasing to 0 (for K<1), the particle population is renormalized at
the end of each cycle:
– In some Monte Carlo codes, the number of particles starting each cycle is a

constant N. Russian roulette or splitting are used to sample N particles from the
N' particles in the fission bank. (All particles in fission bank have a weight of 1.0)

– In other codes, the total weight W starting each cycle is constant. The
particle weights in the fission bank are renormalized so that the total weight is
changed from W' to W. (Particles in fission bank have equal weights, but not
necessarily 1.0)

LA-UR-04–88177 -14

Single-cycle Keff Estimators

• Pathlength estimator for Keff

• Collision estimator for Keff

• Absorption estimator for Keff

Kpath = wgt j dj

all
flights

F

W

Kcollision = wgt j
F

Tall
collisions

W

Kabsorption = wgt j
F

Aall
absorptions

W

W = total weight
 starting each
 cycle

LA-UR-04–88177 -15

K-Calculations — Overall Keff

• The Keff estimators from each cycle (Kpath, Kcollision, Kabsorption) are used to
compute the overall Kpath, Kcollision, & Kabsorption for the problem & the standard
deviations.

• The Keff estimators from each cycle (Kpath, Kcollision, Kabsorption) can also be
combined to produce a minimum-variance combined result, Kcombination. This
combination must account for correlations between the path, collision, &
absorption estimators

LA-UR-04–88177 -16

K-Calculations — Bias

• The renormalization procedure used at the end of each cycle introduces a
small bias into the computed Keff
– Renormalization involves multiplying particle weights by (W/W'), where W = total

weight starting a cycle,
 W'= total weight at the end of a cycle.

– W' is a random variable, due to fluctuations in particle random walks.

• Theoretical analysis of the MC iteration process & propagation of history
fluctuations gives

– M = histories/cycle

– Bias in Keff ~ 1/M
• Smaller M larger cycle correlation larger bias in Keff & source

• Larger M smaller cycle correlation smaller bias

[T Ueki, "Intergenerational Correlation in Monte Carlo K-Eigenvalue Calculations", Nucl. Sci. Eng. (2002)]

bias in Keff =
k

2

Keff

sum of correlation coeff's

between batch K's

LA-UR-04–88177 -17

K-Calculations — Bias

• For a simple Godiva reactor calculation:

M=10000

M=1000

M=100

M=50
M=25 M=20

LA-UR-04–88177 -18

K-Calculations — Bias

• Observed PDF for single-cycle Keff, for varying M

• Bias in Keff is negative: Kcalc < Ktrue

• Bias is significant for M < 10 particles/cycle
small for M ~ 100
negligible for M > 1000
0 for M

• Recommendation: Always use 1000 or more particles/cycle,
preferably 5000, 10000, or more

1000 particles/cycle

10 particles/cycle
Bias

Single-cycle Keff

fr
eq

u
en

cy

LA-UR-04–88177 -19

K-Calculations — Convergence

• Some number of initial cycles must be discarded
– The source distribution & Keff are not known initially

– Guess at the source & Keff
– Iterate, discarding tallies
– When converged, iterate to accumulate tallies

• Number of iterations to discard depends on the dominance ratio
– Dominance Ratio = K1 / Keff

• Keff = eigenvalue of fundamental eigenmode

• K1 = eigenvalue of first higher eigenmode, K1 < Keff

– If DR close to 1 (e.g., .999…), 100s or 1000s of initial iterations may be
required for initial source distribution errors to die away

– Most statistical tests for convergence are ex post facto tests to look for trends
– Most common practice is to examine plots of Keff vs. cycles

LA-UR-04–88177 -20

K-Calculations — Convergence

• Plots of single-cycle Keff vs. cycle number

LA-UR-04–88177 -21

K-Calculations — Convergence

• Plots of cumulative Keff vs. cycle number

LA-UR-04–88177 -22

K-Calculations — Convergence

• Plots of cumulative Keff vs. number of initial cycles discarded

LA-UR-04–88177 -23

K-Calculations — Convergence

• Keff is an integral quantity – converges faster than source shape

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900 1000

cycle

v
a

lu
e

 d
iv

id
e

d
 b

y
 t

ru
e

 m
e

a
n

keff

source at right
fuel

Keff calculation for 2 nearly symmetric slabs,
with Dominance Ratio = .9925

LA-UR-04–88177 -24

K-Calculations — Convergence

• Choose the number of cycles to discard by examining convergence plots

• Then, choose the total number of cycles to be large enough so that relative
errors are "small enough"
– Always run >25 cycles for tallies, to get good estimates of 2

– Always try to run a few 100 or 1000 cycles for tallies
• Statistical tests on convergence more reliable if more cycles

• Better plots for assessing convergence

• Summary
– Particles per cycle - > 1000
– Discarded cycles - varies, check plots
– Tally cycles - > 100

LA-UR-04–88177 -25

-Eigenvalue Calculations

• Eigenvalue equation with both Keff &
– is a fixed number, not a variable

• Note on the max(/v, 0) and max(- /v, 0) terms

– If < 0, real absorption plus time absorption could be negative
– If < 0, move /v to right side to prevent negative absorption,

– If < 0, - /v term on right side is treated as a delta-function source

– Select a fixed value for
– Solve the K-eigenvalue equations, with fixed time-absorption /v

– Select a different and solve for a new Keff
– Repeat, searching for value of which results in Keff = 1

+ T(r,E) +max(v
,0) (r,E,)

=max(
v
,0) (r,E,) + (r,E ,) S(r,E E,)d dE

+
1
Keff

(E)
4 F(r,E) (r,E ,)d dE

LA-UR-04–88177 -26

Special Topic – Stationarity Tests

• Plots of single-cycle Keff or cumulative Keff are difficult to interpret when
assessing convergence

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0 200 400 600 800 1000

cycle

k
e

ff

uniform initial source

initial source at (1,3) lattice

Cycle keff
50000 histories per cycle

LA-UR-04–88177 -27

Special Topic – Stationarity Tests

• The MCNP team has been investigating new stationarity tests

0.001

0.01

0.1

1

10

0 200 400 600 800 1000

cycle

R
e

la
ti

v
e

 e
n

tr
o

p
y

uniform initial source

initial source at (1,3)

Progressive relative entropy

LA-UR-04–88177 -28

Special Topic – Stationarity Tests

0.01

0.1

1

10

0 200 400 600 800 1000

cycle

R
e

la
ti

v
e

 e
n

tr
o

p
y

uniform initial source
initial source at (1,3)
msl (f=0.05)

Posterior relative entropy
(500 inactive and 500 active cycles)

LA-UR-04–88177 -29

Special Topic – Stationarity Tests

One cycle delay embedding plot of

relative entropy wrt initial source

0.0001

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1 10

relative entropy at cycle "n"

re
la

ti
v
e
 e

n
tr

o
p

y
 a

t
c
y
c
le

 "
n

+
1
"

n=2-2499

n=1

n=101

n=201

n=301

n=401

n=501

n=601

n=2

n=101

n=201

n=301

n=401

n=501

n=601

LA-UR-04–88177 -30

Special Topic – Stationarity Tests

• In a series of related papers, we have significantly extended the theory of Monte Carlo
eigenvalue calculations, explicitly accounting for correlation effects.

LA-UR-02–0190: T Ueki, "Intergenerational Correlation in Monte Carlo K-Eigenvalue
Calculations", Nucl. Sci. Eng. (2002)

LA-UR-01–6770: T Ueki & FB Brown, “Autoregressive Fitting for Monte Carlo K-effective
Confidence Intervals”, ANS Summer Meeting, (June 2002)

LA-UR-02–3783: T Ueki & FB Brown, “Stationarity Diagnostics Using Shannon Entropy in
Monte Carlo Criticality Calculations I: F Test”, ANS Winter Meeting (Nov 2002)

LA-UR-02–6228: T Ueki & FB Brown, “Stationarity and Source Convergence in Monte
Carlo Criticality Calculations”, ANS Topical Meeting on Mathematics &
Computation, Gatlinburg, TN (April, 2003)

LA-UR-03–0106: T Ueki, FB Brown, DK Parsons, "Dominance Ratio Computation via Time
Series Analysis of Monte Carlo Fission Sources" , ANS Annual Meeting (June 2003)

LA-UR-02–5700: T Ueki, FB Brown, DK Parsons, & DE Kornreich, “Autocorrelation and
Dominance Ratio in Monte Carlo Criticality Calculations”, Nucl. Sci. Eng. (Nov 2003)

LA-UR-03–3949: T Ueki & FB Brown, "Informatics Approach to Stationarity Diagnostics of
the Monte Carlo Fission Source Distribution", ANS Winter meeting (Nov 2003)

LA-UR-03–5823: T Ueki, FB Brown, DK Parsons, JS Warsa, "Time Series Analysis of Monte
Carlo Fission Source: I. Dominance Ratio Calculation", Nucl. Sci. Eng. (Nov 2004)

LA-UR-03-????: T Ueki & FB Brown, "Stationarity Modeling and Informatics-Based Diagnostics
in Monte Carlo Criticality Calculations," submitted to Nucl. Sci. Eng.

LA-UR-04–88177 -31

LA-UR-04–88177 -32

LA-UR-04–88178 -1

EigenvalueEigenvalue
CalculationsCalculations

Part IIPart II

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 8

LA-UR-04–88178 -2

Eigenvalue Calculations – Part II

• K-eigenvalue equation

• Solution by power iteration

• Convergence of power iteration

• Stationarity Diagnostics

• Weilandt acceleration method

• Superhistory method

LA-UR-04–88178 -3

K-eigenvalue equation

where

Keff = k-effective, eigenvalue for fundamental mode
= angular flux, for fundamental k-eigenmode

= loss term, leakage
= loss term, collisions

= gain term, scatter from E', ' into E,
= gain term, production from fission

 Jointly find Keff and k(r,E,) such that equation balances

+ T(r,E) k(r,E,) = k(r,E ,) S(r,E E,)d dE

+
1
Keff

(E)
4 F(r,E) k(r,E ,)d dE

 k(r,E,)

k(r,E,)

T(r,E) k(r,E,)

k(r,E ,) S(r,E E,)d dE

1
Keff

(E)
4 F(r,E) k(r,E ,)d dE

LA-UR-04–88178 -4

K-eigenvalue equation

• Use operator (or matrix) form to simplify notation

where
L = leakage operator S = scatter-in operator

T = collision operator M = fission multiplication operator

• Rearrange

 This eigenvalue equation will be solved by power iteration

(L + T) = S +
1
Keff
M

(L + T S) =
1
Keff
M

=
1
Keff

(L + T S) 1M

=
1
Keff

F

LA-UR-04–88178 -5

Power Iteration

Eigenvalue equation

1. Assume that keff and on the right side are known for iteration n,
solve for on left side (for iteration n+1)

 Note: This requires solving the equation below for (n+1),
with Keff

(n) and (n) fixed

2. Then, compute Keff
(n+1)

 (other norms could be used)

=
1
Keff

F

(n+1)
=

1
Keff
(n) F (n)

(L + T S) (n+1)
=

1
Keff
(n) M (n)

Keff
(n+1)

= Keff
(n)

M (n+1)dr

M (n)dr

LA-UR-04–88178 -6

Power Iteration

• Power iteration procedure:

1. Initial guess for Keff and
Keff

(0), (0)

2. Solve for (n+1) [Monte Carlo random walk for N particles]

3. Compute new Keff

4. Repeat 1–3 until both Keff
(n+1) and (n+1) have converged

(n+1)
=

1
Keff
(n) F (n)

Keff
(n+1)

= Keff
(n)

M (n+1)dr

M (n)dr

Source points
for (0)

Source points
for (n+1)

LA-UR-04–88178 -7

Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Power Iteration

• Power iteration for Monte Carlo k-effective calculation

Source particle generation

Monte Carlo random walk
Neutron

LA-UR-04–88178 -8

Power Iteration

Diffusion Theory or
Discrete-ordinates Transport

1. Initial guess for Keff and
Keff

(0), (0)

2. Solve for (n+1)

Inner iterations over space or
 space/angle to solve for (n+1)

3. Compute new Keff

4. Repeat 1–3 until both Keff
(n+1) and

(n+1) have converged

Monte Carlo

1. Initial guess for Keff and
Keff

(0), (0)

2. Solve for (n+1)

Follow particle histories
 to solve for (n+1)

During histories, save fission sites
to use for source in next iteration

3. Compute new Keff

During histories for iteration (n+1),
 estimate Keff

(n+1)

4. Repeat 1–3 until both Keff
(n+1) and

(n+1) have converged
5. Continue iterating, to compute tallies

(L + T S) (n+1)
=

1
Keff
(n) M (n) (L + T S) (n+1)

=
1
Keff
(n) M (n)

Keff
(n+1)

= Keff
(n)

M (n+1)dr

M (n)dr

Keff
(n+1)

= Keff
(n) 1iM

(n+1)

1iM (n)

LA-UR-04–88178 -9

Power Iteration

• Guess an initial source distribution
• Iterate until converged (How do you know ???)
• Then

– For Sn code: done, print the results
– For Monte Carlo: start tallies,

keep running until uncertainties small enough

• Convergence? Stationarity? Bias? Statistics?

Monte Carlo

Deterministic (Sn)

Discard Tallies

Keff
(n)

Iteration, n

LA-UR-04–88178 -10

= ajuj
j=0

= a0u0 + a1u1 + a2u2 + a3u3 +

ujukdV = jk

aj = ujdV

uj =
1
kj
F uj k0 > k1 > k2 > ...

k0 keffective

Power Iteration – Convergence

• Expand in terms of eigenfunctions uj(r,E,)

LA-UR-04–88178 -11

(n+1)
=
1
K(n)

F (n)
=
1
k(n)

1
k(n 1)

...
1
k(0)

Fn (0)

=
k0
K(m)m=0

n

a0
(0) u0 +

aj
(0)

a0
(0)

kj
k0

n+1

uj
j=1

constant[] u0 +
a1
(0)

a0
(0)

k1
k0

n+1

u1 +
a2
(0)

a0
(0)

k2
k0

n+1

u2 + ...

Power Iteration – Convergence

• Expand the initial guess in terms of the eigenmodes

• Substitute the expansion for into eigenvalue equation

(0)
= aj

(0)uj
j=0

LA-UR-04–88178 -12

Power Iteration – Convergence

 Because k0 > k1 > k2 > …, all of the red terms vanish as n ,

thus (n+1) constant u0
K(n+1) k0

(n+1) [cons tant] u0 +
a1
(0)

a0
(0)

k1
k0

n+1

u1 +
a2
(0)

a0
(0)

k2
k0

n+1

u2 + ...

K(n+1) k0

1+
a1
(0)

a0
(0)

k1
k0

n+1

G1 +
a2
(0)

a0
(0)

k2
k0

n+1

G2 + ...

1+
a1
(0)

a0
(0)

k1
k0

n

G1 +
a2
(0)

a0
(0)

k2
k0

n

G2 + ...

where Gm =

Mumdr

Mu0dr

LA-UR-04–88178 -13

Power Iteration – Convergence

• After n iterations, the J-th mode error component is reduced by the
factor (kJ / k0)n

• Since 1 > k1/k0 > k2/k0 > k3/k0 > …,
after the initial transient, error in (n) is dominated by first mode:

• (k1 / k0) is called the dominance ratio, DR or

– Errors die off as ~ (DR)n

– To reduce 10% error .1% error

DR~.9 44 iterations
DR~.99 458 iterations

DR~.999 2301 iterations

(n) [cons tant] i u0 +
a1
(0)

a0
(0)

k1
k0

n

u1 + ...

Initial guess
Exact solution

LA-UR-04–88178 -14

Power Iteration – Convergence

Typical K-effective convergence patterns

• Higher mode error terms die out as (kJ / k0)n, for n iterations

• When initial guess is concentrated in center
of reactor, initial Keff is too high
(underestimates leakage)

• When initial guess is uniformly distributed,
initial Keff is too low (overestimates leakage)

• The Sandwich Method uses 2 Keff calculations -
one starting too high & one starting too low.
Both calculations should converge to the same result.

K

Iteration, n

K

Iteration, n

LA-UR-04–88178 -15

Power Iteration – Convergence

• For problems with a high dominance ratio (e.g., DR ~ .99),
the error in Keff may be small, since the factor (k1/k0 – 1) is small.

 Keff may appear converged,
even if the source distribution is not converged

(n+1) [cons tant] u0 +
a1
(0)

a0
(0)

k1
k0

n+1

u1 + ...

K(n+1) k0

1 +
a1
(0)

a0
(0)

k1
k0

n+1

G1 + ...

1 +
a1
(0)

a0
(0)

k1
k0

n

G1 + ...

k0 1 +
a1
(0)

a0
(0)

k1
k0

n+1

G1 1
a1
(0)

a0
(0)

k1
k0

n

G1

k0 1 +
a1
(0)

a0
(0)

k1
k0

n
k1
k0

1 G1 + ...

LA-UR-04–88178 -16

Power Iteration – Convergence

• Keff is an integral quantity – converges faster than source shape

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900 1000

cycle

v
a

lu
e

 d
iv

id
e

d
 b

y
 t

ru
e

 m
e

a
n

keff

source in
right slab

Keff calculation for 2 nearly symmetric slabs,
with Dominance Ratio = .9925

LA-UR-04–88178 -17

Power Iteration – Convergence

• For Monte Carlo power iteration,
statistical fluctuations in source shape die out gradually over a number of
successive iterations.
– Persistence of the noise over successive iterations gives correlation among

source distributions in successive iterations. (Positive correlation)

– Correlation directly affects confidence intervals:
Serial correlation in the source distribution larger confidence intervals

 Most Monte Carlo codes ignore these correlation effects
& incorrectly underestimate the confidence intervals

Noise (fluctuation)

Exact solution

LA-UR-04–88178 -18

Power Iteration – Convergence

Summary

• Local errors in the source distribution decay as (kJ/k0)n

– Higher eigenmodes die out rapidly, convergence dominated by k1/k0

– High DR slow convergence
– High DR large correlation large error in computed variances

• Errors in Keff decay as (kJ/k0 – 1) * (kJ/k0)n

– High DR kJ/k0 ~ 1 small error

• Keff errors die out faster than local source errors
– Keff is an integral quantity – positive & negative fluctuations cancel

• High DR is common for
– Large reactors, with small leakage
– Heavy-water moderated or reflected reactors
– Loosely-coupled systems

 If local tallies are important (e.g., assembly power, pin power, …),
examine their convergence – not just Keff convergence

LA-UR-04–88178 -19

Keff Calculations – Stationarity Diagnostics

• Plots of single-cycle Keff or cumulative Keff are sometimes difficult to
interpret when assessing convergence

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0 200 400 600 800 1000

cycle

k
e

ff

uniform initial source

initial source at (1,3) lattice

Cycle keff
50000 histories per cycle

LA-UR-04–88178 -20

Keff Calculations – Stationarity Diagnostics

• Initial cycles of a Monte Carlo K-effective calculation should be
discarded, to avoid contaminating results with errors from initial guess
– How many cycles should be discarded?
– How do you know if you discarded enough cycles?

• Analysis of the power iteration method shows that Keff is not a reliable
indicator of convergence — Keff can converge faster than the source
shape

• Based on concepts from information theory,
Shannon entropy of the source distribution is useful for characterizing
the convergence of the source distribution

Discard Tallies

Keff
(n)

Iteration, n

LA-UR-04–88178 -21

Keff Calculations – Stationarity Diagnostics

• Divide the fissionable regions of the problem into NS spatial bins
– Spatial bins should be consistent with problem symmetry
– Typical choices: — 1 bin for each assembly

— regular grid superimposed on core

– Rule-of-thumb for number of spatial bins:
NS ~ (histories/batch) / 25 or less

Why?
• Would like to have >25 fission source sites per bin to get good statistics

• If source distribution were uniform, ~25 sites would be in each bin

• Shannon entropy of the source distribution

H(S) = pJ ln2(pJ), where pJ =
(# source particles in bin J)

(total # source particles in all bins)J=1

NS

LA-UR-04–88178 -22

Keff Calculations – Stationarity Diagnostics

• Shannon entropy of the source distribution

– 0 H(S) ln2(NS)

– Note that pJ ln2(pJ) = 0 if pJ=0

– For a uniform source distribution, p1 = p2 = … = pNs = 1/NS,
so that H(S) = ln2(NS)

– For a point source (in a single bin), H(S) = 0

• H(S(n)) provides a single number to characterize the source
distribution for iteration n
– As the source distribution converges in 3D space,

a line plot of H(S(n)) vs. n (the iteration number) converges

H(S) = pJ ln2(pJ), where pJ =
(# source particles in bin J)

(total # source particles in all bins)J=1

NS

LA-UR-04–88178 -23

Keff Calculations – Stationarity Diagnostics

Figure 3: Posterior computation of relative entropy assuming

the true source is the mean source over 1501-2500 cycles (problem 1)

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 500 1000 1500 2000 2500

cycle

re
la

ti
v
e
 e

n
tr

o
p

y

average over

cycle 1501-2500

0.001

0.01

0.1

1

10

0 200 400 600 800 1000

cycle

R
e

la
ti

v
e

 e
n

tr
o

p
y

uniform initial source

initial source at (1,3)

Progressive relative entropy

One cycle delay embedding plot of

relative entropy wrt initial source

0.0001

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1 10

relative entropy at cycle "n"

re
la

ti
v

e
 e

n
tr

o
p

y
 a

t
c

y
c

le
 "

n
+

1
"

n=2-2499

n=1

n=101

n=201

n=301

n=401

n=501

n=601

n=2

n=101

n=201

n=301

n=401

n=501

n=601

LA-UR-04–88178 -24

Keff Calculations – Stationarity Diagnostics

• Example – Reactor core (Problem inp24)

Keff vs cycle

H(fission source)

Keff

LA-UR-04–88178 -25

Keff Calculations – Stationarity Diagnostics

• Example – Loosely-coupled array of spheres (Problem test4s)

Keff vs cycle

H(fission source)

Keff

LA-UR-04–88178 -26

Keff Calculations – Stationarity Diagnostics

• Example – Fuel Storage Vault (Problem OECD_bench1)

Keff vs cycle

H(fission source)

Keff

LA-UR-04–88178 -27

Wielandt Method

• Basic transport equation for eigenvalue problems

L = loss to leakage S = gain from scatter-in
T = loss to collisions M = gain from fission multiplication

• Define a fixed parameter ke such that ke > k0 (k0 = exact eigenvalue)

• Subtract from each side of the transport equation

• Solve the modified transport equation by power iteration

(L + T S) =
1
Keff
M

1
ke
M

(L + T S 1
ke
M) = (1

Keff
1
ke
)M

(L + T S 1
ke
M) (n+1)

= (1
Keff
(n)

1
ke
)M (n)

LA-UR-04–88178 -28

Wielandt Method

• Power iteration for modified transport equation

• How to choose ke

– ke must be larger than k0 (but, don't know k0!)
– ke must be held constant for all of the histories in a batch,

 but can be adjusted between batches
• Typically, guess a large initial value for ke, such as ke=5 or ke=2
• Run a few batches, keeping ke fixed, to get an initial estimate of Keff

• Adjust ke to a value slightly larger than the estimated Keff

• Run more batches, possibly adjusting ke if the estimated Keff changes

(L + T S 1
ke
M) (n+1)

= (1
Keff
(n)

1
ke
)M (n)

(n+1)
= (1

Keff
(n)

1
ke
) (L + T S 1

ke
M) 1M (n)

(n+1)
=

1
K(n)

F (n)

where K(n)
= (1

Keff
(n)

1
ke
) 1 or Keff

(n)
= (1

K(n)
+

1
ke
) 1

LA-UR-04–88178 -29

Wielandt Method

• Convergence
– Eigenfunctions for the Wielandt method are same as for basic power iteration
– Eigenvalues are shifted:

– Expand the initial guess, substitute into Wielandt method, rearrange to:

– Additional factor (ke-k0)/(ke-k1) is less than 1 and positive, so that the red
terms die out faster than for standard power iteration

(n+1) [cons tant] u0 +
a1
(0)

a0
(0)

ke k0
ke k1

k1
k0

n+1

u1 + ...

K(n+1) k0 1 +
a1
(0)

a0
(0)

ke k0
ke k1

k1
k0

n
ke k0
ke k1

k1
k0

1 G1 + ...

kJ =

1
kJ

1
ke

1
ke > k0 > k1 > ...

LA-UR-04–88178 -30

Wielandt Method

• The dominance ratio for this modified power iteration is

– Since ke > k0 and k0 > k1, DR' < DR
– DR of Wielandt method is always smaller than standard power iteration

• Wielandt acceleration improves the convergence rate of the power
iteration method for solving the k-eigenvalue equation

 Weilandt method converges at a faster rate than power iteration

DR =
k1
k0

=
[1k1

1
ke
] 1

[1k0
1
ke
] 1

=
ke k0
ke k1

k1
k0

=
ke k0
ke k1

DR

Standard power iteration

K(n)

Iteration, n

Power iteration with Wielandt acceleration

LA-UR-04–88178 -31

Wielandt Method

• Monte Carlo procedure for Wielandt acceleration

• For standard Monte Carlo (power iteration) in generation n+1
– When a collision occurs, the expected number of fission neutrons produced is

– Store nF copies of particle in the "fission bank"
– Use the fission bank as the source for the next generation (n+2)

• For Monte Carlo Wielandt method in generation n+1
– When a collision occurs, compute 2 expected numbers of fission neutrons

– Note that E[n'F + n'e] = E[nF]
– Store n'F copies of particle in the "fission bank"
– Follow n'e copies of the particle in the current generation (n+1)
– Use the fission bank as the source for the next generation (n+2)

(L + T S 1
ke
M) (n+1)

= (1
Keff
(n)

1
ke
)M (n)

nF = wgt F

T

1
K(n)

+

nF = wgt F

T

1
K(n)

1
ke

+ ne = wgt F

T

1
ke

+

LA-UR-04–88178 -32

Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Wielandt Method

• Power iteration for Monte Carlo k-effective calculation

Source particle generation

Monte Carlo random walk
Neutron

LA-UR-04–88178 -33

Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(2)

Batch 3
Keff

(3)
Batch 4

Keff
(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Wielandt Method

• Wielandt method for Monte Carlo k-effective calculation

Source particle generation

Monte Carlo random walk

Neutron

Additional Monte Carlo random walks
 within generation due to Wielandt method

LA-UR-04–88178 -34

Wielandt Method

Summary

• Wielandt Method has a lower DR than power iteration
– Faster convergence rate than power iteration fewer iterations

– Some of the particle random walks are moved from the next
generation into the current generation more work per iteration

– Same total number of random walks no reduction in CPU time

• Advantages
– Reduced chance of false convergence for very slowly converging

problems

– Reduced inter-generation correlation effects on variance

– Fission source distribution spreads more widely in a generation (due
to the additional particle random walks), which should result in more
interactions for loosely-coupled problems

LA-UR-04–88178 -35

Superhistory Method

• Standard generation model, solved by power iteration

• Superhistory method
– Follow several generations (L) before recomputing Keff and renormalizing

• Convergence
– Same eigenfunctions as standard power iteration
– Eigenvalues are k0

L, k1
L, k2

L, …

– DR' = DRL, where DR = dominance ratio for power iteration
– Fewer iterations, but L generations per iteration same work as power iteration

– Same convergence rate as power iteration

• Advantages
– Reduced correlation between iterations
– Fewer renormalizations

(n+1)
=

1
Keff
(n) F (n)

(n+1)
=

1
K(n)

F (n), with F = FL, K(n) = (Keff
(n))L

LA-UR-04–88178 -36

Superhistory Method

• Superhistory Method for Monte Carlo k-effective calculation

Initial
Guess

Batch 1
Keff

(1)
Batch 2

Keff
(4)

Batch 1
Source

Batch 2
Source

Batch 3
Source

Source particle generation

Monte Carlo random walk
Neutron

Example with L = 2 generations/batch

LA-UR-04–88178 -37

References

Monte Carlo k-effective Calculations

J. Lieberoth, "A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the
Boltzmann Transport Equation," Nukleonik 11,213 (1968).

M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal Reactors," Nucl. Sci
Eng. 32, 319–331 (1968).

H. Rief and H. Kschwendt, "Reactor Analysis by Monte Carlo," Nucl. Sci. Eng., 30, 395
(1967).

W. Goad and R. Johnston, "A Monte Carlo Method for Criticality Problems," Nucl. Sci. Eng.
5, 371–375 (1959).

Superhistory Method

R.J. Brissenden and A.R. Garlick, "Biases in the Estimation of Keff and Its Error by Monte
Carlo Methods," Ann. Nucl. Energy, Vol 13, No. 2, 63–83 (1986).

Wielandt Method

T Yamamoto & Y Miyoshi, "Reliable Method for Fission Source Convergence of Monte
Carlo Criticality Calculation with Wielandt's Method", J. Nuc. Sci. Tech., 41, No. 2, 99-
107 (Feb 2004).

S Nakamura, Computational Methods in Engineering and Science, R. E. Krieger Pub.
Company, Malabar, FL (1986).

Sandwich Method
J Yang & Y. Naito, "The Sandwich Method for Determining Source Convergence in Monte

Carlo Calculations", Proc. 7th Int. Conf. Nuclear Criticality Safety, ICNC2003, Tokai-
mura, Iburaki, Japan, Oct 20–24, 2003, JAERI-Conf 2003–019, 352 (2003).

LA-UR-04–88178 -38

References

Stationarity Diagnostics & Correlation in Monte Carlo k-effective Calculations

T. Ueki, “Intergenerational Correlation in Monte Carlo k-Eigenvalue Calculation,” Nuc. Sci. Eng., 141, 101 (2002).

T. Ueki and F.B. Brown, “Autoregressive Fitting for Monte Carlo K-effective Confidence Intervals”, Trans. Am. Nuc. Soc.
86, 210 (2002).

T. Ueki and F.B. Brown, “Stationarity Diagnostics Using Shannon Entropy in Monte Carlo Criticality Calculation I: F test,”
Trans. Am. Nuc, 87, 156 (2002).

T. Ueki and F.B. Brown, “Stationarity and Source Convergence Diagnostics in Monte Carlo Criticality Calculation,”
proceedings of M&C 2003, ANS Topical Meeting, Gatlinburg, Tennessee (April, 2003).

T. Ueki, F.B. Brown and D.K. Parsons, “Dominance Ratio Computation via Time Series Analysis of Monte Carlo Fission
Sources,” Trans. Am. Nuc, 88, 309 (2003).

T. Ueki and F.B. Brown, “Informatics Approach to Stationarity Diagnostics of the Monte Carlo Fission Source
Distribution,” Trans. Am. Nuc, 89, 458 (2003).

T. Ueki, F.B. Brown, D.K. Parsons, and D.E. Kornreich, “Autocorrelation and Dominance Ratio in Monte Carlo Criticality
Calculations,” Nuc. Sci. Eng., 145, 279 (2003).

T. Ueki, F.B. Brown, D.K. Parsons, and J.S. Warsa, “Time Series Analysis of Monte Carlo Fission Sources: I.
Dominance Ratio Computation,” Nuc. Sci. Eng., 148, 374 (2004).

T. Ueki, “Entropy and Undersampling in Monte Carlo Criticality Calculations,” Trans. Am. Nuc, 91, 119 (2004).

T. Ueki, “Time Series Modeling and MacMillan’s Formula for Monte Carlo Iterated-Source Methods,” Trans. Am. Nuc ,
90, 449 (2004).

T. Ueki, “Principal Component Analysis for Monte Carlo Criticality/Eigenvalue Calculations,” Trans. Am. Nuc , 90, 461
(2004).

T. Ueki and F.B. Brown, “Stationarity Modeling and Informatics-Based Diagnostics in Monte Carlo Criticality
Calculations,” Nuc. Sci. Eng., 149, 38 (2005).

T. Ueki, “Asymptotic Equipartition Property and Undersampling Diagnostics in Monte Carlo Criticality Calculations,”
proceedings of MC 2005, ANS Topical Meeting in Monte Carlo, Chattanooga, TN (2005).

T. Ueki, “Information Theory and Undersampling Diagnostics for Monte Carlo Simulation of Nuclear Criticality,” Nuc. Sci.
Eng., in press.

T. Ueki, “Time Series Analysis of Monte Carlo Fission Sources: II. k-effective Confidence Interval,” Nuc. Sci. Eng.,
submitted

LA-UR-04–88178 -39

LA-UR-04–88178 -40

LA-UR-04–88179 -1

VarianceVariance
ReductionReduction

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 9

LA-UR-04–88179 -2

Monte Carlo Calculations

• Variance reduction

– Modify the PDFs for physics interactions to favor events of interest
– Use splitting/rouletting to increase particles in certain geometric regions
– Kill particles in uninteresting parts of problem

• May be necessary in order to sample rare events
• More samples (with less weight each) —> smaller variance in tallies

 Physics
• How far to collision?

• Which nuclide?

• New E, direction?

• Secondaries?

• Survival?

 Tallies
• Tally events of interest

• Compute results

• Compute statistics

• Balances

• Performance stats

 Geometry
• Which cell is particle in?

• What will it hit next?

• How far to boundary?

• What’s on other side?

• Survival?

 mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..

LA-UR-04–88179 -3

Monte Carlo Estimates of Integrals

Given a function R(x), where x is a random variable with PDF f(x),

– Expected value of R(x) is

– Variance of R(x) is

Monte Carlo method for estimating μ

– make N random samples from f(x)

– Then

μ = R(x) f(x) dx

R
1

N
R(ˆ x j)

j= 1

N

R
2 1

N 1
1
N

R2 (ˆ x j) R 2

j= 1

N

ˆ x j

2

= R
2 (x) f(x) dx μ

2

LA-UR-04–88179 -4

Variance Reduction – Basic Idea

2

= R(x)[]
2
f(x) dx μ

2

μ = R(x) f(x) dx = R(x)

f(x)

g(x)

 g(x)dx

•Sample x' from f(x)

•Tally R(x')

•Sample x' from g(x)

•Tally R(x') • f(x')/g(x')

•Expected mean score is not changed by variance reduction

•Variance is changed due to altered sampling scheme

2
= R(x)

f(x)

g(x)

2

g(x) dx μ
2

Goal: Choose g(x) such that variance is reduced

LA-UR-04–88179 -5

Review

• Given a set of random samples, x1, x2, …, xN,

– Mean

– Variance of the mean

– Relative Error

– Figure of Merit

• Variance reduction: Reduce RE or T, to increase FOM

x =
1

N
xj

j= 1

N

x
2

=
1

N 1

1

N
xj

2

j= 1

N

x 2

RE =

x

x

FOM =
1

RE2 T

LA-UR-04–88179 -6

Analog vs. Weighted Monte Carlo

• Analog Monte Carlo
– Faithful simulation of particle histories

– No alteration of PDFs (i.e., no biasing or variance reduction)
– Particle is born with weight = 1.0
– Weight unchanged throughout history until particle is killed

– Scores are weighted by 1.0 when tallying events of interest

• Weighted Monte Carlo (non-analog)
– Alter the PDFs to favor events of interest
– Particle is born with weight = 1.0

– Weight, wgt, is altered if biased PDF is used
– Weight can also be changed by Russian roulette/splitting & other variance

reduction techniques
– Scores are weighted by wgt when tallying events of interest

LA-UR-04–88179 -7

Variance Reduction – General Approaches

• Truncation
– Remove particles from parts of phase space that do not contribute

significantly to the tallies

• Population control
– Use particle splitting and Russian rouletting to control the number of

samples taken in various regions of phase space

• Modified sampling
– Modify the PDFs representing problem physics, to favor tallies of interest

• Deterministic methods
– Replace portions of a particle random walk by the expected results

obtained from a deterministic calculation

LA-UR-04–88179 -8

Typical Variance Reduction Techniques

• MCNP has 14 variance reduction techniques
1. Time and energy cutoffs

2. Geometry splitting & roulette

3. Weight windows

4. Exponential transform

5. Forced collisions

6. Energy splitting & roulette

7. Time splitting & roulette

8. Point and ring detectors

9. DXTRAN

10. Implicit capture

11. Weight cutoff

12. General source biasing

13. Secondary particle biasing

14. Bremsstrahlung energy biasing

LA-UR-04–88179 -9

Survival Biasing

• Also called implicit absorption or non-absorption weighting

• Modify collision process according to expected outcome

• Particle always survives collision

– Tally expected absorption, wgt • (A/ T)

– Reduce weight of surviving particle, wgt' = wgt • (1 – A/ T)

• Extends particle history so that more particles reach events which occur after many
collisions

• Most effective for thermal reactor problems, but doesn't hurt in other types of problems

• Must also use some form of low-weight cutoff to eliminate particles with very low
weight

LA-UR-04–88179 -10

Geometry Splitting & Russian Roulette

• Increase the number of particles in "important" regions, decrease the number of
particles in "unimportant" regions

• Assign each cell an importance, Icell

– Arbitrary, use best guess or adjoint fluxes from deterministic calculation

– Could use one value for all energies or separate values for different
energy ranges

– Higher value —> more important
– Icell > 0

– Icell=0 is a way to declare regions as not in physical problem
– Values of Icell must not change during Monte Carlo calculation

• Modify random walk simulation at surface crossings:

– If (Ienter/Ileave) > 1, perform splitting
– If (Ienter/Ileave) < 1, perform Russian roulette

LA-UR-04–88179 -11

Geometry Splitting & Russian Roulette

• Let r = IB / IA
n = r

• If n > 1, split into n particles with weight (wgt/n)

– All of the n particles emerging from splitting have identical attributes
(e.g., x,y,z, u,v,w, E) including wgt' = wgt/n

– All of the n particles from a splitting are part of the same history, and
their tallies must be combined

– Typically, (n-1) particles are banked, 1 particle is followed until its death,
then a particle is removed from the bank & followed, etc.

• Avoid over-splitting
– Splitting into a large number of particles can increase CPU-time & lead

to (apparent) bias in results
– Typically, choose cell importances to split 2-for-1 or 3-for-1
– Typically, can limit the splitting to n-for-1 or less

• Total particle weight is exactly conserved in splitting

Cell A

IA

Cell B

IB

IB > IA

LA-UR-04–88179 -12

Geometry Splitting & Russian Roulette

• Let r = IB / IA

• If r < 1, play Russian roulette

– With probability r, keep the particle & alter its weight to (wgt/r)
– With probability (1-r), kill the particle (set its weight to 0)

if < r,
 wgt' = wgt/r
else
 wgt' = 0

• Russian roulette effectively merges a number of low-weight particles into one with
higher weight

• Total particle weight is only conserved statistically (expected value)

Cell A

IA

Cell B

IB

IB < IA

?

LA-UR-04–88179 -13

Weight Cutoff

• Specify a cutoff weight, Wlow,
and a survival weight, Wave

• If particle weight drops below
Wlow, play Russian roulette with
weight of Wave for survivors

– Probability of surviving RR = wgt/Wave

– Probability of being killed = 1 – wgt/Wave

If wgt < Wlow,

if < wgt/Wave,
 wgt' = Wave

else
 wgt' = 0

• Expected value of surviving weight is conserved, (wgt/Wave)•Wave

Wave

Wlow

Particle

Weight

Set wgt to Wave

Or kill ??

LA-UR-04–88179 -14

Weight Cutoff

• In some codes (e.g., MCNP), the weight cutoff parameters are functions of cell
importance

– Let Rj = (importance of source cell) / (importance of cell j)

– Then, Wave(j) = Wave • Rj

Wlow(j) = Wlow • Rj

• Weight cutoffs reduce computing time, not variance

• Weight cutoffs can be applied anytime the particle weight changes – after collisions,
after boundary crossings, …

LA-UR-04–88179 -15

Weight Windows

• Prevent particle weights from getting too large or too small
– Weight too large —> splitting

– Weight too small —> Russian Roulette

LA-UR-04–88179 -16

Weight Windows

• Large fluctuations in particle weights contributing to a tally lead to larger variance

• Weight windows eliminate large or small weights (outside the window) by creating or
destroying particles

• Weight windows can be applied any time – after collisions, after surface crossings, …

If wgt > Whi

 splitting
Elseif wgt < Wlow

 roulette

LA-UR-04–88179 -17

Weight Windows

• MCNP weight window scheme
Input: Wlow for each cell (can be energy or time dependent),

[Wave/Wlow], [Whi/Wlow], mxspln

If wgt > Whi

n = min(mxspln, 1 + wgt/Whi) <— max splitting is mxspln-to-1
wgt = wgt/n
bank n-1 copies of particle <— n-to-1 splitting

Elseif wgt < Wlow

P = max(1/mxspln, wgt/Wave) <— limits survivor to mxspln*wgt

if < P
 wgt = wgt/P <— particle survives
else

 wgt = 0 <— particle killed

LA-UR-04–88179 -18

Source Biasing

• Bias the PDFs used to select the angle, energy, or position or source
particles

– Produce more source particles (with lower weights) in desired parts of
phase space

True source: f(R,E,)

Sample (R',E', ') from g(R,E,)

& assign weight f(R',E', ')/g(R',E', ') to source particle

Choose g(R,E,) to favor directions more important to tallies

LA-UR-04–88179 -19

Forced Collisions

• Particles entering specified cells are split into collided & uncollided parts
– For distance-to-boundary d

Prob(no collision) = exp(- Td)
Prob(collision) = 1 – exp(- Td)

d

 wgt e Td

wgt 1 e Td()

LA-UR-04–88179 -20

Forced Collisions

• Sampling the flight distance s for a forced collision with max flight distance d

Sampling from a truncated exponential PDF:

f(s) = T

e Ts

1 e Td
, 0 s d

F(s) =
1 e Ts

1 e Td

Solve for s : = F(s)

s =
ln 1 (1 e Td)[]

T

LA-UR-04–88179 -21

Exponential Transform

• Encourage particles to head in a certain preferred direction, 0

– Replace T by *= T [1 – p 0]

• p = a parameter, 0<p<1

• 0 = unit vector from particle position to detector

• = actual particle direction

– Sample flight distance s' from g(s) = *exp(- *s)

– Adjust weight by factor:

f(s')/g(s') = exp(-p 0 Ts')/[1 – p 0]

• Paths toward detector are stretched (* < T)
• Paths away from detector are shortened (* > T)

0

Source or

Collision point
Detector

LA-UR-04–88179 -22

Variance Reduction Goals & Cautions

• Maximize FOM – either reduce RE or T

• Keep the number of particles per cell roughly constant from source to
detector

• Reduce the number of particles in unimportant regions

• Achieve adequate sampling of all portions of phase space

• Avoid over-biasing (e.g., over-splitting)

• Ensure that tallies pass statistical checks

LA-UR-04–88179 -23

References

– T.E. Booth, "A Sample Problem for Variance Reduction in MCNP",
LA-10363-MS, LANL Report (Oct 1985)

– X-5 Monte Carlo Team, "MCNP – A General Monte Carlo N-Particle Transport
Code, Version 5", LA-UR-03–1987 (April 2003)

– L.L. Carter & E.D. Cashwell, "Particle Transport Simulation with the Monte
Carlo Method", TID-26607, National Technical Information
Service (1975)

LA-UR-04–88179 -24

LA-UR-04–881710 -1

ParallelParallel
Monte CarloMonte Carlo

Forrest B. Brown
Diagnostics Applications Group (X-5)

Los Alamos National Laboratory

Fundamentals of Monte Carlo Particle Transport

Lecture 10

LA-UR-04–881710 -2

Parallel Monte Carlo

• Parallel Computing
– Parallel Computers

– Message Passing
– Threads
– Amdahl's Law

• Parallel Monte Carlo
– Parallel Algorithms
– Histories, Random Numbers, Tallies

– Load Balancing, Fault Tolerance, …

• Parallel Monte Carlo Performance
– Performance Measures & Limits

– Parallel Scaling

• MCNP5 Parallel Processing
– MCNP5 parallelism

– MPI or PVM + Threads
– Run Commands & Input Options

– Performance on ASCI Tera-scale systems
– Parallel Processing for Large-scale Calculations

LA-UR-04–881710 -3

Parallel
Computing

LA-UR-04–881710 -4

Perspective

• Fast desktop computers
1980s super: 200 MHz 16 MB 10 GB $ 20 M
Today, PC: 2000 MHz 1000 MB 100 GB $ 2 K

• Linux clusters + MPI
– Cheap parallel computing
– Everyone can do parallel computing, not just national labs

• Mature Monte Carlo codes
– MCNP, VIM, KENO, MCBEND, MONK, COG, TART, RACER, RCP, …

• New generation of engineers/scientists
– Less patience for esoteric theory & tedious computing procedures
– Computers are tools, not to be worshipped
– What's a slide rule ???

 More calculations with Monte Carlo codes

LA-UR-04–881710 -5

Trends in Computing Technology

• Commodity chips
– Microprocessor speed ~2x gain / 18 months

– Memory size ~2x gain / 18 months
– Memory latency ~ no change (getting worse)

• High-end scientific computing
– Key driver (or limit) economics: mass production of

desktop PCs & commercial servers

– Architecture clusters: with small/moderate
number of commodity
microprocessors on each node

• Operating systems
– Desktop & server Windows, Linux
– Supercomputers Unix, Linux

CPU performance on supercomputer same as desktop PC
High-performance scientific computing parallel computing

LA-UR-04–881710 -6

Parallel Computers
G

F
L

O
P

s
p

er
 P

ro
ce

ss
o

r

Number of Processors

100 102 104 106 108 1010

100

102

104

106

10-2

1 GFLOP
1 TFLOP

1 PFLOP

1 GFLOP = 109 FLOP
1 TFLOP = 1012 FLOP
1 PFLOP = 1015 FLOP

Teraflop computers 1000's of processors

Petaflop computers 105 processors ?

LA-UR-04–881710 -7

Parallel Computers

• Characterize computers by:
– CPU: scalar, vector, superscalar, RISC, …..
– Memory: shared, distributed, cache, banks, bandwidth, …..

– Interconnects: bus, switch, ring, grid, …..

• Basic types:

CPU

Mem

CPU CPU CPU…..

Mem

CPU

Mem

CPU

Mem

CPU

Mem

….. CPU CPU

Mem

CPU CPU
CPU CPU

Mem

CPU CPU
CPU CPU

Mem

CPU CPU

…..

Traditional Shared Memory Parallel

Distributed Memory Parallel Clustered Shared Memory

LA-UR-04–881710 -8

Approaches to Parallel Processing

High-level • Independent programs + message-passing
• Distribute work among processors
• Loosely-coupled
• Programmer must modify high-level algorithms

Mid-level • Threads (task-level)
• Independent tasks (subprograms) + shared memory
• For shared memory access, use locks on critical regions
• Compiler directives by programmers

Low-level • Threads (loop-level)
• Split DO-loop into pieces, compute, synchronize
• Compiler directives by programmers

Low-level • Pipelining or vectorization
• Pipelined execution of DO-loops
• Automatic vectorization by compilers &/or hardware,

or compiler directives by programmers

LA-UR-04–881710 -9

Message-passing

– Independent programs

– Separate memory address space for each program (private memory)
– All control information & data must be passed between programs by

explicit messages (SENDs & RECEIVEs)

– Can run on distributed or shared memory systems
– Efficient only when Tcomputation >> Tmessages

– Standard message-passing:

• MPI
• PVM

Program A

Program B

Program B Lots of computation

Interchange data
via messages

LA-UR-04–881710 -10

Threading (task-level)

– Single program, independent sections or subprograms
– Each thread executes a portion of the program

– Common address space, must distinguish private & shared data
– Critical sections must be "locked"
– Can run only on shared memory systems, not distributed memory

– Thread control by means of compiler directives
– Standard threading:

• OpenMP

 program A
 …..
 !$omp parallel
 call trnspt
 !$omp end parallel
 …..
 end program A

 subroutine trnspt
 …..
 return
 end subroutine trnspt

 subroutine trnspt
 …..
 return
 end subroutine trnspt

Shared
Data

Address space for Program A

LA-UR-04–881710 -11

Threading (loop-level)

– Single DO-loop within program

– Each loop iteration must be independent

– Each thread executes different portion of DO-loop

– Invoked via compiler directives

– Standard threading:

• OpenMP

 !$omp do parallel
 do k=1,n
 c(k) = a(k)+b(k)
 enddo

 do k=1,n,2
 c(k) = a(k)+b(k)
 enddo

 do k=2,n,2
 c(k) = a(k)+b(k)
 enddo

LA-UR-04–881710 -12

Domain Decomposition

– Coarse-grained parallelism, high-level
– For mesh-based programs:

1. Partition physical problem into blocks (domains)

2. Solve blocks separately (in parallel)

3. Exchange boundary values as needed

4. Iterate on global solution

– Revised iteration scheme may affect convergence rates

– Domain decomposition is often used when the entire problem will not fit in the
memory of a single SMP node

Collect
Problem
Results

Decompose
Computational

Problem

Analyze
Subdomains

In parallel

LA-UR-04–881710 -13

Amdahl's Law

If a computation has fast (parallel) and slow (scalar) components, the overall
calculation time will be dominated by the slower component

Overall System = Single CPU * ____1____
 Performance Performance 1-F + F/N

 where F = fraction of work performed in parallel

N = number of parallel processors
 Speedup = 1 / (1-F + F/N)

For N=10 For N=infinity
F S F S F S F S
20% 1.2 90% 5.3 20% 1.3 90% 10

40% 1.6 95% 6.9 40% 1.7 95% 20
60% 2.2 99% 9.2 60% 2.5 99% 100
80% 3.6 99.5% 9.6 80% 5 99.5% 200

LA-UR-04–881710 -14

Amdahl's Law

My favorite example …..

Which system is faster?

System A: (16 processors)•(1 GFLOP each) = 16 GFLOP total

System B: (10,000 procs)•(100 MFLOP each) = 1,000 GFLOP total

Apply Amdahl's law, solve for F:

1 / (1-F + F/16) = .1 / (1-F + F/10000)

 System A is faster, unless >99.3% of work is parallel

• In general, a smaller number of fatter nodes is better

• For effective parallel speedups, must parallelize everything

LA-UR-04–881710 -15

Parallel
Monte Carlo

LA-UR-04–881710 -16

Parallel Algorithms

• Possible parallel schemes:

– Jobs run many sequential MC calculations, combine results

– Functional sources, tallies, geometry, collisions, …..

– Phase space space, angle, energy

– Histories Divide total number of histories among processors

• All successful parallel Monte Carlo algorithms to date have been
history-based.

– Parallel jobs always works, variation on parallel histories
– Some limited success with spatial domain decomposition

LA-UR-04–881710 -17

Master / Slave Algorithm (Simple)

• Master task: control + combine tallies from each slave

• Slave tasks: Run histories, tallies in private memory

– Initialize:
Master sends problem description to each slave

(geometry, tally specs, material definitions, …)
– Compute, on each of N slaves:

Each slave task runs 1/N of total histories.

Tallies in private memory.
Send tally results back to Master.

– Combine tallies:
Master receives tallies from each slave &

combines them into overall results.

• Concerns:
– Random number usage
– Load-balancing

– Fault tolerance (rendezvous for checkpoint)
– Scaling

LA-UR-04–881710 -18

Master / Slave Algorithm (Simple)

Control + Bookkeeping Computation

Master

 ! initialize
 do n=1,nslaves
 send_info(n)

 ! Compute
 nchunk = nhistories / nslaves
 do n=1,nslaves
 k1 = 1 + (n-1)*nchunk
 k2 = min(k1+nchunk, nhistories)
 send_control(n, k1,k2)

 ! Collect & combine results
 totals(:) = 0
 do n=1,nslaves
 recv_tallies(n)
 add_tallies_to_totals()

 ! Done
 print_results()
 save_files()

Slave 3

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

Slave 2

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

Slave 1

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

LA-UR-04–881710 -19

• Linear Congruential RN Generator
Sk+1 = g Sk + C mod 2M

• RN Sequence & Particle Histories
••••••••••••••• ••••••••••••••• •••••••••••••••
1 2 3 etc.

MCNP stride for new history: 152,917

• To skip ahead k steps in the RN sequence:
Sk = g Sk-1 + C mod 2M = gk S0 + C (gk-1)/(g-1) mod 2M

• Initial seed for n-th history
S0

(n) = gn*152917 S0 + C (gn*152917-1)/(g-1) mod 2M

This is easy to compute quickly using exact integer arithmetic

• Each history has a unique number
– Initial problem seed initial seed for nth particle on mth processor
– If slave knows initial problem seed & unique history number, can initialize

RN generator for that history

Random Number Usage

LA-UR-04–881710 -20

Fault Tolerance

• On parallel systems with complex system software & many CPUs,
interconnects, disks, memory, MTBF for system is a major concern.

• Simplest approach to fault tolerance:
– Dump checkpoint files every M histories (or XX minutes)

– If system crashes, restart problem from last checkpoint

• Algorithm considerations
– Rendezvous every M histories.
– Slaves send current state to master, master saves checkpoint files

– Parallel efficiency affected by M.

LA-UR-04–881710 -21

Fault Tolerance

• For efficiency, want (compute time) >> (rendezvous time)

– Compute time: Proportional to #histories/task

– Rendezvous time: Depends on amount of tally data &
latency+bandwidth for message-passing

M

S S S

RendezvousComputeControl

Repeat…

LA-UR-04–881710 -22

Master / Slave Algorithm, with Rendezvous

– Initialize:

Master sends problem description to each slave
(geometry, tally specs, material definitions, …)

– For rendezvous = 1, L

• Compute, on each of N slaves:

Each slave task runs 1/N of (total histories)/L.
Tallies in private memory.
Send tally results back to Master.

• Combine tallies:
Master receives tallies from each slave &

combines them into overall results.
• Checkpoint:

Master saves current tallies & restart info in file(s)

LA-UR-04–881710 -23

Load Balancing

• Time per history may vary significantly
– For problems using variance reduction:

• Particles headed in "wrong" direction may be killed quickly, leading to a short history.

• Particles headed in "right" direction may be split repeatedly. Since the split particles
created are part of the same history, may give a very long history.

– For problems run on a workstation cluster:
• Workstation nodes in the cluster may have different CPU speeds

• Workstations in the cluster may be simultaneously used for interactive work, with highly
variable CPU usage on that node.

• Node performance effectively varies continuously over time.

• Naïve solution
– Monitor performance per node (e.g., histories/minute)
– Periodically adjust number of histories assigned to each node, according to node

performance

histories assigned to node n ~ measured speed of node n

• Better solution: self-scheduling

LA-UR-04–881710 -24

Load Balancing – Self-Scheduling

• For a problem with N slave processors,
divide histories into more than N chunks.

– Let L = number of chunks, L > N
– Typically, L ~ 20 N or L ~ 30 N

– Histories/chunk = (total histories) / L

– Slave: If idle, ask master for work. Repeat until no more work.

– Master: Send chunk of work to idle slave. Repeat until no more work.

– On average, imbalance in workload should be < 1/L

• Additional gains:
– Naïve master/slave algorithm is synchronous
– Self-scheduling master/slave algorithm is asynchronous. More overlap of

communication & computation reduced wait times & better performance

LA-UR-04–881710 -25

Load Balancing – Self-Scheduling

• Much more communication with Master, but only minimal amount of control
info needed (1st & last history in chunk)

• Need to handle stopping condition carefully –
avoid "dangling" messages

M

S S S

RendezvousComputeControl

Repeat…
Fast CPU
Medium CPU
Slow CPU

Each arrow: same # histories

LA-UR-04–881710 -26

 Load Balancing – Self-Scheduling

Master

 ! initialize
 do n=1,nslaves
 send_info(n)

 ! Compute
 nchunks = nslaves*20
 nh = nhistories / nchunks
 do n=1,nchunks
 k1 = 1 + (n-1)*nh
 k2 = min(k1+nh, nhistories)
 recv_idle_proc(M)
 send_control(M, k1,k2)
 enddo

 ! Collect & combine results
 totals(:) = 0
 do n=1,nslaves
 recv_idle_proc(M)
 send_control(M, 0, -1)
 recv_tallies(M)
 add_tallies_to_totals()
 enddo

 ! Done
 print_results()
 save_files()

Slave 3

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

Slave 2

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

Slave 1

 ! Initialize
 recv_info()

 ! Compute
 do
 send_idle_proc()
 recv_control(k1, k2)
 if(k1>k2) exit
 do k=k1,k2
 run_history(k)
 enddo
 enddo

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

LA-UR-04–881710 -27

Hierarchical Parallelism

• For clustered SMPs,
– Use message-passing to distribute work among slaves ("boxes")

– Use threading to distribute histories among individual processors on box

• Only the master thread (thread 0) on each slave
uses MPI send/recv's

Master

Slave SlaveSlave

HistoriesHistories HistoriesHistories HistoriesHistories

Message-passing

Threads Threads Threads

LA-UR-04–881710 -28

Master / Slave Algorithm, threaded & self-scheduling

Master

 ! initialize
 do n=1,nslaves
 send_info(n)

 ! Compute
 nchunks = nslaves*20
 nh = nhistories / nchunks
 do n=1,nchunks
 k1 = 1 + (n-1)*nh
 k2 = min(k1+nh, nhistories)
 recv_idle_proc(M)
 send_control(M, k1,k2)
 enddo

 ! Collect & combine results
 totals(:) = 0
 do n=1,nslaves
 recv_idle_proc(M)
 send_control(M, 0, -1)
 recv_tallies(M)
 add_tallies_to_totals()
 enddo

 ! Done
 print_results()
 save_files()

Slave 3

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

Slave 2

 ! Initialize
 recv_info()

 ! Compute
 recv_control(k1, k2)
 do k=k1,k2
 run_history(k)

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

Slave 1

 ! Initialize
 recv_info()

 ! Compute
 do
 send_idle_proc()
 recv_control(k1, k2)
 if(k1>k2) exit
 !$OMP PARALLEL DO
 do k=k1,k2
 run_history(k)
 enddo
 enddo

 !$OMP PARALLEL
 !$ combine_thread_tallies()

 ! Send tallies to master
 send_tallies()

 ! Done
 stop

LA-UR-04–881710 -29

Parallel
Monte Carlo
Performance

LA-UR-04–881710 -30

Parallel MC Computational Characteristics

• For master/slave algorithms (with self-scheduling, fault tolerance, & threads):

– No communication among slave tasks

– Occasional communication between master & slaves (rendezvous)

– Slave tasks are compute-intensive
• Few DO-loops
• 40% of ops are test+branch (IF… GOTO…)

• Irregular memory access, no repetitive patterns

– For fixed-source problems:
• Only 1 rendezvous is strictly necessary, at end of calculation

• More rendezvous used in practice, for fault tolerance

– For eigenvalue problems (K-effective):
• Must have a rendezvous every cycle (cycle = batch = generation)

• Master controls iteration & source sampling

• Common-sense approach to performance:

Fewer rendezvous better parallel performance

LA-UR-04–881710 -31

Parallel MC Performance Measures

• Metrics
– Speedup SN = T1 / TN N = # processors

– Efficiency EN = SN / N

• Fixed overall work (fixed problem size)
– Efficiency decreases with N
– Speedup (eventually) drops as N increases
– Why?

As N increases, same communication/processor, but less work/processor (fewer
histories/processor) (computation/communication) decreases

• Fixed work per processor (scaled problem size)
– Efficiency approx. constant with N

– Speedup approx. linear with N
– Why?

As N increases, same communication/processor, same work/processor

(# histories ~ N) (computation/communication) stays approx. same

– Called scaled speedup

LA-UR-04–881710 -32

Parallel MC Performance Limits

• Another way to determine efficiency

Parallel Efficiency = TC / (TC + TM)

TC = computing time
TM = time for messages, not overlapped with computing

• Slaves can send messages in parallel

• Master receives & processes messages serially

If enough messages are sent to master, extra wait time will limit performance

LA-UR-04–881710 -33

Parallel MC Performance Scaling

N = # processors
T1 = CPU time for M histories using 1 processor

(Depends on physics, geometry, compiler, CPU speed, memory, etc.)

L = amount of data sent from 1 slave each rendezvous

TS = 0 negligible, time to distribute control info

TR = s + L/r s = latency for message, r = streaming rate

TC
fix = T1 / N fixed problem size, M histories/rendezvous

TC
scale = T1 scaled problem size, NM histories/rendezvous

M

S S S

TS TC TR

RendezvousComputeControl

Repeat…

LA-UR-04–881710 -34

Parallel MC Performance Scaling

• Scaling models, for master/slave with serial rendezvous

– "fixed" = constant number of histories/rendezvous, M (constant work)
– "scaled" = M histories/slave per rendezvous, NM total (constant time)

Histories/rendezvous Speedup

fixed S = N / (1 + cN2)

scaled S = N / (1 + cN)

N = number of slaves
 c = (s + L/r) / T1

T1 ~ M, more histories/rendezvous larger T1 , smaller c
S+L/r, fixed, determined by number of tallies, ….

As M infinity, c 0, S N (limit for 1 rendezvous)

S

S

N

N

LA-UR-04–881710 -35

Parallel MC Performance Scaling

LA-UR-04–881710 -36

Parallel MC Performance Scaling

LA-UR-04–881710 -37

Parallel MC Performance Scaling

LA-UR-04–881710 -38

Parallel MC Performance Scaling

LA-UR-04–881710 -39

Parallel MC Summary

• Master/slave algorithms work well
– Load-balancing: Self-scheduling
– Fault-tolerance: Periodic rendezvous
– Random numbers: Easy, with LCG & fast skip-ahead algorithm
– Tallies: Use OpenMP "critical sections"
– Scaling: Simple model, more histories/slave + fewer rendezvous
– Hierarchical: Master/slave MPI, OpenMP threaded slaves
– Portability: MPI/OpenMP, clusters of anything

• Remaining difficulties
– Memory size: Entire problem must fit on each slave

• Domain-decomposition has had limited success
– Should be OK for reactor problems
– May not scale well for shielding or time-dependent problems
– For general 3D geometry, effective domain-decomposition is unsolved problem

• Random access to memory distributed across nodes gives huge slowdown
– May need functional parallelism with "data servers"

LA-UR-04–881710 -40

MCNP5
Parallel

Calculations

LA-UR-04–881710 -41

Red – 3 TeraOps

Blue Pacific – 3 TeraOps

Blue Mountain – 3 TeraOps

(R.I.P.)

White – 12 TeraOps Q – 20 TeraOps

DOE Advanced Simulation & Computing – ASC

Lightning
Red Storm
Blue Gene/L

LA-UR-04–881710 -42

Hierarchical Parallelism

• Use message-passing to distribute work among slaves ("boxes")
• Use threading to distribute histories among individual cpus on box

• We routinely test MCNP5 on:
– ASCI Bluemountain – SGI, 48 boxes x 128 cpus/box
– ASCI White – IBM, 512 boxes x 16 cpus/box
– ASCI Q – HP, 2 x 512 boxes x 4 cpus/box
– Linux clusters
– Windows PC cluster

• 1,000 processor jobs are "routine"

Master

Slave SlaveSlave

HistoriesHistories HistoriesHistories HistoriesHistories

Message-passing

Threads Threads Threads

 MPI

OpenMP

LA-UR-04–881710 -43

Parallelism in MCNP5

• Threading
– Individual histories are handled by separate threads
– No thread synchronization is needed during a history

– Implemented by OpenMP compiler directives

– Tallies, RN data, & some temporary variables for history are in thread-private
memory

Example:
common /RN_THREAD/ RN_SEED, RN_COUNT, RN_NPS

!$OMP THREADPRIVATE (/RN_THREAD/)
save /RN_THREAD/

– OpenMP critical sections are used for some tallies or variable updates

Example:
!$OMP CRITICAL (RN_STATS)

RN_COUNT_TOTAL = RN_COUNT_TOTAL + RN_COUNT
$!OMP END CRITICAL (RN_STATS)

– Message-passing & file I/O are executed only from
thread-0 (master thread) for each MPI task

LA-UR-04–881710 -44

Parallelism in MCNP5

• Message-passing
– In MCNP5, all message-passing is handled by calls to the dotcomm package, a

communications layer which contains an interface to either MPI or PVM

– Recommend using MPI – PVM is obsolete & won't be supported in future

– Either MPI or PVM message-passing is selected in dotcomm at compile-time

– Using the dotcomm package & either MPI or PVM, MCNP5 can run in parallel
without source code changes on

• Parallel supercomputers (e.g., ASCI tera-scale computers)
• COWs (clusters of workstations)

• Linux clusters

• PC clusters

MCNP5

dotcomm

PVMMPI

LA-UR-04–881710 -45

MCNP5 Parallel Calculations

N = total number of MPI tasks, master + (N-1) slaves

M = number of OpenMP threads/slave

• Running on parallel systems with MPI only

 mpirun -np N mcnp5.mpi i=inp01 …..

• Running with threads only

 mcnp5 tasks M i=inp01 …..

• Running on parallel systems with MPI & threads
ASCI Bluemountain (SGI)

 mpirun -np N mcnp5.mpi tasks M i=inp01 …..
ASCI Q (HP/Compaq)

 prun –n N -c M mcnp5.mpi tasks M i=…

If submitting jobs through a batch system (e.g., LSF),

N & M must be consistent with LSF requested resources

LA-UR-04–881710 -46

MCNP5 Parallel Calculations

• How many threads ?
– Max number of threads = # CPUs per node

• ASCI Bluemountain: 128 cpus / node
• ASCI Q: 4 cpus /node

• Laptop PC cluster: 1 cpu / node

– Experience on many systems has shown that a moderate number of threads per
slave is efficient; using too many degrades performance

• ASCI Bluemountain: 4–12 threads/slave usually effective

>16 threads/slave usually has bad performance

• ASCI Q: 4 threads/slave is effective

– Rules-of-thumb vary for each system
• Thread efficiency is strongly affected by operating system design

• Scheduling algorithm for threads used by operating system is generally designed to be
efficient for small number of threads (<16)

• For large number of threads, context-switching & cache management may take
excessive time, giving poor performance

• Other jobs on system (& their priority) affect thread performance

• No definite rules – need to experiment with different numbers of threads

LA-UR-04–881710 -47

MCNP5 Parallel Calculations

• Parallel performance is sensitive to number of rendezvous
– Can't control number of rendezvous directly
– The following things cause a rendezvous:

• Printing tallies

• Dumping to the RUNTPE file

• Tally Fluctuation Chart (TFC) entries

• Each cycle of eigenvalue problem

• Use PRDMP card to minimize print/dump/TFC

PRDMP ndp ndm mct ndmp dmmp

ndp = increment for printing tallies use large number
ndm = increment for dump to RUNTPE use large number
mct = flag to suppress time/date info in MCTAL
ndmp = max number of dumps in RUNTPE

dmmp = increment for TFC & rendezvous use large number

For fixed-source problems, increments are in particles

For eigenvalue problems, increments are in cycles

LA-UR-04–881710 -48

MCNP5 Parallel Calculations

• Keff calculations: Use KCODE card for hist/cycle

– Want to reduce the number of cycles
– More histories in each cycle
– Should run hundreds of cycles or more for good results

KCODE nsrck rkk ikz kct …..

nsrck = histories / cycle use a large number
rkk = initial guess for Keff

ikz = number of initial cycles to discard
kct = total number of cycles to run

Suggested: nsrck ~ (thousands) x (number of processors)

LA-UR-04–881710 -49

MCNP5 Parallel Scaled Speedup

ASCI Q system,
using MPI+OpenMP,
4 threads/MPI-task

Fixed-source
calculation

LA-UR-04–881710 -50

MCNP5 Parallel Calculations

LA-UR-04–881710 -51

Scaled Parallel Speedup – Eigenvalue Problem

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Number of Processors

S
c
a
le

d
 S

p
e
e
d

u
p

ASCI Qsc
• MCNP5
• MPI + OpenMP
• 4 threads/node
• 1000 cycles

LA-UR-04–881710 -52

Parallel Processing
For Large

Monte Carlo Calculations

LA-UR-04–881710 -53

Domain Decomposition

If a Monte Carlo problem is too large to fit into memory of a single
processor

– Need periodic synchronization to interchange particles among nodes
– Use message-passing (MPI) to interchange particles

 Domain decomposition is often used when the entire problem will not fit in
the memory of a single SMP node

Collect
Problem
Results

Decompose
problem into

spatial domains

Follow histories in each
domain in parallel,

move particles to new
domains as needed

LA-UR-04–881710 -54

Parallel Monte Carlo

• Inherent parallelism is on particles
– Scales well for all problems

• Domain decomposition
– Spatial domains on different processors
– Scales OK for Keff or calculations,

where particle distribution among domains is roughly uniform
– Does not scale for time-dependent problems

due to severe load imbalances among domains

• Domain decomposition – scaling with N processors
– Best: performance ~ N (uniform distribution of particles)
– Worst: performance ~ 1 (localized distribution of particles)

LA-UR-04–881710 -55

Parallel Monte Carlo

• Data is distributed by domain decomposition,
but parallelism is on particles

• Solution ?

Parallel on particles + distributed data

• Particle parallelism + Data Decomposition
– Existing parallel algorithm for particles
– Distribute data among processor nodes
– Fetch the data to the particles as needed (dynamic)

– Essentially same approach as used many years ago for CDC (LCM) or CRAY
(SSD) machines

– Scales well for all problems (but slower)

LA-UR-04–881710 -56

Parallel Monte Carlo

• Particle parallelism + data decomposition — logical view:

• Mapping of logical processes onto compute nodes is flexible:
– Could map particle & data processes to different compute nodes

– Could map particle & data processes to same compute nodes

• Can replicate data nodes if contention arises

Data
Node

Data
Node

Data
Node

Parallel
Calculation

Data
Layer

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Master
Process

LA-UR-04–881710 -57

Parallel Monte Carlo

• Particle parallelism + data decomposition

Entire physical problem

Particle Node Particle Node

Local copies of data for
particle neighborhood

Data Node Data Node Data Node Data Node

LA-UR-04–881710 -58

Parallel Monte Carlo

• History modifications for data decomposition
source

while wgt > cutoff

. compute distances & keep minimum:

. dist-to-boundary

. dist-to-time-cutoff

. dist-to-collision

. dist-to-data-domain-boundary

. move particle

. pathlength tallies

. if distance == dist-to-data-domain-boundary

. fetch new data

. collision physics

. roulette & split

. . .

LA-UR-04–881710 -59

Parallel Monte Carlo

• Data windows & algorithm tuning
– Defining the "particle neighborhood" is an art
– Anticipating the flight path can guide the

pre-fetching of blocks of data
– Tuning parameters:

• How much data to fetch ?

• Data extent vs. particle direction ?

• Examples

Entire physical problem

LA-UR-04–881710 -60

Parallel Monte Carlo

• Point detector tallies are non-local
– Every collision contributes

an expected score
– At every collision, "pseudo-particles"

are tracked along the path from
collision to detector

– Scores from all "pseudo-particles"
(including from all split particles)
must be tallied together into a single
score for the history

Entire physical problem

•

LA-UR-04–881710 -61

Conclusions

For Monte Carlo problems which can fit in memory:

• Concurrent scalar jobs – ideal for Linux clusters

• Master/slave parallel algorithm (replication) works well
– Load-balancing: Self-scheduling
– Fault-tolerance: Periodic rendezvous
– Random numbers: Easy, with LCG & fast skip-ahead algorithm

– Tallies: Use OpenMP "critical sections"
– Scaling: Simple model, more histories/slave + fewer rendezvous
– Hierarchical: Master/slave MPI, OpenMP threaded slaves

– Portability: MPI/OpenMP, clusters of anything

For Monte Carlo problems too large to fit in memory:

• Spatial domain decomposition (with some replication) can work for
some problems

• Particle parallelism + data decomposition is a promising approach
which should scale for all problems

LA-UR-04–881710 -62

References

1. S. MATSURA, F. B. BROWN, R. N. BLOMQUIST, “Parallel Monte Carlo Eigenvalue Calculations,” Trans.
Am. Nucl. Soc. (Nov. 1994).

2. F.B. BROWN, “Random Number Generation with Arbitrary Strides,” Trans. Am. Nucl. Soc. (Nov., 1994)
3. F.B. BROWN & Y. NAGAYA, "The MCNP5 Random Number Generator", Trans. Am. Nucl. Soc. (Nov.,

2002)
4. X-5 MONTE CARLO TEAM, “MCNP – A General Monte Carlo N-Particle Transport Code, Version 5,

Volume I: Overview and Theory,” LA-UR-03–1987, Los Alamos National Laboratory (April, 2003).
5. F. B. BROWN, J. E. SWEEZY, J. T. GOORLEY, “MCNP5 Parallel Processing Workshop,” LA-UR-03–2228,

Los Alamos National Laboratory (2003).
6. A. MAJUMDAR and W. R. MARTIN, “Performance Measurement of Monte Carlo Photon Transport on

Parallel Machines,” PHYSOR 2000: ANS Int. Topical Meeting, Pittsburgh (May 2000).
7. S. R. LEE, S. D. NOLEN, F. B. BROWN, “MC++ Monte Carlo Code for ASCI, ” Los Alamos National

Laboratory report (1998).
8. R. PROCASSINI, et al., “Design, Implementation and Testing of MERCURY, a Parallel Monte Carlo

Transport Code,” Proc. ANS Math. & Comp. Topical, Gatlinburg, TN, April 6–11 (2003)
9. H.J. ALME, G.H. RODRIGUE, G.B. ZIMMERMAN, "Domain Decomposition Models for Parallel Monte Carlo

Transport", J. Supercomputing, 18, 5–23 (2001).
10. "MPI: A Message Passing Interface", http://www-unix.mcs.anl.gov/mpi/index.html
11. "PVM: Parallel Virtual Machine", http://www.epm.ornl.gov/pvm
12. "OpenMP Fortran Application Program Interface", http://www.openmp.org

LA-UR-04–881710 -63

LA-UR-04–881710 -64

References

I. Monte Carlo Methods for Particle Transport Problems

A. First Known Reference for Using Monte Carlo Methods to Solve Particle
Transport Problems

• J. von Neumann, letter to R.D. Richtmyer, in "Statistical Methods in Neutron Diffusion," LANL
report LAMS-551 (1947).

 B. Highly Recommended

• L. L. Carter and E. D. Cashwell, Particle Transport Simulation with the Monte Carlo Method,
ERDA Critical Review Series, TID-26607, National Technical Information Service, Springfield MA
(1975).

C. Introductory References

• M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. Volume I: Basics, John Wiley & Sons, NY
(1986).

• E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport, American Nuclear
Society, Inc., LaGrange Park, IL (1993).

• S. Nakamura, Computational Methods in Engineering and Science, R. E. Krieger Pub. Company,
Malabar, FL (1986).

• S.A. Dupree & S.K. Fraley, A Monte Carlo Primer – A Practical Approach to Radiation Transport,
Kluwer Academic, NY (2002).

• S.A. Dupree & S.K. Fraley, A Monte Carlo Primer – Volume 2, Kluwer Academic, NY (2004).

• J. Wood, Computational Methods in Reactor Shielding, Pergamon Press, Oxford (1982).

D. Advanced References

• Lux & L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations,
CRC Press, Boston (1991).

• J. J. Duderstadt and W. R. Martin, Transport Theory, John Wiley & Sons, NY (1979).

• G. Goertzel and M. H. Kalos, "Monte Carlo Methods in Transport Problems," in Progress in
Nuclear Energy, Series I, Physics and Mathematics, Vol. 2, (1958).

• E. D. Cashwell and C.J. Everett, A Practical Manual on the Monte Carlo Method for Random
Walk Problems, Pergamon Press, London (1959).

• J.M. Hammersley & D.C. Handscomb, Monte Carlo Methods, John Wiley & Sons, NY (1964).

• Y. A. Schreider, The Monte Carlo Method, Pergamon Press, NY (1966).

• J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, Addison-
Wesley, Reading, MA (1969).

• X-5 Monte Carlo Team, “MCNP – A General N-Particle Transport Code, Version 5 – Volume I:
Overview and Theory”, LA-UR-03-1987 (April, 2003).

• X-5 Monte Carlo Team, “MCNP – A General N-Particle Transport Code, Version 5 – Volume II:
User’s Guide”, LA-CP-03-0245 (April, 2003).

• X-5 Monte Carlo Team, “MCNP – A General N-Particle Transport Code, Version 5 – Volume III:
Developer’s Guide”, LA-CP-03-0284 (April, 2003).

• F.B. Brown, "Fundamentals of Monte Carlo Particle Transport," LA-UR-04-8817 (Dec, 2004).

II. General References on the Monte Carlo Method

• G.S. Fishman, Monte Carlo Concepts, Algorithms, and Applications, Springer-Verlag, NY (1996).

• R. Y. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons, NY (1981).

• J. H. Halton, "A Retrospective and Prospective Survey of the Monte Carlo Method," SIAM Rev
12,1, (1970).

• C.P. Robert & G. Casella, Monte Carlo Statistical Methods, Springer (2004).

III. Random Number Generation and Random Sampling Methods

• L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986).

• D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, 3rd Edition,
Addison-Wesley, Reading, MA (1998).

• J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res. Nat.
Bur. Stand. Appl. Math Series 3, 36-38 (1951).

• C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, Los Alamos
National Laboratory, Los Alamos, NM (1983).

• H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA
(1954).

• E. J. McGrath and D. C. Irving, "Techniques for Efficient Monte Carlo Simulation," ORNL-RSIC-
38, Vols. I-III, Oak Ridge National Laboratory, Oak Ridge, TN (1975).

• J.E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, NY (2003).

• F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”, Trans. Am. Nucl. Soc. [also,
LA-UR-02-3782] (November, 2002).

• F. B. Brown, "Random Number Generation with Arbitrary Strides," Trans. Am. Nucl. Soc. 71,202
(1994).

• F.B. Brown & W.R. Martin, “Direct Sampling of Monte Carlo Flight Paths in Media with
Continuously Varying Cross-sections”, ANS Topical Meeting on Mathematics & Computation,
Gatlinburg, TN April 6-11, 2003 [also, LA-UR-02-6530] (September, 2002).

• F. B. Brown & W. R. Martin, "Monte Carlo Particle Transport in Media with Exponentially Varying
Time-dependent Cross-sections", Trans. Am. Nucl. Soc [also, LA-UR-01-675] (June 2001).

• F. B. Brown and J. L. Vujic, "Comparison of Direct and Rejection Sampling Methods," Trans.Am.
Nucl. Soc. 69, 223 (Nov. 1993).

IV. Monte Carlo Methods for the Solution of Reactor Eigenvalue Problems

• J. Lieberoth, "A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann
Transport Equation," Nukleonik 11,213 (1968).

• M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal Reactors," Nucl. Sci Eng. 32,
319-331 (1968).

• H. Rief and H. Kschwendt, "Reactor Analysis by Monte Carlo," Nucl. Sci. Eng., 30, 395 (1967).

• R. C. Gast and N. R. Candelore, "Monte Carlo Eigenfunction Strategies and Uncertainties," in
Proc. NEACRP Meeting of a Monte Carlo Study Group, ANL-75-2, Argonne National Laboratory,
Argonne, IL (1974).

• M. H. Kalos, F. R. Nakache, and J. Celnik, "Monte Carlo Methods in Reactor Computations," in
Computing Methods in Reactor Physics, Gordon and Breach, NY (1968).

• D. C. living, R. M. Freestone, and F. B. K. Kam, "O5R, A General Purpose Neutron Monte Carlo
Code," ORNL-3622, Oak Ridge National Laboratory (1965).

• E. R. Woodcock, et al, "Techniques Used in the GEM Code for Monte Carlo Neutronics
Calculations in Reactors and Other Systems of Complex Geometry," in Proc. Conf Applications of
Computing Methods to Reactor Problems, ANL-7050, Argonne National Laboratory, Argonne, IL
(1965).

• W. Goad and R. Johnston, "A Monte Carlo Method for Criticality Problems," Nucl. Sci. Eng. 5,
371-375 (1959).

• R.J. Brissenden and A.R. Garlick, "Biases in the Estimation of Keff and Its Error by Monte Carlo
Methods," Ann. Nucl. Energy, Vol 13, No. 2, 63-83 (1986).

• T. Yamamoto and Y. Miyoshi, "Reliable Method for Fission Source Convergence of Monte Carlo
Criticality Calculation with Wielandt's Method," J. Nucl. Sci. Technol. 41, No. 2, 99-107 (2004).

• F.B. Brown, W.R. Martin, W. Ji, J.L. Conlin, & J.C. Lee, “Stochastic Geometry and HTGR
Modeling for MCNP5”, submitted to ANS Monte Carlo 2005 Topical Meeting, Chattanooga TN,
April 17-21, 2005, [also LA-UR-04-8668] (Dec, 2004).

• F.B. Brown & W.R. Martin, “Stochastic Geometry Capability in MCNP5 for the Analysis of Particle
Fuel”, Annals of Nuclear Energy, Vol 31, Issue 17, pp 2039-2047 [also LA-UR-04-5362] (Nov,
2004).

• F.B. Brown & R.D. Mosteller, “MCNP5 Workshop – PHYSOR-2004”, LA-UR-04-2647 (April,
2004).

• T. Ueki & F.B. Brown, “Stationarity Modeling and Informatics-Based Diagnostics in Monte Carlo
Criticality Calculations”, Nucl. Sci. Eng. 149, No. 1, 38-50 [also LA-UR-03-8343] (Jan, 2005).

• T. Ueki, F.B. Brown, D.K. Parsons, & J.S. Warsa, "Time Series Analysis of Monte Carlo Fission
Sources: I. Dominance Ratio Computation", Nucl. Sci. Eng. 148, No. 3, 374-390 [also LA-UR-03-
5823] (Nov, 2004).

• T. Ueki & F.B. Brown, "Informatics Approach to Stationarity Diagnostics of the Monte Carlo
Fission Source Distribution," Trans. Am. Nucl. Soc. [also LA-UR-03-3949] (Nov, 2003).

• T. Ueki, F.B. Brown, & D.K. Parsons, "Dominance Ratio Computation via Time Series Analysis of
Monte Carlo Fission Sources", Trans. Am. Nucl. Soc. [also LA-UR-03-0106] (June, 2003).

• Y. Nagaya & F.B. Brown, "Implementation of a Method to Estimate Change in Eigenvalue Due to
Perturbed Fission Source Distribution Into MCNP", LA-UR-03-1387 (Feb. 2003).

• Y. Nagaya & F.B. Brown, “Estimation of Change in Keff Due to Perturbed Fission Source
Distribution in MCNP”, ANS Topical Meeting on Mathematics & Computation, Gatlinburg, TN April
6-11, 2003 [also, LA-UR-02-6879] (September, 2002).

• T. Ueki & F.B. Brown, “Stationarity and Source Convergence in Monte Carlo Criticality
Calculations”, ANS Topical Meeting on Mathematics & Computation, Gatlinburg, TN April 6-11,
2003 [also, LA-UR-02-6228] (September, 2002).

• T. Ueki, F.B. Brown, D.K. Parsons, & D.E. Kornreich, “Autocorrelation and Dominance Ratio in
Monte Carlo Criticality Calculations”, Nucl. Sci. Eng. [also, LA-UR-02-5700] (September, 2002).

• T. Ueki & F.B. Brown, “Stationarity Diagnostics Using Shannon Entropy in Monte Carlo Criticality
Calculations I: F Test”, Trans. Am. Nucl. Soc. [also, LA-UR-02-3783] (November, 2002).

• F.B. Brown, R.C. Little, A. Sood, & D.K. Parsons, “MCNP Calculations for the OECD/NEA Source
Convergence Benchmarks”, Trans. Am. Nucl. Soc. [also, LA-UR-02-3987] (November, 2002).

• T. Ueki & F.B. Brown, “Autoregressive Fitting for Monte Carlo K-effective Confidence Intervals”,
Trans. Am. Nucl. Soc. [also, LA-UR-01-6770] (June, 2002).

• F.B. Brown, R.C. Little, A. Sood, D.K. Parsons, T.A. Wareing, “MCNP Calculations for the
OECD/NEA Source Convergence Benchmarks for Criticality Safety Analysis”, LA-UR-01-5181
(Sept. 2001)

• D. J. Kelly, "Depletion of a BWR Lattice Using the RACER Continuous-Energy Monte Carlo
Code," Proceedings of the ANS Intl. Conf on Mathematics & Computation, Reactor Physics, &
Environ. Analyses, April 30-May 4, Portland, Oregon (1995).

• T. M. Sutton and F. B. Brown, "Parallel Monte Carlo for Reactor Calculations," Proceedings of the
ANS Topical Meeting on Advances in Reactor Physics, April 11-15, 1994, Knoxville, TN (April
1994).

• F. B. Brown, K. L. Derstine, and R. N. Blomquist, "Distributed Computing and Nuclear Reactor
Analysis," Proceedings of the ANS Topical Meeting on Advances in Reactor Physics, April 11-15,
1994, Knoxville, TN (April 1994).

• R. N. Blomquist and F.B. Brown, "Parallel Monte Carlo Reactor Neutronics," Proceedings of the
Society for Computer Simulation Meeting on High Performance Computing '94, April 11-15, 1994,
La Jolla, CA (April 1994).

• E.M. Gelbard, F. B. Brown, and A. G. Gu, "Estimation of Fission Source Bias in Monte Carlo
Eigenvalue Calculations," Trans. Am. Nucl. Soc. 69,201 (Nov. 1993).

• F. B. Brown and T. M. Sutton, "Reproducibility and Monte Carlo Eigenvalue Calculations," Trans.
Am. Nucl. Soc. 65,235 (June 1992).

• F. B. Brown and F. G. Bischoff, "Computational Geometry for Reactor Applications," Trans.Am.
Nucl. Soc. 57, 112 (1988).

• F. B. Brown and M. R. Mendelson, "Vectorized Monte Carlo Applications in Reactor Physics
Analysis," Trans. Am. Nucl. Soc. 46, 727 (June 1984).

• F. B. Brown, "Vectorized Monte Carlo Methods for Reactor Lattice Analysis," Proceedings ANS
Topical Meeting on Advances in Reactor Computations, Salt Lake City, Utah, 108-123 (March
1983).

• F. B. Brown, "Vectorized Monte Carlo Methods for Reactor Lattice Analysis," KAPL-4163, Knolls
Atomic Power Laboratory, Schenectady, NY (March 1983).

• F. B. Brown, "Development of Vectorized Monte Carlo Algorithms for Reactor Lattice Analysis,"
Trans.Am. Nucl. Soc. 43, 377 (1982).

• J.E. Sweezy, et al., “Automated Variance Reduction for MCNP5 using Deterministic Methods”,
Proc. Int. Conf. on Radiation Shielding (ICRS-10) and the ANS Radiation Protection and Shielding
Division Topical Meeting, Madeira, Portugal [also LA-UR-04-2956] (April, 2004).

• F.B. Brown, J.E. Sweezy, R. Hayes, “Monte Carlo Parameter Studies and Uncertainty Analysis
with MCNP5”, PHYSOR-2004, ANS Reactor Physics Topical Meeting, Chicago, April 25-29 [also
LA-UR-04-0499] (April, 2004).

• F.B. Brown, D. Griesheimer, W.R. Martin, “Continuously Varying Material Properties and Tallies
for Monte Carlo Calculations”, PHYSOR-2004, ANS Reactor Physics Topical Meeting, Chicago,
April 25-29 [also LA-UR-04-0732] (April, 2004).

• T. M. Sutton & F. B. Brown, "Unresolved Resonance Treatment for the RACER Monte Carlo
Code", Proceedings of Intl. Conf. on Physics of Nuclear Sci. & Tech., Long Island, NY, Oct. 5-8,
1998 (1998).

• C. T. Ballinger, "The Direct S(a,b) Method for Thermal Neutron Scattering," Proceedings of the
ANS Intl. Conf on Mathematics & Computation, Reactor Physics, & Environ. Analyses, April 30-
May 4, Portland, Oregon (1995).

• R. G. Gamino, F. B. Brown, and M. R. Mendelson, "A Monte Carlo Green's Function Method for
3-D Neutron Transport," Trans. Am. Nucl. Soc 65,237 (June 1992).

V. Vector and Parallel Monte Carlo

• S. Matsuura, F. B. Brown, and R. N. Blomquist, "Parallel Monte Carlo Eigenvalue Calculations,"
Trans. Am. Nucl. Soc. 71, 199 (1994).

• F.B. Brown & W.R. Martin, “High Performance Computing and Monte Carlo”, Trans. Am. Nucl.
Soc. 91 [also LA-UR-04-4532] (Nov, 2004).

• F.B. Brown, J.T. Goorley, & J.E. Sweezy, “MCNP5 Parallel Processing Workshop”, LA-UR-03-
2228 (April, 2003).

• H.J. Alme, G.H. Rodrigue, G.B. Zimmerman, "Domain Decomposition Methods for Parallel Monte
Carlo Transport," J. Supercomputing, 18, 5-23 (2001).

• W. R. Martin, J. A. Rathkopf, and F. B. Brown, "The Impact of Advances in Computer Technology
on Particle Transport Monte Carlo," Proceedings of the ANS Topical Meeting on New Horizons in
Radiation Protection and Shielding, Richland WA (April 1992).

• F. B. Brown, W. R. Martin, and J. A. Rathkopf, "Particle Transport Monte Carlo and Parallel
Computers," Proceedings of the Argonne Theory Institute on Parallel Monte Carlo Simulations,
Argonne National Laboratory (August 1991).

• W. R. Martin and F. B. Brown, "Monte Carlo Methods for Particle Transport," Trans. Am. Nucl.
Soc. 60, 336 (1989).

• F. B. Brown, "Present Status of Vectorized Monte Carlo," Trans.Am. Nucl. Soc. 55, 323 (1987).

• W. R. Martin and F. B. Brown, "Present Status of Vectorized Monte Carlo for Particle Transport
Analysis," International Journal of Supercomputer Applications, Vol. 1, No. 2, 11-32 (June 1987).

• F. B. Brown, "Vectorization of 3-D General-Geometry Monte Carlo," Trans. Am. Nucl. Soc. 53,
283 (1986).

• F. B. Brown and W. R. Martin, "Monte Carlo Methods for Vector Computers," J. Progress in
Nuclear Energy, Vol. 14, No. 3,269-299 (1984).

• F. B. Brown, "Vectorized Monte Carlo," Ph. D. dissertation, University of Michigan, Ann Arbor,
Michigan (1981).

• F. B. Brown, W. R. Martin, and D. A. Calahan, "Investigation of Vectorized Monte Carlo
Algorithms," Trans. Am. Nucl. Soc. 39, 755 (1981).

• F. B. Brown, W. R. Martin, and D. A. Calahan, "A Discrete Sampling Method for Vectorized Monte
Carlo Algorithms," Trans. Am. Nucl. Soc. 38, 354 (1981).

• F. B. Brown, D. A. Calahan, W. R. Martin, et al, "Investigation of Vectorized Monte Carlo
Algorithms" working paper presented at the DOE Conference on High Speed Computing,
Gleneden Beach, Oregon (April 1981).

