LA-UR-04-6393

Approved for public release; distribution is unlimited.

Title:

Comparison of Results from the MCNP Criticality Validation Suite Using ENDF/B-VI and Preliminary ENDF/B-VII Nuclear Data

105 ALAWOS INTIONAL LABORATORY 105 ALAWOS INTIONAL LABORATORY 13 9338 01000 2789

Author(s):

Russell D. Mosteller

Submitted to:

International Conference on Nuclear Data for Science and Technology Santa Fe, NM September 26 - October 1, 2004

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Comparison of Results from the MCNP Criticality Validation Suite Using ENDF/B-VI and Preliminary ENDF/B-VII Nuclear Data

Russell D. Mosteller

Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 USA

To Be Presented at Nuclear Data 2004
International Conference on Nuclear Data for Science and Technology
Santa Fe, NM September 26 - October 1, 2004

The MCNP Criticality Validation Suite is a collection of 31 benchmarks taken from the International Handbook of Evaluated Criticality Benchmark Experiments. It includes cases with a variety of fuels, moderators, reflectors, spectra, and geometries. Specifically, it contains six cases with U-233 fuel, eight cases with highly enriched uranium (HEU), six cases with intermediate-enriched uranium (IEU), two cases with low-enriched uranium (LEU), and nine cases with plutonium. Except for LEU (which can reach criticality only with a thermal spectrum), there are cases with fast, intermediate, and thermal spectra for each of these fuels. The fast cases include bare spheres, cores with heavy reflectors, cores with light reflectors, and lattices. The thermal cases include lattices of fuel pins and solutions for each of the five types of fuel. The cases with intermediate spectra are less uniform, due to the limited number of experiments with such spectra.

Three sets of MCNP5 calculations were performed for the MCNP Criticality Validation Suite. The first set employed nuclear data derived from ENDF/B-V, while the second set employed nuclear data from ENDF/B-VI Release 8, the final release for ENDF/B-VI. The third set employed preliminary ENDF/B-VII data generated by group T-16 at Los Alamos National Laboratory for the uranium isotopes and for plutonium-239 along with new sets of resonance parameters for ²³⁵U and ²³⁸U generated by researchers at Oak Ridge National Laboratory.

The preliminary ENDF/B-VII data produce marked improvement in k_{eff} for bare spheres of ^{233}U , HEU, and plutonium (Jezebel). Furthermore, the reactivity swings between those cases and corresponding cases that enclose the sphere inside an annulus of normal uranium are substantially decreased. They also significantly improve k_{eff} for a cylinder of IEU reflected by normal uranium, for HEU and plutonium spheres immersed in water, and for a lattice of LEU fuel pins in water.

At the same time, they produce worse results than ENDF/B-VI for thermal lattices of 233 U and HEU pins, for an IEU sphere reflected by graphite, and for a plutonium sphere reflected by thorium. Furthermore, $k_{\rm eff}$ for uranium cases with intermediate spectra remain substantially underpredicted, while $k_{\rm eff}$ for a plutonium case with an intermediate spectrum continues to be significantly overpredicted.

Comparison of Results from the MCNP Criticality Validation Suite Using ENDF/B-VI and Preliminary ENDF/B-VII Nuclear Data

Russell D. Mosteller

Applied Physics Division
Los Alamos National Laboratory
mosteller@ lanl.gov

Presented at Nuclear Data 2004
September 26 - October 1, 2004
Santa Fe, NM

OVERVIEW OF PRESENTATION

Succinct Description of MCNP Criticality Validation Suite

Characteristics of Preliminary Nuclear Data for ENDF/B-VII

Comparison of Results from MCNP5 Using Final ENDF/B-VI and Preliminary ENDF/B-VII Nuclear Data Libraries

Some Remaining Areas for Improvement

Conclusions

MCNP Criticality Validation Suite

Cases were selected to encompass a wide variety of

Fissile isotopes: ²³³U, ²³⁵U, and ²³⁹Pu

Spectra : Fast, intermediate, and thermal

Compositions : Metals, oxides, and solutions

Configurations: Bare and reflected spheres and cylinders, 2-D and

3-D lattices, and infinite homogeneous and

heterogeneous regions

²³⁵U Cases were subdivided into HEU, IEU, AND LEU

Input specifications for all 31 cases are taken from the *International Handbook of Evaluated Criticality Safety Benchmark Experiments*

CASES IN THE MCNP CRITICALITY VALIDATION SUITE

Spectrum	Fast			Intermed	The	rmal
Geometry	Bare	Heavy Reflector	Light Reflector	Any	Lattice of Fuel Pins	Solution
²³³ U	Jezebel-233	Flattop-23	U233-MF-05	Falstaff-1*	SB-2½	ORNL-11
HEU	Godiva Tinkertoy-2	Flattop-25	Godiver	Zeus-2 UH ₃	SB-5	ORNL-10
IEU	IEU-MF-03	BIG TEN	IEU-MF-04	Zebra-8H [†]	IEU-CT-02	STACY-36
LEU					B&W XI-2	LEU-ST-02
Pu	Jezebel Jezebel-240 Pu Buttons	Flattop-Pu THOR	Pu-MF-11	HISS/HPG [†]	PNL-33	PNL-2

^{*} Extrapolated to critical

UNCLASSIFIED

 $^{^{\}dagger}$ k $_{\infty}$ measurement

PURPOSE AND USE OF THE MCNP CRITICALITY VALIDATION SUITE

The MCNP Criticality Validation Suite was developed to assess the reactivity impact of future improvements to MCNP as well as changes to its associated nuclear data libraries

Suite is *not* an absolute indicator of the accuracy or reliability of a given nuclear data library, nor is it intended to be

Suite can provide a general indication of the overall performance of a nuclear data library

Suite can provide an early warning of unexpected or unintended consequences resulting from changes to nuclear data

PRELIMINARY NUCLEAR DATA FOR ENDF/B-VII

Final version of ENDF/B-VI (Release 8) was released in October 2001

Are future nuclear data libraries likely to produce improved results?

Preliminary changes to ²³³U, ²³⁵U, ²³⁶U, ²³⁶U, and ²³⁹Pu for ENDF/B-VII offer encouragement

Data changes primarily involve high-energy elastic and inelastic scattering in the uranium isotopes and ²³⁹Pu (LANL group T-16), as well as resonance parameters for ²³⁵U and ²³⁸U (ORNL)

MCNP5 CALCULATIONS FOR CRITICALITY VALIDATION SUITE

Each calculation employed 550 generations with 10,000 neutrons per generation (SB-5 and Zebra-8H employed 350 generations)

Results from first 50 generations were excluded from the statistics

Results therefore are based on 5,000,000 active histories for each case (3,000,000 for SB-5 and Zebra-8H)

UNCLASSIFIED

RESULTS FOR ²³³U BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	Pre-ENDF/B-VII	ENDF/B-VI	
Jezebel-233	1.0000 ± 0.0010	0.9992 ± 0.0002	0.9931 ± 0.0003	
Flattop-23	1.0000 ± 0.0014	0.9986 ± 0.0003	1.0003 ± 0.0003	
U233-MF-05	1.0000 ± 0.0030	0.9966 ± 0.0003	0.9976 ± 0.0003	
Falstaff-1	1.0000 ± 0.0083	0.9877 ± 0.0005	0.9894 ± 0.0005	
SB-21/2	1.0000 ± 0.0024	0.9948 ± 0.0005	0.9967 ± 0.0005	
ORNL-11	1.0006 ± 0.0029	1.0005 ± 0.0002	0.9968 ± 0.0002	

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$

k_{eff} for Jezebel-233 improves dramatically, and reactivity swing from Jezebel-233 to Flattop-23 is eliminated

k_{eff} for ORNL-11 improves substantially, although results deteriorate for U233-MF-05 and SB-21/2

UNCLASSIFIED

RESULTS FOR HEU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	Pre-ENDF/B-VII	ENDF/B-VI	
Godiva	1.0000 ± 0.0010	0.9993 ± 0.0003	0.9962 ± 0.0003	
Tinkertoy-2	1.0000 ± 0.0038	1.0004 ± 0.0003	0.9972 ± 0.0003	
Flattop-25	1.0000 ± 0.0030	1.0030 ± 0.0003	1.0024 ± 0.0003	
Godiver	0.9985 ± 0.0011	0.9975 ± 0.0003	0.9948 ± 0.0003	
UH ₃	1.0000 ± 0.0047	0.9953 ± 0.0004	0.9914 ± 0.0003	
Zeus-2	0.9997 ± 0.0008	0.9976 ± 0.0003	0.9942 ± 0.0003	
SB-5	1.0015 ± 0.0028	0.9960 ± 0.0006	0.9963 ± 0.0005	
ORNL-10	1.0015 ± 0.0026	0.9991 ± 0.0002	0.9992 ± 0.0002	

 k_{eff} improves substantially for Godiva, Godiver, UH_3 and Zeus-2

Reactivity swing from Godiva to Flattop-25 is reduced significantly

UNCLASSIFIED

RESULTS FOR IEU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	Pre-ENDF/B-VII	ENDF/B-VI	
IEU-MF-03	1.0000 ± 0.0017	1.0028 ± 0.0003	0.9987 ± 0.0003	
BIG TEN	0.9948 ± 0.0013	0.9941 ± 0.0002	1.0071 ± 0.0002	
IEU-MF-04	1.0000 ± 0.0030	1.0078 ± 0.0003	1.0038 ± 0.0003	
Zebra-8H	1.0300 ± 0.0025	1.0188 ± 0.0002	1.0405 ± 0.0002	
IEU-CT-02	1.0017 ± 0.0044	1.0009 ± 0.0003	1.0007 ± 0.0003	
STACY-36	0.9988 ± 0.0013	0.9988 ± 0.0003	0.9988 ± 0.0003	

k_{eff} improves dramatically for BIG TEN

 k_{eff} is worse for IEU-MF-03 and IEU-MF-04 and drops substantially for Zebra-8H

For IEU-CT-02 and STACY-36, changes to ²³⁸U resonance parameters offset reactivity effects of scattering changes for uranium isotopes

RESULTS FOR LEU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	Pre-ENDF/B-VII	ENDF/B-VI	
B&W XI-2	1.0007 ± 0.0012	1.0000 ± 0.0003	0.9968 ± 0.0003	
LEU-ST-02	1.0024 ± 0.0037	0.9967 ± 0.0003	0.9957 ± 0.0003	

k_{eff} improves substantially for B&W XI-2, which eliminates need for *ad hoc* adjustment to ²³⁸U resonance integral (used in many nuclear data libraries since early 1970s)

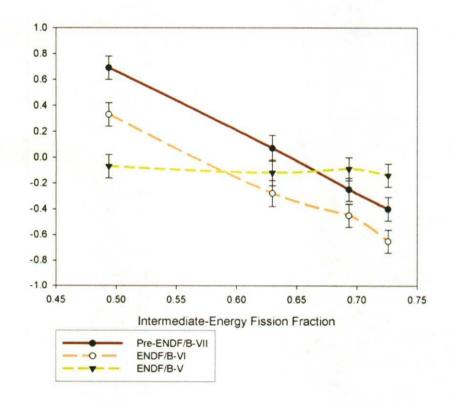
For LEU-ST-02, changes to ²³⁸U resonance parameters offset reactivity effects of scattering changes for uranium isotopes

RESULTS FOR PU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	Pre-ENDF/B-VII	ENDF/B-VI	
Jezebel	1.0000 ± 0.0020	1.0004 ± 0.0003	0.9975 ± 0.0003	
Jezebel-240	1.0000 ± 0.0020	1.0001 ± 0.0003	0.9979 ± 0.0003	
Pu Buttons	1.0000 ± 0.0030	0.9986 ± 0.0003	0.9962 ± 0.0003	
Flattop-Pu	1.0000 ± 0.0030	1.0006 ± 0.0003	1.0019 ± 0.0003	
THOR	1.0000 ± 0.0006	1.0081 ± 0.0003	1.0062 ± 0.0003	
Pu-MF-11	1.0000 ± 0.0010	0.9986 ± 0.0003	0.9970 ± 0.0003	
HISS/HPG	1.0000 ± 0.0110	1.0111 ± 0.0003	1.0105 ± 0.0003	
PNL-33	1.0024 ± 0.0021	1.0066 ± 0.0003	1.0029 ± 0.0003	
PNL-2	1.0000 ± 0.0065	1.0039 ± 0.0005	1.0033 ± 0.0005	

Striking improvement in k_{eff} for fast cases except THOR, and reactivity swing from Jezebel to Flattop-Pu is eliminated

SUMMARY OF RESULTS FOR MCNP CRITICALITY VALIDATION SUITE


Range	Pre-ENDF/B-VII	ENDF/B-VI	
Δk ≤ σ	19	13	
$\sigma < \Delta k \le 2\sigma$	7	9	
Δk > 2σ	5	9	

Substantial improvements for bare metal spheres (Jezebel-233, Godiva, and Jezebel), BIG TEN, HEU and Pu metal spheres in water (Godiver and Pu-MF-011, respectively), and LEU lattice (B&W XI-2)

ORNL resonance parameters improve results for Godiver, ORNL-10, IEU-CT-03, STACY-36, B&W XI-2, and LEU-ST-02

RESULTS FOR ZEUS HEU-GRAPHITE BENCHMARKS

ENDF/B-VI and Pre-ENDF/B-VII results show an energy-dependent bias

UNCLASSIFIED

RESULTS FOR HEAVY-WATER BENCHMARKS

			Calculated k _{eff}		
Series	Case	Benchmark k _{eff}	Pre-ENDF/B-VII + ENDF/B-VI.0 ² D	Pre-ENDF/B-VII	ENDF/B-VI
	1	1.0000 ± 0.0033	0.9948 ± 0.0004	0.9902 ± 0.0004	0.9839 ± 0.0004
Deflected	2	1.0000 ± 0.0036	0.9902 ± 0.0004	0.9846 ± 0.0004	0.9798 ± 0.0004
Reflected Spheres	3	1.0000 ± 0.0039	0.9962 ± 0.0004	0.9908 ± 0.0004	0.9861 ± 0.0004
(HEU-SOL- THERM-004)	4	1.0000 ± 0.0046	0.9984 ± 0.0004	0.9937 ± 0.0005	0.9886 ± 0.0004
	5	1.0000 ± 0.0052	0.9969 ± 0.0004	0.9912 ± 0.0004	0.9871 ± 0.0004
	6	1.0000 ± 0.0059	0.9931 ± 0.0005	0.9876 ± 0.0004	0.9837 ± 0.0004
	1	0.9966 ± 0.0116	1.0023 ± 0.0005	0.9902 ± 0.0005	0.9918 ± 0.0005
Unreflected Cylinders (HEU-SOL-	2	0.9956 ± 0.0093	1.0079 ± 0.0005	0.9966 ± 0.0005	0.9967 ± 0.0005
	3	0.9957 ± 0.0079	1.0150 ± 0.0005	1.0046 ± 0.0005	1.0055 ± 0.0005
THERM-020)	4	0.9955 ± 0.0078	1.0136 ± 0.0005	1.0034 ± 0.0005	1.0029 ± 0.0005
	5	0.9959 ± 0.0077	1.0194 ± 0.0005	1.0114 ± 0.0005	1.0114 ± 0.0005

RESULTS FOR NEPTUNIUM SPHERE BENCHMARK

k _{eff}				
Benchmark	Pre-ENDF/B-VII	ENDF/B-VI		
1.0019 ± 0.0036	0.9922 ± 0.0003	0.9889 ± 0.0002		

Pre-ENDF/B-VII result is better than the ENDF/B-VI result, but it still is substantially lower than the benchmark value

CONCLUSIONS

Overall, Pre-ENDF/B-VII produces major reactivity improvements relative to ENDF/B-VI

Reactivity swings from bare spheres to similar systems reflected by normal uranium are eliminated or substantially reduced

Need for ad hoc adjustment to ²³⁸U resonance integral may be eliminated

Improvements still are needed, particularly for cases with intermediate spectra, thorium, deuterium, or neptunium

