

High Performance Computing and Monte Carlo

Forrest B. Brown1 and William R. Martin2

1Diagnostics Applications Group (X-5), Los Alamos National Laboratory,
PO Box 1663, MS F663, Los Alamos, NM, fbrown@lanl.gov

2Department of Nuclear Engineering & Radiological Sciences, University of Michigan,
Ann Arbor, MI, 48104, wrm@umich.edu

INTRODUCTION

High performance computing (HPC), used for the
most demanding computational problems, has evolved
from single processor custom systems in the 1960s and
1970s, to vector processors in the 1980s, to parallel
processors in the 1990s, to clusters of commodity
processors in the 2000s. Performance/price has increased
by a factor of more than 1 million over that time, so that
today’s desktop PC is more powerful than yesterday’s
supercomputer. With the introduction of inexpensive
Linux clusters and the standardization of parallel software
through MPI and OpenMP, parallel computing is now
widespread and available to everyone.

Monte Carlo codes for particle transport are
especially well-positioned to take advantage of accessible
parallel computing, due to the inherently parallel nature of
the computational algorithm. We review Monte Carlo
particle parallelism, including the basic algorithm, load-
balancing, fault tolerance, and scaling, using MCNP5 as
an example. Due to memory limitations, especially on
single nodes of Linux clusters, domain decomposition has
been tried, with partial success. We conclude with a new
scheme, data decomposition, which holds promise for
very large problems.

PARTICLE PARALLELISM

The most common approach to high-performance
particle transport Monte Carlo is particle parallelism
using a master/slave algorithm, where a master process
distributes individual histories to different slave
computing nodes, which then analyze the histories
concurrently using one or more threads (Fig. 1). MPI
message-passing is used to distribute problem data to the
slaves and collect the tallied results, while OpenMP is
used for threading computation within each slave. Two
characteristics of these calculations are ideal for
parallelism: (1) compact 3D combinatorial geometry is
used, so that memory storage is not required for a large
3D mesh, and (2) individual particle histories are
independent, so that slaves do not need to interchange any
information with other slaves during computations. The
master/slave algorithm requires that each slave node has
its own copy of problem geometry, cross-section data, and

tallies. These data may be shared among threads for
slaves with multiple CPUs.

Fig. 1. MCNP5 master/slave algorithm

Load-balancing and fault tolerance must be handled
robustly in HPC Monte Carlo codes. In MCNP5 [1,2], for
example, fault-tolerance is handled by having the slaves
periodically rendezvous with the master, stopping the
computation of histories and sending current tally data to
the master, so that the master can backup the data in a
dump-file. If the system has a hardware failure, the most
recent dump-file can be retrieved to continue the
calculations. To achieve load-balancing, MCNP5 uses
self-scheduling by the slaves (Fig. 2). The total number of
histories is divided into moderate-sized chunks. When a
slave is idle, it requests a new chunk of work from the
master. Faster slave nodes process more chunks of work
than slower nodes.

Fig. 2. MCNP5 self-scheduling and rendezvous

The particle parallelism approach used in MCNP5
(master/slave algorithm, using MPI and OpenMP, with
self-scheduling and rendezvous) has been proven to be
effective on a wide variety of HPC systems, including
Linux clusters, Windows clusters, workstation clusters,
shared-memory parallel systems, and ASC teraflop
systems. Fig. 3 shows the measured speedups for MCNP5
on the Q system at LANL, a 20 TFLOP ASC system. A
parallel speedup of 2600x was achieved using 3700

processors. For particle parallelism, speedups are limited
by the communication and synchronization overhead
required for periodic rendezvous. Models of the parallel
scaling behavior are well-known and understood [3, 4].
Minimizing the rendezvous overhead results in improved
parallel efficiency.

Fig. 3 MCNP5 parallel speedup on Q system

DOMAIN DECOMPOSITION

For Monte Carlo codes which use a mesh
representation of geometry, some applications may
require so much memory storage for the mesh and tallies
that spatial domain decomposition may be necessary [5,
6]. The physical problem is partitioned into subdomains
which will fit in the memory of different processors. If
domain decomposition is used, then it is necessary to
transfer particles between domains when they reach
boundaries. These transfers result in slave-to-slave
communications, synchronization delays, and severe
imbalances in processor load, all of which are at odds
with the natural particle parallelism. Domain-decomposed
Monte Carlo methods have generally shown only
moderately successful performance and scaling for reactor
problems, and poor results for time-dependent problems.
They have not been successful to date in scaling to many
100s or 1000s of processors.

PARTICLE PARALLELISM WITH DATA
DECOMPOSITION

To overcome performance difficulties with domain
decomposition, alternate approaches are being
investigated for problems with very large memory
requirements. With MCNP5, for example, there is much
interest in performing medical physics dosimetry
calculations on VIP-man, a standard tomographic model

consisting of 3.7 billion voxels which represent the
geometry and materials. Since the required memory
storage exceeds that available on Linux cluster nodes, the
voxel data must be partitioned across different nodes.
Variations in the current MCNP5 particle parallelism are
being investigated. The basic particle parallelism
algorithm will be retained, with the addition of a set of
data nodes. The additional data nodes act as data servers,
sending blocks of voxel data to the slaves on demand.
That is, rather than move particles to data locations (as for
domain decomposition), the modified MCNP5 algorithm
will move blocks of data to the particles as needed.
Unlike domain decomposition, this approach should scale
to 1000s of processors for memory-intensive applications
that cannot be contained within a single processor.

CONCLUSIONS

Monte Carlo codes for particle transport are often the
first production codes in use on new HPC computers.
Particle parallelism is an effective and highly portable
algorithm which requires little or no modification for
advanced computers or new architectures.

REFERENCES

1. X-5 MONTE CARLO TEAM, “MCNP – A General
Monte Carlo N-Particle Transport Code, Version 5,
Volume I: Overview and Theory,” LA-UR-03-1987,
Los Alamos National Laboratory (April, 2003).

2. F. B. BROWN, J. E. SWEEZY, J. T. GOORLEY,
“MCNP5 Parallel Processing Workshop,” LA-UR-
03-2228, Los Alamos National Laboratory (2003).

3. S. MATSURA, F. B. BROWN, R. N. BLOMQUIST,
Trans. Am. Nucl. Soc. (Nov. 1994).

4. A. MAJUMDAR and W. R. MARTIN, “Performance
Measurement of Monte Carlo Photon Transport on
Parallel Machines,” PHYSOR 2000: ANS Int. Topical
Meeting, Pittsburgh (May 2000).

5. S. R. LEE, S. D. NOLEN, F. B. BROWN, “MC++
Monte Carlo Code for ASCI, ” Los Alamos National
Laboratory report (1998).

6. R. PROCASSINI, et al., “Design, Implementation
and Testing of MERCURY, a Parallel Monte Carlo
Transport Code,” Proc. ANS Math. & Comp. Topical,
Gatlinburg, TN, April 6-11 (2003)

