LA-UR-03-2217

Approved for public release; distribution is unlimited.

Title:	VERIFICATION OF MCNP5
Author(s):	FORREST B. BROWN, RUSSELL D. MOSTELLER, AVNEET SOOD
Submitted to:	Nuclear Mathematical and Computational Science, ANS Mathematics & Computation Topical Meeting, Gatlinburg, TN, April 6-11, 2003

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Verification of mcnp5

Forrest Brown, Russell Mosteller, Avneet Sood

X-5 Monte Carlo Team, Eolus ASCI Project fbrown@lanl.gov

MCNP Diagnostics Applications Group (X-5) Applied Physics Division

Abstract

Verification of MCNP5

Forrest B. Brown, Russell D. Mosteller, Avneet Sood

X-5 Monte Carlo Team, Eolus ASCI Project Diagnostics Applications Group (X-5) Los Alamos National Laboratory

MCNP Version 5 (MCNP5) comprises a complete modernization of the MCNP Monte Carlo code. A key requirement for MCNP5 was to preserve all previously-existing MCNP capabilities. Four sets of verification problems were used to ensure code correctness: a suite of 42 regression tests, a suite of 26 criticality benchmark problems, a suite of 10 analytic benchmarks for criticality, and a suite of 19 radiation shielding validation problems. In nearly all problems, MCNP5 results exactly match those of MCNP4C2. The few that differ agree well within statistics. It is concluded that MCNP5 is verified to be as reliable and accurate as previous versions and that all previously-existing capabilities have been preserved.

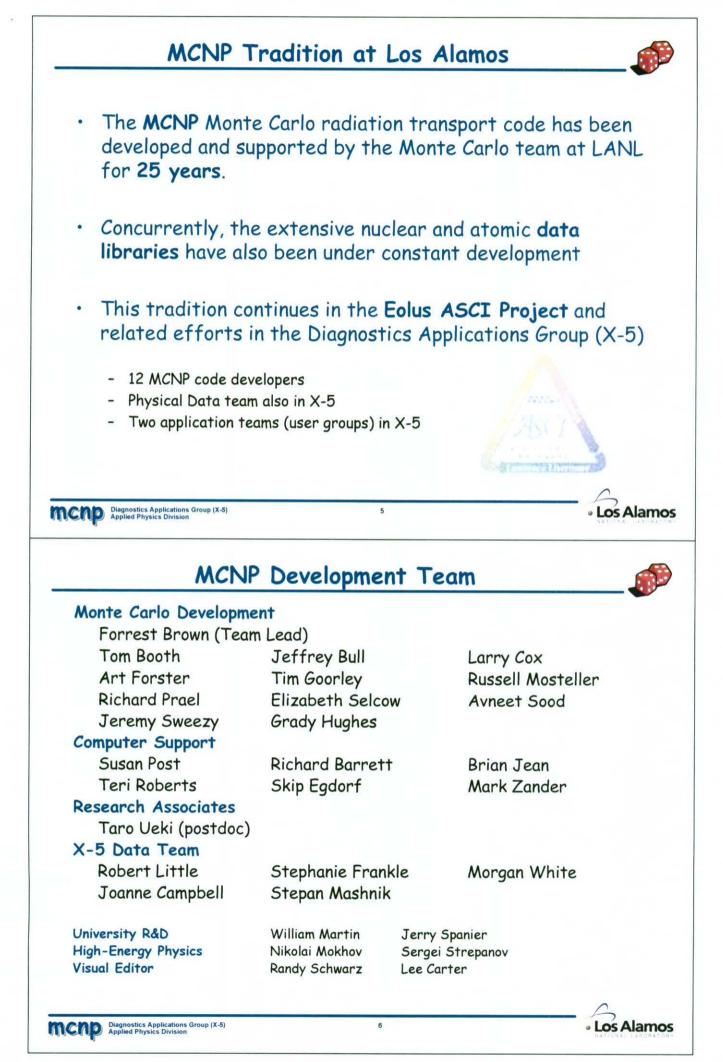
Outline

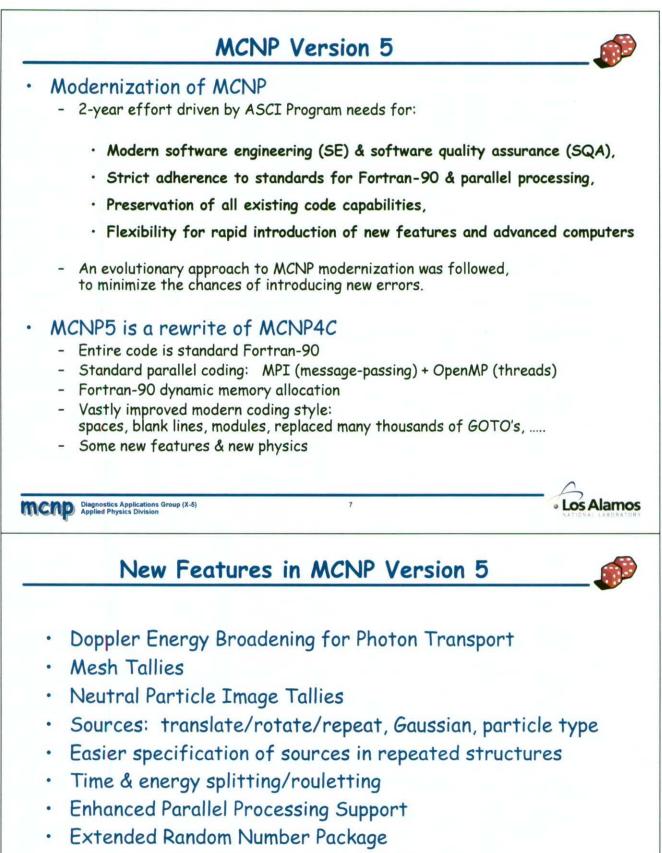
· MCNP 5

- Modernization of MCNP
- New Features in MCNP 5

Testing / Verification Suites

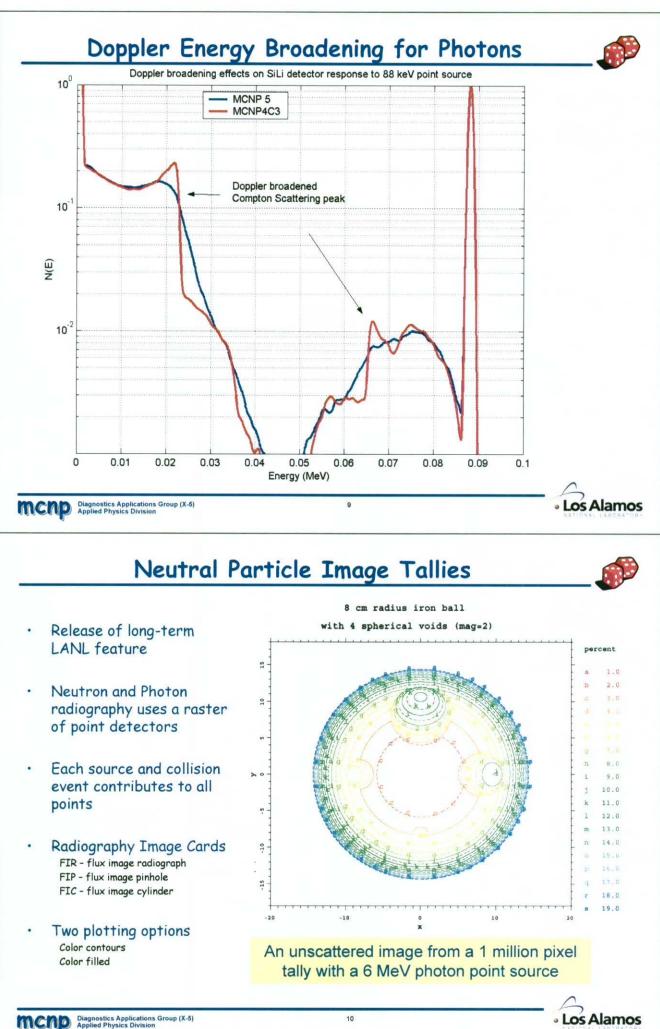
- Regression Test Suite
- Criticality Validation Suite
- Analytic Benchmarks for Criticality
- Radiation Shielding Validation Suite

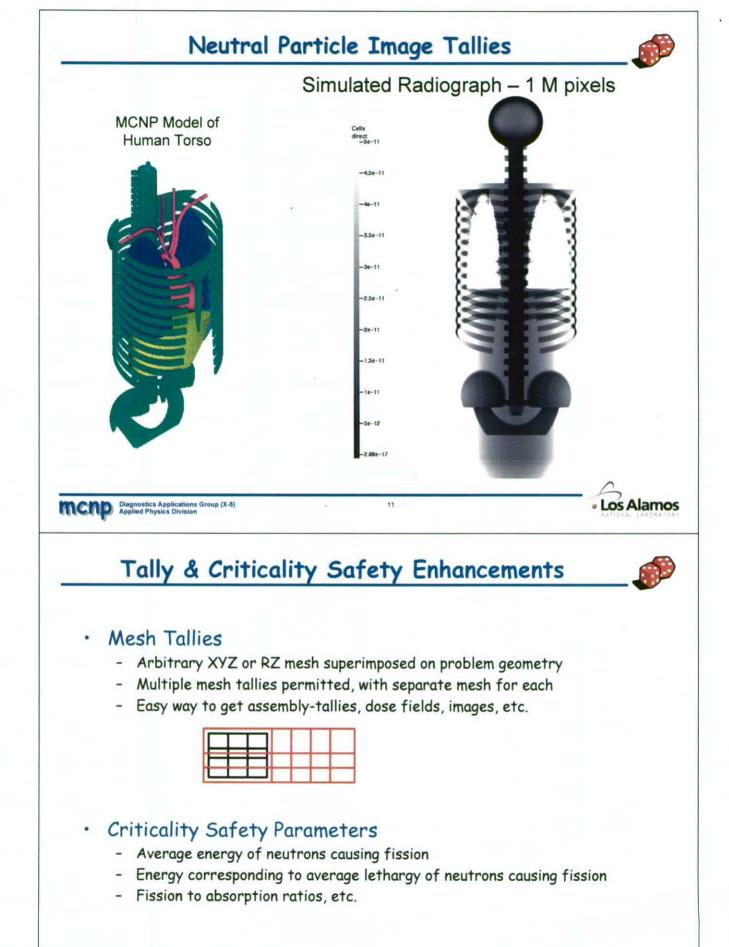

Results


- Criticality Validation Suite
- Analytic Benchmarks for Criticality
- Radiation Shielding Validation Suite
- Conclusions

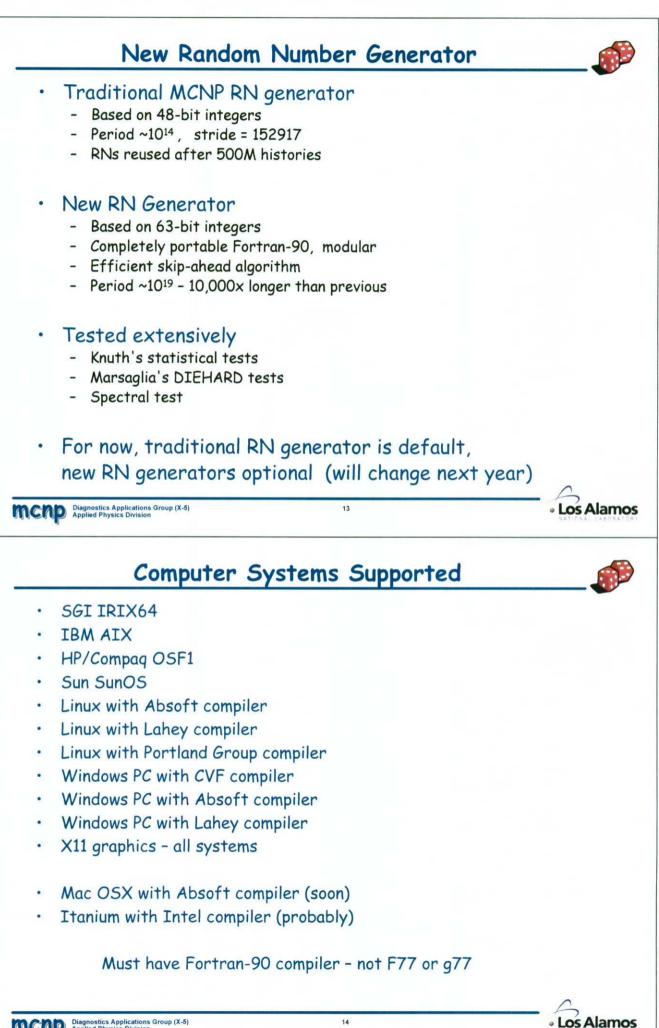
Diagnostics Applications Group (X-5) Applied Physics Division

3

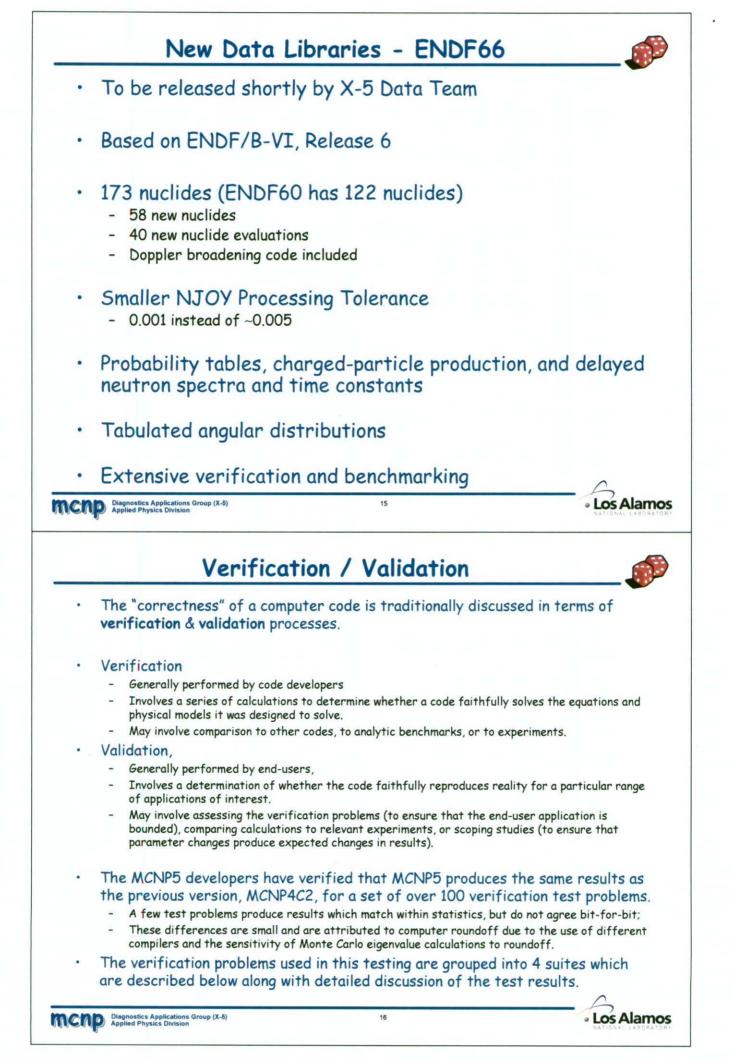




- Unix-based build system, using GNU make
- Pulse height tally variance reduction (Spring, 2003)


8

- Radioisotope sources (Spring, 2003)
- Plotting options & more colors



12

Diagnostics Applications Group (X-5) Applied Physics Division

Verification Summary

Suite of 42 Regression Tests

- Run many times per day
- Verifies code changes (not physics)
- ~90% code coverage

Criticality Validation Suite

- 26 cases from International Handbook of Evaluated Criticality Benchmark Experiments
- Run with ENDF60+URES data library, also with new ENDF66 data library
- 52 cases run, 1,000,000 histories each

Analytic Benchmarks for Criticality

- 10 problems, from Sood/Forster report exact solutions known
- 8,000,000 histories each

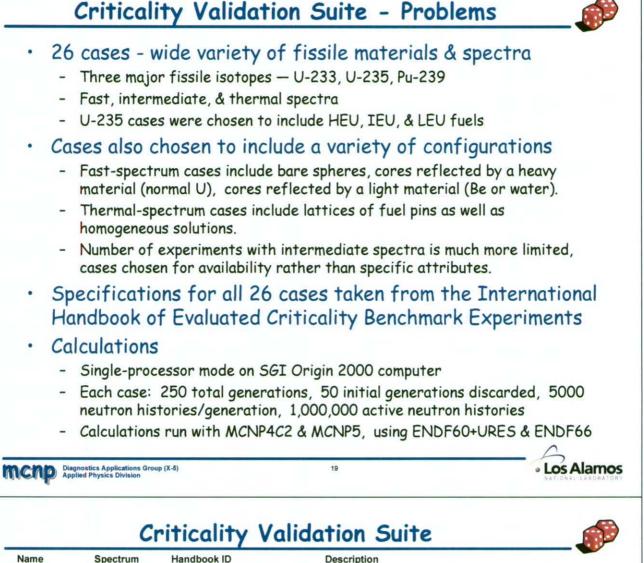
Radiation Shielding Validation Suite

- 8 problems time-of-flight spectra for neutrons from pulsed spheres
- 5 problems neutron & photon spectra at shield walls within simulated fusion reactor

17

- 6 problems photon dose rates
- 1,000,000 histories for each problem

MCND Diagnostics Applications Group (X-5) Applied Physics Division


Regression Test Suite

- MCNP5 distribution includes a set of installation tests to verify that installation & compilation are carried out correctly on a given computer system
 - Reference "templates" are provided for both the printed code output & resulting tally files (mctal files)
 - Templates are compared with the actual output & mctal files.
 - During the development of MCNP5, the regression test set was expanded from 28 to 42 problems
 - Set of 42 problems executes in less than 5 minutes.
 - Previous analysis of MCNP has indicated that the tests cover approximately 80-90% of the total lines of coding. (Test coverage analysis for MCNP5 is in progrss.)

Regression tests do not verify code correctness

- Typically run many times each day by an individual code developer for regression testing
- Used only to detect unintended changes to the code.
- Extensive use on a daily basis serves to prevent the inadvertent introduction of bugs

Criticality Validation Suite - Problems

Name	Spectrum	Handbook ID	Description
Jezebel-233	Fast	U233-MET-FAST-001	Bare sphere of 233U
Flattop-23	Fast	U233-MET-FAST-006	Sphere of 233U reflected by normal U
U233-MF-005 (2)	Fast	U233-MET-FAST-005, case 2	Sphere of 233U reflected by beryllium
Falstaff (1)	Intermed	U233-SOL-INTER-001, case 1	Sphere of uranyl fluoride solution enriched in 233U
ORNL-11	Thermal	U233-SOL-THERM-008	Large sphere of uranyl nitrate solution enriched in 233U
Godiva	Fast	HEU-MET-FAST-001	Bare HEU sphere
Flattop-25	Fast	HEU-MET-FAST-028	HEU sphere reflected by normal U
Godiver	Fast	HEU-MET-FAST-004	HEU sphere reflected by water
HISS/HUG	Intermed	HEU-COMP-INTER-004	Infinite, homogeneous mixture of HEU, H, and graphite
ZEUS (2)	Intermed	HEU-MET-INTER-006, case2	HEU platters moderated by graphite and reflected by Cu
HEU-MT-003 (4)	Thermal	HEU-MET-THERM-003, case 4	Lattice of HEU cubes reflected by water
ORNL-10	Thermal	HEU-SOL-THERM-032	Large sphere of HEU nitrate solution
IEU-MF-003	Fast	IEU-MET-FAST-003	Bare sphere of IEU (36 wt.%)
BIG TEN	Fast	IEU-MET-FAST-007	Cylinder of IEU (10 wt.%) reflected by normal U
IEU-MF-004	Fast	IEU-MET-FAST-004	Sphere of IEU (36 wt.%) reflected by graphite
IEU-CT-002 (3)	Thermal	IEU-COMP-THERM-002, case 3	Lattice of IEU (17 wt.%) fuel rods in water
BAW XI (2)	Thermal	LEU-COMP-THERM-008, case 2	Large lattice of PWR fuel pins in borated water
SHEBA-2	Thermal	LEU-SOL-THERM-001	Cylinder of LEU fluoride solution enriched to 5 wt.%
Jezebel	Fast	PU-MET-FAST-001	Bare sphere of Pu
Jezebel-240	Fast	PU-MET-FAST-002	Bare sphere of Pu (20.1 at.% 240Pu)
Flattop-Pu	Fast	PU-MET-FAST-006	Pu sphere reflected by normal U
PU-MF-011	Fast	PU-MET-FAST-011	Pu Sphere reflected by water
Pu Buttons	Fast	PU-MET-FAST-003, case 3	3 x 3 x 3 array of small cylinders of Pu
HISS/HPG	Intermed	PU-COMP-INTER-001	Infinite, homogeneous mixture of Pu, hydrogen, & graphite
PNL-33	Thermal	MIX-COMP-THERM-002, case 4	Lattice of mixed-oxide fuel pins in borated water
PNL-2	Thermal	PU-SOL-THERM-021, case 3	Sphere of plutonium nitrate solution

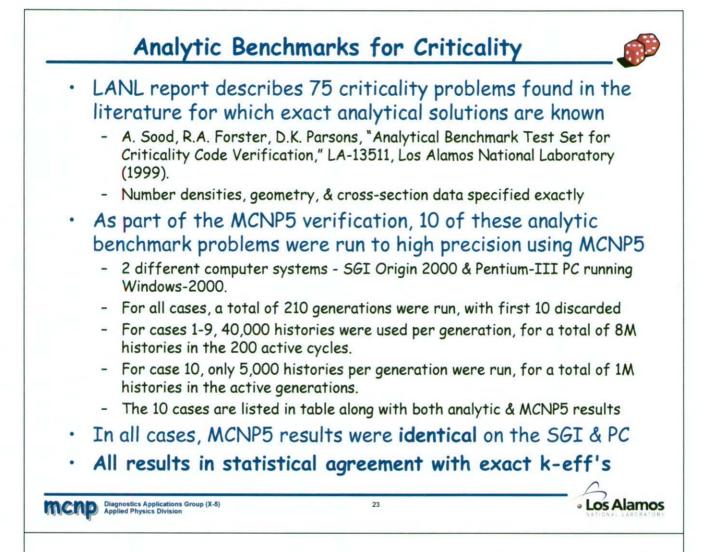
MCNP Diagnostics Applications Group (X-5) Applied Physics Division

20

Criticality Validation Suite - Results

Los Alamos

- Keff results for 52 cases are shown in table
- MCNP5 & MCNP4C2 produce identical answers for 49/52 cases
- MCNP5 & MCNP4C2 agree within statistics for the other 3 cases
 - Zeus(2) cases:
 - Using ENDF60+URES data, tracked identically for 125 generations (0.625M histories), & final results agree within statistics.
 - Both code versions agree exactly using ENDF66 data
 - HEU-MT-003 (4) cases:
 - With ENDF60+URES data, both codes agreed exactly.
 - Using ENDF66 data, track for the first 225 generations (1.125M histories), & final results agree within statistics
 - IEU-CT-002 (3) cases:
 - Matched using ENDF60+URES data
 - Differed slightly using ENDF66 data, with final results agreeing within statistics
- The statistically insignificant differences observed in 3/52 cases are attributed to roundoff associated with compiler differences.
 - MCNP4C2 compiled ~2 years ago using Fortran-77 compiler & associated math libraries
 - MCNP5 compiled using current version of SGI Fortran-90 compiler & associated libraries
 - Monte Carlo eigenvalue calculations are very sensitive to computer roundoff due to their iterative nature - small differences in even a single particle history will propagate through all future generations. (Fixed source calculations are less sensitive to roundoff, since generations are not used; roundoff differences affect only a single history and do not propagate.)


Diagnostics Applications Group (X-5) Applied Physics Division

21

Criticality Validation Suite – K-effective Results

Name		ENDF60+URES Data		ENDF66 Data	
Name		MCNP5	MCNP4C2	MCNP5	MCNP4C2
1	Jezebel-233	0.99241 (57)	"	0.99106 (56)	44
2	Flattop-23	0.99931 (71)	u	0.99960 (72)	
3	U233-MF-005 (2)	0.99785 (64)		0.99900 (59)	**
4	Falstaff (1)	0.99040 (104)		0.99017 (106)	н
5	ORNL-11	0.99596 (41)	"	0.99708 (37)	
6	Godiva	0.99728 (63)		0.99647 (60)	
7	Flattop-25	0.99790 (63)	и	0.99660 (59)	**
8	Godiver	0.99539 (80)	u	0.99675 (79)	и
9	HISS/HUG	1.01264 (47)	"	1.01016 (46)	**
10	ZEUS (2)	0.99722 (73)	0.99655 (71)	0.99538 (75)	44
11	HEU-MT-003 (4)	0.98257 (88)	u	0.98413 (79)	0.98374 (80)
12	ORNL-10	0.99874 (39)	н	0.99835 (40)	u
13	IEU-MF-003	1.00046 (57)	u	0.99973 (61)	u
14	BIG TEN	1.00987 (55)		1.00725 (54)	"
15	IEU-MF-004	1.00381 (62)	*	1.00315 (67)	
16	IEU-CT-002 (3)	1.00024 (70)		1.00029 (74)	0.99987 (71)
17	BAW XI (2)	0.99837 (60)	"	0.99863 (70)	
18	SHEBA-2	1.01064 (77)	"	1.01018 (82)	
19	Jezebel	0.99694 (57)	u	0.99772 (60)	51
20	Jezebel-240	0.99883 (60)	"	0.99884 (57)	55
21	Flattop-Pu	1.00138 (66)		1.00266 (70)	
22	PU-MF-011	0.99736 (76)	/ 66	0.99700 (72)	
23	Pu Buttons	0.99581 (67)		0.99735 (68)	**
24	HISS/HPG	1.01126 (59)	4	1.00936 (56)	"
25	PNL-33	1.00578 (79)	4	1.00545 (80)	"
26	PNL-2	1.00031 (104)	4	1.00219 (95)	

Analytic Benchmarks for Criticality - Results

	Name	Description	Exact K-eff	MCNP5 K-eff
1	Ua-1-0-IN	Infinite medium, 1 group	2.25	2.24996 (24)
2	Ua-1-0-SP	Sphere, 1 group	1.0	0.99990 (23)
3	Uc-H2O(2)-1-0-SP	Reflected sphere, 1 group	1.0	0.99985 (23)
4	UD2O-1-0-CY	Cylinder, 1 group	1.0	0.99996 (15)
5	PUa-1-1-SL	Slab, 1 grp, P1 scatter	1.0	0.99989 (26)
6	UD2OB-1-1-SP	Sphere, 1 grp, P1 scatter	1.0	0.99993 (17)
7	PU-2-0-IN	Infinite medium, 2 group	2.683767	2.68375 (7)
8	URRa-2-0-SL	Slab, 2 group	1.0	1.00001 (34)
9	URR-6-0-IN	Infinite medium, 6 group	1.60	1.59999 (2)
10	URRd-H2O(1)2-0-ISLC	Slab, 2 group	1.0	0.99986 (41)

Note: (NN) = std deviation is NN x 10⁻⁵

Radiation Shielding Validation Suite Three subcategories: Time-of-flight spectra for neutrons from pulsed spheres Neutron and photon spectra at shield walls within a simulated fusion reactor Photon dose rates Two of the cases are coupled neutron-photon calculations, while the others are exclusively neutron or exclusively photon calculations. Photon data library Cases that include photons use MCPLIB02 for all nuclides MCPLIBO2 was part of ENDF60 lib release, but not based on ENDF/B-VI · MCPLIB02 is an extension of the original MCPLIB photon library that has been used with MCNP for more than 20 years · MCPLIB02 extends the range of data for photon interactions up to 100 GeV, based on the LLNL Evaluated Photon Data Library Calculations performed in sequential mode on SGI Origin-2000 Each case employed 1,000,000 particle histories Los Alamos MCNP Diagnostics Applications Group (X-5) Applied Physics Division 25

Pulsed Sphere Calculations

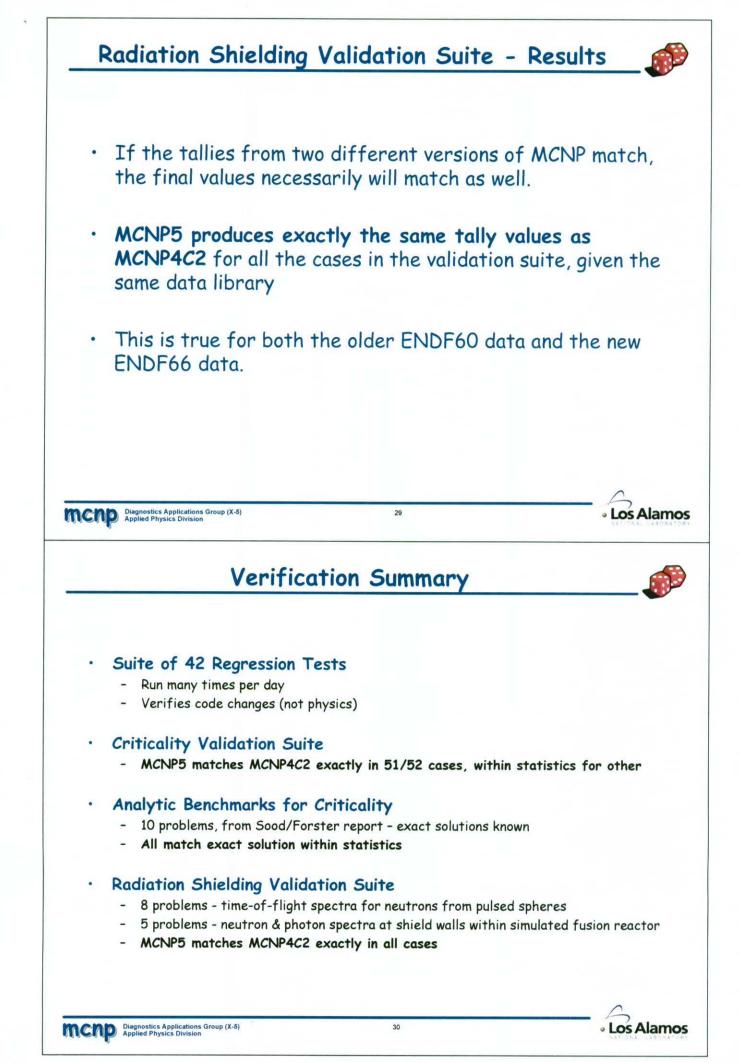
- Subset of the pulsed-sphere experiments that were performed at LLNL from 1960-1980s
- Objective was to measure neutron emission spectrum from a variety of materials bombarded by 14 MeV neutrons.

Target	Target	Thickness	Detec	tor
Material	Configuration	(mfp)	Туре	Angle
Beryllium	Bare Sphere	0.8	Pilot B	30°
Carbon	Bare Sphere	2.9	NE 213	30°
Concrete	Bare Sphere	2.0	NE 213	120°
Iron	Bare Sphere	0.9	NE 213	30°
Lead	Clad Sphere	1.4	NE 213	30°
Li-6	Dewar	1.6	NE 213	30°
Nitrogen	Dewar	3.1	Pilot B	30°
Water	Dewar	1.9	Pilot B	30°

Fusion Shielding Calculations

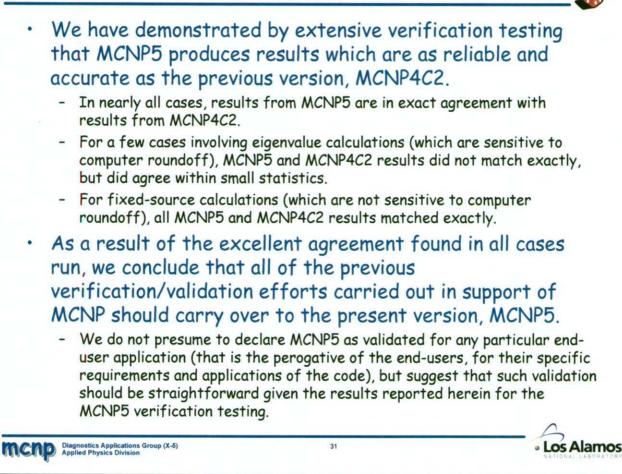
 Objective was to simulate the DT neutron spectrum that would exist at the first wall of a fusion reactor, as well as the spectrum of secondary photons that would be produced from neutron interactions within that wall

Configuration	Tally Type	On/Off Axis
1	neutron	On
3	neutron	Off
3	photon	On
7	neutron	On
7	photon	Off


last column indicates whether detector was aligned with axis of particle beam

27

Diagnostics Applications Group (X-5) Applied Physics Division


1980 measurement of a from the source ("skysl		photon radiation far
Idealization of a numbe environment in an open		the second se
Hupmobile thermolumin performed at LBL 1967	escent dosin -69	neter (TLD) experiments
Case	Source	Principal Media
Skyshine	Co-60	Air & Soil
Air over Ground	Co-60	Air & Soil
60Co through Air	Co-60	Air
60Co through Teflon	Co-60	Teflon
Sm K α through Air	Sm Ka	Air
Sm Ka through Teflon	Sm Ka	Teflon

28

Conclusions

