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Abstract. Monte Carlo particle transport is usually introduced primarily as a
method to solve linear integral equations such as the Boltzmann transport equation.
This focus on solving integral transport equations gives rise to a number of common
misconceptions about MCNP transport methods among many MCNP users.

A transport process approach that is often useful in understanding the variance
reduction in MCNP focuses directly on the Monte Carlo sampling process itself.

1 Introduction

Many MCNP users understand Monte Carlo transport theory via linear in-
tegral equations. This is quite understandable as standard books in the field
usually emphasize the connection of Monte Carlo transport and the trans-
port equation. This connection has proven very useful both for teaching about
Monte Carlo and for developing and analyzing many variance reduction meth-
ods. The success of the books also indicates that the readers have found the
transport equation approach to understanding Monte Carlo transport useful.
Indeed, the fact that so many Monte Carlo books emphasize the transport
equation indicates that the experts writing the books have found the trans-
port equation a very useful perspective both in practice as well as in teaching.

Monte Carlo books are written for many purposes, for example, as course
textbooks and to illustrate the main ideas in the field. To my knowledge, none
of the standard Monte Carlo transport theory books were written with the
intent of covering MCNP variance reduction methods; the books are intended
for a more general readership. It would therefore be unreasonable to expect to
understand MCNP variance reduction based solely on standard Monte Carlo
transport theory books. For example, there is no standard book that justifies
the unbiasedness of arbitrary combinations of MCNP’s variance reduction
techniques.

This report has four main purposes

1. to explain the transport process approach to variance reduction methods
in MCNP

2. to educate MCNP users about the sometimes significant differences be-
tween the theory that they typically read in the Monte Carlo books and
what MCNP actually does



3. to caution MCNP users about interpreting Monte Carlo transport using
the wrong transport equation

4. to illustrate some aspects of statistical weight that are often not consid-
ered by MCNP users

The “transport process” approach focuses on the Monte Carlo transport
process itself to try and determine what the major sources of variance are
in the simulation and what to do about these sources. The transport process
approach is a general approach that is useful for all MCNP calculations. The
transport process approach to variance reduction can be especially useful
when the user has no integral transport equation results available, as is often
the case for typical MCNP calculations.

Before proceeding with the transport process approach, note that under-
standing the transport process is not a substitute for understanding integral
transport equations. Integral transport equations can sometimes produce re-
sults that would be very difficult, if not impossible, to produce by focusing
solely on a transport process approach.

By examining the transport process as one sets up the variance reduction
in MCNP, one often finds that particles contributing most to the variance
are somewhat special. They may, for instance, tend to

1. have fewer collisions than typical particles
2. have large distances between collisions in one direction and short dis-

tances between collisions in another direction
3. have different energies or directions than typical particles
4. have very different weights in a region than typical particles

Once the MCNP user has analyzed what is special about the particles con-
tributing most to the variance, he may be able to use variance reduction
techniques to increase the sampling of these special particles.

MCNP users sometimes try simply tinkering with the values of MCNP
variance reduction parameters without having examined what types of parti-
cles are contributing most to the variance. Unless the user’s intuition and/or
luck is very good, this approach is usually far from optimal. A few observa-
tions about MCNP users and variance reduction in the next two paragraphs
may help illustrate the usefulness of adding a transport process approach to
their variance reduction considerations.

An MCNP user’s intuition is often based on some (sometimes good, some-
times perhaps very rough) notion of the importance function. This is useful
knowledge about a particle’s expected score. One can sometimes glean use-
ful information about typical scoring particles. On the other hand, in many
high variance situations the typical scoring particle may have little influence
on the variance because the variance may be dominated by atypical scoring
particles. It is often difficult to have an idea what causes the variance in a
calculation by knowing what causes the mean. Stated very simply, when at-
tempting variance reduction it pays to focus on a measure of the variance



rather than the importance, which is a measure of the mean. MCNP users
should understand that the importance function deals with the mean score,
not the variance.

My experience dealing with MCNP users is that they tend to focus their
efforts on getting lots of low weight particles to the detector region. The
clearest example is that most (novice) MCNP users intuitively view a dxtran
sphere as “a magnet for pulling low weight particles” to the sphere rather
than as “a shield against high weight particles” trying to cross the sphere.
Dxtran can serve both purposes, of course. Using dxtran as a magnet tends
to focus on bringing lots of typical low weight particles into a detector region.
The contribution to the mean is then dominated by these low weight particles.
On the other hand, the contribution to the variance is then often dominated
by a few high weight particles. Roughly speaking, viewing dxtran as a magnet
is consistent with producing typical scoring particles whereas viewing dxtran
as a shield is consistent with precluding the high weight particles that might
otherwise dominate the variance.

2 Comments on “Analog” Monte Carlo and the
Transport Process

Probably most Monte Carlo transport practitioners understand and use the
term “analog Monte Carlo” in mostly the same way. That is, convenient prob-
ability densities are abstracted from the physical transport process. These
convenient probability densities are then embedded in a transport code. For
example, the neutron distance to collision is sampled conveniently from an
exponential distribution without modeling the detailed interactions between
the neutron and each nuclide along its path.

For this report, the term “analog” describes a direct sampling of these ab-
stracted probability densities. For the most part, people have abstracted very
similar probability densities from the physical transport process. Nonetheless,
it is probably worthwhile to note that an analog sampling in the context of
this report refers to the particular probability densities that MCNP has ab-
stracted from the physical transport process. Roughly speaking, an analog
Monte Carlo sampling of a neutron transport problem in MCNP is what one
gets when no variance reduction techniques are used.

The term “transport process” is also used in the context of MCNP’s
abstraction of the physical transport process. An analog transport process is
an analog simulation of the abstracted physical transport process. Similarly,
a nonanalog transport process is a nonanalog simulation of the abstracted
physical transport process.

A transport process approach focuses on the details of the simulation to
try and determine what the major sources of variance are in the simulation
and what to do about these sources.



3 Comments on Mathematics

Although many people have commented that particle transport can be sim-
ulated without reference to the transport equation, this does not mean that
mathematical equations are irrelevant to MCNP. Except for the simple case
of an analog simulation, mathematical equations are necessary in both the
transport equation approach and the transport process approach. When the
simulation deviates from an analog simulation, both approaches require math-
ematical equations to show that the mean estimates are preserved.

4 Caution on “The” Transport Equation

In most cases, Monte Carlo codes allow estimation of quantities for which the
transport equations displayed in the literature do not apply. In particular, the
typical transport equations totally ignore the correlation between particles.
Thus any estimate, such as the pulse height tally in MCNP, that depends on
the correlation between particles is typically ignored. Transport equations, of
course, can be written to include correlation between particles, but authors
typically choose not to display such equations. If an MCNP user wishes to use
transport equations to analyze and/or improve his Monte Carlo calculation,
it is important to understand what transport equations are relevant to the
calculation. This last statement seems obvious, but people have sometimes
talked about the pulse height tally in MCNP in the same breath as a transport
equation that ignores the correlation between particles.

5 Variance Reduction for Difficult Problems

For many problems, Monte Carlo estimates can often be obtained to suffi-
cient precision using little or no variance reduction. This report assumes that
the transport problems under consideration are sufficiently difficult that the
Monte Carlo user needs to get close to the most efficient calculation that can
be run with MCNP.

Note that one of the answers to a transport problem is the calculational
variance; it is not governed by the transport equation. At this point, two
typical approaches are:

1. One uses one’s intuition (often guided by some knowledge of the im-
portance function) to set up the variance reduction and assumes that
whatever variance results will be close to optimum.

2. One derives equations for the variance (or sometimes the product of the
variance of the mean and the computer time cost = σ2

mT ) as a function
of some parameters. One then solves these equations (sometimes using
results from short Monte Carlo runs) for the optimum parameters. See
[5, chapter 7] for a number of examples.



The first approach often works well if one’s intuition is good and one
can arrange the sampling so that there is a relatively small spread in history
scores. That is, each history contributes roughly the mean score. In this case,
both the bulk of the mean and the bulk of the variance are produced by
the same particles. That is, focusing on particles that contribute most to the
second moment is similar to focusing on particles that contribute most to
the mean. Indeed, in the limiting case of a zero variance solution all particles
contribute exactly the mean score and there is no reason to consider the
second moment at all.

The other side of the coin is that the available variance reduction tech-
niques may not allow one to arrange the sampling so that there is a relatively
small spread in history scores. Alternatively, the variance reduction tech-
niques may allow one to arrange the sampling so that there is a relatively
small spread in history scores, but the user may not a priori be able to guess
how. In these cases, the set of particles contributing most of the variance may
be very different from the set of particles contributing most of the mean. For
instance, the set of typical particles that contribute 99 percent of the mean
might only contribute 1 percent of the variance. In this case, focusing efforts
on typical particles that score will not work very well because the typical par-
ticles are very different from the particles contributing most to the variance.
One would do better to base the variance reduction on the second moment
equation rather than the importance.

Concerning the second approach, if one views the mean transport (first
moment) as resulting from a solution of the transport equation, then it is
natural (and often useful) to derive a similar equation for the second mo-
ment (e.g. see[5, chapter 5]). Unlike the transport equation, note that an
equation for the second moment depends on what variance reduction meth-
ods one uses. (At this point, it is almost universal practice to consider only
transport processes that are independent of particle weight.) The optimum
second moment is, of course, optimal only for the particular set of variance
reduction methods considered. This second approach works well when the
variance reduction methods considered in the optimization are a good match
to sources of variance in the problem. For example, particle penetration of
simple slabs often can be done reasonably well by optimizing “cell impor-
tances” (the geometry splitting and Russian roulette technique in MCNP.)
If there is a streaming path, such as a duct running through the slab, then
even optimum cell importances may not sufficiently reduce the variance to
make the problem tractable with reasonable amounts of computing time.

6 Two Theoretical Results for the Transport Process
Approach

Most of the theoretical results presented in standard Monte Carlo texts apply
to only small subsets of the MCNP variance reduction methods. There are
three main reasons why these results are inadequate for MCNP purposes.



1. The results are typically restricted to weight independent simulations in
which the random walk sampling does not depend on the particle weight.

2. The results do not consider arbitrary combinations of variance reduction
methods, typically not even arbitrary combinations of weight independent
methods.

3. MCNP is an open code so that users can add their own variance reduction
methods if they wish.

Consider the combination of variance reduction techniques. Until about
1990, the following was true[6]:

“Nonanalog Monte Carlo techniques are essential to many calcula-
tions, and historically they have been developed one at a time as
needed. Each new nonanalog technique usually, at best, has been
proven to preserve the expected tallies (i.e., be unbiased) when used
by itself. The techniques have not been proven to be unbiased in
arbitrary combinations.”

Reference [5] has one of the better treatments, proving via integral equations
that the combination of splitting and biased kernels is unbiased. If, in addi-
tion to splitting and biased kernels, another variance reduction technique is
added, then one has to rewrite the integral equations to include the new tech-
nique and prove unbiasedness via the new integral equation. MCNP relies on
the fact that any combination of Monte Carlo techniques is unbiased if the
techniques are individually unbiased. In statistical parlance, any combination
of fair games is also a fair game. This is a general statistical result for any
linear Monte Carlo process in any field, not just the transport field[6].

Before leaving the subject of “combinations of fair games,” note that
[6] was controversial when it was reviewed. One reviewer initially sent in
a two line review saying that the result was “well known” and “trivial” as
well. When challenged to produce either a reference or supply a proof, the
reviewer did neither. The paper was then accepted, although the reviewer
emphasized that he still considered the result “trivial”. Since publication,
several knowledgeable Monte Carlo practitioners also have asserted that the
fair games result can be proven easily. There is little reason to doubt that
the proof in [6] is not the simplest possible proof. The MCNP documentation
could be improved by inclusion of, or at least reference to, a simple proof
that any combination of fair games is also a fair game. Please send any
such proposed proofs (for the MCNP manual) to mcnp-forum@lanl.gov for
assessment and comment by the MCNP community.

A second example of a general statistical result is the subject of zero
variance methods. Zero variance solutions usually are derived solely in the
context of importance biasing in the solution of an integral equation. To make
matters even more specific, zero variance solutions are often derived only for
last event estimators, instead of for general estimators. From much of the
literature, one might erroneously conclude that there is only one way to get



a zero variance solution. Most discussions in the literature ignore the fact
that zero variance solutions can be obtained[3] using any other collection of
variance reduction techniques in addition to importance biasing. The general
rule to obtain a zero variance solution is to weight the sampling probability
for each outcome to be proportional to the outcome’s usual probability times
the expected score generated if that outcome occurs. (Reference[3] shows
one simple way to accomplish this sampling by expected score weighting the
sampling of random numbers.) The usual derivation via importance sampling
an integral equation is just one simple example of the general rule. Again note
that this is a general statistical result for any linear Monte Carlo process in
any field, not just the transport field.

7 A Caution on Optimal Sampling Claims for MCNP

A common mistake in verbal and written communications is to mix weight
independent results from the literature together with the weight dependent
transport processes in MCNP. Unless carefully qualified, such communica-
tions are often either false, misleading, or both.

A typical claim is that sampling from an importance weighted probability
density minimizes the variance in an MCNP calculation. That is, if f(P ) is
the true probability density for sampling the next phase space point and I(P )
is the importance function, then a typical claim is that sampling from the
biased probability density

b(P ) =
f(P )I(P )

∫
f(P )I(P ) dP

minimizes the variance. Sometimes the claim is put forth as so obvious that
no justification for the claim is supplied. Sometimes the claim is justified
by reference to an importance sampling technique, despite the fact that the
referenced importance sampling result was not derived in the presence of a
weight dependent simulation.

Whenever one is using weight dependent MCNP techniques, one should
be wary of assertions based on weight independent derivations in the litera-
ture. It is perhaps worthwhile to note that MCNP plays a number of weight
dependent games by default. For example, if one wants an analog MCNP cal-
culation then in addition to not explicitly requesting any variance reduction,
one must explicitly turn off the default weight cutoff game. As a result, almost
all MCNP calculations are weight dependent simulations and the standard
results from weight independent theories do not apply.

8 Comments on Transport Equations and Variance
Reduction in MCNP

Given the emphasis that standard books give to integral transport equations
when discussing variance reduction, it is perhaps worthwhile to summarize



the current state of affairs with regard to transport equations and MCNP.
Three reasonable questions are:

1. Why does MCNP use weight dependent simulations?
2. Why not analyze weight dependent MCNP simulations using integral

transport equations?
3. Why analyze MCNP simulations using a transport process approach?

Weight independent simulations can be viewed as a special case of more
general weight dependent simulations in the same sense that f(x) = constant
can be viewed as a special type of function of x. Philosophically, it is not very
surprising that selecting from a broader class of variance reduction techniques
might allow for better variance reduction, but the primary reason that weight
dependent simulations are allowed in MCNP is that they have proven useful
in practice.

The answers to the second and third questions are a bit more difficult
and the answers may change eventually depending on future developments in
Monte Carlo transport theory. At the present time, here are some thoughts
on why transport equation analysis might be useful for weight dependent
simulations and why a transport process analysis is currently useful for weight
dependent simulations.

1. Transport equations for the variance, usually via second moment equa-
tions, (e.g. [5, chapter 5]) are currently almost exclusively for weight inde-
pendent simulations. There is apparently no essential difficulty deriving
weight dependent transport equations for the variance. To date though,
I know of no use ever made of such an equation. This may change in the
future.

2. Note that integral transport equations often are concise and easily in-
terpretable. The fact that integral transport equations are an average
over the transport process can be a big advantage if one can effectively
use a transport equation that averages over unimportant aspects of the
transport process while preserving the important aspects of the transport
process.

3. Although the transport process details have to have at least as much
information as any integral equation average over the process, there is
always the danger that useful general insights get lost in the details.

4. Inasmuch as nobody has figured out yet how to effectively use integral
equations for the second moment in typical weight dependent MCNP
calculations, it is difficult to assess what general insights (from the second
moment equation) currently might be hidden in the transport process
details.

5. A transport process approach to variance reduction in MCNP is some-
what of a necessity given the comments in items 1 and 4.

6. Many different fields have similar types of simulation processes so that
techniques used for processes in one field are often useful techniques in
other fields as well.



7. By examining in detail the particles having the largest contributions to
the variance, it is often quite easy to identify the major source of variance
still left in an MCNP problem.

9 Markov and Nonmarkov Processes and Random
Walks

In MCNP’s analog simulation of nature, the next step of a particle’s random
walk depends only on its current phase space location P . That is, MCNP’s
analog process is a Markov process.

Nonanalog simulations of particle transport depart, in one way or another,
from the analog process. Nonanalog methods are also known as variance
reduction methods because the intent of using nonanalog methods is to reduce
the variance in the estimated mean for a given computer time. Note that
nonanalog simulations need not be Markov processes.

The following sections will comment on four categories of random pro-
cesses

1. Processes depending only on the current phase space location P .
2. Processes depending on all the random walk’s past physical events, e.g.

P0, P1, P2, · · · , Pn.
3. Processes depending both on the current phase space location P and the

current statistical weight w.
4. Processes not included in the previous items.

10 Natural Markov Processes

When the sampling of the particle depends only on the current phase space
position P , as it does in an analog MCNP modeling of nature, the sampling
will be said to be a natural Markov process. Many of the common variance
reduction techniques are naturally Markovian. For example:

1. Biasing the transport kernels.
– exponential transform in MCNP (path length stretching)

2. Splitting techniques
– geometry splitting and Russian roulette in MCNP
– survival biasing in MCNP (split into absorbed and surviving parts)
– forced collisions in MCNP (split into collided and uncollided parts)

(MCNP is not remarkable in having variance reduction techniques that are
naturally Markovian; nor are the above techniques necessarily unique to
MCNP. Transport codes sometimes differ both in their terminology and
in their implementations of techniques having similar names. Specifying an
MCNP technique makes the definition unambiguous, so that the categoriza-
tion above is possible.)



There are variance reduction methods that are natural Markov processes
and there are variance reduction methods that are not natural Markov pro-
cesses. In general, the natural Markov processes are easier to study math-
ematically because the next step of a particle’s random walk depends only
on its current phase space location. Because of this simplicity, the pages of
Monte Carlo transport theory literature devoted to natural Markov processes
far exceeds the pages devoted to other Monte Carlo processes.

11 A Simple Nonmarkov Process

Reference[2, page 87] discusses a simple nonmarkov process in which the
transport probabilities can depend on the current and all the previous phase
space points, P1, P2, · · · , Pn. On the same page, the book says “ ... for those
familiar with the term, we shall be dealing almost exclusively with Markov
processes. Nonetheless, it seems worth pointing out that nonmarkov pro-
cesses may be treated as well.” Indeed, the remainder of the book almost
exclusively considers transport problems with analog and nonanalog Monte
Carlo simulations that depend solely on the current phase space point.

From an MCNP perspective, the reason that [2] usually does not apply to
MCNP calculations is not so much that the previous phase space points are
not considered, it is that the particle weight is not included in the current
state of the particle. That is, the nonanalog Monte Carlo simulations in [2]
only seem to use weight independent random walks.

Returning to the book’s[2] notion of a nonmarkov random walk, note that
including the previous phase space points is occasionally useful. For example,
MCNP allows consideration of events before the current phase space point P
via the cell and surface flagging options. If a cell is flagged, then the tally is
partitioned into the part of the tally due to particles that have entered the
flagged cell and the part of the tally due to particles that have not entered
the flagged cell. The surface flag operates similarly. Although the production
version of MCNP does not use different transport methods depending on the
flag, it is easy and occasionally useful to modify MCNP to do so.

12 Weight Dependent Markov Processes

Many, probably most, of the common variance reduction techniques that are
not natural Markov processes depend only on the the current phase space
point P and the current weight w. Those processes whose transport depends
only on (P,w) will herein be called weight dependent Markov processes to
distinguish them from natural Markov processes.

Common weight dependent Markov processes in MCNP involve:

1. weight windows
2. weight cutoff (associated with the geometry splitting/roulette)



3. weight dependent roulette games associated with point detectors and
dxtran

4. weight dependent secondary particle production

13 Weight Dependent vs Weight Independent
Transport

Most theoretical Monte Carlo discussions assume that a particle’s random
walk is independent of the particle’s weight. Under this assumption, a par-
ticle’s score is directly proportional to its weight and the rth score moment
for a particle of weight w is wr times the rth score moment for a unit weight
particle. [5, page 163]. To give some idea of the common appeal of this wide-
reaching assumption, note that [5] first mentions this assumption in a foot-
note.

A cautionary note is perhaps worthwhile here. Because weight indepen-
dent (natural) Markov simulations are more tractable mathematically, they
account for almost all of the theoretical discussions in the Monte Carlo lit-
erature. (Two good exceptions can be found in [5, pages 178 and 186].) One
should not be mislead into concluding that weight independent simulations
are more important, better, or more widely used than weight dependent simu-
lations. Many of the large production Monte Carlo codes allow weight depen-
dent simulation. MCNP, which is probably the most widely used Monte Carlo
transport code in the world, has always done weight dependent simulation
as a default. (To the author’s knowledge, the predecessor codes to MCNP, as
far back as the 1950’s, have always done weight dependent simulation as a
default as well.)

There is often some distance between Monte Carlo theory and MCNP
practice. Two examples are given below.

First, consider the weight window technique. The weight window is per-
haps the most widely used variance reduction technique in transport Monte
Carlo today, but it has received scant theoretical attention. (Fox’s book [7,
pages 213-233] gives an interesting discussion of the weight window.)

Second, consider Monte Carlo optimization techniques. There are numer-
ous theoretical derivations on optimal parameters to minimize the variance;
they almost always assume weight independent transport. A favorite problem
for theorists is optimizing the exponential transform[8–11]. (The reference list
is not exhaustive, see [5, page 487] for more.) Inasmuch as practical experience
indicates that a weight window almost always improves the performance of
the exponential transform, the usefulness of optimizing the exponential trans-
form in the absence of a weight window is severely curtailed. Empirically,

1. The optimal transform parameter seems to be higher with a window than
without a weight window.

2. An empirically optimized transform parameter used with a weight win-
dow can give very good results. When the weight window is removed



with the same transform parameter, the results are often disastrous. In
one documented case [12, pages 54-56], the efficiency decreased by a factor
of 100.

Because of item 2, MCNP issues a warning message if the exponential trans-
form is used without a weight window.

Several historical points in connection with exponential transform opti-
mization and weight windows are worthwhile.

1. The references cited in the above paragraph generally predate the widespread
use of weight windows, so that the optimization techniques were useful
in their time. Additionally, they are still useful for Monte Carlo codes
besides MCNP.

2. The author knows of no studies, theoretical or empirical, that demon-
strate a benefit to using optimized transform parameters without a weight
window.

3. The optimization of the exponential transform in combination with a
weight window has not been attempted (except by empirical testing).

4. The author developed the weight window for MCNP after studying poorly
behaved statistical results obtained while using the exponential trans-
form. No integral equations were considered in developing the weight
window. The weight window was developed after observing the random
walk process for particles that produced the poor statistical results. That
is, the analysis and subsequent corrective action was focused on the trans-
port process and not integral equations. (Note, however, that proving that
the weight window method is unbiased does require integrals to show the
mean score is preserved.)

5. The weight window method then necessitated a way to obtain the weight
windows. MCNP’s weight window generator was then devised, again
based solely on the transport process. No integral equations were consid-
ered in developing the weight window generator. (Although not necessary,
note that the weight window generator concept also can be obtained via
integral equations.)

14 Some Other Nonanalog Transport Methods

Standard Monte Carlo transport books understandably attempt to explain
Monte Carlo variance reduction methods by focusing on a few powerful and
relatively easily understood methods. The transport books are not intended
to be encycopedias of all possible variance reduction methods, nor should they
be. That said, many MCNP users unduly seem to have limited their views to
the types of methods mentioned in the Monte Carlo transport books. This
is unfortunate, because there is a large variety of possible unbiased Monte
Carlo methods that are unlike the methods typically discussed.

Below are some possible nonanalog methods that are usually ignored.
The comb method in item 1 is a practical nonanalog method that has been



used for many years. The rest of the methods are just thought experiments
and probably have never been implemented anywhere. No suggestion is being
made that the methods are useful, only that they can be unbiased methods.
Where possible, a rationale for the method is given to aid the reader’s under-
standing of what might motivate one to consider such a method. Methods 6
and 7 are downright farcical from the standpoint of variance reduction, but
they help indicate the generality of possible nonanalog simulations.

1. When the number of tracks associated with one source particle exceeds
100, then use an importance-weighted comb[13] to reduce the number
to 50. Note that the comb uses the phase space location and weight of
each particle, thus the random walk of each particle now depends on the
weight and phase space locations of all the particles.

2. In the Monte Carlo literature, for example [2,4,5], the nonanalog transi-
tion kernel K̂(P, P ′) between collisions is almost always assumed to be
independent of the particle weight. This may not be optimal. Consider
two particles, with weights w1 > w2, penetrating a slab. Suppose that
both particles are identical, except for their weights, and both are moving
forward in the penetration direction. If w1 is large enough, then modify-
ing the distance to collision sampling by using an exponential transform
will produce a transform modified weight w1t that is larger than some
minimum weight requirement at P . Conversely, if w2 is small enough,
then modifying the distance to collision sampling by using an exponential
transform will produce a transform modified weight w2t that is smaller
than some minimum weight requirement at P and a roulette game will
ensue. First reducing the particle weight via exponential transform and
then playing a roulette game introduces an unnecessary fluctuation in the
particle weight; this will generally lead to a higher variance simulation.
Thus, it might make sense to employ the exponential transform only in
those cases where the transform modified colliding weight will be above
some minimum weight requirement at P . That is, it may make sense to
use a weight dependent transition kernel K̂(P, P ′, w′).

3. When a particle track bifurcates, either due to variance reduction or a
physical process like fission or electron pair annihilation, the sampling of
one branch can be made dependent on the sampling of another branch.
For example, suppose the third photon collision produces two 0.511 MeV
annihilation photons. Put the second branch aside (“save it to the bank”)
while the first branch is sampled. Note whether the first branch (or any of
its progeny) reaches a detector cell. After finishing with the first branch,
sample the second branch using an exponential transform if the first
branch reached the detector; otherwise, sample the second branch nor-
mally. This will increase the number of times that both 0.511 MeV photon
branches reach the detector and might thus be helpful in a pulse height
tally calculation.

4. The randomness in an estimation process can depend on the random-
ness in a previous estimation process. For example, suppose that roulette



games are played in the estimator process that with probability p in-
creases the contribution by 1/p or with probability 1 − p takes a zero
contribution. The point detector estimator in MCNP plays a series of
these roulette games[1, page 2-98] as it tracks a pseudoparticle from the
collision site to the detector. Suppose that the particle has not moved far
from its previous collision before it collides again. If the detector contri-
bution from the previous collision lost one of the roulette games after a
good deal of tracking work, then it might be reasonable to play some of
these roulette games for the current collision before taking the computer
time to track a pseudoparticle towards the detector.

5. The random walk of a particle can depend on the randomness in the
estimator. As in item 4, consider a random point detector estimator.
Change the particle’s random walk conditional on the randomness in the
detector.
– If the pseudoparticle survives the point detector roulette games at the
nth collision, then the particle proceeds to sample the distance to the
n + 1st collision.
– If the pseudoparticle is rouletted in the estimation process, then roulette
the particle with probability 1/2 before sampling the distance to the
n + 1st collision.

6. Suppose there is a 2:1 split before the fourth collision. One can sample
the post collision energy from the sixth collision of the second branch
depending on the outcome of the 43rd collision on the first branch.

7. Note that the random numbers determining the outcome of the 7th col-
lision can be selected before the the sampling of the 4th collision. The
4th collision can then be sampled from a biased probability density de-
pendent on the random numbers for the 7th collision. This is not only
not a Markov process, it violates some peoples’ notions that events must
be sampled in the order that they occur and that the sampling of earlier
events cannot depend on later events.

15 Comments on Statistical Weight

From the standpoint of many, perhaps most, major Monte Carlo transport
codes, weight is a particle attribute, like energy and position. That is, the
weight is carried along with the particle, banked with the particle, and so
forth. It is often convenient to interpret the weight as the number of physical
particles represented by the computer particle. Heuristically, one expects that
if the Monte Carlo process preserves the expected weight at each event, then
the result will be an unbiased mean. For the most part, this is a very useful
view of the Monte Carlo process, but it is perhaps useful to point out some
cases for which this view needs some elaboration and/or modification. The
purpose here is to illustrate some of the subtleties in the concept of “particle
weight” that MCNP users may not have considered.



15.1 Preserving the Expected Weight is not Always a Sufficient
Condition for an Unbiased Mean

Preserving the expected weight, by itself, will not ensure an unbiased esti-
mate. The estimator must depend on weight in a correct way also. As an
obvious example, if the number of particles crossing a surface is desired, then
tallying “1” (regardless of weight) every time a particle crosses the surface
will give the correct tally for an analog calculation, but will in general be
wrong when variance reduction techniques change the weight.

For deterministic (nonrandom) estimators, unbiasedness is normally as-
sured by making the tally function proportional to weight. Not all common
estimators are deterministic. The point detector in MCNP[1, 3-106] is a ran-
dom estimator because it plays roulette games when the optical path to the
detector gets large. For random estimators, one requires that the expected
tally (rather than the individual tally itself) be proportional to weight.

The conceptual mistake many people make is to separate the estimation
process from the transport process. These two processes can be tied rather
intimately in some unusual ways and one has to ensure that the combined
process is unbiased. Consider estimating the number of particles that cross
the cell shown in Fig. 1 without colliding.

Figure 1

Typical Estimation Process

|<------ T ------->|
| |
| |

w |----------------->| probability p, no collision
-------->| |

|------->* | probability 1-p, no collision
| |
| |
| |

A typical transport and estimation procedure is: with probability p = exp(−σT )
the particle crosses the cell without collision and tallies w and with proba-
bility 1 − p the particle collides and no tally is made. The particle is then
followed from either the point where it crossed the surface or the point where
it collided.



Another possible way to estimate the number of collisionless flights across
the cell is shown in Fig. 2.

Figure 2

Another Estimation Process

|<------ T ------->|
| |
| |

w |----------------->| probability p, no collision
-------->| |

|------->* | probability 1-p, no collision
| |
| |

pseudo- | |
particle | |

|----------------->| probability p, no collision
-------->| |

|---------->* | probability 1-p, no collision
| |
| |

For Fig. 2, the tally is not dependent on whether the particle of weight w
collides or not. Instead, the estimation is done using a “pseudoparticle” that
only exists for the estimation procedure. (The pseudoparticle initially has the
same phase space coordinates as the transported particle.) The pseudoparticle
is sampled using the same probabilities as the transported particle, but the
pseudoparticle is terminated after the estimation procedure is completed, it
is not transported. Hence the term pseudoparticle, because it is not part of
the transport. Transport then continues with the original particle. Thus the
particle might not cross the surface without colliding, but it might contribute
to the tally because the pseudoparticle did cross the surface without colliding.
Note that if the estimation process used on the pseudoparticle is not correct,
then the estimate can be erroneous despite the fact that the expected particle
weight has been preserved. It is often so obvious how the pseudoparticle
should be treated that the pseudoparticle’s role in maintaining an unbiased
estimate is not discussed. (A correct method tallies w when the pseudoparticle
crosses the surface without collision.)



15.2 Preserving the Expected Weight is not Always a Necessary
Condition for an Unbiased Mean

The previous subsection showed that preserving the expected weight is not
always a sufficient condition for an unbiased mean. Now, it is shown that
preserving the expected weight is not always a necessary condition for an
unbiased mean. Experienced Monte Carlo practitioners correctly might sus-
pect some legerdemain here. Consider Fig. 2 again. Inasmuch as the tally
depends (for the current transport step) not on the particle’s weight, but on
the weight associated with the pseudoparticle, the particle weight can be set
to any arbitrary value, provided the particle weight is returned to w when
the particle collides or crosses the surface. Thus, preserving the expected
weight is not necessary for this step in the transport process. With the tally
not responding to the original particle, one possible interpretation is that the
particle weight is zero for that step. Things will get even more curious in the
next subsection.

15.3 Multiple Particle Weights

Particle weight is normally conceived of as a single value for each particle. Not
only can one conceive of particles having multiple weights, multiple weights
are used in some production transport codes. Before jumping to the practical
uses of multiple weights, two simple examples are discussed.

Building on the previous two subsections, suppose that the code uses two
different estimators for the number of particles crossing the surface. The first
estimator uses the original particle as in Fig. 1 and the second estimator uses
the pseudoparticle as in Fig. 2. In this case, the original particle should have
weight w so that the first estimator is correct, but it can still have zero weight
for the second estimator. That is, the particle can have a different weight for
each estimator.

For another simple example, suppose that a particle of weight w reaches
a surface as shown in Fig. 1. Upon crossing the surface, split the particle into
two particles each of the original weight w. The total expected weight is not
preserved by this split, but unbiased estimates can again be made by a bit
of legerdemain with the estimators. Label the particles 1 and 2. Label the
estimators with positive integers. Let the odd numbered estimators respond
only to particle 1 and let the even numbered estimators respond only to
particle 2. This can be viewed as follows. The presplit particle contributed to
all tallies and thus can be considered to have a weight vector (w,w). After
the split, particle 1 has weight vector (w, 0) and particle 2 has weight vector
(0, w).

Turning to practical uses of multiple weights, note that perturbation and
correlated sampling methods use different weights for the reference system
and the perturbed system. For example, Ref. [5, page 307] explicitly uses a
weight vector in the discussion of correlated sampling.



The dxtran method in MCNP is very similar to the second example above.
Upon surviving a collision, a particle is partitioned into two particles. The
“dxtran particle” represents the uncollided particles that arrive on a user
specified dxtran sphere. The “nondxtran particle” represents the remainder
of the particles. Note that the nondxtran particle has the original weight,
w, at the collision exit point and the dxtran particle has a nonzero weight.
Thus, the total particle weight is always larger than w at the collision exit
point. The trick here is that the dxtran particle has zero weight for any
tallies made before crossing the dxtran sphere and appropriate weight for
any tallies afterward. Conversely, the nondxtran particle has weight w for all
tallies made before crossing the dxtran sphere and zero weight for any tallies
afterward.

Multiple weights can also be used to get low variance estimates for mul-
tiple tallies. Consider a particle with a single weight in a slab penetration
problem. Suppose the numbers of particles exiting the slab in the three en-
ergy ranges 1.00 to 1.01, 1.01 to 1.02, and 1.02 to 1.03 MeV are desired. Note
that a zero variance sampling for the energy range 1.00 to 1.01 MeV means
that every particle has to exit the slab within this energy range. This means
that no particles exit in the other two energy ranges. Thus, a random walk
process that gives a zero variance estimate for one energy range gives an in-
finite variance estimate for all other energy ranges. Most of the sampling to
get a zero variance solution in one interval is going to be very similar to the
sampling to get a zero variance solution in either of the other two intervals. It
seems ridiculous that a zero variance solution in one interval forces an infinite
variance in the other intervals. Reference [14] shows that it is possible to get
zero variance solutions in all three intervals at once using particles that carry
three weights. The method works by simultaneously applying several differ-
ent importance functions, one for each tally, in a correlated way. Although
zero variance estimates are impractical because the importance functions are
not known exactly, low variance solutions are possible with approximate im-
portance functions. The method in [14] follows a single particle with multiple
nonzero weights until the correlation between the importance functions de-
creases enough that the particle must, statistically, execute different random
walks for different tallies. (Curiously, Monte Carlo theories seem to focus
on a single importance function despite the fact that multiple estimates are
usually sought.)

16 Practical Variance Reduction

Designing practical variance reduction methods using solely an integral equa-
tion approach is often problematical. First, the methods designed via an
integral equation approach almost always are weight independent methods
because weight dependent methods are not usually analyzed by integral equa-
tions. Second, minimization of the variance in the transport process is usually



limited to making approximate use of zero variance biasing or optimizing a
fixed set of parameters associated with the method (e.g. see [5, chapter 7]).
At the end of this optimization, one typically has some roughly optimized set
of parameters that minimize the variance in a weight independent simulation.
What one does not usually have is an understanding of the remaining sources
of variance in the simulation after the optimization.

It may be that the variance reduction method, though optimized for the
particular set of parameters, is not treating some important source of vari-
ance in the simulation. Consider, for example, neutron penetration of an iron
slab. One can optimize the geometry splitting/roulette parameters in MCNP,
but the calculation may still have a large source of variance associated with
inadequate sampling of the iron cross section window at 24 kilovolts.

As a practical matter, it is usually important to understand the source of
any remaining variance in the problem. Unless one understands the source
of the variance, it is difficult to know if any of a code’s standard variance
reduction methods attack the source of the variance. Stated another way,
once the source of the remaining variance cannot be attacked by any of the
code’s standard variance reduction techniques, then either

1. the user’s variance reduction efforts should end, or
2. a new variance reduction method that attacks the source of the variance

must be implemented in the code

Fortunately, understanding the source of variance often is not too difficult.
One finds the source particles that contributed most to the tally (MCNP
does this automatically for the largest contribution) and one looks at these
source particles in detail either via a printout for the particle (an “event log”
in MCNP) or via a debugger. If one cannot find anything indicating poor
sampling (e.g. hitting an iron window, streaming up a duct, or excessively
high weights) then the simulation should be reasonably efficient. On the other
hand, if the particle having the largest tally is rare in the sense that it sampled
an important pathway that almost all other particles miss, then the user can
examine the variance reduction methods in the code that might increase the
sampling frequency for this rare pathway.

Note that many of the deficiencies in Monte Carlo variance reduction
techniques can be corrected by introducing weight dependent games. In the
past, the exponential transform at Los Alamos was often described as a “dial
an answer technique” because the sample mean was sometimes extremely
unstable and often seemed to depend on what transform parameter was used.
The weight window easily corrected this problem. The stratified splitting
game suggested in [4] sometimes was found to have a higher variance than
the standard weight window splitting in MCNP. From a theoretical point of
view, it was difficult to understand why the stratified splitting game was worse
than the unstratified weight window splitting. After examining the stratified
splitting transport process by following a few particles around, the situation
became clear. An analysis of the cause of the higher variance associated with



the stratified splitting technique pointed the way toward a small (weight
dependent) modification of the technique that made the stratified splitting
better than the weight window splitting[15].

As a practical matter, people need to pay attention to the sources of vari-
ance in the transport process when considering variance reduction methods.

17 Comments on Theory and Tinkering

A person confronted with solving a Monte Carlo transport problem today
has a variety of variance reduction techniques that can be applied in the
various transport codes. The Monte Carlo literature tends to focus on vari-
ance reduction techniques that have been analyzed using integral equations.
Unfortunately, only a small fraction of MCNP calculations fit the cases de-
scribed in the literature. The usual culprit, as indicated in numerous instances
herein, is the presence of weight dependent games in the MCNP calculations.
More theory is needed for these weight dependent games. Weight dependent
games in MCNP seem to allow more efficient simulations than the weight
independent games described in the literature.

With the important exceptions of choosing weight windows or MCNP cell
importances, which can be obtained by stochastic methods (e.g. MCNP’s
weight window generator) or sometimes deterministic methods (e.g. discrete
ordinates[16]), very little of the variance reduction is automatic. In practice,
some MCNP users attempt variance reduction by tinkering. They tinker with-
out looking at the transport process to determine the source of the variance.
They tinker with different methods and they tinker with the parameters of
the methods. Quite often, the tinkering is ineffective, for reasons explained
below.

With enough effort, the user empirically can optimize a set of parameters,
but the optimum is only over the methods and sets of parameters chosen.
Without investigating particles to determine what is causing the variance,
the tinkering is essentially done in the dark, with the hope that the op-
timum parameter selection will lead to an efficient calculation. Suppose, for
instance, that the user attempts to do a slab penetration problem using solely
the exponential transform. With enough tinkering, the user will presumably
arrive near the optimum transform parameter obtainable by references [8–
11]. As mentioned in section 13, practical MCNP experience indicates that
the exponential transform without a weight window gives a very inferior re-
sult compared to the exponential transform with a weight window. Whether
the optimum is theoretically derived or empirically derived, the calculation
is missing weight control as a key factor in controlling the weight fluctua-
tions introduced by the exponential transform technique. A quick look at the
particle history contributing the largest tally highlights the problem almost
immediately.



18 Summary

This report has noted some significant differences between the way Monte
Carlo transport theory is normally presented and what MCNP actually does.
Additionally, this report has tried to show that there is a significant value
in a transport process approach to variance reduction in MCNP. That is,
MCNP users should understand not only the integral equation approach to
variance reduction, but the transport process approach as well. Note that the
two approaches are not mutually exclusive. This report gives two examples
of useful techniques (i.e., stratified splitting and the exponential transform)
that were developed based on transport equation considerations and then
were improved by transport process considerations.

As a practical matter, MCNP users need to pay attention to the sources of
variance in the transport process when considering variance reduction meth-
ods. The cause of a high variance simulation in MCNP is not often apparent
from a look at the transport equation; in contrast, the cause is often apparent
after examining the largest scoring particle histories.

Finally, this report (especially sections 14 and 15) encourages MCNP users
to take a broad view of Monte Carlo variance reduction.
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