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Abstract 

We present the current forms of the algorithms used to model collisional energy-loss straggling for 
electrons and for heavy charged particles in MCNPS and MCNPX. We also describe a recent improve- 
ment in the logic for applying the straggling models for heavy charged particles, and show illustrative 
results for the improved logic. 



Introduction 

Monte Carlo simulation of charged-particle transport is a difficult matter. In contrast to neutral par- 
ticles, whose transport can be regarded as a series of free flights between isolated, localized interac- 
tions, charged particles in matter experience very large numbers of small, long-range Coulomb interac- 
tions with atomic electrons and with the screened charges of nuclei. This circumstance makes the cost 
of a direct Monte Carlo simulation of charged-particle transport prohibitive for most situations of prac- 
tical interest, even with present-day computers. In order to achieve a manageable Monte Carlo capabil- 
ity, it has been necessary to rely on a variety of analytic and semi-analytic multiple scattering theories 
which attempt to use the fundamental cross sections and the statistical nature of the transport process to 
predict probability distributions for significant quantities, such as energy loss and angular deflection. 
These theories are limited by a variety of approximations and constraints; in particular they are gener- 
ally invalid unless the energy loss of the charged particle is small compared to its starting energy. 
Therefore multiple scattering theories must be applied for sufficiently short paths along the charged 
particle’s trajectory. The technique of dividing the charged particle’s trajectory into segments that are 
large compared to the microscopic mean free path, but small enough for the application of multiple 
scattering theories is called the “condensed history” method. This approach to Monte Carlo for charged 
particles was essentially invented by Martin J. Berger, whose 1963 paper [ 11 described the techniques 
that have guided Monte Carlo code development ever since. Based on the methods of that work, Berger 
and Stephen M. Seltzer developed the ETRAN series of electrodphoton transport codes [2]. These 
codes have been maintained and enhanced for many years at the National Institute of Standards and 
Technology, and are the basis for the Integrated TIGER Series [3,4] (ITS), a system of general-purpose, 
application-oriented electron/photon transport codes developed by John A. Halbleib, Ronald P, Kensek, 
and others at Sandia National Laboratories. The electron transport physics of the MCNP code [5] is 
largely based on that of the Integrated TIGER Series. In this paper we will concentrate on two of the 
multiple scattering theories important to MCNP and to its high-energy version MCNPX [6] .  These are 
the Landau [7] theoiy for energy-loss straggling of electrons and the Vavilov 181 theory applicable to 
heavy charged particles. We will also cliscuss a recent improvement in the detailed logic of heavy 
charged particle transport relevant to the application of the Vavilov model. 

Landau theory for electron energy-loss straggling 

For the mean collisional energy loss of electrons, MCNP uses an analytic representation given by 
Berger [ 11 based on a combination of the Bethe-Bloch stopping power [9-111 and the Mdler [ 121 cross 
section for electron-.electron scattering. Because an electron step represents the cumulative effect of 
many individual random collisions, fluctuations in the energy loss rate will occur. Thus the energy loss 
will not be simply the mean collisional energy loss b; rather there will be a probability distribution 
f(s,A)dA from which the energy loss A for the step of length s can be sampled. Landau [7] studied this 
situation under the simplifying assumptions that the mean energy loss for a step is small compared with 
the electron’s energy, that the energy parameter ti, defined below is large compared with the mean exci- 
tation energy of the medium, that the distribution of energy losses E from individual collisions can be 
adequately represented (above some minimum related to the mean ionization energy) by 
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based on the Rutherford [13] cross section, and that the formal upper limit of the individual energy 
losses E can be extended to infinity. With these simplifications, Landau found that the energy loss distri- 
bution can be expressed as 

in terms of @(A), a universal function of a single scaled variable 

h = A s-log[ 2crnv22]+6+p2- l+c .  
”( 1 - p2)I 

Here m and v are the mass and speed of the electron, 6 is the density effect correction, p is v/c, I is the 
mean excitation energy of the medium, and C is Euler’s constant (C = 0.5772157.. .). The parameter 5 
is defined by 

where e is the charge of the electron, NZ is the number density of atomic electrons, and z is the charge 
of the projectile ( z  = -1 for electrons). The universal function is 

where x is a positive real number specifying the line of integration. 

For purposes of sampling, @(A) is negligible for h < 4, so this range is ignored. Borsch-Supan 
[14] originally tabulated $(A) in the range -4 I h I 100, and derived for the range h > 100 the 
asymptotic form 

in terms of the auxiliary variable w, where h = w + logw + C - 3 1 2  . The developers of the ITS 
code have extended Borsch-Supan’s tabulation, keeping the same range, but increasing the resolution. 
Sampling from this tabular distribution accounts for approximately 98.96% of the cumulative probabil- 
ity for $(A). For the remaining large4 tail of the distribution, ITS uses the approximate form 
$(A) = w - ~ ,  which is easier to sample than Eq. 4, but is still quite accurate for h > 100. Currently, 
MCNP follows the same procedures as ITS for the sampling of straggling. 

Blunck and Leisegang [IS] have extended Landau’s result to include the second moment of the 
expansion of the cross section. Their result can be expressed as a convolution of Landau’s distribution 
with a Gaussian distribution: 



f*(s ,A) = --r 1 f ( s ,  A’)exp[- ( A  - A’)2 ]dA’. 
fica -- 2 0  

Blunck and Westphal [ 161 provided a simple form for the variance of this Gaussian: 

Subsequently, Chechin and Ermilova [ 171 investigated the LandauBlunck-Leisegang theory, and 
derived an estimate for the relative error 

due to the neglect of higher-order moments. Based on this work, Seltzer [18] describes and recom- 
mends a correction to the Blunck-Westphal variance: 

OBW c T =  
1 +3&& 

This completes the purely theoretical description of the Landau straggling model as it is used in 
ITS and essentially identically in MCNP and MCNPX. However, examination of Eq. 2 and Eq. 4 shows 
that unrestricted sarnpling of h will not result in a finite mean energy loss. Therefore, a final ad hoc 
adjustment to the sampling algorithm must be made. In the initialization phase of the codes, a material- 
and energy-dependent cutoff h, is computed subject to the condition that the integral of the energy-loss 
distribution up to h, gives the correct mean energy loss. During the transport phase, this cutoff is 
imposed as an upper limit on the sampled value of h. In this way, the correct mean energy loss is pre- 
served. 

Vavilov theory for heavy charged-particle straggling 

For heavier charged particles losing energy through collisions with atomic electrons, a more realis- 
tic theory is needed, In particular the assumption of unlimited energy losses from individual collisions 
is no longer valid, and a maximum possible individual energy loss E,,, must be introduced. For an 
unrestricted theory (typical of Class I condensed history models in the sense of Berger), this maximum 
is known from relativistic kinematics: 

where p = v/c and y = (1 - p2)-1’2 are the usual relativistic parameters for the projectile, and M and m 
are the rest masses of the projectile and the electron, respectively. In terms of E,, the single-collision 
energy-loss cross section of Eq. 1 now becomes [ 191 



W(E) = - (1 -d), E d & , , ;  W(E) = 0 , E > Emax . 
SE Emax 

Working from these assumptions, Vavilov [8] developed a more general theory of energy strag- 
gling. In terms of previously defined quantities and the new dimensionless parameter 

Vavilov defines a new form for the scaled energy-loss variable: 

K ( 1  +P2-C) .  
A - i i  A,= -- 
Emax 

Now the probability distribution for energy loss becomes 

where the new function to be sampled for the energy-loss variable is 

written in terms of two auxiliary functions 

which are themselves written in terms of auxiliary special functions, the sine integral Sib), and the 
cosine integral CiCy). 

This analytic representation is obviously a difficult one, consisting of combinations and integrals 
of quite complicated functions. However, from a theoretical point of view, its real difficulty lies in the 
fact that the distribution to be sampled, Eq. 5, depends explicitly on the projectile energy (through the 
factor p2) and on the energy- and material-dependent parameter K. By contrast the distribution function 
in Eq. 3 can be sampled without regard to the energy of the projectile or the characteristics of the 
medium; those quantities appear only in the translation from the scaled variable h to the actual energy 
loss A by Eq. 2. The additional complexity of Eq. 5 makes the practical application of the Vavilov the- 
ory in Monte Carlo a challenging problem. This situation has been addressed by a variety of investiga- 
tors (see Ref. 20-25 for an introductory sample). In MCNP5 and MCNPX, we currently use a version 
of an algorithm described by Rotondi and Montagna [26], and we are evaluating several other methods 
as well. This topic is an active area of investigation in recent new MCNP development. 



An improvement in condensed-history logic 

Guided by earlier success in the simulation of electrons by the modified Class I algorithms of the 
Integrated Tiger Series, the initial versions of MCNPX exploited a similar distinction between “energy 
steps” and smaller “angular substeps,” and relied on similar logic for associating the sampling of 
energy-loss straggling with the energy steps. For heavy charged particles, this system often works well, 
but has been found wanting in some cases, especially in the calculation of straggled energy spectra 
when thin regions are important. In this section we will briefly describe the old and new versions of the 
condensed-history transport logic for heavy charged particles, and show some computational tests to 
illustrate improvements from the new logic. 

In earlier versions of MCNPX, the transport logic was essentially as shown in the following some- 
what simplified pseudocode: 

For charged particle with energy E, find initial energy interval J, with E J > E 1 E J+, . 
Begin CELL LOOP. 

Get N = preset number of substeps per energy step (N > 1 ). 

Begin ENERGY LOOP. 

Sample straggled energy deviation A for step size p = (E J - EJ+l)/qJ, where q J 

is the mean stopping power in energy interval J. 

Define an effective stopping power Qj = qJ + A/p for substeps within interval J. 

Set default substep size = p/N. 

Begin SUBSTEP LOOP n = 1, N. 

(*) 

(*I Find distances to time and energy cutoffs 

Find distances to possible interaction, and to surface crossing. 

Select d =the minimum of all of these and the default substep. 
Advance the particle by d and scatter the direction based on d and E. 

Set E = E - QJd (adjust J if necessary). 

Select appropriate case: 
(*) 

Process energy or time cutoff (terminate track). 

Process inelastic interaction (make secondaries and terminate track). 

Process elastic interaction (decrease E and adjust J if necessary). 

Process surface crossing. Cycle CELL LOOP. 

Process uneventful end of substep. 

If (energy group has changed) cycle ENERGY LOOP. 

End SUBSTEP LOOP. 

End ENERGY LOOP. 

End CELL LOOP. 

The three steps marked with an asterisk (*) above involve unnecessary approximation. The second 
of these (concerning cutoffs) is not particularly damaging, since it affects only the very end of the parti- 
cle track. However, the first and last represent a more severe approximation. The problem is that the 



sampling of the straggling is done for a step (p) that is always longer than the actual step to be taken by 
the particle. Since the straggling theory is not linear in step size, this interpolated sampling is generally 
not accurate. The situation is exacerbated when there are many small zones or thin foils in the problem. 
Furthermore, the straggling sample is always related to the energy interval containing the beginning of 
the step, even if the particle falls into a lower energy interval by the end of the step. This produces a 
small, but systematic error. Finally, this logic is unnecessarily complex, since the SUBSTEP loop can 
be ended either by its normal count, or be the energy group having changed. This is the well-known 
MCNP vs. ITS step-counting issue, which has been studied and discussed [27] in the context of electron 
transport. 

In recent versions of MCNPX and in the developmental version of MCNPS, we have replaced this 
transport logic with a more straightforward approach that largely avoids these approximations. The new 
logic is essentially represented by the following pseudocode: 

For charged particle with energy E, find initial energy interval J, with E j  > E 2 Ej,, . 
Begin CELL LOOP. 

Get N = preset number of substeps per energy step (N > 1 ). 

Begin ENERGY LOOP. 

Set default substep size = p/N, as before. 

Begin SUBSTEP LOOP 

Find distances to possible interaction, and to surface crossing. 

Select d = the minimum of these and the default substep. 

Sample straggled energy change 6Ed for actual substep size d. 

Set E = E - 6Ed (adjust J if necessary). 
Check for energy cutoff (adjust endpoint and terminate track). 

Check for time cutoff (adjust endpoint and terminate track). 

Select appropriate case: 

Process inelastic interaction (make secondaries and terminate track). 

Process elastic interaction (decrease E and adjust J if necessary). 

Process surface crossing. Cycle CELL LOOP. 

Process uneventful end of substep. 

If (energy group has changed) cycle ENERGY LOOP. 

End SUBSTEP LOOP. 

End ENERGY LOOP. 

End CELL LOOP. 

These seemingly minor changes in logic can make a significant difference for situations in which 
the shortcomings of the previous approach were important. The principal improvement with the new 
logic is that the sampling of straggling is now almost always done based on the step size that is actually 
traversed by the particle. The only exception is the last substep of a track that is terminated (and 
adjusted after the straggling sample) by time or energy cutoff. This generally represents a negligible 
fraction of the total substeps in the problem, and is not certain to occur at all. A secondary benefit is that 
the treatment of the energy and time cutoffs is handled more naturally and more accurately. 
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Figure 1. Energy deposition as a function of depth for 157.2-MeV protons normally incident on water. 

In order to illustrate the considerable difference that the new logic can make, we have compared 
the two algorithms for the case of a mono-energetic, mono-directional beam of 157.2-MeV protons on 
a uniform water target. (This problem is based on a user’s application whose strange results motivated 
us to re-examine the straggling logic [213].) The average energy deposition as a function of depth and 
the energy spectrum of the proton flux at a specific depth (15 cm) were calculated using the old and the 
new condensed-history algorithm. The problem was simulated twice. In the first case, the target was 
divided into slabs 1 mm thick, so that a large number of interruptions of the natural substep were 
encountered. In the second case, only the region deeper than 15 cm was divided into 1-mm slabs; the 
first 15 cm were divided into three 5-crn-thick slabs, This allowed us to test the sensitivity of the two 
algorithms to differences in the geometiy specification. Fig. 1 shows details of the energy-deposition 
peak for both simulations. Results from the simulation with uniform 1-mm slabs are marked as “1-mm 
regions” in this figure, while those from the mixed 5-cm/l-mm simulation are marked as “5-cm 
regions,” The old algorithm exhibits an un-physical sensitivity to the details of the geometry specifica- 
tion, as well as a noticeable artifact at the peak for the coarsely-resolved 5-cm case. By contrast, the 
new method produces a smoother profile for the peak, and shows essentially no sensitivity to the details 
of the representation of the geometry. Fig. 2 shows the energy spectrum of the proton flux at a depth of 
15 cm in the water target, calculated with the old and new algorithms and for the same two physically 
equivalent representations of the geometry. With the old logic, the severe sensitivity to the geometry 
model and the presence of strange artifacts are even more apparent in these results. The new logic again 



shows a more realistic profile and a satisfactory insensitivity to the geometric representation. Although 
we do not show the results here, we have also compared the new calculations with LAHET results and 
have found good agreement. We conclude that the new transport logic for heavy charged particles is an 
unambiguous improvement, and we have implemented this treatment as the default model in recent ver- 
sions of MCNPX and in the new developmental version of MCNPS. 

Old logic (1 -mm regions) 

Old logic (5-cm regions) - - - . - 
- New logic (1-mm regions) 
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Figure 2. Proton energy spectrum at 15 cm depth for 157.2-MeV protons normally incident on water. 
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