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Chapter 1

Introduction

The LAHET code system is widely used for simulation of particle transport and in-
teractions. LAHET provides a possibility to use several generators for hadron-nucleus
interaction at medium energies (Bertini model, ISABEL, Cugnon model), with the
FLUKA model available at high energy. The inclusive generator of hadron-nucleus
interactions of the MARS14 code [1] is based on experimental data and described in
2],[3]. Use of an inclusive approach can provide higher computing efficiency compared
to analog calculations.

Multiple Coulomb scattering in LAHET is simulated by means of Rossi distribution
4]. Tt is known that this approach is not accurate for small and medium track lengths
6],[7]. A newly developed MARS algorithm provides precise and efficient description
of angular deflection due to multiple Coulomb scattering for an arbitrary step size.

This report gives a short description of the above MARS physical modules and their
implementation into LAHET.



Chapter 2

Inclusive Event Generator

2.1 Inclusive and exclusive approaches in simula-
tion of hadronic cascades

First, let’s consider a simplified model of a hadronic cascade - a cascade of identical
particles. A probability P(S, Fo, z) to get a signal S due to interactions of a particle
of energy Fy with a block of matter of thickness x can be written as

Eq
P(S, By, z) = /dEfC(E07E7x)PC(S7 Bo, B, x)e St
0

x FEq I n
/da:oEde’EdmO/dEfC(E07E7x0) Z /Hd&tiW(E7n,€1,...7en)
0 0 n=1 i=1

[ as, [H 48, P(Ss, 20y xo)} Pu(So, Eo, B, 20)6(5 — 37 50), (2.1)
) i1 ;
where f.(Fo, F,x) is a probability to lose energy Fy — E on a length x in “contin-
uous” collisions; P.(S, Fy, F,x) is a probability to get signal S in such collisions;
W(E,n,¢e1,...,,) is a probability to create n particles with energies ¢y, ...,e, in a

discrete interaction at energy F.
The average signal of such a cascade is then

Eqg x
S(Fo,z) = /0 dSSP(S, Ey, 7) / dE [ Eo, B, 2)S,(Eo, B, 2)e > 1 / dirg Y e S
0 0

/dEfC(EO, B, 20){8.(Eo, B, a0) + /OE deH(E,2)S(e, 2 — 20)}, (2.2)
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where

S.(Eo, B, x) = /dSSPC(S, Fo, B, 7,
0

and

Nmazx

H(E, &)=Y n/deg...denW(E,n,€7€27...,en)
n=1

is a single-particle inclusive spectrum. Note, that such differential cross sections are
usually measured in experiments.

To calculate the average signal of a cascade, one can use the following probability
distribution

Ey
P(S, By, z) = / dEf.(Eo, B, 2)8]S — Su(Fo, E, x)]e =
0

x E, E
+ /0 dirg ¥Vt /0 dE (B, E, o) /0 de(E,¢) / dS,dS,
§(S — Sy — WS5)8[S; — Su(Eo, E, x0)|P(Sa, &, — x0), (2.3)

where @(F,¢) is an arbitrary normalized probability distribution and a weight W is
defined as
W =H(E,e)/o(E,e).

Note, that the average signal which is obtained using distribution (2.3) coincides with
the average value (2.2) of distribution (2.1). Expression (2.3) gives a recipe to calculate
an average signal of hadronic cascades using information on inclusive spectra only. The
same results can be obtained for a three-dimensional cascade with several types of
particles.

To estimate efficiency of an inclusive method one should consider further simplified
model of a cascade: a cross section (3) does not depend on energy and a mean multi-
plicity of secondary particles in any interaction is equal to 7 independent of the initial
energy. Such a model could provide a crude estimation of an initial stage of a cascade.
Using above formulae (2.1) - (2.3), one can calculate the average number of particles
and its variance at a depth x using the exclusive method

Nem _ eEm(ﬁfl)

and
___ . —1)2 __ _
ng:NQt%_sz:M(sz_Nem)

n—1
In the exclusive method one simulates

Vg = ™D /(i — 1)
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interactions.

In an inclusive approach, one simulates a smaller number of interactions, Vi, = >z.
The average number of particles at a depth z calculated by means of the inclusive
method is the same as for the exclusive one: Ny, = e>*" 1) But the variance is larger

D2 ezm(fﬂq) — ¥a(n—1)
wmc :

An efficiency of the method is inversely proportional to CPU time needed to obtain

a variance D .

~
DV’
where V is the average number of interactions, 7 is a CPU time to simulate one inter-
action.
A relative efficiency of exclusive and inclusive methods can be written as

€ (2.4)

Em(ﬁ273ﬁ+2)(1 _ efEm(ﬁfl)Q)

Eerx Y.xe Tinc
= _ 2.5
Eine ’I“(l - eizmmil))QTem 7 ( )
where ]
(n—1)?
-1y

One can increase efficiency of the inclusive method by using splitting. If one gener-
ates n secondary particles with a weight of one instead of one particle with the weight
n, then the ratio of efficiencies becomes simply

Eex Tinc
~

Eine Tex

Table 2.1 shows the CPU time needed to simulate a proton iron interaction by means
of LAHETS3.16 using FLUKA and MARS options. The inclusive MARS generator is a
few times faster than the exclusive FLUKA. So, simulation of hadronic cascade using
a smart inclusive approach can be more effective then an exclusive method.

Experimental data shows that about a half of primary hadron energy in a hadron
nucleus interaction is transfered to one particle (so called, leading particle) and the
other half is shared between a number of secondaries. To obtain a more realistic
estimation of efficiencies of exclusive and inclusive methods, let’s consider a simple
model of hadron-nucleus interactions which takes into account the leading particle
effect. The number of secondary particles in a hadron-nucleus interaction is generated
from a Poisson distribution with an average multiplicity N(F) taken from experimental
data. FEnergy of a leading hadron is generated from a uniform distribution with mean
value equal to a half of the primary hadron energy; remaining energy is equally shared
between the other particles. One can apply such a model to simulate hadronic cascade

4



Table 2.1: Relative CPU per event in LAHET for FLUKA (ex) and MARS (inc) models

E, GeV | 5 | 10 | 25 | 50 | 100
Tew/Tine | 3.1 3.2 49|55 | 5.7

using different methods - exclusive (analog), inclusive or leading particle bias (LPB)
approaches. In the LPB method, one simulates two secondary particles in each vertex:
a leading hadron with the weight of unity and one of the other secondaries with the
weight of N(#) — 1. Longitudinal distributions of hadron flux (£ > 50 MeV) in an
iron-concrete block irradiated by a 50 GeV proton calculated with exclusive (analog)
and LPB methods are shown on Fig. 2.1. The fluxes coincide within statistical errors,
but efficiency of the LPB approach is substantially higher up to a thickness of 160 cm.
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Figure 2.1: Hadron flux in an iron+concrete block irradiated with 50 GeV protons.



2.2 Phenomenological model of hadron nucleus col-
lisions

To simulate hadronic cascades using an inclusive approach, one needs - among other
things - total cross sections and inclusive spectra. In MARS, total cross sections at
energies above b GeV are calculated by means of the Glauber model with inelastic
corrections [2]. Comparison of MARS calculations and experimental data is shown in
Figs. 2.2 - 2.4.

Hadron double differential cross sections in MARS are described in the form

d20.h1p~>h2X

dpdQ 7’

dQO-hlA*)hQX

dde - RhlA*}h2X(A7 E07 D, pL)

(2.6)
where p and p, are the total and transverse momenta of secondary hadron ho, £y is
the energy of primary hadron hy and A is the atomic mass of the target nucleus.

Comparison of the MARS description of proton-proton interactions is presented in
Figs. 2.5 - 2.8. 1t is seen that the model reproduces the main features of pion and
proton yields at least for energies below several hundred GeV.

The function RM4~"2X measured with much higher precision than the absolute
yields, is almost independent of p; and its dependence on py and p is much weaker than
for the differential cross-section itself. Because of rather different properties of hadron
production on nuclei in the forward (zp >0) and backward (xp <0) hemispheres, where
xp is the Feynman’s longitudinal variable, we treat these two regions differently. Ratio
RMA=h2X in the forward hemisphere was calculated for carbon, iron and tungsten at
number of initial energies using the DPMJET2.4 code. The A-dependence of fast parti-
cle production for other nuclei and energies is obtained by interpolation. Experimental
data on A-dependence for xr < 0 is rather scarce. Stenlund and Otterlund have found
a scaling for pseudo-rapidity distributions of shower particles (charged particles with
3 > 0.7) in proton-nucleus collisions at 20 — 400 GeV /c in the form

Y, dN
<N> dn

n

f(A, Y. ),
where < N > is a mean multiplicity of shower particles, Yy is rapidity of primary proton
and n = —log(tan(4)) is a pseudo-rapidity of a secondary particle. This approximation
is in a reasonable agreement with data at energies above 7 GeV /c. An example of a such
scaling behavior is shown in Figs. 2.9 - 2.10. The ratio of pseudo-rapidity distributions
in hadron-nucleus and hadron-proton collisions is used for calculation of RMA—h2X af

There is a lot of data on pion production in proton-nucleus collisions. For this
channel, we use a model-independent approach [3]. The atomic mass dependence of
differential cross sections is convenient to describe as A*. A compilation of experimental
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data on « for 7~-production is shown in Fig. 2.11. For protons with energy > 24 GeV
and p; < 1GeV/c, the A-dependence can be parameterized as

g =08—0.75%xp + .45 % x5 /|xp| + 0.1% p]
For lower momenta, « is approximated as
a = ay, —0.0087 - (24 — po) (2.7)

The RPA=™X ~ A form doesn’t extrapolate well to A=1 because of the difference
in the w-yield in proton-proton and proton-neutron collisions. This difference can be

taken into account if one uses the following form for RPA—™X
—qE A e
R (Ao ), 25)

where f(po,Y) = Z—Z(pd — 7t) %‘;(pp — 7). It turns out that pion yields in pd and
pp collisions are not very different, i. e. f(po,Y) ~1. Using FRITIOF results, we found
that f(po,Y)n- = 1+ 0.225/N— — @y - Yerms , where N, - is a mean 7~ multiplicity
in pp-collisions and Y,,,s is pion rapidity in the center-of-mass system (CMS). Data
shows linear dependence of N,- on free energy W = %7 where /s is the

CMS collision energy. Our fit to the data gives N,- = 0.81 - (W — 0.6). The other
parameter a,- = 0.16 for py < 20 GeV /¢, and depends on energy for higher momenta
as ay— = —0.055 + 0.747/log(s). f(po,Y )r- is forced to be 1 if it becomes less than 1.
For ©* production the approximation is much simpler f(pg,Y )+ = 0.85 4 0.005 - po
for po < 30 GeV/c and f(po,Y)r+ = 1 for higher momenta.

A pseudo-rapidity is not a convenient variable for estimation of a very forward
particle production. Shower particles are mixture of charged pions, kaons and protons.
Yields of these particles have different dependencies on momentum. Therefore, one can
obtain better description using rapidity. Experimental data on rapidity distribution of
pion from proton nucleus collisions from 10 to 360 GeV/c is available. We have found
that scaling in the form similar to Oterlund-Stenlund is valid

dN <N > Y
where < N > is a mean multiplicity of pions, Yj is a rapidity of primary proton and
Y is a rapidity of pion (Figs. 2.12 - 2.13). Scaling function can be approximated as

Y Y 2
?0) = - exp(—(?O — c2)"/cs),

Experimental data on rapidity distribution of #, 7~ in proton-proton interaction
can be fitted as

(2.9)

F(A,

dN Yo
d—Y — Cpp ‘ 633]9(-202 )7 (210)

where Y., is a pion rapidity in the center-of-mass system.
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2.3 Benchmarking

Figs. 2.14 - 2.16 compare the MARS model with experimental data on average multi-
plicity of shower particles produced in proton-emulsion interactions. The model agrees
well with data up to 800 GeV. Pseudo-rapidity distributions of fast charged particles
in proton-nucleus collisions are shown in Fig. 2.17. The model agrees well with data
for forward angles and somewhat underestimates the backward production.

Simulation of proton production is compared with data in Fig. 2.18. The model
agrees well with data. Some adjustment of the A-dependence is probably needed at
xp ~ 0.5. Data on pion production and MARS calculations are compared in Fig. 2.19.
The model agrees well with data, but decreases with p, faster than data.
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in proton—emulsion (CNO) collisions: MARS13(99) vs data

p + CNO, <A>=14
10 2
Atl)
pd
\%
5, |
C)—1 ‘HO ““‘1 ‘ ““““2
10 10 10 10 10

Proton energy (GeV)

Figure 2.14: Mean multiplicity of shower particles in interactions of protons with light
nuclei in emulsion.
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Figure 2.15: Mean multiplicity of shower particles in interactions of protons with
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Mean multiplicity of charged shower particles (f>0.7)
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Figure 2.16: Mean multiplicity of shower particles in interactions of protons with heavy
nuclei in emulsion.
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2.4 Implementation into LAHET

To generate hadron-nucleus inelastic interactions using the MARS hadron production
module in the LAHET framework, one needs to call subroutine

MARS_hA _inelastic(ityp,ecl,al,zl,nopart,.kind,alpha,beta,gam,ep,wtfas,exout,exout2,exwout2).

INPUT PARAMETERS:
ityp - initial particle type (LAHET convention),
ecl - kinetic energy of this particle in MeV,
al and z1 - atomic mass and number of target nucleus.

OUTPUT PARAMETERS:
nopart - a number of generated secondary particles,
kind - an array of generated particle types,
alpha,beta,gam - arrays of created particle angles (LAHET convention),
ep - an array of kinetic energies of secondaries in MeV,
wtfas - an array of weights of secondaries,
exoutl - evaporated heavy fragment and recoil energy of nucleus in MeV,
exout2 - an energy of an inclusive photon after de-excitaion in MeV,
exwout2 - a weight of such a photon.

In the LAHET routine cascad.f, one has to add call fmars(ecl,al,z1). An inelas-
tic collision will be generated and information about secondaries will be returned to

common/banka/.
MARS_ha_inelastic calls:

e MARS_ha_init to prepare some constants,
e SIGLAM to calculate inelastic and production cross sections,
e TREEM to generate secondaries.

All needed routines are collected in files m14eveb.f, m14evepi.f, ml4cem.f,
ml4util-short.f, fmars.f.
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2.5 Verification

We have simulated proton-carbon and proton-tantalum interactions at 10 GeV /c using
the MARS model implemented into LAHET, the standard MARS generator and the
FLUKA model implemented into LAHET. The calculated results and experimental
data on proton and pion production are presented in Figs. 2.20 - 2.21. Results obtained
with the MARS model do not depend on framework.

Energy deposition of 50 GeV proton in a tungsten rod was simulated by means
of LAHET using the FLUKA and MARS generators. This calculations are compared
in Fig. 2.22 with results obtained using the original FLUKA and MARS codes and
last year simulation with LAHET(FLUKA) with handling gammas with MCNP. LA-
HET(MARS) and LAHET(FLUKA) agree within 10%. It is not decided yet how
to work with excitation energy and photon produced by the MARS generator in the
LAHET framework. Absence of this component in the current setup results in some
underestimation of energy deposition in the LAHET(MARS) simulation.
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Figure 2.20: Proton-tantalum interactions at 10 GeV /c.
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Chapter 3

Multiple Coulomb Scattering
Model

3.1 Analytical methods to calculate multiple Coulomb
scattering

The angular distribution after a charged particle passage through a scatterer of length
t, can be written as

(o]

/ (p0)cap(~LA(p) pdp, (3.1
where
d>:
Alp) = / Q1 — 2
t =t/d Jo(pﬁ))dQ (3.2)
here 33 is a single scattering differential cross-section.
If thickness t is large enough, then
2 4
P 2. _ P 4
tA(p)—4<0> 64<0 (3.3)
where -
d>:
k _ Q kA
<OF >t 0/ a0+
In this case the angular distribution could be rewritten in a simple form
2
F =———~¢¢*(1+D(1—-22+— 4
(0.0) = ——e (1 D= 2: 1+ 3), (3.4
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where z = % and D = % ~ 1/t. For a scatterer length ¢ large enough, D ~ 0
and a near-Gaussian distribution (3.4) coincides with the Rossi formula [4].

If one uses a Moliere differential cross section [5] with a Gaussian nuclear form-
factor, the exact solution of equation (3.1) can be obtained [6]. For such a cross
section, it is possible to compare known approximations of angular distributions the
with precise results. In Fig. 3.1, five approaches are presented and compared with the

exact calculations for different lengths of the scatterer:
e Moliere distribution [5];

e modified Moliere distribution which takes into a account nuclear form-factor for
a small scatterer thickness [6];

e Gaussian distribution, (3.4) with D = 0
e Near-Gaussian distribution (3.4) (Gaussian-+1) ;
e Distribution (3.4) with an additional term in series (Gaussian+2);

It is seen that the modified Moliere distribution [6] could be used for calculation
with a ~10% accuracy for D > 0.05. A near-Gaussian distribution (3.4) agrees with
the exact calculation for D < 0.01 within a few percent. Adding an additional term in
series (3.4) slightly improves accuracy.

3.2 Unified Monte Carlo algorithm

Two methods are widely used for simulation of multiple Coulomb scattering (MCS):
sampling from Moliere [5] and Gaussian [4] distributions. Limits of applicability of
these approaches were determined in [6], where the Moliere theory of MCS was modified
to take into account a nuclear screening. It was shown that the angular distribution
obtained in such a way coincided with the Moliere one for the thicknesses of 0.1 -
1 radiation lengths and reached the Gaussian asymptotic for 100 - 1000 radiation
lengths. Note, that the convolution step-by-step of the Moliere distribution never
becomes a Gaussian. It was shown [7] that in some cases the use of Moliere and
Gaussian distributions can lead to quite large errors in Monte-Carlo simulations. The
sampling algorithm [6] which takes into account the nuclear screening was proposed,
but unfortunately it was based on the assumption of a Gaussian approximation for the
nuclear form-factor, which is not accurate for heavy nuclei.

A non-trivial approach for sampling from Moliere distribution was proposed in [8, 9].
The region for a single scattering differential scattering cross-section was divided into
two parts: € < Opae and € > G4, The small angle scattering was sampled using a
quasi-Rossi Gaussian approximation, while rare events with large angle scattering were
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Figure 3.1: Angular distributions after uranium absorber.
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generated using a discrete interaction cross-section. The threshold parameter 0,,,, was
chosen using a non-exact semi-numerical evaluation. Here we propose another method
for threshold parameter estimation which gives an ability to simulate MCS distribution
with about a percent accuracy for any step size and takes into account nuclear screening
with an arbitrary form-factor.

Let’s split formula (3.2) into small-angle and large-angle parts

LA( )t/em‘” (1 — Jo(ph)
p) = : o\D a0
oo dx
Q(1 — Jo(pf))—= 3.5
[ a0 - @) G (35)
To avoid dependence on a particular form-factor, let’s choose upper limit as
02w <0102 (3.6)
where 62 is equal to 3/(P2-r2,.), P is an incident particle momentum and r2 _ is an

average nucleus radius squared. In this case, the first term in (3.5) can be rewritten as

D1 (p) = XoP*(B = PO /16 + - ) /4, (3.7)
where parameter names and values are taken from the Moliere theory

X2 = 0.60082%m>2pt /(P2 32A),

Xo = L063y/L. + (2/750)%/(r o).

where 7/ and A are target charge and mass, respectively, m. is an electron mass, 3 is
a velocity, p is a target density, r, = 0.885/(Z'3am,) and Bs = log (62, /x2) — 1.
If one takes into account terms proportional to p* only in the series (3.5), it gives the
following approximation for the “soft” distribution £y

F(0.1) — Wle%ea:p(—zQ)(l L D1 =22 4 24/2), (3.8)

2 92
where 07 = Bax?, 2° = %% and D = 7z

If D is small enough, the “soft” distribution reaches a near-Gaussian asymptotic.
For an arbitrary step size, one can calculate 8y from the equation
2y

D= —"7 ——=§fx1 3.9
(logy + R)? (3.9)

where
R =log(x2/x2) — 1
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and
y = 05/x:.

It’s quite easy to find a threshold value for ¢y from the non-linear equation
y = 20(logy + R)*. (3.10)

Using a simple anzatz, y — 80x?, where § < 1 is a parameter, one can get a Moliere-like

non-linear equation
1, 8x?
r —logx = = log —==< 3.11
gr = glog—g, (3.11)
One can use any approximate solution for the above equation. The simple one is the
following formula which gives a solution approximation with a 10% accuracy

b logb 1
$7§(1+b—1)(1+ 1—5), (3.12)
where . .y
X
— Zog 22X
b 5 og e

The derivation between the exact solution and approximate one can be considered as
a redefinition of 4.

If one chooses 62, = min(63,62,./10), the first small-angle distribution can be
sampled using (3.8) , while the second distribution can be simulated as a number of
discrete interactions. The average number of discrete interactions is simply

Nise = 20 > Onaz )t ~ X2 /02 (3.13)

max

For a large step size 02, = 02,/10. Thus, in the worst case, one has Ny, =

10x2/602,.. Tt was already shown that in the case of D = 62 /(2B2x?) < 0.01,
the angular distribution can be described by a near-Gaussian approximation (3.4).
Therefore, the average number of discrete interactions has the upper limit equal to
30 > Opan)t < 500/B%. Usually, Bg is about 20 or so, thus the actual number of
discrete interactions is not large.

For a small step size, 0pnae = 0o, Equation (3.11) has a solution if

1 862

.
b 5 og ( e

) > 1. (3.14)

For a smaller step size, the maximal possible value of the parameter ¢ is chosen as

e3X2
SN
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Figure 3.2: A number of discrete interactions in the unified algorithm, § = 0.03
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If

For such a small distance, the number of discrete collisions to be sampled reaches
a value of about 10. The real number of discrete collisions are shown on in Fig. 3.2.
One can see that the actual number of discrete collisions Ng;s ~ 1.

In summary, to simulate an angular deflection on a step ¢ one should proceed with
the following:

If the step size ¢ is large enough and condition 62, . /(2B2x?) < 0.01 is satisfied,

nuc

one samples an angle from the near-Gaussian distribution (3.4).

If the step size ¢ is smaller, then one calculates fy. If condition (3.14) is satisfied,

one obtains 6y solving the nonlinear equation (3.11), otherwise one redefines § as
X2
8x2

and puts = to be equal to 1.
From (3.8) the “continuous” small-angle scattering is sampled.

The actual number of discrete interactions is simulated from a Poisson distribu-
tion with the mean of Ng;...

Discrete interactions are sampled using the “true” single scattering differential
cross-section. An arbitrary nuclear form-factor can be included by acceptance-
rejection method with a high efficiency because the minimal angle is rather small
(see (3.6)).

“Continuous” and discrete interaction angles are properly added in order to pro-
duce the total scattering angle on the step t.

It is seen from Fig. 3.3, that for 6 = 0.03 the above algorithm agrees with the
exact calculation within about 1% for scatterer thicknesses from 10~* to 10* radiation
lengths. Fig. 3.4 shows comparison with experimental data [10]. Calculations agree
with experiment within errors.

For a mixture of N elements, the above equations need to be rewritten. For the
near-Gaussian function (3.4), parameters become

N 02 )
<0 >=3 xi(log—5= —C —1),
i1

2 .
a,i

N
4 2 pn2
< ‘9 >= ZXc,ienuc,i'
i=1

<0 >
D—-——-— .01
2<02>2<00’
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the angle is sampled from (3.4) with the above parameters, otherwise, one calculates

threshold angle
02 = 861° X,

here x is calculated using the equation

1
x—logx = 5(10g(8(5X)+Y/X—1) (3.15)
where
N
X - Z X?,m
Z Xe.ilog (xG.)-
Then 62, = min(02,02,. ,.../10), where 62 i chosen for the heaviest nuclei

in mixture. For every element in the mixture, one calculates the number of discrete

collisions and simulates corresponding angles.
Parameters of the “soft” distribution Fj are calculated as

N
< 012 >= ng,z(log (egnam/xz,i) - 1)7
i=1

02 .. X
where 22 —yandD 32T

The total scattering angle is a vector sum of discrete and ”soft” angles.

3.3 Code description

To simulate angular deflection on a step T, one calls
SUBROUTINE SAMCS(EKIN, T, AMASS NELT,A,Z, W, TET)

INPUT PARAMETERS:

EKIN - kinetic energy in GeV,

T - step length in g/cm™**2,

AMASS - mass of particle in GeV,
NELT - number of elements in mixture,
A(NELT) - array of atomic masses,
Z(NELT) - array of atomic numbers,
W(NELT) - array of relative weights.
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OUTPUT PARAMETER:
TET - space angle in radian.

SAMCS calls CERNLIB routine/function RNDM, FLPSOR.
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