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ABSTRACT

A new method to estimate a change in an eigenvalue (a multiplication factor)

due to the perturbed fission source distribution has been implemented into a

beta version of MCNP5. Various benchmark problems have been set up and

the method has been verified with the problems. The new method improves

conventional MCNP differential operator sampling estimates significantly. It

is also shown that the method is applicable not only for uniform perturbation

problems but also for localized perturbation problems. Furthermore, results

for the benchmark problems have been compared among various methods :

two independent Monte Carlo calculations, conventional MCNP differential

operator sampling method, the F − A method and the new method with

different algorithms.
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1 INTRODUCTION

MCNP[1] has the perturbation capability based on the differential operator sampling method and

calculates the differential coefficients up to the second order. The capability was firstly developed by

McKinney et al.[2] and was implemented into MCNP4B. The first version of the capability did not

permit cross-section dependent tallies and it was difficult to apply to general reactor calculations.

The restriction was removed by Densmore et al.[3] and Hess et al.[4]. They extended the

perturbation capability to cross-section dependent tallies and implemented it into MCNP4C. The

extension made the perturbation capability more useful for reactor physicists. Recently there are a

lot of cases where they obtain sensitivities to neutronic parameters and the change in the parameters

such as reactivity worth, etc. by the Monte Carlo method with the perturbation capability.

However, attention must be paid to the limitations that originate from approximations in the

perturbation formulation. In the differential operator sampling method, a change in physical pa-

rameters of interest is expanded with a Taylor series and then each term including the differential

coefficient is estimated in the course of the Monte Carlo scheme. The current MCNP implementa-

tion includes the terms up to the second order, and the third- and higher-order terms are neglected.

This approximation is usually valid for small perturbations and is, thus, not very significant in prac-

tical applications.

Furthermore, the cross terms are neglected for multiple-parameter perturbations. For example,

the atomic density of each nuclide is changed at the same time when the fuel composition is per-

turbed. There exists the cross-term effect in this case. There are some cases where the cross terms

become important[5, 6] but Favorite showed that the second-order cross terms can be estimated

with the midpoint strategy[6].

The approximations above are usually adequate for most fixed-source problems. Actually, it

is shown that the current perturbation capability is very efficient in an appropriate extent for the

fixed-source problems[2, 3, 4]. However, another effect must be taken into account for eigenvalue

problems. When a perturbation is introduced into a system, the eigenfunction of the system

is perturbed. (The eigenfunction corresponds to the fission source distribution in a multiplying

system for criticality calculations.) Thus there exists the effect due to the perturbed fission source

distribution.

This effect can become significant if a locally large perturbation is introduced. Even for a

uniform perturbation, the effect accounts for a few percent of the total change in some cases[7].

Nevertheless, the perturbed fission source effect has not been taken into account in most Monte

Carlo codes including MCNP. Namely, they assume that the fission source distribution does not

change, even if a perturbation is introduced into the system. (In other words, it is assumed that

the fundamental eigenfunction in the system is constant, regardless of the perturbation.)

Recently, one of the authors proposed a new method to evaluate the effect due to the perturbed

fission source distribution. He also showed that the change in keff was significantly improved by
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taking the effect into account, and that the method was applicable not only for uniform but also

localized perturbations[7].

In this work, we have implemented the method into a beta version of MCNP Version 5 (MCNP5)[8,

9]. We have also set up benchmark problems and have verified the effectiveness of the method.

Furthermore, we have compared results obtained with various methods: two independent Monte

Carlo calculations, conventional MCNP differential operator sampling method, the F − A method

recently proposed by Favorite[10] and the new method with different algorithms.

This report will detail the implementation of the new method into MCNP. In Section 2, we derive

the formulae of the method to estimate a change due to the perturbed fission source distribution.

In Section 3, we describe the different algorithms for the new method. In Section 4, we present the

results obtained with the various methods.

2 MATHEMATICAL FORMULATION

2.1 Integral Form of Transport Equation

First, we describe the integral transport equation from the differential one that is often used for

numerical calculation. The differential form of the transport equation is expressed as follows;(
1

v(E)
∂

∂t
+ Ω · ∇+ Σt(r, E)

)
f(r, E,Ω, t) =∫

dΩ ′
∫ ∞

0

dE ′Σs(r;E,Ω ← E ′,Ω ′)f(r, E ′,Ω ′, t) + Se(r, E,Ω, t)

+ χ(E,Ω)
∫
dΩ ′

∫ ∞

0
dE ′νΣf(r, E ′)f(r, E ′,Ω ′, t). (1)

For simplicity, we define the extraneous source Se and the fission source Sf as S(r, E,Ω, t);

S(r, E,Ω, t) = Se(r, E,Ω, t) + Sf(r, E,Ω, t) (2)

= Se(r, E,Ω, t) + χ(E,Ω)
∫
dΩ ′

∫ ∞

0
dE ′νΣf (r, E ′)f(r, E ′,Ω ′, t)

Furthermore, we define the scattering source from which particles emerge in the phase space

(r, E,Ω, t) and the above source S(r, E,Ω, t) as follows;

q(r, E,Ω, t) =
∫
dΩ ′

∫ ∞

0

dE ′Σs(r;E,Ω ← E ′,Ω ′)f(r, E ′,Ω ′, t) + S(r, E,Ω, t).

(3)

Then the transport equation at the phase space (r,Ω, E, t) is(
1

v(E)
∂

∂t
+ Ω · ∇+ Σt(r, E)

)
f(r, E,Ω, t) = q(r, E,Ω, t). (4)

One should change the viewpoint to transform it into the integral form. The transport equation

at (r,Ω , E, t) can be described by uncollided particles from the point r − sΩ along the flight
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direction and thus derived by integrating the distance s along the flight direction. The transport

equation at (r − sΩ ,Ω , E, t− s/v(E)) is(
1

v(E)
∂

∂t
+ Ω · ∇′ + Σt(r′, E)

)
f(r′, E,Ω, t′) = q(r′, E,Ω, t′), (5)

where

r′ = r − sΩ (6)

t′ = t− s/v(E). (7)

Using

∂

∂s
f(r′, E,Ω, t′) =

∂f

∂r′
∂r′

∂s
+
∂f

∂t′
∂t′

∂s

= ∇′f · ∂r′

∂s
+
∂f

∂t′
∂t′

∂s
(8)

and

∂r′

∂s
= −Ω (9)

∂t′

∂s
= − 1

v(E)
(10)

derived from (6), (7), the derivative of the angular flux about s can be rewritten as

∂

∂s
f(r′, E,Ω, t′) = −Ω · ∇′f(r′, E,Ω, t′)− 1

v(E)
∂

∂t′
f(r′, E,Ω, t′). (11)

Thus, Eq. (5) becomes (
− ∂

∂s
+ Σt(r′, E)

)
f(r′, E,Ω, t′) = q(r′, E,Ω, t′). (12)

We transform it as follows;(
∂

∂s
− Σt(r′, E)

)
f(r′, E,Ω, t′) = −q(r′, E,Ω, t′)

exp
[
−
∫ s

0

Σt(r − s′′Ω)ds′′
](

∂

∂s
− Σt(r′, E)

)
f(r′, E,Ω, t′)

= −q(r′,Ω, E, t′) exp
[
−
∫ s

0
Σt(r − s′′Ω)ds′′

]

∂

∂s

{
exp

[
−
∫ s

0
Σt(r − s′′Ω)ds′′

]
f(r′, E,Ω, t′)

}

= −q(r′, E,Ω, t′) exp
[
−
∫ s

0
Σt(r − s′′Ω)ds′′

]
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We replace s with s′ and integrate over [0, s];

[
∂

∂s

{
exp

[
−
∫ s′

0

Σt(r − s′′Ω)ds′′
]
f(r − s′Ω , E,Ω, t− s′

v(E)
)

}]s′=s

s′=0

= −
∫ s

0

ds′q(r − s′Ω , E,Ω, t− s′

v(E)
) exp

[
−
∫ s′

0

Σt(r − s′′Ω)ds′′
]

exp
[
−
∫ s

0
Σt(r − s′′Ω )ds′′

]
f(r − sΩ , E,Ω, t− s

v(E)
)− f(r, E,Ω, t)

= −
∫ s

0
ds′q(r − s′Ω , E,Ω, t− s′

v(E)
) exp

[
−
∫ s′

0
Σt(r − s′′Ω)ds′′

]

Then we get

f(r, E,Ω, t) = exp
[
−
∫ s

0
Σt(r − s′′Ω)ds′′

]
f(r − sΩ , E,Ω, t− s

v(E)
) (13)

+
∫ s

0
ds′q(r − s′Ω , E,Ω, t− s′

v(E)
) exp

[
−
∫ s′

0
Σt(r − s′′Ω)ds′′

]
.

As s approaches infinity (s→∞), the first term of the right hand side of Eq. (13) vanishes and we

get

f(r, E,Ω, t) =
∫ ∞

0
ds′q(r − s′Ω , E,Ω, t− s′

v(E)
) exp

[
−
∫ s′

0
Σt(r − s′′Ω)ds′′

]
. (14)

Here we replace s′, s′′ with s, s′, (s′ → s, s′′ → s′) respectively. Then we finally get the integral

form of the transport equation;

f(r, E,Ω, t) =
∫ ∞

0
dsq(r − sΩ , E,Ω, t− s

v(E)
) exp

[
−
∫ s

0
Σt(r − s′Ω)ds′

]
(15)

2.2 Collision Density Equation at Steady State

Since the Monte Carlo method simulates the collision events of particles, it is based on the collision

density. The collision density is expressed as the following equation.

ψ(r, E,Ω) = Σt(r, E)f(r, E,Ω) (16)

= Σt(r, E)
∫ ∞

0
ds exp

[
−
∫ s

0
Σt(r − s′Ω)ds′

]
×q(r − sΩ , E,Ω). (17)

We transform it into the 3-dimensional form to express with the kernel form.

ψ(r, E,Ω) = Σt(r, E)
∫
dΩ ′′

∫ ∞

0
s2ds

δ(Ω ′′ −Ω)
s2

exp
[
−
∫ s

0
Σt(r − s′Ω ′′)ds′

]
×q(r − sΩ ′′, E,Ω). (18)
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Here we define

r′′ = r − sΩ ′′ (19)

and then the infinitesimal volume element at r′′ in the polar coordinates is

dr′′ = s2dsdΩ ′′. (20)

Thus we can get

ψ(r, E,Ω) =
∫
dr′′Σt(r, E) exp

[
−
∫ s

0
Σt(r − s′Ω ′′)ds′

]
δ(Ω ′′ −Ω )

s2

×q(r′′, E,Ω). (21)

Using

Ω ′′ =
r − r′′

|r − r′′| (22)

s = |r − r′′|, (23)

Eq. (21) can be rewritten as

ψ(r, E,Ω) =
∫
dr′′Σt(r, E) exp

[
−
∫ |r−r′′|

0
Σt(r − s′ r − r′′

|r − r′′| )ds
′
]

×
δ(Ω · r − r′′

|r − r′′| − 1)

|r − r′′|2 q(r′′, E,Ω). (24)

We define the transport kernel as follows;

T (r, E,Ω; r′′) = Σt(r, E) exp

[
−
∫ |r−r′′|

0
Σt(r − s′ r − r′′

|r − r′′| )ds
′
]

×
δ(Ω · r − r′′

|r − r′′| − 1)

|r − r′′|2 . (25)

Then the collision density can be rewritten as

ψ(r, E,Ω) =
∫
dr′′T (r, E,Ω; r′′)q(r′′, E,Ω)

=
∫
dr′T (r, E,Ω; r′)q(r′, E,Ω). (26)

This is a very simple form but q includes ψ implicitly. It is convenient to express the collision

density explicitly in the following formulation. Using Eq. (3),

ψ(r, E,Ω) =
∫
dr′T (r, E,Ω; r′)S(r′, E,Ω) (27)

+
∫
dr′T (r, E,Ω; r′)

∫
dΩ ′

∫ ∞

0
dE ′Σs(r′;E,Ω ← E ′,Ω ′)f(r′, E ′,Ω ′).
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Furthermore, using Eq. (2) of the definition S, we obtain

ψ(r, E,Ω) =
∫
dr′T (r, E,Ω; r′)Se(r′, E,Ω)

+
∫
dr′T (r, E,Ω; r′)

∫
dΩ ′

∫ ∞

0
dE ′χ(E,Ω)νΣf(r′, E ′)f(r′, E ′,Ω ′)

+
∫
dr′T (r, E,Ω; r′)

∫
dΩ ′

∫ ∞

0
dE ′Σs(r′;E,Ω ← E ′,Ω ′)f(r′, E ′,Ω ′)

=
∫
dr′T (r, E,Ω; r′)Se(r′, E,Ω) (28)

+
∫
dr′T (r, E,Ω; r′)

∫
dΩ ′

∫ ∞

0
dE ′χ(E,Ω)

νΣf(r′, E ′)
Σt(r′, E ′)

ψ(r′, E ′,Ω ′)

+
∫
dr′T (r, E,Ω; r′)

∫
dΩ ′

∫ ∞

0

dE ′Σs(r′;E,Ω ← E ′,Ω ′)
Σt(r′, E ′)

ψ(r′, E ′,Ω ′),

where we define the first-collision source (first-flight collision density) where particles from the

source make collisions firstly as

Se(r, E,Ω) =
∫
dr′T (r, E,Ω; r′)Se(r′, E,Ω), (29)

the collision kernel for scattering as

Cs(r, E,Ω;E ′,Ω ′) =
Σs(r;E,Ω ← E ′,Ω ′)

Σt(r, E ′)
, (30)

and the collision kernel for fission as

Cf (r, E,Ω;E ′) = χ(E,Ω)
νΣf(r, E ′)
Σt(r, E ′)

. (31)

Then the collision density can be written as

ψ(r, E,Ω) = Se(r, E,Ω) (32)

+
∫
dr′
∫
dΩ ′

∫ ∞

0

dE ′T (r, E; r′)Cs(r′, E,Ω;E ′,Ω ′)ψ(r′, E ′,Ω ′)

+
∫
dr′
∫
dΩ ′

∫ ∞

0
dE ′T (r, E; r′)Cf (r′, E,Ω;E ′,Ω ′)ψ(r′, E ′,Ω ′).

Furthermore, we unify the expression of Cs and Cf as follows;

Cx(r, E,Ω;E ′,Ω ′) =
νxΣx(r;E,Ω ← E ′,Ω ′)

Σt(r, E ′)
. (33)

For x = s(scattering),

νs = 1, (34)

and for x = f(fission),

Σf(r;E,Ω ← E ′,Ω ′) = χ(E,Ω)Σf(r, E ′). (35)
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The other reactions like (n, 2n) can be also expressed by Eq. (35). Using Eq. (35), Eq. (32) becomes

ψ(r, E,Ω) = Se(r, E,Ω)

+
∫
dr′
∫
dΩ ′

∫ ∞

0
dE ′T (r, E,Ω; r′)

∑
x

Cx(r′, E,Ω;E ′,Ω ′)ψ(r′, E ′,Ω ′)

ψ(r, E,Ω) = Se(r, E,Ω)

+
∫
dr′
∫
dΩ ′

∫ ∞

0
dE ′T (r, E,Ω; r′)C(r′, E,Ω;E ′,Ω ′)ψ(r′, E ′,Ω ′), (36)

where

C(r′, E,Ω;E ′,Ω ′) =
∑

x

Cx(r′, E,Ω;E ′,Ω ′). (37)

Furthermore, we define the transport kernel as

K(r, E,Ω; r′, E ′,Ω ′) = T (r, E,Ω; r′)C(r′, E,Ω;E ′,Ω ′). (38)

Then we obtain

ψ(r, E,Ω) = Se(r, E,Ω)

+
∫
dr′
∫
dΩ ′

∫ ∞

0
dE ′K(r, E,Ω; r′, E ′,Ω ′)ψ(r′, E ′,Ω ′). (39)

In most textbooks on Monte Carlo methods, the formulation is based on Eq. (39) but we can define

the other form of the collision density equation. It can be obtained by deriving the equation about

the outcoming (emergent) particle density q(r, E,Ω). Using Eq. (3), q at the steady state becomes

q(r, E,Ω) =
∫
dΩ ′

∫ ∞

0
dE ′Σs(r;E,Ω ← E ′,Ω ′)f(r, E ′,Ω ′)

+ χ(E,Ω)
∫
dΩ ′

∫ ∞

0
dE ′νΣf (r, E ′)f(r, E ′,Ω ′)

+ Se(r, E,Ω)

=
∫
dΩ ′

∫ ∞

0

dE ′Σs(r;E,Ω ← E ′,Ω ′)
Σt(r, E ′)

ψ(r, E ′,Ω ′)

+
∫
dΩ ′

∫ ∞

0

dE ′χ(E,Ω)
νΣf(r, E ′)
Σt(r, E ′)

ψ(r, E ′,Ω ′)

+ Se(r, E,Ω)

=
∫
dΩ ′

∫ ∞

0
dE ′Cs(r, E,Ω;E ′,Ω ′)ψ(r, E ′,Ω ′)

+
∫
dΩ ′

∫ ∞

0
dE ′Cf (r, E,Ω;E ′,Ω ′)ψ(r, E ′,Ω ′)

+ Se(r, E,Ω)

=
∫
dΩ ′

∫ ∞

0

dE ′C(r, E,Ω;E ′,Ω ′)ψ(r, E ′,Ω ′)

+ Se(r, E,Ω). (40)
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Using Eq. (26),

q(r, E,Ω) =
∫
dΩ ′

∫ ∞

0
dE ′C(r, E,Ω;E ′,Ω ′)

∫
dr′T (r, E ′,Ω ′; r′)q(r′, E ′,Ω ′)

+ Se(r, E,Ω)

=
∫
dr′
∫
dΩ ′

∫ ∞

0
dE ′C(r, E,Ω;E ′,Ω ′)T (r, E ′,Ω ′; r′)q(r′, E ′,Ω ′)

+ Se(r, E,Ω). (41)

This is called outcoming collision density equation, which describes the outcoming particle density.

On the other hand, Eq. (39) is called ingoing collision density equation, which describes the particles

are going to make collisions at the phase space (r, E,Ω). Usually the ingoing collision density

equation is called just the collision density equation.

Furthermore, we define the transition kernel for the outcoming collision density K as

K(r, E,Ω; r′, E ′,Ω ′) = C(r, E,Ω;E ′,Ω ′)T (r, E ′,Ω ′; r′), (42)

and then we obtain

q(r, E,Ω) =
∫
dr′
∫
dΩ ′

∫ ∞

0

dE ′K(r, E,Ω; r′, E ′,Ω ′)q(r′, E ′,Ω ′) + Se(r, E,Ω). (43)

2.3 Solution of Collision Density Equation

In this section, we consider the solution of the collision density equation. We begin with the

(ingoing) collision density equation, not the outcoming collision density equation. This equation

can be solved by the successive solution. For simplicity, we express the position (r, E,Ω) in the

phase space as P and P is the 6-dimensional vector in the phase space. Then, the collision density

equation is

ψ(P ) = Se(P ) +
∫
dP ′K(P ;P ′)ψ(P ′). (44)

First of all, we consider the following recursive equations.{
ψ(0)(P ) = Se(P )
ψ(i)(P ) = Se(P ) +

∫
dP ′K(P ;P ′)ψ(i−1)(P ′)

(45)

The recursive relationship gives us the following equations;

ψ(1)(P ) = Se(P ) +
∫
dP ′K(P ;P ′)Se(P ′)

ψ(2)(P ) = Se(P ) +
∫
dP ′K(P ;P ′)Se(P ′)

+
∫
dP ′K(P ;P ′)

∫
dP ′′K(P ′;P ′′)Se(P ′′)

= Se(P ) +
∫
dP ′K(P ;P ′)Se(P ′)

+
∫
dP ′

∫
dP1K(P ;P1)K(P1;P ′)Se(P ′)
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...

ψ(i)(P ) = Se(P )

+
∫
dP ′K(P ;P ′)Se(P ′)

+
∫
dP ′

∫
dP1K(P ;P1)K(P1;P ′)Se(P ′)

+ · · ·
+
∫
dP ′

∫
dP1 · · ·

∫
dPi−1K(P ;Pi−1)K(Pi−1;Pi−2) · · ·K(P1;P ′)Se(P ′)

= Se(P ) +
∫
dP ′K1(P ;P ′)Se(P ′) +

∫
dP ′K2(P ;P ′)Se(P ′)

+ · · ·+
∫
dP ′Ki(P ;P ′)Se(P ′)

=
i∑

m=0

∫
dP ′Km(P ;P ′)Se(P ′), (46)

where

K0(P ;P ′) = δ(P − P ′)

K1(P ;P ′) = K(P ;P ′)

K2(P ;P ′) =
∫
dP1K(P ;P1)K(P1;P ′)

...

Ki(P ;P ′) =
∫
dP1 · · ·

∫
dPi−1K(P ;Pi−1)K(Pi−1;Pi−2) · · ·K(P1;P ′). (47)

Using Eq. (46), the solution to Eq. (44) can be expressed as

ψ(P ) =
∞∑

m=0

∫
dP ′Km(P ;P ′)Se(P ′)

=
∞∑

m=0

ψm(P ), (48)

where

ψm(P ) =
∫
dP ′Km(P ;P ′)Se(P ′). (49)

This is called the Neumann series solution.

Similarly, we can obtain the solution to the outcoming collision density equation. Using Eq. (43),

the outcoming collision density equation is

q(P ) =
∫
dP ′K(P ;P ′)q(P ′) + Se(P ). (50)

The Neumann series solution to this equation is

q(P ) =
∞∑

m=0

∫
dP ′Km(P ;P ′)Se(P ′). (51)
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2.4 Scattering Kernel

We have defined the collision kernel for scattering (scattering kernel) in Eq. (30). It is convenient

to describe the kernel in detail because the scattering type, the energy and angular distribution

of particles after scattering are determined with sampling from the probability density function.

Since all non-absorption reactions are considered to be the scattering reaction, we define the cross

sections including (n,2n) as follows;

Σt = Σa + Σs (52)

Σs = Σe + Σie + Σ2n + Σ3n + · · · . (53)

Then the scattering kernel is

Cs(r, E,Ω;E ′,Ω ′) =
∑

j

Cj(r, E,Ω;E ′,Ω ′) (54)

=
∑

j

νjΣj(r;E,Ω ← E ′,Ω ′)
Σt(r, E ′,Ω ′)

, (55)

where j is the index for elastic, inelastic scattering, (n,2n), (n,3n) etc. Since the material is, in

general, comprised of some nuclides, the kernel can be expressed as

Cs(r, E,Ω;E ′,Ω ′) =
1

Σt(r, E ′,Ω ′)

∑
k

∑
j

νjkΣjk(r;E,Ω ← E ′,Ω ′) (56)

=
∑

k

Σtk(r, E ′,Ω ′)
Σt(r, E ′,Ω ′)

∑
j

νjkΣjk(r;E,Ω ← E ′,Ω ′)
Σtk(r, E ′,Ω ′)

(57)

=
∑

k

Σtk(r, E ′,Ω ′)
Σt(r, E ′,Ω ′)

∑
j

νjkσjk(E,Ω ← E ′,Ω ′)
σtk(E ′,Ω ′)

, (58)

where k is the index for the nuclide.

Furthermore, since the energy and flight direction of the particle after the collision are deter-

mined by the kinematics of scattering, σjk(r;E,Ω ← E ′,Ω ′) that appears in Eq. (58) should be

described as follows;

σjk(E,Ω ← E ′,Ω ′) = σjk(E ′,Ω ′)Γjk(E,Ω ← E ′,Ω ′). (59)

Here σjk(E ′,Ω ′) is defined as

σjk(E ′,Ω ′) ≡
∫
dE

∫
dΩσjk(E,Ω ← E ′,Ω ′), (60)

and thus Γjk must be normalized as follows;∫
dE

∫
dΩΓjk(E,Ω ← E ′,Ω ′) = 1. (61)
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Substituting Eq. (59) into Eq. (58) and manipulating the scattering kernel, we obtain

Cs(r, E,Ω;E ′,Ω ′) =
∑

k

Σtk(r, E ′,Ω ′)
Σt(r, E ′,Ω ′)

∑
j

σjk(E ′,Ω ′)
σtk(E ′,Ω ′)

νjkΓjk (62)

=
∑

k

Σtk(r, E ′,Ω ′)
Σt(r, E ′,Ω ′)

σsk(E ′,Ω ′)
σtk(E ′,Ω ′)

∑
j

σjk(E ′,Ω ′)
σsk(E ′,Ω ′)

νjkΓjk.

In this equation,
Σtk(r, E ′,Ω ′)
Σt(r, E ′,Ω ′)

represents the determination of the collision nuclide,
σsk(E ′,Ω ′)
σtk(E ′,Ω ′)

the treatment of the absorption,
σjk(E ′,Ω ′)
σsk(E ′,Ω ′)

the determination of the scattering type and νjΓjk

the determination of the number of generated particles, the energy and angular distribution of the

particles after scattering.

2.5 Multiplying System without Extraneous Source

In this section, we consider a multiplying system without extraneous source. Then, the outcoming

or ingoing collision density equation turns out to be a homogeneous equation and the equation is

solved as an eigenvalue problem. Since it is straightforward to understand the physical meaning,

here we discuss the eigenvalue problem based on the outcoming collision density equation. Letting

Se(r, E,Ω) = 0 in Eq. (43), we obtain

q(r, E,Ω) =
∫
dr′
∫
dΩ ′

∫
dE ′K(r, E,Ω; r′, E ′,Ω ′)q(r′, E ′,Ω ′)

=
∫
dr′
∫
dΩ ′

∫
dE ′Cs(r, E,Ω;E ′,Ω ′)T (r, E ′,Ω ′; r′)q(r′, E ′,Ω ′)

+
∫
dr′
∫
dΩ ′

∫
dE ′Cf (r, E,Ω;E ′,Ω ′)T (r, E ′,Ω ′; r′)q(r′, E ′,Ω ′)

=
∫
dr′
∫
dΩ ′

∫
dE ′Ks(r, E,Ω; r′, E ′,Ω ′)q(r′, E ′,Ω ′)

+
∫
dr′
∫
dΩ ′

∫
dE ′Kf (r, E,Ω; r′, E ′,Ω ′)q(r′, E ′,Ω ′), (63)

where we define

Kx(r, E,Ω; r′, E ′,Ω ′) = Cx(r, E,Ω;E ′,Ω ′)T (r, E ′,Ω ′; r′). (64)

Apparently Eq. (63) has only a solution q(r, E,Ω) = 0. But we need a solution q(r, E,Ω) �= 0

in a practical system. Thus we introduce an eigenvalue (effective multiplication factor) and solve

Eq. (63). For the sake of easy understanding, we define the fission source as

Sf(r, E,Ω) =
∫
dr′
∫
dΩ ′

∫
dE ′Kf (r, E,Ω; r′, E ′,Ω ′)q(r′, E ′,Ω ′). (65)

Then the equation to be solved is

q(r, E,Ω) =
∫
dr′
∫
dΩ ′

∫
dE ′Ks(r, E,Ω; r′, E ′,Ω ′)q(r′, E ′,Ω ′)

+ Sf(r, E,Ω) (66)

q(P ) =
∫
dP ′Ks(P ;P ′)q(P ′) + Sf (P ). (67)
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Now we introduce the concept of generation to solve Eq. (67) iteratively (power method). This

corresponds to the outer iteration in the deterministic method. The outcoming density in the i-th

generation is expressed by the following equation;

qi(P ) =
∫
dP ′Ks(P ;P ′)qi(P ′) + Sf,i(P ) (68)

Sf,i(P ) =
1

ki−1

∫
dP ′Kf(P ;P ′)qi−1(P ′). (69)

ki is the multiplication factor in the i-th generation and is defined as follows;

kiSf,i(P ) =
∫
dP ′Kf (P ;P ′)qi(P ′). (70)

Sf,i(P ) on the left hand side represents the initial fission source distribution in the i-th genera-

tion and the right hand side represents the distribution of fission neutrons generated in the i-th

generation. Integrating both the sides over all the phase space, we obtain

ki =

∫
dP

∫
dP ′Kf (P ;P ′)qi(P ′)∫
dPSf,i(P )

. (71)

Using this ki, we normalize the initial fission source distribution in the (i+ 1)-th generation as

Sf,i+1(P ) =
1
ki

∫
dP ′Kf(P ;P ′)qi(P ′) (72)

to initiate the calculation in the (i + 1)-th generation. From Eqs. (71) and (72), we can easily

obtain ∫
dPSf,i+1(P ) =

∫
dPSf,i(P ). (73)

That is, the fission source is normalized so that the total number of fission neutrons generated in

each generation is constant. The total weight of fission neutrons is conserved in the sense of the

Monte Carlo method. We can express the solution of Eq. (68) with the Neumann series solution;

qi(P ) =
∫
dP ′

∞∑
m=0

Ks,m(P ;P ′)Sf,i(P ′), (74)

where

Ks,0(P ;P ′) = δ(P − P ′)

Ks,1(P ;P ′) = Ks(P ;P ′)

Ks,2(P ;P ′) =
∫
dP1Ks(P ;P1)Ks(P1;P ′)

...

Ks,i(P ;P ′) =
∫
dP1 · · ·

∫
dPi−1Ks(P ;Pi−1)Ks(Pi−1;Pi−2) · · ·Ks(P1;P ′). (75)
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Substituting it into Eq. (71), we obtain

ki =

∫
dP

∫
dP ′′Kf (P ;P ′′)

∫
dP ′

∞∑
m=0

Ks,m(P ′′;P ′)Sf,i(P ′)
∫
dPSf,i(P )

=

∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫
dPSf,i(P )

, (76)

where we define

KF (P ;P ′) =
∫
dP ′′Kf(P ;P ′′)

∞∑
m=0

Ks,m(P ′′;P ′). (77)

Now we assume that the fission source distribution is converged in the infinite generation, which

will be denoted ∗. From Eqs. (68) and (69), we then obtain

q∗(P ) =
∫
dP ′Ks(P ;P ′)q∗(P ′) + Sf,∗(P ) (78)

Sf,∗(P ) =
1
k∗

∫
dP ′Kf (P ;P ′)q∗(P ′). (79)

Substituting Eq. (79) into Eq. (78), we obtain

q∗(P ) =
∫
dP ′Ks(P ;P ′)q∗(P ′)

+
1
k∗

∫
dP ′Kf (P ;P ′)q∗(P ′). (80)

This equation is the eigenvalue equation often seen in textbooks. The multiplication factor is

k∗ =

∫
dP

∫
dP ′Kf (P ;P ′)q∗(P ′)∫
dPSf,∗(P )

. (81)

To express the numerator of the right hand side with the fission source distribution, we express the

solution of Eq. (78) with the Neumann series;

q∗(P ) =
∗∑

m=0

∫
dP ′Ks,m(P ;P ′)Sf,∗(P ′). (82)

Substituting this into Eq. (81), we obtain

k∗ =

∫
dP

∫
dP ′′Kf (P ;P ′′)

∗∑
m=0

∫
dP ′Ks,m(P ′′;P ′)Sf,∗(P ′)

∫
dPSf,∗(P )
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=

∫
dP

∫
dP ′

[∫
dP ′′Kf(P ;P ′′)

∗∑
m=0

Ks,m(P ′′;P ′)

]
Sf,∗(P ′)

∫
dPSf,∗(P )

=

∫
dP

∫
dP ′KF (P ;P ′)Sf,∗(P ′)∫
dPSf,∗(P )

, (83)

where KF (P ;P ′) is defined in Eq. (77). Eq. (83) is the equation with regard to the multiplication

factor that are often seen in textbooks.

We can derive the eigenvalue equation for the collision density as well as the outcoming density.

The collision density equation without extraneous source is obtained from Eq. (36);

ψ(P ) =
∫
dP ′Ks(P ;P ′)ψ(P ′) +

∫
dP ′Kf (P ;P ′)ψ(P ′). (84)

Solving the equation successively, the collision density equation in the i-the generation is

ψi(P ) =
∫
dP ′Ks(P ;P ′)ψi(P ′) + Sf,i(P ), (85)

where Sf,i(P ) is the first-collision source at P and is defined as follows;

Sf,i(r, E,Ω) =
∫
dr′T (r, E,Ω; r′)Sf,i(r′, E,Ω). (86)

Using Eq. (69), Sf,i(r′, E,Ω) becomes

Sf,i(r′, E,Ω)

=
1

ki−1

∫
dr′
∫
dΩ ′

∫
dE ′Cf (r, E,Ω;E ′,Ω ′)T (r, E ′,Ω ′; r′)qi−1(r′, E ′,Ω ′)

=
1

ki−1

∫
dΩ ′

∫
dE ′Cf (r, E,Ω; r′, E ′,Ω ′)ψi−1(r, E ′,Ω ′). (87)

Substituting Eq. (87) into Eq. (86), we obtain

Sf,i(r, E,Ω) = (88)
1

ki−1

∫
dr′
∫
dΩ ′

∫
dE ′T (r, E,Ω; r′)Cf (r, E,Ω; r′, E ′,Ω ′)ψi−1(r′, E ′,Ω ′).

From Eq. (70), we also obtain the multiplication factor ki in the i-th generation;

kiSf,i(r, E,Ω) =
∫
dΩ ′

∫
dE ′Cf (r, E,Ω;E ′,Ω ′)ψi(r, E ′,Ω ′). (89)

We operate
∫
dr′T (r, E,Ω; r′) for both the sides;

ki

∫
dr′T (r, E,Ω; r′)Sf,i(r′, E,Ω) =∫
dr′T (r, E,Ω; r′)

∫
dΩ ′

∫
dE ′Cf (r′, E,Ω;E ′,Ω ′)ψi(r′, E ′,Ω ′) (90)
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kiSf,i(r′, E,Ω)

=
∫
dr′
∫
dΩ ′

∫
dE ′T (r, E,Ω; r′)Cf (r′, E,Ω;E ′,Ω ′)ψi(r′, E ′,Ω ′)

=
∫
dr′
∫
dΩ ′

∫
dE ′Kf(r, E,Ω; r′, E ′,Ω ′)ψi(r′, E ′,Ω ′). (91)

Using the following equation;

kiSf,i(P ) =
∫
dP ′Kf (P ;P ′)ψi(P ′), (92)

the multiplication factor in the i-th generation is

ki =

∫
dP

∫
dP ′Kf(P ;P ′)ψi(P ′)∫
dPSf,i(P )

. (93)

The Neumann series solution of Eq. (85) is

ψi(P ) =
∫
dP ′

∞∑
m=0

Ks,m(P ;P ′)Sf,i(P ′). (94)

Substituting this equation into Eq. (93), we obtain

ki =

∫
dP

∫
dP ′′Kf(P ;P ′′)

∫
dP ′

∞∑
m=0

Ks,m(P ′′;P ′)Sf,i(P ′)
∫
dPSf,i(P )

=

∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫
dPSf,i(P )

, (95)

where

KF (P ;P ′) =
∫
dP ′′Kf(P ;P ′′)

∞∑
m=0

Ks,m(P ′′;P ′). (96)

2.6 Estimation of Eigenvalue

We consider the estimation of the eigenvalue based on the outcoming source density. Namely, the

eigenvalue in the i-th generation is defined by Eq. (76). In the Monte Carlo method, an integral

value is estimated as an averaged quantity per source particle. That is, the source is normalized so

that ∫
dPSf,i(P ) = 1. (97)

Thus Eq. (76) becomes

ki =
∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′). (98)
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From now, we transform Eq. (98) to express ki with the absorption probability. Using Eqs. (77)

and (75), we obtain

ki =
∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)

=
∫
dP

∫
dP ′

∫
dP ′′Kf (P ;P ′′)

∞∑
m=0

Ks,m(P ′′;P ′)Sf,i(P ′)

=
∫
dP

∫
dP ′Kf (P ;P ′)Sf,i(P ′)

+
∫
dP

∫
dP ′

∫
dP1Kf (P ;P1)Ks(P1;P ′)Sf,i(P ′)

...

+
∫
dP

∫
dP ′

∫
dPm−1 · · ·

∫
dP1Kf(P ;Pm−1)Ks(Pm−1;Pm−2)

· · ·Ks(P1;P ′)Sf,i(P ′)
....

=
∫
dP1

∫
dP0Kf(P1;P0)Sf,i(P0)

+
∫
dP2

∫
dP1

∫
dP0Kf (P2;P1)Ks(P1;P0)Sf,i(P0)

...

+
∫
dPm · · ·

∫
dP0Kf (Pm;Pm−1)Ks(Pm−1;Pm−2)

· · ·Ks(P1;P0)Sf,i(P0)
.... (99)

Using the definition of Kf and Ks (Eq. (42)), the m-th term on the right hand side of Eq. (99)

becomes ∫
dPm · · ·

∫
dP0Kf(Pm;Pm−1)Ks(Pm−1;Pm−2) · · ·Ks(P1;P0)Sf,i(P0)

=
∫
drm

∫
dEm

∫
dΩm · · ·

∫
dr0

∫
dE0

∫
dΩ0χ(Em,Ωm)

νΣf(rm, Em−1)
Σt(rm, Em−1)

×T (rm, Em−1,Ωm−1; rm−1)Cs(rm−1, Em−1,Ωm−1;Em−2,Ωm−2)

×T (rm−1, Em−1,Ωm−1; rm−2) · · ·Cs(r1, E1,Ω1;E0,Ω0)T (r1, E0,Ω0; r0)

×Sf,i(r1, E1,Ω1; r0)

=
∫
drm

∫
dEm−1

∫
dΩm−1 · · ·

∫
dr0

∫
dE0

∫
dΩ0

νΣf(rm, Em−1)
Σt(rm, Em−1)

×T (rm, Em−1,Ωm−1; rm−1)Cs(rm−1, Em−1,Ωm−1;Em−2,Ωm−2)

×T (rm−1, Em−1,Ωm−1; rm−2) · · ·Cs(r1, E1,Ω1;E0,Ω0)T (r1, E0,Ω0; r0)

×Sf,i(r1, E1,Ω1; r0). (100)
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Here we used ∫
dEm

∫
dΩmχ(Em,Ωm) = 1. (101)

We replace Ej−1 and Ωj−1 with Ej and Ωj, respectively. Then Eq. (100) is∫
dPm · · ·

∫
dP0Kf (Pm;Pm−1)Ks(Pm−1;Pm−2) · · ·Ks(P1;P0)Sf,i(P0)

=
∫
drm

∫
dEm

∫
dΩm · · ·

∫
dr0

∫
dE0

∫
dΩ0

νΣf (rm, Em)
Σt(rm, Em)

×T (rm, Em,Ωm; rm−1)Cs(rm−1, Em,Ωm;Em−1,Ωm−1)

×T (rm−1, Em,Ωm; rm−2) · · ·Cs(r1, E2,Ω2;E1,Ω1)T (r1, E1,Ω1; r0)

×Sf,i(r0, E1,Ω1; r0). (102)

Furthermore, using the definition of the transport kernel (Eq. (38)), we obtain the following equa-

tion; ∫
dPm · · ·

∫
dP0Kf(Pm;Pm−1)Ks(Pm−1;Pm−2) · · ·Ks(P1;P0)Sf,i(P0)

=
∫
dPm · · ·

∫
dP1

νΣf (Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1), (103)

where

Ks(Pj;Pj−1) = T (rj, Ej,Ωj; rj−1)Cs(rj−1, Ej,Ω j;Ej−1,Ωj−1) (104)

Sf,i(P1) =
∫
dr0T (r1, E1,Ω1; r0)Sf,i(r0, E1,Ω1). (105)

To proceed further, we integrate Eq. (104) with regard to Pj;∫
dPjKs(Pj;Pj−1)

=
∫
drj

∫
dEj

∫
dΩjT (rj, Ej,Ω j; rj−1)Cs(rj−1, Ej,Ωj ;Ej−1,Ωj−1)

=
Σs(rj−1, Ej−1)
Σt(rj−1, Ej−1)

. (106)

Here we used the following equations;∫
drjT (rj, Ej,Ωj ; rj−1)

=
∫ ∞

0

drjΣt(rj, Ej) exp

[
−
∫ |rj−rj−1|

0

Σt(rj − s′ rj − rj−1

|rj − rj−1|)ds
′
]

×
δ(Ω · rj−rj−1

|rj−rj−1| − 1)

|rj − rj−1|2

=
∫ ∞

0
s2ds

∫
dΩ ′′Σt(rj, Ej) exp

[
−
∫ s

0
Σt(rj − s′Ω ��)ds′

]
δ(Ω −Ω ��)

s2
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=
∫ ∞

0
dsΣt(rj , Ej) exp

[
−
∫ s

0
Σt(rj − s′Ω)ds′

]

=
∫ ∞

0
ds

d

ds

{
− exp

[
−
∫ s

0
Σt(rj − s′Ω)ds′

]}
= 1 (107)

∫
dEj

∫
dΩjCs(rj−1, Ej,Ωj;Ej−1,Ω j−1)

=
∫
dEj

∫
dΩjΣs(rj−1;Ej,Ωj ← Ej−1,Ωj−1)

Σt(rj−1;Ej−1)

=
Σs(rj−1, Ej−1)
Σt(rj−1, Ej−1)

. (108)

Eq. (106) represents the non-absorption probability. We define the absorption probability at

(rj−1, Ej−1) as

α(rj−1, Ej−1) =
Σa(rj−1, Ej−1)
Σt(rj−1, Ej−1)

. (109)

Then Eq. (106) becomes ∫
dPjKs(Pj;Pj−1) =

Σs(rj−1, Ej−1)
Σt(rj−1, Ej−1)

= 1− α(rj−1, Ej−1)

= 1− α(Pj−1). (110)

We transform Eq. (103) with the absorption probability;∫
dPm · · ·

∫
dP0Kf(Pm;Pm−1)Ks(Pm−1;Pm−2) · · ·Ks(P1;P0)Sf,i(P0)

=
∫
dPm · · ·

∫
dP0

νΣf (Pm)
Σt(Pm)

[α(Pm) + (1− α(Pm))]

×Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1)

=
∫
dPm · · ·

∫
dP1

νΣf (Pm)
Σt(Pm)

α(Pm)Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1)

+
∫
dPm+1 · · ·

∫
dP1

νΣf (Pm)
Σt(Pm)

Ks(Pm+1;Pm) · · ·Ks(P2;P1)Sf,i(P1)

=
∫
dPm · · ·

∫
dP1

νΣf (Pm)
Σt(Pm)

α(Pm)Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1)

+
∫
dPm+1 · · ·

∫
dP1

νΣf (Pm)
Σt(Pm)

α(Pm+1)Ks(Pm+1;Pm) · · ·Ks(P2;P1)Sf,i(P1)

... (111)

Substituting Eq. (111) into Eq. (99), we obtain

ki =
∫
dP1

νΣf(P1)
Σt(P1)

α(P1)Sf,i(P1)
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+
∫
dP2

∫
dP1

[
νΣf (P2)
Σt(P2)

+
νΣf (P1)
Σt(P1)

]
α(P2)Ks(P2;P1)Sf,i(P1)

...

+
∫
dPm · · ·

∫
dP1

[
νΣf (Pm)
Σt(Pm)

+ · · ·+ νΣf(P1)
Σt(P1)

]
α(Pm)Ks(Pm;Pm−1) · · ·

×Ks(P2;P1)Sf,i(P1)
...

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

m∑
�=1

νΣf(P�)
Σt(P�)

α(Pm)Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1)

(112)

Equation (112) shows that the eigenvalue in the i-th generation can be estimated by scoring νΣf/Σt

at every collision point. Thus, this is a basic equation for the collision estimator in the analog Monte

Carlo.

Since the analog Monte Carlo method is seldom used, we derive an equation for the non-analog

Monte Carlo. We begin with the substitution of Eq. (103) into Eq. (99);

ki =
∞∑

m=1

∫
dPm · · ·

∫
dP1

νΣf(Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1) (113)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0

νΣf (Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)

×T (P1; r0)Sf,i(r0, E1,Ω1) (114)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

νΣf(Pm)
Σt(Pm)

m−1∏
j=1

Ks(Pj+1;Pj)
K̃s(Pj+1;Pj)

T (P1; r0)
T̃ (P1; r0)

Sf,i(r0, E1,Ω1)
S̃f,i(r0, E1,Ω1)

×K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1). (115)

K̃s and S̃f,i are the biased transport kernel and first-collision source, respectively. As in the analog

Monte Carlo, we can express Eq. (115) with the biased absorption probability α̃;

ki =
∞∑

m=1

∫
dPm · · ·

∫
dP1


 m∑

�=1

νΣf (P�)
Σt(P�)

�−1∏
j=1

Ks(Pj+1;Pj)
K̃s(Pj+1;Pj)

T (P1; r0)
T̃ (P1; r0)

Sf,i(r0, E1,Ω1)
S̃f,i(r0, E1,Ω1)


 (116)

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

[
m∑

�=1

νΣf(P�)
Σt(P�)

W (P�, · · · , P1, r0)

]

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1) (117)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

[
m∑

�=1

Wf(P�, · · · , P1, r0)

]

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1) (118)
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where

W (P�, · · · , P1, r0) =
�−1∏
j=1

Ks(Pj+1;Pj)
K̃s(Pj+1;Pj)

T (P1; r0)
T̃ (P1; r0)

Sf,i(r0, E1,Ω1)
S̃f,i(r0, E1,Ω1)

(119)

Wf(P�, · · · , P1, r0) =
νΣf (P�)
Σt(P�)

W (P�, · · · , P1, r0) (120)

α̃(Pm) = 1−
∫
dPK̃s(P ;Pm). (121)

W (P�, · · · , P1, r0) is the so-called weight of a particle entering the j-th collision. Wf (P�, · · · , P1, r0)

is the score for the eigenvalue. Therefore, ki is estimated by the following equation;

Est [ki] =
1
N

∑
n

wf,n, (122)

where wf,n is a score for Wf(P�, · · · , P1, r0) at a collision point. and N is the total initial weight of

particles in each generation. Est[X ] indicates an estimate of a parameter X .

2.7 Normalization Process between Generations

In eigenvalue calculations, we require the normalization of the fission source distribution since the

strength of the fission source is arbitrary. We consider the normalization process for Monte Carlo

eigenvalue calculations in this section.

As we have already seen, the fission source distribution is given by Eq. (72). To represent the

equation with Sf , we substitute Eq. (74) into Eq. (72);

Sf,i+1(P ) =
1
ki

∫
dP ′′

∫
dP ′Kf(P ;P ′′)

∞∑
m=0

Ks,m(P ′′;P ′)Sf,i(P ′)

=
1
ki

∫
dP ′KF (P ;P ′)Sf,i(P ′). (123)

Using the definition of ki (Eq. (76)), we can rewrite as follows;

Sf,i+1(P ) =
∫
dP ′KF (P ;P ′)Sf,i(P ′)∫

dP
∫
dP ′KF (P ;P ′)Sf,i(P ′)

∫
dPSf,i(P ). (124)

Equation (123) represents that the starting fission source distribution in the (i+1)-st generation

is given by the normalized fission source distribution in the i-th generation. Since
∫
dPSf,i(P ) is

the total number of source particles, ∫
dP ′KF (P ;P ′)Sf,i(P ′)∫

dP
∫
dP ′KF (P ;P ′)Sf,i(P ′)

is the probability density that a particle produces a fission neutron at r in the i-th generation.

Now we consider the representation of Eq. (124) with Monte Carlo estimates. The term∫
dP ′KF (P ;P ′)Sf,i(P ′) at a point rf can be expressed with the δ-function as follows;∫

dP ′KF (rf , E,Ω;P ′)Sf,i(P ′) =
∫
dPδ(r − rf)

∫
dP ′KF (P ;P ′)Sf,i(P ′)

21



=
∞∑

m=1

∫
dPm · · ·

∫
dP1

[
m∑

�=1

νΣf (P�)
Σt(P�)

δ(r� − rf )W (P�, · · · , P1, r0)

]

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1) (125)

As we can see in Eq. (125), the term
∫
dP ′KF (P ;P ′)Sf,i(P ′) can be estimated by wf,n at a collision

point. Thus, we can express as follows;

Est
[∫

dP ′KF (P ;P ′)Sf,i(P ′)
]

=
1
N
wf,n. (126)

We have already obtained

Est
[∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)

]
=

1
N

∑
n

wf,n. (127)

Therefore, we obtain an estimate for the total starting weight N at P as

EstN [Sf,i+1(P )] =
wf,n∑

n

wf,n

N, (128)

where EstN [X ] is the estimate of a parameter X for the total source weight N . We also obtain

EstN

[∫
dPSf,i+1(P )

]
= N. (129)

This means that the total starting weight in each generation is constant.

Equation (128) represents the normalization for all collision sites in the i-th generation. That

is, all collision sites are possible fission sites in the Monte Carlo sense. We need to store all the

collision sites for the normalization according to Eq. (128). However, it is not practical to store

them from the viewpoint of computer resources. Therefore, most Monte Carlo codes select a set

of fission sites from the collision sites. There are various methods for the selection but we here

describe the method used in MCNP.

After the fission source converges, we can approximate ki ≈ ki−1. Then the fission source at a

point rf can be written as

Sf,i+1(rf ) ≈
∞∑

m=1

∫
dPm · · ·

∫
dP1

[
m∑

�=1

νΣf(P�)
ki−1Σt(P�)

δ(r� − rf)W (P�, · · · , P1, r0)

]

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1). (130)

Thus we can estimate the fission source in the (i+ 1)-st generation as

EstN [Sf,i+1(P )] =
wf,n

ki−1
(131)

=
νΣf,n

ki−1Σt,n
wn−1, (132)
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where νΣf,n and Σt,n are the production and total cross sections at collision site n, respectively.

wn−1 is the weight of a particle entering collision at n. Equation (131) represents the average

number of fission neutrons produced at collision site n and the value is not an integer. Thus, the

number of fission neutrons at site n is determined by the following equation;

nf,n =
⌊
wf,n

ki−1
+ ξ

⌋
, (133)

where nf,n is the number of fission neutrons at site n, 	x
 the greatest integer such that maxk≤x x

and ξ a random number.

In MCNP, all the starting particles in the (i+1)-st generation have the same weight w0,i+1 and

the weight is determined by

w0,i+1 =
N

Mi

=
N∑

n

nf,n

, (134)

where Mi is the total number of fission neutrons produced in the i-th generation;

Mi =
∑
n

nf,n. (135)

Using w0,i+1, we can rewrite Eq. (131) as

EstN [Sf,i+1(P )] = nf,nw0,i+1 (136)

=
nf,n∑

n

nf,n

N. (137)

As we can find from Eq. (137), the total starting weight is constant for each generation and each

fission neutron is generated with equal probability. However, the number of starting neutrons may

vary from generation to generation.

2.8 Differential Operator Sampling Method for Multiplication Factor

We describe the explicit formulation for the multiplication factor with the differential operator

sampling method in this section. We define a perturbation parameter as a, which represents a

density, an atomic density, temperature etc. Suppose that the multiplication factor ki in the i-th

generation depends on a. What we consider here is the change of the multiplication factor ∆ki for

the change of the parameter ∆a. We can express the multiplication factor ki with a Taylor series

with regard to a as

∆ki =
∂ki

∂a
∆a+

1
2
∂2ki

∂a2 (∆a)2 + · · ·+ 1
n!
∂nki

∂an (∆a)n + · · · . (138)
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In the differential operator sampling method, we estimate ∆ki by estimating differential coefficients

in the right hand side of Eq. (138) separately. Of course, we can obtain ∆ki accurately with the

higher-order differential coefficients but the estimation of the higher-order coefficients gets more

complicated. Thus, the differential coefficients up to the second order can be estimated in most

Monte Carlo codes including MCNP.

The multiplication factor in the i-th generation is defined by Eq. (76). We recall

ki =

∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫
dPSf,i(P )

. (139)

Differentiating Eq. (139) with regard to a, we obtain

∂ki

∂a
=

∂

∂a

∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫
dPSf,i(P )

− ki

∂

∂a

∫
dPSf,i(P )∫

dPSf,i(P )
. (140)

Since we consider Monte Carlo estimates for a source particle, Sf,i(P ) is normalized so that∫
dPSf,i(P ) = 1. (141)

Then Eq. (140) becomes

∂ki

∂a
=

∂

∂a

∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′) (142)

=
∞∑

m=1

∂

∂a

∫
dPm · · ·

∫
dP1

νΣf (Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)Sf,i(P1)

=
∞∑

m=1

∂

∂a

∫
dPm · · ·

∫
dP1

∫
dr0

νΣf (Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)

×T (P1; r0)Sf,i(r0, E1,Ω1)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
Σt(Pm)
νΣf(Pm)

∂

∂a

(
νΣf(Pm)
Σt(Pm)

)

+
1

Ks(Pm;Pm−1)
∂

∂a
Ks(Pm;Pm−1) + · · ·+ 1

Ks(P2;P1)
∂

∂a
Ks(P2;P1)

+
1

T (P1; r0)
∂

∂a
T (P1; r0) +

1
Sf,i(r0, E1,Ω1)

∂

∂a
Sf,i(r0, E1,Ω1)

]

×νΣf (Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)T (P1; r0)Sf,i(r0, E1,Ω1)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0W

′
f (Pm, · · · , P1, r0)

×νΣf (Pm)
Σt(Pm)

Ks(Pm;Pm−1) · · ·Ks(P2;P1)T (P1; r0)Sf,i(r0, E1,Ω1), (143)
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where W ′
f (Pm, · · · , P1, r0) is the additional weight for ∂ki/∂a and defined by

W ′
f (Pm, · · · , P1, r0) =

Σt(Pm)
νΣf (Pm)

∂

∂a

(
νΣf (Pm)
Σt(Pm)

)

+
1

Ks(Pm;Pm−1)
∂

∂a
Ks(Pm;Pm−1) + · · ·+ 1

Ks(P2;P1)
∂

∂a
Ks(P2;P1)

+
1

T (P1; r0)
∂

∂a
T (P1; r0) +

1
Sf,i(r0, E1,Ω1)

∂

∂a
Sf,i(r0, E1,Ω1). (144)

As well as ki, we can express ∂ki/∂a with the absorption probability;

∂ki

∂a
=

∞∑
m=1

∫
dPm · · ·

∫
dP1

∫
dr0

m∑
�=1

W ′
f(P�, · · · , P1, r0)

νΣf(P�)
Σt(P�)

×α(Pm)Ks(Pm;Pm−1) · · ·Ks(P2;P1)T (P1; r0)Sf,i(r0, E1,Ω1). (145)

We can decompose the differential coefficient of the transport kernel;

1
Ks(Pj ;Pj−1)

∂

∂a
Ks(Pj;Pj−1) =

1
Tj

∂Tj

∂a
+

1
Cs,j−1

∂Cs,j−1

∂a
, (146)

where

Tj = T (rj, Ej,Ωj ; rj−1) (147)

Cs,j−1 = Cs(rj−1, Ej,Ωj ;Ej−1,Ωj−1). (148)

Using Eq. (146), Eq (145) becomes

∂ki

∂a
=

∞∑
m=1

∫
dPm · · ·

∫
dP1

∫
dr0

m∑
�=1

W ′
f (P�, · · · , P1, r0)

νΣf (P�)
Σt(P�)

×α(Pm)TmCs,m−1 · · ·T2Cs,1T1Sf,i(r0, E1,Ω1), (149)

where

W ′
f(P�, · · · , P1, r0) =

Σt(P�)
νΣf(P�)

∂

∂a

(
νΣf(P�)
Σt(P�)

)
+

1
T�

∂T�

∂a
+

1
Cs,�−1

∂Cs,�−1

∂a
+ · · ·

+
1
T2

∂T2

∂a
+

1
Cs,1

∂Cs,1

∂a
+

1
T1

∂T1

∂a
+

1
Sf,i(r0, E1,Ω1)

∂

∂a
Sf,i(r0, E1,Ω1). (150)

Furthermore, we can obtain the equation for the non-analog Monte Carlo method.

∂ki

∂a
=

∞∑
m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
m∑

�=1

W ′
f (P�, · · · , P1, r0)

×νΣf(P�)
Σt(P�)

W (P�, · · · , P1, r0)
]
α̃(Pm)K̃s(Pm;Pm−1) · · ·

K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1) (151)
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=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
m∑

�=1

W ′
f (P�, · · · , P1, r0)Wf (P�, · · · , P1, r0)

]

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1) (152)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
m∑

�=1

W ′
f (P�, · · · , P1, r0)Wf (P�, · · · , P1, r0)

]

×α̃(Pm)T̃mC̃s,m−1 · · · T̃2C̃s,1T̃1S̃f,i(r0, E1,Ω1), (153)

where Wf (P�, · · · , P1, r0) and W ′
f(P�, · · · , P1, r0) are defined by Eqs. (120) and (150), respectively.

The difference between Eq. (152) and Eq. (118) is the existence of the additional weight. There-

fore, we can estimate the first-order differential coefficient of ki by scoring the terms of Eq. (150) in

the random walk process for the unperturbed system. The first term and the differential coefficient

terms for the transport and collision kernels in the bracket can be easily calculated. The last term

in the bracket represents the first-order effect of the perturbed fission source distribution. From

Eq. (153), ∂ki/∂a is estimated by

Est
[
∂ki

∂a

]
=

1
N

∑
n

w′
f,nwf,n, (154)

where w′
f,n and wf,n are scores for W ′

f (Pm, · · · , P1, r0) and Wf(Pm, · · · , P1, r0), respectively.

Using Eq. (154), we can estimate the first-order differential coefficient for the multiplication

factor with the perturbed fission source effect. However, we can estimate the differential coefficient

only due to the perturbed fission source effect. We split Eq. (151) into two components;

∂ki

∂a
=
∂ko,i

∂a
+
∂ks,i

∂a
. (155)

∂ko,i/∂a represents the first-order differential coefficient for the multiplication factor without the

perturbed fission source effect and is defined by

∂ko,i

∂a
=

∞∑
m=1

∫
dPm · · ·

∫
dP1

∫
dr0

{
m∑

�=1

[
Σt(P�)
νΣf(P�)

∂

∂a

(
νΣf(P�)
Σt(P�)

)
+

1
T�

∂T�

∂a

+
1

Cs,�−1

∂Cs,�−1

∂a
+ · · ·+ 1

T2

∂T2

∂a
+

1
Cs,1

∂Cs,1

∂a
+

1
T1

∂T1

∂a

]
νΣf(P�)
Σt(P�)

W (P�, · · · , P1, r0)
}

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
m∑

�=1

W ′
fo(P�, · · · , P1, r0)Wf(P�, · · · , P1, r0)

]

×α̃(Pm)T̃mC̃s,m−1 · · · T̃2C̃s,1T̃1S̃f,i(r0, E1,Ω1), (156)

where

W ′
fo(P�, · · · , P1, r0) =[

Σt(P�)
νΣf (P�)

∂

∂a

(
νΣf(P�)
Σt(P�)

)
+

1
T�

∂T�

∂a
+

1
Cs,�−1

∂Cs,�−1

∂a
+ · · ·

+
1
T2

∂T2

∂a
+

1
Cs,1

∂Cs,1

∂a
+

1
T1

∂T1

∂a

]
. (157)
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From Eq. (156), ∂ko,i/∂a is estimated by

Est
[
∂ko,i

∂a

]
=

1
N

∑
n

w′
fo,nwf,n, (158)

where w′
fo,n is a score for W ′

fo(P�, · · · , P1, r0).

∂ks,i/∂a represents the first-order differential coefficient for the multiplication factor only due

to the perturbed fission source effect and is defined by

∂ks,i

∂a
=

∞∑
m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
1

Sf,i(r0, E1,Ω1)
∂

∂a
Sf,i(r0, E1,Ω1)

]

×
(

m∑
�=1

νΣf (P�)
Σt(P�)

W (P�, · · · , P1, r0)

)
α̃(Pm)K̃s(Pm;Pm−1) · · ·

K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

∫
dr0

[
1

Sf,i(r0, E1,Ω1)
∂

∂a
Sf,i(r0, E1,Ω1)

]

×
(

m∑
�=1

Wf (P�, · · · , P1, r0)

)
α̃(Pm)T̃mC̃s,m−1 · · · T̃2C̃s,1 (159)

From Eq. (159), ∂ks,i/∂a is estimated by

Est
[
∂ks,i

∂a

]
=

1
N

∑
n

w′
0,iwf,n, (160)

where w′
0,i is a score for 1/Sf,i · ∂Sf,i/∂a and the estimation of w′

0,i is described in the next section.

Note that w′
0,i depends on the source site. Since MCNP calculates ∂ko,i/∂a with the current

perturbation capability, we have only to estimate ∂ks,i/∂a according to Eq. (160).

2.9 Estimation of Perturbed Fission Source Distribution

In eigenvalue problems, the fission source distribution is perturbed when a perturbation is intro-

duced. It is difficult to estimate the effect of the perturbed fission source distribution and thus it

is often ignored in most Monte Carlo codes. We consider how to estimate the effect in this section.

As we have already seen, the effect is represented as the last term in the bracket of Eq. (151).

To derive an expression for this term, we differentiate Eq. (123);

∂

∂a
Sf,i+1(P ) =

1
ki

∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]− 1

k2
i

∂ki

∂a

∫
dP ′KF (P ;P ′)Sf,i(P ′)

=
1
ki

(∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]− 1

ki

∂ki

∂a

∫
dP ′KF (P ;P ′)Sf,i(P ′)

)
(161)

Substituting Eqs. (76) and (140) into Eq. (161), we obtain

∂

∂a
Sf,i+1(P ) =

∫
dP ′Sf,i(P ′)∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)

(∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]
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−
∫
dP

∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)




+

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)

∂

∂a

∫
dPSf,i(P ). (162)

Since the same set of histories are used for the perturbed and unperturbed systems in the differential

operator sampling method, the total weight of source particles is constant, that is,

∂

∂a

∫
dPSf,i(P ) = 0. (163)

Then Eq. (162) becomes

∂

∂a
Sf,i+1(P ) =

∫
dP ′Sf,i(P ′)∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)

(∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]

−
∫
dP

∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)


 . (164)

Furthermore, the Monte Carlo estimates are obtained for a source particle. Thus we set∫
dPSf,i(P ) = 1. (165)

Then we obtain

∂

∂a
Sf,i+1(P ) =

1∫
dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)

(∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]

−
∫
dP

∫
dP ′ ∂

∂a

[KF (P ;P ′)Sf,i(P ′)
]

∫
dP ′KF (P ;P ′)Sf,i(P ′)∫

dP

∫
dP ′KF (P ;P ′)Sf,i(P ′)


 . (166)

Now we consider the Monte Carlo estimates for Eq. (166) in MCNP. The term
∫
dP ′KF (P, P ′)

Sf,i−1(P ′) is estimated by Eq. (131) at the end of the i-th generation and the score varies depending

on the fission sites. However, after the normalization process between the i-th and (i + 1)-st

generations, the initial weight is normalized so that all source particles have the same weight as

shown in Section 2.6. Thus, we can consider that the weight defined by Eq.(136) is assigned to

each fission neutron (source particle). The term is then estimated by the following expression;

EstN

[∫
dP ′KF (P, P ′)Sf,i(P ′)

]
= nf,nw0,i+1. (167)
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The term
∫
dP
∫
dP ′KF (P, P ′)Sf,i−1(P ′) can be estimated as the sum of

∫
dP ′KFSf,i−1 over all

fission sites.

EstN

[∫
dP

∫
dP ′KF (P, P ′)Sf,i(P ′)

]
= Miw0,i+1. (168)

Next, we consider the Monte Carlo estimates for the differential terms
∫
dP ′∂ [KFSf,i] /∂a and∫

dP
∫
dP ′∂ [KFSf,i] /∂a. Using Eqs. (125) and (150), we obtain

∂

∂a

∫
dP ′KF (rf , E,Ω;P ′)Sf,i(P ′) =

∫
dPδ(r − rf )

∂

∂a

∫
dP ′KF (P ;P ′)Sf,i(P ′)

=
∞∑

m=1

∫
dPm · · ·

∫
dP1

[
m∑

�=1

W ′
f (P�, · · · , P1, r0)

νΣf (P�)
Σt(P�)

δ(r� − rf )W (P�, · · · , P1, r0)

]

×α̃(Pm)K̃s(Pm;Pm−1) · · ·K̃s(P2;P1)T̃ (P1; r0)S̃f,i(r0, E1,Ω1). (169)

Thus, the differential terms are estimated as follows;

Est
[
∂

∂a

∫
dP ′KF (P, P ′)Sf,i(P ′)

]
=

1
N
w′

f,nwf,n (170)

Est
[
∂

∂a

∫
dP

∫
dP ′KF (P, P ′)Sf,i(P ′)

]
=

1
N

∑
n

w′
f,nwf,n. (171)

Based on the discussion above, these estimates after the normalization become as follows;

EstN

[
∂

∂a

∫
dP ′KF (P, P ′)Sf,i(P ′)

]
= nf,nw

′
f,nw0,i+1 (172)

EstN

[
∂

∂a

∫
dP

∫
dP ′KF (P, P ′)Sf,i(P ′)

]
=

∑
n

nf,nw
′
f,nw0,i+1. (173)

Using Eqs. (134), (167), (168), (172) and (173), we can obtain the following equation;

EstN

[
∂

∂a
Sf,i+1(P )

]
=

1
Miw0,i+1

(
nf,nw

′
f,nw0,i+1 − nf,nw0,i+1

Miw0,i+1

∑
n

nf,nw
′
f,nw0,i+1

)
N

= w0,i+1nf,n

(
w′

f,n −
1
Mi

nf,n

∑
n

w′
f,n

)
. (174)

Therefore, using Eq. (136),

EstN

[
1

Sf,i+1(P )
∂

∂a
Sf,i+1(P )

]
= w′

f,n −
1
Mi

∑
n

nf,nw
′
f,n (175)

= w′
0,i+1, (176)

where w′
0,i+1 is the normalized additional weight per source particle and is defined by

w′
0,i+1 = w′

f,n−
1
Mi

∑
n

nf,nw
′
f,n. (177)

Eq. (175) represents the normalization for the additional weight for the differential coefficient of the

fission source. Since the fission source distribution is normalized in each generation, the additional

weight must be also normalized according to Eq. (175).
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3 ALGORITHM

In this section, we consider the algorithm to estimate the change in the multiplication factor due to

the perturbed fission source distribution. First, we describe a basic algorithm but a problem arises

for it. Next, we consider a modified algorithm to overcome the problem.

Figure 1 shows the basic algorithm with the notation used in the previous section. w′
0,i is the

normalized additional weight for 1/Sf,i · ∂Sf,i/∂a in cycle i. It is obtained in cycle i − 1 and is

given in cycle i at each initial source point. In the random walk process, we score the unnormalized

additional weight w′
f,n at each fission site. We also score w′

0,iwf,n at each collision or flight. After

the random walk in cycle i, we can estimate ∂ks,i/∂a with Eq. (160) and normalize the additional

weight w′
f,n for cycle i + 1 with Eq. (177). The process above is repeated until the user-specified

last cycle and a final estimate of ∂ks/∂a is obtained as well as the multiplication factor k.

The algorithm is very simple but there is a problem. The variance for the ∂ks/∂a estimate

may not decrease even if the number of cycles increases. One of the possible causes is that the

accuracy for the estimate of 1/Sf,i · ∂Sf,i/∂a depends on cycles. The estimate is expressed by the

normalized additional weight in cycle i, w′
0,i and the weight is obtained in cycle i−1. Namely, w′

0,i

is obtained by the propagation of the additional weight from the beginning of active cycles to cycle

i− 1. Therefore, w′
0,i tends to be noisy as the cycle number increases.

To overcome the difficulty, we modify the algorithm. Figure 2 shows the modified algorithm

where the basic algorithm is also preserved. In the modified algorithm, w′(j)
0,i is introduced and the

change in the multiplication factor is estimated by the following equation;

Est

[
∂k

(j)
s,i

∂a

]
=

1
N

∑
n

w
′(j)
0,i wf,n. (178)

As we can find in Fig. 2, w′(j)
0,i means the normalized additional weight in cycle i estimated from

the preceding j cycles. By using w′(j)
0,i , we can estimate 1/Sf,i · ∂Sf,i/∂a with the same accuracy in

each cycle.

4 VERIFICATION

We have implemented the modified algorithm to estimate the change in the multiplication factor

due to the perturbed fission source distribution into MCNP5[8, 9]. To verify the algorithm, we

have set up several benchmark problems and have solved them with the modified MCNP5. The

problems include density perturbation problems for the Godiva assembly, the simplified STACY

core, the core described in MCNP test problem 18 and the TCA assembly.

Furthermore, we have compared the reactivity estimates obtained with various methods: two

independent MCNP runs, the conventional MCNP differential operator sampling method, the F−A
method recently proposed by Favorite[10] and the new method with different algorithms.
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Figure 1: Basic algorithm to estimate the change in the multiplication factor due to the perturbed
fission source distribution

31



cycle i

cycle i+1 Given normalized additional weight
for

1

1

1 i

i

S

S a
+

+

∂
∂

( )
0, 1 0, 1, j

i iw w+ +′ ′:

Normalize the additional weight ( )
, ,, j

f n f nw w′ ′:

Score unnormalized additional weight
at each fission site.

( )
, ,, j

f n f nw w′ ′

, , 0,

(1)
, ,

( ) ( 1)
, , 0, for 2

f n fo n i

f n fo n

j j
f n fo n i

w w w

w w

w w w j−

′ ′ ′= +

′ ′=

′ ′ ′= + ≥

Random walk process

Score at each collision or flight.( )
0, , 0, ,, j

i f n i f nw w w w′ ′

cycle i-1 (Obtained in the previous cycle)

0, 1 , , ,

( ) ( ) ( )
0, 1 , , , ,

1

1

i f n f n f n
ni

j j j
i f n f n f n

ni

w w n w
M

w w n w
M

+

+

′ ′ ′= −

′ ′ ′= −

∑

∑

,
0, ,

( )
, ( )

0, ,

1

1

s i
i f n

n

j
s i j

i f n
n

k
Est w w

a N

k
Est w w

a N

∂  ′= ∂ 
 ∂

′= ∂ 

∑

∑
Estimate

( )
, ,,

j
s i s ik k

a a

∂ ∂
∂ ∂ :

Given normalized additional weight for
1 i

i

S

S a

∂
∂

( )
0, 0,, j

i iw w′ ′:

Figure 2: Modified algorithm to estimate the change in the multiplication factor due to the per-
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4.1 Godiva Density Perturbation Problems

The Godiva geometry is a bare uranium sphere of a radius of 8.741 cm. The original density is

18.74 g/cm3 and the composition is 94.73 wt% 235U and 5.27 wt% 238U. We set up three density

perturbation problems for the Godiva assembly as shown in Fig. 3. One is the uniform perturbation

problem (Fig 3 (a)). Another is the central perturbation problem (Fig 3 (b)) where only the central

region of 6cm from the core center is perturbed. The other is the peripheral problem (Fig 3 (c))

where only the peripheral region of 0.1cm from the outer edge is perturbed. The uniform problem

addresses the case where the fission source distribution does not change significantly and the central

problem addresses the case where the perturbation of the distribution is enhanced. These problems

are cited from Reference [7]. The peripheral problem is cited from Reference [10] and addresses the

case where the F −A method is applicable.

To obtain reference solutions for these problems, we performed MCNP eigenvalue calculations

with the density changed. The original density is 18.74 g/cm3 and the density was increased to

20.00, 21.00, 23,50 and 26.00 g/cm3. These density points are the same as those calculated in

References [3, 4]. All the calculations were performed for 60 inactive and 9540 active cycles with

10000 histories per cycle. The MCNP library for JENDL-3.2[11] was used for all Godiva problems.

On the other hand, all perturbation calculations were performed for 60 inactive and 600 active

cycles with 10000 histories per cycle. In these calculations, the first- and second-order differential

coefficients (∂k/∂a and 1/2 · ∂2k/∂a2) and the differential coefficients due to the perturbed fission

source distribution (∂ks/∂a) are obtained separately. Reaction rates necessary for the F−Amethod

are also calculated.

(a) Uniform
perturbation

(b) Central
perturbation

Composition : 94.73wt% 235U, 5.27wt% 238U
Vacuum boundary condition

Perturbed Region (density change)

2.741cm

6 cm8.741cm

0.1cm

8.641cm

(c) Peripheral
perturbation

Figure 3: Godiva density perturbation problems
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Table 1: Comparison of ∆k and reactivity between the various methods for the Godiva uniform
perturbation problem (18.74 g/cm3 → 20.00 g/cm3)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs 5.458E-2 0.008E-2 5.153E-2 0.008E-2

MCNP 1st-order differential operator 5.363E-2 0.004E-2 5.068E-2 0.005E-2

MCNP 2nd-order differential operator∗ 5.245E-2 0.004E-2 4.961E-2 0.005E-2

F −A method — — 2.744E-2 0.005E-2

New method∗∗ (1-cycle propagation∗∗∗ ) 5.363E-2 0.005E-2 5.068E-2 0.005E-2

New method (2-cycle propagation) 5.405E-2 0.006E-2 5.105E-2 0.006E-2

New method (3-cycle propagation) 5.415E-2 0.006E-2 5.114E-2 0.008E-2

New method (4-cycle propagation) 5.421E-2 0.007E-2 5.120E-2 0.006E-2

New method (5-cycle propagation) 5.426E-2 0.007E-2 5.124E-2 0.007E-2

New method (all-cycle propagation∗∗∗∗) 5.385E-2 0.042E-2 5.087E-2 0.038E-2

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.
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Figure 4: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for the Godiva uniform perturbation problem (The error bars are two standard deviations.)
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4.1.1 Uniform perturbation problem

Table 1 shows the comparison of ∆k and reactivity between the various methods for the Godiva

uniform perturbation problem where the density is increased from 18.74 g/cm3 to 20.00 g/cm3.

The standard deviation of the result obtained from two independent MCNP runs is enough small

to be a reference solution. The conventional MCNP differential operator sampling estimate up to

the second order underestimates the reference one by ∼ 3.7% (−0.002∆k/(kk′)). When we take

into account that the delayed neutron fraction is about 0.7% in uranium systems, this discrepancy

is not negligible for reactor physicists.

The result with the F − A method underestimates the reference one significantly as Favorite

has already pointed out[10]. The F −A method is not applicable for uniformly perturbed cases.

On the other hand, the conventional MCNP result is well improved by the new method where the

perturbed fission source effect is taken into account for the MCNP first- and second-order differential

sampling estimate. Six results are listed for the new method to investigate the dependence on the

algorithm described in Section 3. “j-cycle propagation” in the table indicates that the perturbed

fission source effect is estimated with ∂k
(j)
s /∂a. It means that the perturbed source effect in the

current cycle is estimated from the information in the preceding j cycles. As the propagation cycle

increases, we obtain the better result but the standard deviation becomes larger. In this case,

1-cycle and 2-cycle propagation results still underestimate the reference one though they are better

than the conventional MCNP result.

All-cycle propagation indicates that the perturbed fission source effect is estimated with ∂ks/∂a.

It seems that this algorithm gives the most accurate result but the standard deviation is much larger

than the other results with the new method. This uncertainty originates from the uncertainty of

the estimate of the perturbed source effect as shown in Fig. 4. What is worse is that the standard

deviation does not decrease even if the number of cycles increases as shown in Fig. 5.

On the other hand, the estimates of the perturbed fission source effect obtained with the mod-

ified algorithm tends to converge and their standard deviations decrease in inverse proportion to

the root square of the number of cycles.

Figure 6 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP result seems to be good but there exists the discrepancy of ∼
3%. The solid line shows the result for the new method with 5-cycle propagation and is in very

good agreement with the reference one. The F − A method underestimates significantly in this

case.

4.1.2 Central perturbation problem

Table 2 shows the comparison of ∆k and reactivity between the various methods for the Godiva

central perturbation problem where the density is increased from 18.74 g/cm3 to 20.00 g/cm3. The

result obtained from two independent MCNP is a reference solution and the standard deviation
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is enough small. As is predicted, the conventional MCNP differential operator sampling estimate

up to the second order underestimates the reference one significantly and the discrepancy is about

36%. The result with the F −A method also underestimates significantly.

On the other hand, the new method improves the results remarkably though the slight under-

estimation can be still seen. As well as the uniform perturbation problem, we can see that the

results with the modified algorithm approach to the reference one as the number of propagation

cycles increases and the result with the all-cycle propagation algorithm gives larger uncertainty

comparing with the other results with the modified algorithm.

Figure 7 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. As one can find from this figure, the large uncertainty for all-cycle propagation

originates from the uncertainty for the estimate of the perturbed fission source effect. We also

find that the 5-cycle propagation result gives a well-converged solution and the estimate of the

perturbed source effect cannot be estimated accurately with the 1-cycle and 2-cycle propagation

algorithm.

Figure 8 shows the dependence of the standard deviation for the perturbed source effect on

the number of cycles. As well as in the uniform perturbation case, the standard deviation for

the all-cycle propagation algorithm does not decrease as the number of cycles increases. On the

Table 2: Comparison of ∆k and reactivity between the various methods for the Godiva central
perturbation problem (18.74 g/cm3 → 20.00 g/cm3)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs 2.946E-2 0.008E-2 2.849E-2 0.008E-2

MCNP 1st-order differential operator 1.905E-2 0.004E-2 1.859E-2 0.005E-2

MCNP 2nd-order differential operator∗ 1.869E-2 0.004E-2 1.825E-2 0.004E-2

F −A method — — 1.389E-2 0.003E-2

New method∗∗ (1-cycle propagation∗∗∗ ) 2.461E-2 0.005E-2 2.389E-2 0.004E-2

New method (2-cycle propagation) 2.718E-2 0.005E-2 2.632E-2 0.005E-2

New method (3-cycle propagation) 2.827E-2 0.006E-2 2.734E-2 0.007E-2

New method (4-cycle propagation) 2.871E-2 0.006E-2 2.775E-2 0.006E-2

New method (5-cycle propagation) 2.888E-2 0.007E-2 2.791E-2 0.007E-2

New method (all-cycle propagation∗∗∗∗) 2.853E-2 0.040E-2 2.758E-2 0.038E-2

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.
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other hand, the standard deviation for the modified algorithm decreases with the number of cycles

according to the conventional statistic theory.

Figure 9 shows the comparison of reactivity vs. fractional density change between the vari-

ous methods. The conventional MCNP and the F − A results underestimate the reference ones

significantly. The solid line shows the result for the new method with the 5-cycle propagation

algorithm. We can see the remarkable improvement for the reactivity estimates. The discrepancies

can be seen at the points of large fractional density change. This may be caused by the third- or

higher-order differential coefficient term for the multiplication factor or the second or higher order

of the perturbed source effect.

4.1.3 Peripheral perturbation problem

Table 3 shows the comparison of ∆k and reactivity between the various methods for the Godiva

peripheral perturbation problem where the density is increased from 18.74 g/cm3 to 20.00 g/cm3.

We regard the result obtained from two independent MCNP as a reference solution though the

standard deviation is relatively large. The perturbed region is very small in this problem and

thus it is difficult to obtain the ∆k value with two independent runs. The conventional MCNP

differential operator sampling estimate up to the second order overestimates the reference one

significantly and the discrepancy is ∼90%. The F −A method provides a better result in this case

but still underestimates by about ∼26% .
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Figure 8: Dependence of the standard deviation for the perturbed source effect on the number of
cycles for the Godiva central perturbation problem
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Figure 9: Comparison of reactivity vs. fractional density change between the various methods for
the Godiva central perturbation problem (The error bars are two standard deviations.)

39



On the other hand, the new method improves the results remarkably. The results with 2-cycle

through 5-cycle propagation algorithms agree with the reference one within one standard deviation.

The result with 1-cycle propagation algorithm overestimates the reference one slightly but is within

two standard deviations. The result with all-cycle propagation algorithm seems to underestimate

slightly but the uncertainty is large. As well as the other problems, one can see that the results

with the modified algorithm tends to converge as the number of propagation cycles increases and

the result with the all-cycle propagation algorithm gives larger uncertainty comparing with the

other results with the modified algorithm.

Figure 10 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. Also in this case, the large uncertainty for all-cycle propagation originates from

the uncertainty for the estimate of the perturbed fission source effect. We also find that the 5-cycle

propagation result gives a well-converged solution and the estimate of the perturbed source effect

is inaccurate for the 1-cycle and 2-cycle propagation algorithm.

Figure 11 shows the dependence of the standard deviation for the perturbed source effect on

the number of cycles. One can see the similar trends to the other problems. Namely, the standard

deviation for the all-cycle propagation algorithm does not decrease as the number of cycles increases.

On the other hand, the standard deviation for the modified algorithm decreases in inverse proportion

Table 3: Comparison of ∆k and reactivity between the various methods for the Godiva peripheral
perturbation problem (18.74 g/cm3 → 20.00 g/cm3)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs 0.740E-3 0.085E-3 0.736E-3 0.084E-3

MCNP 1st-order differential operator 1.404E-3 0.003E-3 1.398E-3 0.003E-3

MCNP 2nd-order differential operator∗ 1.405E-3 0.003E-3 1.399E-3 0.003E-3

F −A method — — 0.542E-3 0.001E-3

New method∗∗ (1-cycle propagation∗∗∗ ) 0.846E-3 0.004E-3 0.843E-3 0.004E-3

New method (2-cycle propagation) 0.736E-3 0.005E-3 0.733E-3 0.005E-3

New method (3-cycle propagation) 0.701E-3 0.006E-3 0.699E-3 0.006E-3

New method (4-cycle propagation) 0.690E-3 0.006E-3 0.688E-3 0.006E-3

New method (5-cycle propagation) 0.682E-3 0.006E-3 0.679E-3 0.006E-3

New method (all-cycle propagation∗∗∗∗) 0.604E-3 0.030E-3 0.602E-3 0.030E-3

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.
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Figure 10: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for the Godiva peripheral perturbation problem (The error bars are two standard deviations.)
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Figure 11: Dependence of the standard deviation for the perturbed source effect on the number of
cycles for the Godiva peripheral perturbation problem

to the root square of the number of cycles .
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Figure 12: Comparison of reactivity vs. fractional density change between the various methods for
the Godiva peripheral perturbation problem (The error bars are two standard deviations.)

Figure 12 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results overestimate the reference ones significantly in this case.

The results with the F −A method fairly agree with the reference ones but still underestimate them

slightly. The results with the new method for the 5-cycle propagation algorithm are in very good

agreement with the reference ones.

4.2 Density Perturbation Problem for Simplified STACY

STACY is a nuclear facility for criticality experiments installed at the Nuclear Fuel Cycle Safety

Engineering Research Facility (NUCEF)[12]. The actual geometry is a cylindrical tank 60 cm in

diameter with a water reflector and the core contains a uranyl nitrate solution fuel. The fuel has

a 235U enrichment of 9.97 wt% and the isotropic composition for the uranium concentration 310.1

g/	 and the acidity 2.17 mol/	. The atomic number density is listed in Table 4.

For a benchmark problem, the geometry is simplified as an infinite cylindrical model with a

radius of 22 cm and a 1cm thick reflector as illustrated in Fig. 13. A perturbation is introduced

by decreasing the density in the reflector region. Benchmark calculations were performed for the

density perturbation problem of the simplified STACY model[7]. The problem features a local

perturbation in a thermal system.

Reference solutions were obtained for the decrease in the reflector density by 10, 20, 30, 40 and
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Table 4: Atomic number density for the STACY fuel

Nuclide Atomic density
(atoms/barn/cm)

Fuel 235U 7.92122E-5
238U 7.06258E-4
1H 5.69525E-2
14N 2.87772E-3
16O 3.80270E-2

Reflector 1H 6.66566E-2
16O 3.33283E-2

22 cm
1 cm

Uranyl nitrate
solution fuel

Light water
Vacuum
boundary

Perturbed Region : density –10%

Infinite
cylinder

Figure 13: Density perturbation problem for the simplified STACY model

50% with independent MCNP eigenvalue calculations. All the calculations were performed for 70

inactive and 3930 active cycles with 10000 histories per cycle. The MCNP library for JENDL-3.2[11]

was used for all the calculations.

On the other hand, all perturbation calculations were performed for 70 inactive and 1930 active

cycles with 10000 histories per cycle. In these calculations, the first- and second-order differential

coefficients (∂k/∂a and 1/2 · ∂2k/∂a2) and the differential coefficients due to the perturbed fission

source distribution (∂ks/∂a) are obtained separately. Reaction rates necessary for the F−Amethod

are also calculated.

Table 5 shows the comparison of ∆k and reactivity between the various methods for the STACY

density perturbation problem where the density is decreased by 10%. The uncertainty for the

reference solution obtained by two independent runs is still large. It is, however, obvious that the

conventional MCNP differential operator sampling estimate up to the second order overestimates

the reference one significantly. The discrepancy is beyond ∼200% and thus the result is no longer
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Figure 14: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for the simplified STACY problem (The error bars are two standard deviations.)
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Figure 15: Dependence of the standard deviation for the perturbed source effect on the number of
cycles for the simplified STACY problem
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trustworthy.

The F −A method also provides an inaccurate result and the sign of the result is different from

that of the reference result. As Favorite has already pointed out[10], the F − A method is not

applicable for reflector perturbation problems where ∆keff ,F = 0.

On the other hand, the results with the new method agree very well with the reference ones

except for the result with 1-cycle propagation algorithm. The 1-cycle propagation algorithm im-

proves the conventional MCNP estimate but there still exists a discrepancy. The uncertainty for

the result with all-cycle propagation algorithm is larger than that for the reference solution and

thus the result is unreliable. As well as the Godiva perturbation problems, the results with the

modified algorithm tends to converge as the number of propagation cycles increases. Also, the

result with the all-cycle propagation algorithm give larger uncertainty comparing with the other

results with the modified algorithm.

Figure 14 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. It is also seen that the large uncertainty for the all-cycle propagation algorithm

originates from the uncertainty for the estimate of the perturbed fission source effect. One also

finds that the 5-cycle propagation result gives a well converged solution and the estimate of the

perturbed source effect is inaccurate for the 1-cycle propagation algorithm.

Table 5: Comparison of ∆k and reactivity between the various methods for the simplified STACY
perturbation problem (The reflector density is decreased by 10%.)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs -1.940E-3 0.156E-3 -1.931E-3 0.155E-3

MCNP 1st-order differential operator -3.649E-3 0.014E-3 -3.641E-3 0.014E-3

MCNP 2nd-order differential operator∗ -3.694E-3 0.015E-3 -3.687E-3 0.015E-3

F −A method — — 4.956E-4 0.002E-3

New method∗∗ (1-cycle propagation∗∗∗ ) -2.256E-3 0.020E-3 -2.248E-3 0.020E-3

New method (2-cycle propagation) -1.945E-3 0.022E-3 -1.937E-3 0.022E-3

New method (3-cycle propagation) -1.831E-3 0.024E-3 -1.824E-3 0.024E-3

New method (4-cycle propagation) -1.799E-3 0.026E-3 -1.792E-3 0.026E-3

New method (5-cycle propagation) -1.797E-3 0.028E-3 -1.789E-3 0.028E-3

New method (all-cycle propagation∗∗∗∗) -2.110E-3 0.248E-3 -2.102E-3 0.248E-3

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.
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Figure 16: Comparison of reactivity vs. fractional density change between the various methods for
the simplified STACY problem (The error bars are two standard deviations.)

Figure 15 shows the dependence of the standard deviation for the perturbed source effect on the

number of cycles. One can see the similar trends to the Godiva perturbation problems. Namely,

the standard deviation for the all-cycle propagation algorithm does not decrease as the number of

cycles increases. However, the standard deviation for the modified algorithm decreases in inverse

proportion to the root square of the number of cycles .

Figure 16 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results underestimate the reference ones significantly (∼200%).

The results with the F − A method are entirely untrustworthy. The results with the new method

for the 5-cycle propagation algorithm are in very good agreement with the reference ones.

4.3 Density Perturbation Problems for Modified MCNP Test Problem 18

MCNP test problem 18 models half a hexagonal-lattice core of a water reactor as shown in Figs. 17

and 18. The whole core is treated with a reflective cross-sectional plane. The hexagonal lattice is

arranged within a cylinder and the outside of the cylinder is treated as vacuum. Five whole and

three partial control rods of boron carbide are fully inserted in the core. The fuel rod consists of the

fuel pellet and of fuel cladding with an inner liner and there is a gap between the fuel pellet and the

inner liner. The fuel pellet is uranium nitride and its composition is ∼70wt% 235U, ∼24wt% 238U

and ∼6wt% nitrogen. The fuel cladding and the inner liner are niobium and tungsten, respectively.
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The moderator is a mixture of heavy and light water and its atomic ratio is 1H : 2H : 16O = 1:3:1.

Figure 17: Geometry for MCNP test problem 18

Figure 18: Close-up view of the geometry for MCNP test problem 18

Apart from the geometry, the original material composition is quite strange for a realistic

reactor. Therefore, we change the composition as follows: The fuel cladding consists of 1wt%

niobium and 99wt% zirconium. The atomic ratio of the moderator is 1H : 2H : 16O = 1:1:1.

Furthermore, the atomic ratio of the inner liner is changed to 182W:183W:184W:186W = 0.2630 :

0.1428 : 0.3070 : 0.2860 though the original data was the natural composition of tungsten. Carbon

in boron carbide is treated as carbon of the natural composition thought the original data was 12C.

Two perturbation problems were set up for the modified test problem. One is the case where

the fuel density is increased. This perturbation problem is similar to the one used in References

[2], [3] and [4] but the material composition is different as described above. The other is the case

where the water density is decreased uniformly all over the core.
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4.3.1 Increase in the fuel density

Reference solutions were obtained by independent MCNP eigenvalue calculations. The original fuel

density is 13.75g/cm3 and is increased to 15.5, 17.0, 21.5 and 26.0g/cm3 in the perturbed case. The

calculated points of the fuel density are the same as those in References [3] and [4]. The eigenvalue

calculations were performed for 100 inactive and 900 active cycles with 10000 histories per cycle

and the ENDF/B-6.6 MCNP library[13] was used.

All perturbation calculations were also performed for the same condition as the eigenvalue

calculations. In perturbation calculations, the first- and second-order differential coefficients (∂k/∂a

and 1/2 · ∂2k/∂a2) and the differential coefficients due to the perturbed fission source distribution

(∂ks/∂a) are obtained separately. Reaction rates necessary for the F−A method are also calculated.

Table 6 shows the comparison of ∆k and reactivity between the various methods for modified

MCNP test problem 18 where the fuel density is increased from 13.75g/cm3 to 15.5g/cm3. The

conventional MCNP differential operator sampling estimate up to the second order agrees fairly

well with the reference one. The underestimation is ∼2%. The perturbed fission source effect is

considered to be small in this case.

The significant underestimation can be seen for the result obtained with the F −A method. The

discrepancy is ∼50%. Since the fuel density is uniformly increased all over the core, the situation

is similar to the Godiva uniform perturbation problem. The F − A method is not applicable for

the case like this.

On the other hand, the results with the new method agree with the reference ones very well. The

uncertainty for the result with all-cycle propagation algorithm is larger than that for the reference

solution and thus the result is unreliable. The results with the modified algorithm tends to converge

as the number of propagation cycles increases.

Figure 19 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. It is also seen that the large uncertainty for the all-cycle propagation algorithm

originates from the uncertainty for the estimate of the perturbed fission source effect. In this

problem, even the 2-cycle propagation algorithm gives a good result.

Figure 20 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results agree fairly well with the reference ones. The results

with the F−A method underestimate significantly. The results with the new method for the 5-cycle

propagation algorithm agree very well. One can see the discrepancy at ∼90% fractional density

change. This may be caused by the third- or higher-order terms of the differential coefficients.

Further investigation is necessary for the cause of the discrepancy.

4.3.2 Decrease in the water density

Reference solutions were obtained by independent MCNP eigenvalue calculations. The water den-

sity is uniformly decreased by 10, 20, 30, 40 and 50% in the perturbed case. The eigenvalue
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Figure 19: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for modified MCNP test problem 18 where the fuel density is increased (The error bars are
two standard deviations.)
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Figure 20: Comparison of reactivity vs. fractional density change between the various methods
for modified MCNP test problem 18 where the fuel density is increased (The error bars are two
standard deviations.)
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Table 6: Comparison of ∆k and reactivity between the various methods for modified MCNP test
problem 18 (The fuel density is increased from 13.75g/cm3 to 15.50g/cm3.)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs 5.548E-2 0.033E-2 4.507E-2 0.027E-2

MCNP 1st-order differential operator 5.711E-2 0.011E-2 4.633E-2 0.009E-2

MCNP 2nd-order differential operator∗ 5.437E-2 0.011E-2 4.421E-2 0.009E-2

F −A method — — 2.254E-2 0.010E-2

New method∗∗ (1-cycle propagation∗∗∗ ) 5.514E-2 0.013E-2 4.480E-2 0.010E-2

New method (2-cycle propagation) 5.540E-2 0.015E-2 4.501E-2 0.011E-2

New method (3-cycle propagation) 5.549E-2 0.016E-2 4.507E-2 0.013E-2

New method (4-cycle propagation) 5.541E-2 0.018E-2 4.502E-2 0.014E-2

New method (5-cycle propagation) 5.546E-2 0.019E-2 4.505E-2 0.015E-2

New method (all-cycle propagation∗∗∗∗) 5.500E-2 0.126E-2 4.469E-2 0.097E-2

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.

calculations were performed for 100 inactive and 1900 active cycles with 10000 histories per cycle

and the ENDF/B-6.6 MCNP library[13] was used.

All perturbation calculations were, on the other hand, performed for 100 inactive and 900

active cycles with 10000 histories per cycle. In perturbation calculations, the first- and second-

order differential coefficients (∂k/∂a and 1/2 · ∂2k/∂a2) and the differential coefficients due to the

perturbed fission source distribution (∂ks/∂a) were obtained separately. Reaction rates necessary

for the F − A method were also calculated.

Table 7 shows the comparison of ∆k and reactivity between the various methods for modified

MCNP test problem 18 where the water density is decreased by 10%. The conventional MCNP

differential operator sampling estimate up to the second order agrees with the reference one very

well. It is considered that no perturbed fission source effect exists in this case.

The F −A method is not applicable for this case since ∆keff ,F = 0. The F −A method makes

a wrong estimate for the reactivity value as shown in Table 7.

The results with the new method also agree with the reference ones very well. Namely, the

perturbed fission source effect is estimated to be almost zero (See Fig. 21). The uncertainty for the

result with all-cycle propagation algorithm is larger than that for the reference solution and thus

the result is unreliable.
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Figure 21: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for modified MCNP test problem 18 where the water density is decreased (The error bars
are two standard deviations.)
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Figure 22: Comparison of reactivity vs. fractional density change between the various methods
for modified MCNP test problem 18 where the water density is decreased (The error bars are two
standard deviations.)
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Table 7: Comparison of ∆k and reactivity between the various methods for modified MCNP test
problem 18 (The water density is decreased by 10%.)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs -1.393E-2 0.023E-2 -1.205E-2 0.020E-2

MCNP 1st-order differential operator -1.328E-2 0.008E-2 -1.148E-2 0.007E-2

MCNP 2nd-order differential operator∗ -1.347E-2 0.008E-2 -1.165E-2 0.007E-2

F −A method 4.563E-5 0.000E-2

New method∗∗ (1-cycle propagation∗∗∗ ) -1.362E-2 0.010E-2 -1.178E-2 0.009E-2

New method (2-cycle propagation) -1.357E-2 0.011E-2 -1.173E-2 0.010E-2

New method (3-cycle propagation) -1.359E-2 0.012E-2 -1.176E-2 0.011E-2

New method (4-cycle propagation) -1.355E-2 0.014E-2 -1.172E-2 0.012E-2

New method (5-cycle propagation) -1.356E-2 0.014E-2 -1.172E-2 0.013E-2

New method (all-cycle propagation∗∗∗∗) -1.585E-2 0.102E-2 -1.374E-2 0.090E-2

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.

Figure 21 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. It is also seen that the large uncertainty for the all-cycle propagation algorithm

originates from the uncertainty for the estimate of the perturbed fission source effect. In this

problem, the perturbed fission source effect is considered to be negligible since it is less than the

uncertainty.

Figure 22 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results agree with the reference ones very well. The F − A
method gives wrong estimates. The results with the new method for the 5-cycle propagation

algorithm also agree very well. One can see the slight discrepancy as the fractional density change

increases. This may be caused by the third- or higher-order terms of the differential coefficients.

Further investigation is necessary for the cause of the discrepancy.

4.4 Density Perturbation Problems for TCA

The Tank-type Critical Assembly (TCA)[14] is a facility for criticality experiments installed at

Japan Atomic Energy Research Institute (JAERI). The TCA core consists of fuel rods loaded in a

tank filled with light water. Two types of fuel rods are available for TCA. One is 2.6 wt% enriched

UO2 and the other is 3.0 wt% enriched PU02-natural UO2. The fuel rods are regularly arranged
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in a lattice and the lattice pitch can be changed to obtain the various water-to-fuel volume ratios.

Criticality is achieved by adjusting the water level.

For perturbation benchmarks, we modeled an 18 × 18 UO2 core with a lattice pitch of 1.956cm.

Tables 8 and 9 list isotopic concentrations for the 2.6 wt% UO2 fuel cell and dimensions for the

fuel rod, respectively. The core lattice is surrounded with the reflector of 30cm thickness in the

calculation model. The calculation geometry is shown in Fig. 23.

Table 8: Isotopic concentrations for the 2.6
wt% UO2 fuel cell

Nuclide Atomic density
(atom/barn/cm)

Fuel 235U 0.0006086
238U 0.02255
16O 0.04725

Cladding Al 0.05587

Moderator 1H 0.06676
16O 0.03338

Table 9: Dimensions for the 2.6 wt% UO2

fuel rod

Description Dimension
(cm)

Outer radius of fuel pellet 0.625
Outer radius of cladding 0.7085
Pin cell pitch 1.956
Effective fuel length 144.15

Three perturbation problems are set up for the TCA geometry. One is the case where the

density of the moderator is uniformly decreased all over the assembly. Another is the case where

the density of the moderator only in the central 4×4 cells is decreased. The other is the case where

the density of the moderator only in the central 2 × 2 cells is decreased. The latter two problems

address the localized perturbation. The 4×4 perturbation problem is set up since it is very difficult

to obtain the estimates with enough small uncertainty for the 2× 2 perturbation problem.

4.4.1 Uniform perturbation in the moderator region

Figures 23 and 23 show the calculation geometry for the uniform perturbation problem. The

density of the moderator is uniformly decreased and the gray region indicates the perturbed region.

The reference solutions were obtained with independent MCNP eigenvalue calculations for the

moderator density decreased by 5, 10, 15, 20 and 25%. All the calculations were performed for 100

inactive and 900 active cycles with 10000 histories per cycle and the JENDL-3.2 MCNP library

was used.

All perturbation calculations were also performed for 100 inactive and 900 active cycles with

10000 histories per cycle. In perturbation calculations, the first- and second-order differential

coefficients (∂k/∂a and 1/2 · ∂2k/∂a2) and the differential coefficients due to the perturbed fission

source distribution (∂ks/∂a) were obtained separately. Reaction rates necessary for the F − A

method were also calculated.
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Figure 23: Horizontal cross-section of the TCA geometry for the uniform perturbation problem

Table 10: Comparison of ∆k and reactivity between the various methods for the TCA uniform
perturbation problem (The moderator density is decreased by 5%.)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs -1.662E-2 0.034E-2 -1.683E-2 0.034E-2

MCNP 1st-order differential operator -1.205E-2 0.015E-2 -1.215E-2 0.015E-2

MCNP 2nd-order differential operator∗ -1.254E-2 0.015E-2 -1.265E-2 0.016E-2

F −A method — — -2.963E-3 0.011E-2

New method∗∗ (1-cycle propagation∗∗∗ ) -1.446E-2 0.019E-2 -1.462E-2 0.020E-2

New method (2-cycle propagation) -1.520E-2 0.023E-2 -1.538E-2 0.023E-2

New method (3-cycle propagation) -1.533E-2 0.026E-2 -1.551E-2 0.026E-2

New method (4-cycle propagation) -1.573E-2 0.028E-2 -1.592E-2 0.028E-2

New method (5-cycle propagation) -1.581E-2 0.030E-2 -1.601E-2 0.030E-2

New method (all-cycle propagation∗∗∗∗) -1.651E-2 0.210E-2 -1.672E-2 0.216E-2

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.
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Table 10 shows the comparison of ∆k and reactivity between the various methods for the TCA

uniform perturbation problem where the moderator density is decreased by 5%. The conventional

MCNP differential operator sampling estimate up to the second order underestimates the reference

one by ∼33%. Since the F − A method is not applicable for this case, the result with the F − A
method overestimates significantly.

On the other hand, the new method improves the ∆k and reactivity estimates very well though

the results with the modified algorithm overestimate slightly. The result with the all-cycle prop-

agation algorithm seems to be very good but the uncertainty is very large and thus the result is

unreliable.

Figure 24 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. It is also seen that the large uncertainty for the all-cycle propagation algorithm

originates from the uncertainty for the estimate of the perturbed fission source effect. One also

finds that 5 propagation cycles are enough to obtain a converged estimate for the perturbed source

effect.

Figure 25 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results overestimate the reference ones. The F−A method gives

wrong estimates. The results with the new method for the 5-cycle propagation algorithm agree

very well. One can see the slight discrepancy as the fractional density change increases. This may

be caused by the third- or higher-order terms of the differential coefficients. Further investigation

is necessary for the cause of the discrepancy.

4.4.2 Perturbation in the central 4× 4 region

Figures 26 and 26 show the calculation geometry for the 4×4 perturbation problem. The density of

the moderator only in the central 4×4 cells is decreased and the gray region indicates the perturbed

region. The reference solutions were obtained with independent MCNP eigenvalue calculations for

the moderator density decreased by 10, 20, 30, 40 and 50%. All the calculations were performed

for 100 inactive and 3900 active cycles with 10000 histories per cycle and the JENDL-3.2 MCNP

library was used.

All perturbation calculations were also performed for 100 inactive and 3900 active cycles with

10000 histories per cycle. In perturbation calculations, the first- and second-order differential

coefficients (∂k/∂a and 1/2 · ∂2k/∂a2) and the differential coefficients due to the perturbed fission

source distribution (∂ks/∂a) were obtained separately. Reaction rates necessary for the F − A

method were also calculated.

Table 11 shows the comparison of ∆k and reactivity between the various methods for the TCA

4x4 perturbation problem where the moderator density is decreased by 10%. The conventional

MCNP differential operator sampling estimate up to the second order overestimates the reference

one by ∼67%. Since the F −A method is not applicable for this case, it gives a wrong estimate.

On the other hand, the new method improves the ∆k and reactivity estimates very well though
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Figure 24: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for the TCA uniform perturbation problem (The error bars are two standard deviations.)
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Figure 25: Comparison of reactivity vs. fractional density change between the various methods for
the TCA uniform perturbation problem (The error bars are two standard deviations.)
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Figure 26: Horizontal cross-section of the TCA geometry for the 4× 4 perturbation problem

Table 11: Comparison of ∆k and reactivity between the various methods for the TCA 4 × 4
perturbation problem (The water density in the central 4× 4 cell region is decreased by 10%.)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs -3.080E-3 0.163E-3 -3.076E-3 0.163E-3

MCNP 1st-order differential operator -0.954E-3 0.036E-3 -0.951E-3 0.035E-3

MCNP 2nd-order differential operator∗ -1.010E-3 0.037E-3 -1.007E-3 0.037E-3

F −A method — — 0.635E-3 0.002E-3

New method∗∗ (1-cycle propagation∗∗∗ ) -1.804E-3 0.047E-3 -1.800E-3 0.047E-3

New method (2-cycle propagation) -2.283E-3 0.055E-3 -2.279E-3 0.055E-3

New method (3-cycle propagation) -2.516E-3 0.064E-3 -2.512E-3 0.064E-3

New method (4-cycle propagation) -2.644E-3 0.071E-3 -2.640E-3 0.071E-3

New method (5-cycle propagation) -2.669E-3 0.078E-3 -2.665E-3 0.078E-3

New method (all-cycle propagation∗∗∗∗) -0.733E-3 1.008E-3 -0.730E-4 1.006E-3

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.
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the results with the modified algorithm overestimate slightly. The result with the all-cycle propa-

gation algorithm seems to be very different from the reference one but the uncertainty is very large

and thus the result is unreliable.

Figure 27 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. It is also seen that the large uncertainty for the all-cycle propagation algorithm

originates from the uncertainty for the estimate of the perturbed fission source effect. One also

finds that 5 propagation cycles are enough to obtain a converged estimate for the perturbed source

effect.

Figure 28 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results overestimate the reference ones. The F − A method

gives wrong estimates. The results with the new method for the 5-cycle propagation algorithm

agree very well.

4.4.3 Perturbation in the central 2× 2 region

Figures 29 and 29 show the calculation geometry for the 4×4 perturbation problem. The density of

the moderator only in the central 2×2 cells is decreased and the gray region indicates the perturbed

region. The reference solutions were obtained with independent MCNP eigenvalue calculations for

the moderator density decreased by 10, 20, 30, 40 and 50%. All the calculations were performed

for 100 inactive and 5900 active cycles with 10000 histories per cycle and the JENDL-3.2 MCNP

library was used.

All perturbation calculations were also performed for 100 inactive and 3900 active cycles with

10000 histories per cycle. In perturbation calculations, the first- and second-order differential

coefficients (∂k/∂a and 1/2 · ∂2k/∂a2) and the differential coefficients due to the perturbed fission

source distribution (∂ks/∂a) were obtained separately. Reaction rates necessary for the F − A

method were also calculated.

Table 12 shows the comparison of ∆k and reactivity between the various methods for the TCA

2x2 perturbation problem where the moderator density is decreased by 10%. The conventional

MCNP differential operator sampling estimate up to the second order overestimates the reference

one by ∼68%. Since the F −A method is not applicable for this case, it gives a wrong estimate.

On the other hand, the new method improves the ∆k and reactivity estimates very well though

the results with the modified algorithm overestimate slightly. The result with the all-cycle propa-

gation algorithm seems to be very different from the reference one but the uncertainty is very large

and thus the result is unreliable.

Figure 30 shows the dependence of the perturbed source effect on the propagation cycles of the

additional weight. It is also seen that the large uncertainty for the all-cycle propagation algorithm

originates from the uncertainty for the estimate of the perturbed fission source effect. One also

finds that 5 propagation cycles are enough to obtain a converged estimate for the perturbed source

effect.
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Figure 27: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for the TCA 4× 4 perturbation problem (The error bars are two standard deviations.)
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Figure 28: Comparison of reactivity vs. fractional density change between the various methods for
the TCA 4× 4 perturbation problem (The error bars are two standard deviations.)
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Figure 29: Horizontal cross-section of the TCA geometry for the 2× 2 perturbation problem

Table 12: Comparison of ∆k and reactivity between the various methods for the TCA 2 × 2
perturbation problem (The water density in the central 2× 2 cell region is decreased by 10%.)

Method ∆k 1σ ∆k/(kk′) 1σ

2 independent MCNP runs -7.500E-4 1.273E-4 -7.474E-4 1.268E-4

MCNP 1st-order differential operator -2.302E-4 0.126E-4 -2.293E-4 0.126E-4

MCNP 2nd-order differential operator∗ -2.387E-4 0.130E-4 -2.378E-4 0.129E-4

F −A method — — 1.448E-4 0.004E-4

New method∗∗ (1-cycle propagation∗∗∗ ) -4.369E-4 0.165E-4 -4.353E-4 0.165E-4

New method (2-cycle propagation) -5.799E-4 0.197E-4 -5.779E-4 0.197E-4

New method (3-cycle propagation) -6.304E-4 0.227E-4 -6.282E-4 0.227E-4

New method (4-cycle propagation) -6.587E-4 0.255E-4 -6.565E-4 0.254E-4

New method (5-cycle propagation) -6.695E-4 0.277E-4 -6.672E-4 0.277E-4

New method (all-cycle propagation∗∗∗∗) -0.447E-4 4.829E-4 -0.445E-4 4.810E-4

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a. ∗∗

∗∗ All-cycle propagation indicates that

the perturbed fission source effect is estimated with ∂ks/∂a.

60



Figure 31 shows the comparison of reactivity vs. fractional density change between the various

methods. The conventional MCNP results overestimate the reference ones. The F − A method

gives wrong estimates. The results with the new method for the 5-cycle propagation algorithm

agree well. However, the uncertainties are still large for both the reference and 5-cycle propagation

results.

4.5 Godiva Composition Perturbation problems

To verify the new method for composition perturbations, the Godiva composition perturbation

problem[3, 4, 6] was solved with the modified MCNP5. The geometry has been already described

in Section 4.1. In this problem, the original composition was 94.73 wt% 235U and 5.27 wt% 238U

and was perturbed to 87 wt% 235U and 13 wt% 238U, 74 wt% 235U and 26 wt% 238U, 62 wt%
235U and 38 wt% 238U, 50 wt% 235U and 50 wt% 238U. All MCNP eigenvalue calculations including

perturbation calculations were performed for 100 inactive and 400 active cycles with 10000 histories

per cycle. The ENDF/B-6.6 library was used and the keff value was 0.99762± 0.00028(1σ) in the

unperturbed case.

Table 13: Comparison of ∆k between the various methods for the Godiva composition perturbation
problem

238U weight fraction 0.13 0.26

Method ∆k 1σ ∆k 1σ

2 independent MCNP runs -0.0416 0.0004 -0.1163 0.0004
MCNP 2nd-order differential operator∗ -0.0424 0.0003 -0.1244 0.0013
New method∗∗ (5-cycle propagation∗∗∗ ) -0.0422 0.0005 -0.1240 0.0016
Midpoint method -0.0410 0.0002 -0.1159 0.0004

238U weight fraction 0.38 0.50

Method ∆k 1σ ∆k 1σ

2 independent MCNP runs -0.1949 0.0004 -0.2816 0.0004
MCNP 2nd-order differential operator∗ -0.2121 0.0028 -0.3113 0.0050
New method∗∗ (5-cycle propagation∗∗∗ ) -0.2115 0.0032 -0.3105 0.0054
Midpoint method -0.1925 0.0006 -0.2779 0.0007

∗ Sum of the 1st- and 2nd-order effects. ∗∗ Sum of the MCNP 1st- and 2nd-order differential

operator results and the perturbed fission source effect. ∗∗
∗ j-cycle propagation indicates that the

perturbed fission source effect is estimated with ∂k
(j)
s /∂a.

Table 13 shows the comparison of ∆k between the various methods. The results obtained with 2

independent MCNP runs have enough accuracy to be reference solutions. The conventional MCNP

estimates up to the second order underestimate the reference ones by ∼ 2% to 5%. The results

for the new method with the 5 propagation cycle algorithm are almost same as the conventional
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Figure 30: Dependence of the perturbed source effect on the propagation cycles of the additional
weight for the TCA 2× 2 perturbation problem (The error bars are two standard deviations.)
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Figure 31: Comparison of reactivity vs. fractional density change between the various methods for
the TCA 2× 2 perturbation problem (The error bars are two standard deviations.)

62



-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fractional decrease in 235U density

∆
k

2 MCNP runs
MCNP 2nd
MCNP 2nd+source perturbation
Midpoint

Figure 32: Comparison of ∆k between the various methods for the Godiva composition perturbation
problem (The error bars are two standard deviations.)

MCNP estimates. It is, thus, considered that the perturbed source effect hardly exists in this case.

On the other hand, results for the midpoint method[10] are in very good agreement with the

reference ones. The midpoint method enables to take into account the second-order cross term

effect and the difference between the MCNP differential operator sampling and midpoint methods

is the existence of the cross-terms. Therefore, the discrepancy is due to the cross term effect, not

due to the perturbed source effect.

To investigate the contribution from the perturbation of each nuclide, two additional problems

are set up for the Godiva problem. One is the case where only the 235U atomic density is decreased

and the other is the case where only the 238U atomic density is increased. Figures 33 and 34 show the

results for the former and latter cases, respectively. The perturbed source effect was obtained with

5-cycle propagation algorithm of the new method. For both the cases, the new method improves

the conventional MCNP estimates.

As one can find from these figures, ∆k only due to the perturbed source effect has the negative

value for the case of decrease in the 235U density and has the positive value for the case of increase in

the 238U density. Tables 14 and 15 show the explicit values of ∆k only due to the perturbed source

effect. The negative and positive values are almost comparable and as a result the perturbed source

effect is cancelled out for the original case where the 235U density is decreased and the 238U density

is increased simultaneously. Actually, the above discussion is not rigorous because the 235U density
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Figure 33: Comparison of ∆k between the various methods for the Godiva composition perturbation
problem where the 235U density is decreased. (The error bars are two standard deviations.)
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is firstly decrease and the 238U density must be increased from the state in the real perturbation.

On the other hand, both the 235U and 238U densities are perturbed from the original state in the

above analysis. However, one can understand the trend of the perturbation due to each nuclide.

Table 14: Perturbed source effect (∆k) for the Godiva composition perturbation problem where
only the 235U atomic density is decreased.

Density 235U wt fraction∗ 238U wt fraction∗ ∆k 1σ

18.74 0.9473 0.0527 0 —
17.29 0.8700 0.0527 -0.00211 0.00007
14.86 0.7400 0.0527 -0.00565 0.00020
12.61 0.6200 0.0527 -0.00892 0.00031
10.36 0.5000 0.0527 -0.01219 0.00042

∗ The weight fractions are not normalized to unity. These are normalized in the code.

Table 15: Perturbed source effect (∆k) for the Godiva composition perturbation problem where
only the 238U atomic density is increased.

Density 235U wt fraction∗ 238U wt fraction∗ ∆k 1σ

18.74 0.9473 0.0527 0 —
20.19 0.9473 0.1300 0.00225 0.00036
22.62 0.9473 0.2600 0.00603 0.00095
24.87 0.9473 0.3800 0.00952 0.00151
27.12 0.9473 0.5000 0.01302 0.00206

∗ The weight fractions are not normalized to unity. These are normalized in the code.

5 CONCLUSION

We have implemented a method to estimate the perturbed fission source effect into MCNP5 and

have verified it for the density and composition perturbation problems. We have set up the various

problems for the density perturbation problems. We have shown that the method improves the

conventional MCNP differential operator estimates and is very effective not only for the uniform

perturbation case but also the localized perturbation cases.

For the composition perturbation problem, we have performed benchmark calculations for the

Godiva assembly. The conventional MCNP differential operator results underestimate the reference

ones. The underestimation is not caused by the perturbed fission source effect but by the cross

term effect. Furthermore, we have set up additional problems and have shown that the perturbed

source effect due to each nuclide is canceled out.
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We have also investigated the difference between the algorithm. Firstly, we have examined

the all-cycle propagation algorithm where the additional weight for the differential coefficient of

the fission source is propagated from the beginning of active cycles to the cycle of the estimation.

However this algorithm yields relatively large statistical uncertainties for the perturbed fission

source effect and the uncertainties do not converge as the number of cycles increases.

To overcome the difficulty, we have proposed the modified algorithm where the limited propa-

gation cycles are employed to estimate the perturbed fission source effect. The algorithm provides

relatively small uncertainties and they decrease in inverse proportion to the root square of the num-

ber of cycles. We have also shown that the 5-cycle propagation algorithm is sufficient to estimate

the perturbed fission source effect for most cases.

One area for future work is the estimation of accurate statistical uncertainties. In the current

scheme, we estimate the statistical uncertainties of differential coefficients and the perturbed fission

source effect in the same way as the usual keff estimation. Namely, the correlations between

the coefficients and between cycles are ignored. The accurate statistical uncertainties must be

presented for the Monte Carlo perturbation technique with our method to provide a reference

result in eigenvalue problems.

References

[1] J. F. Briesmeister (Editor), “MCNP – A General Monte Carlo N-Particle Transport Code,

Version 4C,” LA-13709-M (2000).

[2] G. W. McKinney and J. L. Iverson, “Verification of the Monte Carlo Differential Operator

Technique for MCNP,” LA-13098 (1996).

[3] J. D. Densmore, G. W. McKinney and J. S. Hendricks, “Correction to the MCNP Perturbation

Feature for Cross-Section Dependent Tallies,” LA-13374 (1997).

[4] A. K. Hess, J. S. Hendricks, G. W. McKinney and L. L. Carter, “Verification of the MCNP

Perturbation Correction Feature for Cross-Section Dependent Tallies,” LA-13520 (1998).

[5] D. E. Peplow and K. Verghese, “Differential Sampling for the Monte Carlo Practitioner,” Prog.

Nucl. Energy, 36, pp. 39-75 (2000).

[6] J. A. Favorite and D. K. Parsons, “SECOND-ORDER CROSS TERMS IN MONTE CARLO

DIFFERENTIAL OPERATOR PERTURBATION ESTIMATE,” Proceedings of M&C 2001,

Salt Lake City, Utah, USA, September 2001 (2001).

[7] Y. Nagaya and T. Mori, “EVALUATION OF PERTURBATION EFFECT DUE TO FISSION-

SOURCE CHANGE IN EIGENVALUE PROBLEMS BY MONTE CARLO METHODS,”

Int. Topical Meeting Advanced Reactor Physics, Mathematics and Computation into the Next

Millennium PHYSOR 2000 (2000).

66



[8] L. J. Cox, et. al., “MCNPTM Version 5.0,” Proceedings of 12th Biennial Radiation Protection

& Shielding Division Topical Meeting, Santa Fe, New Mexico, USA, April 14-18, 2002 (2002).

[9] F. B. Brown , et. al., “MCNP Version 5,” Trans. Am. Nucl. Soc., 87, 273-276 (2002).

[10] J. A. Favorite “An Alternative Implementation of the Differential Operator (Taylor Series)

Perturbation Method for Monte Carlo Criticality Problems,” Nucl. Sci. Eng., 142, 327-341

(2002).

[11] K. Kosako, F. Maekawa, Y. Oyama, Y. Uno and H. Maekawa, “FSXLIB-J3R2: A Continuous

Energy Cross Section Library for MCNP based on JENDL-3.2,” JAERI-Data/Code 94-020

(1994).

[12] Y. Miyoshi, et al., “Critical Experiments on 10% Enriched Uranyl Nitrate Solution Using a

60-cm-Diameter Cylindrical Core,” Nucl. Technol., 118, pp.69-82 (1996).

[13] J. M. Campbell, S. C. Frankle and R. C. Little, “ENDF66: A CONTINUOUS-ENERGY NEU-

TRON DATA LIBRARY FOR MCNP4C,” Proceedings of 12th Biennial Radiation Protection

& Shielding Division Topical Meeting, Santa Fe, New Mexico, USA, April 14-18, 2002 (2002).

[14] H. Tsuruta, et al., “Critical Sizes of Light-Water Moderated UO2 and PuO2-UO2 Lattices,”

JAERI 1254 (1978).

67


