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ABSTRACT

The Monte Carlo perturbation method based on the differential operator sampling method has been
widely used to obtain a small change in neutronic parameters or sensitivity. The method is very
effective for fixed-source problems but a difficulty arises for eigenvalue problems because the fission
source distribution (eigenfunction) is perturbed. Most Monte Carlo codes assume that the source
distribution is unchanged after a perturbation is introduced. However, this assumption can lead to a
significant error in the perturbation estimate. Recently, a method to estimate the perturbed fission
source effect has been proposed. In this method, the additional weights for the differential coefficient of
the fission source at fission sites are normalized in each cycle, and the effect is estimated by propagating
the normalized additional weight between cycles. The method has been implemented into MCNP5 and
verified with simple benchmark problems including homogeneous and localized perturbation cases.
The conventional MCNP perturbation estimates are significantly improved by taking into account the
effect estimated with the method in all the cases. The method is, thus, effective not only for a
homogeneous perturbation case but also a localized perturbation case, though the statistical
uncertainties tend to be large. In addition, it has been verified that the method is applicable to Monte
Carlo codes with the normalization scheme used in MCNP.
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1. INTRODUCTION

MCNP[1] has the perturbation capability based on the differential operator sampling method and calculates
the differential coefficients up to the second order. This capability is becoming more useful for reactor
physicists because they can obtain not only sensitivities to neutronic parameters with the first-order
differential coefficients but also the change in the parameters such as reactivity worth, etc. with the Taylor
series expansion of the change in regard to a perturbation. However, attention must be paid to the
limitations that originate from approximations in the perturbation formulation.

The method implemented in MCNP involves only two approximations for fixed-source problems. The
third-order and higher terms of the differential coefficients are neglected as the first approximation.
Furthermore, the second-order cross terms are neglected as the second approximation. Since these
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approximations are not very important in practical applications, the method is actually very efficient for
most fixed-source problems and the effectiveness has been well verified[2, 3]. There are some cases where
the cross terms become important[4, 5] but Favorite showed that the second-order cross terms can be
estimated with the midpoint strategy[5].

On the other hand, an additional approximation is present for eigenvalue problems. MCNP assumes that
the fission source distribution does not change, even if a perturbation is introduced into the system. (In
other words, it is assumed that the fundamental eigenfunction in the system is constant, regardless of the
perturbation.) Therefore the perturbation effect due to the fission source change has not been taken into
account in MCNP. This effect can become significant if a locally large perturbation is introduced. Even for
a uniform perturbation, the effect accounts for a few percent of the total change in some cases[6].

Recently, one of the authors proposed a method to evaluate the effect due to the perturbed fission source
distribution. He also showed that the change in k eff was significantly improved by taking the effect into
account, and that the method was applicable not only for uniform but also localized perturbations[6].

In this work, we have implemented the method into a beta version of MCNP Version 5 (MCNP5)[7] and
have verified the effectiveness of the method with simple benchmark problems described in Reference [6].

2. DIFFERENTIAL OPERATOR SAMPLING METHOD

2.1. Review of Explicit Formulation for keff

The effective multiplication factor keff in the i-th generation can be expressed with the Neumann series as
follows[6];

ki =
∫

dP
∫

dP ′KF (P ; P ′)Sf,i(P ′)∫
dPSf,i(P )

, (1)

where Sf,i is the fission source in the i-th generation and KF (P ; P ′) is defined as

KF (P ; P ′) =
∫

dP ′′Kf (P ; P ′′)
∞∑

m=0

Ks,m(P ′′; P ′) (2)

Ks,m(P ; P ′) =
∫

dP1 · · ·
∫

dPm−1Ks(P ; Pm−1)Ks(Pm−1; Pm−2) · · ·Ks(P1; P ′). (3)

Furthermore, Kx(x = s or f ) in Eq. (3) is defined as the product of the collision and transport kernels;

Kx(P ; P ′) = Cx(P ; P ′′)T (P ′′; P ′). (4)

The change in ki for a perturbed parameter a can be then expressed with the Taylor series expansion as
follows;

∆ki =
∂ki

∂a
∆a +

1
2

∂2ki

∂a2
(∆a)2 + · · ·+ 1

n!
∂nki

∂an
(∆a)n + · · · . (5)

The differential operator sampling method estimates each differential coefficients in Eq.(1). We can obtain
the first-order differential coefficient by differentiating Eq.(1);

∂ki

∂a
=

1∫
Sf,idP0

∑
m

∫
dPm · · ·

∫
dP0

[
1

Cf,m

∂Cf,m

∂a
+

1
Tm

∂Tm

∂a
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+
1

Cs,m−1

∂Cs,m−1

∂a
+

1
Tm−1

∂Tm−1

∂a
· · ·+ 1

T1

∂T1

∂a
+

1
Sf,i

∂Sf,i

∂a

]
× Cf,mTmCs,m−1Tm−1 · · ·Cs,1T1Sf,i, (6)

where Tm is the transport kernel of the m-th flight, Cx,m the collision kernel of the m-th collision. The last
term in the bracket represents the first-order perturbation effect due to the fission source change.

Since MCNP calculates the differential coefficients without the perturbed fission source effect, it is
convenient to separate the term for it explicitly;

∂ki

∂a
=

∂ki

∂a
(no perturbed FS effect) +

∂ki

∂a
(perturbed FS effect), (7)

where

∂ki

∂a
(no perturbed FS effect) =

1∫
Sf,idP0

∑
m

∫
dPm · · ·

∫
dP0

[
1

Cf,m

∂Cf,m

∂a
+

1
Tm

∂Tm

∂a
+

1
Cs,m−1

∂Cs,m−1

∂a

+
1

Tm−1

∂Tm−1

∂a
· · ·+ 1

T1

∂T1

∂a

]
Cf,mTmCs,m−1Tm−1 · · ·Cs,1T1Sf,i, (8)

∂ki

∂a
(perturbed FS effect) =

1∫
Sf,idP0

∑
m

∫
dPm · · ·

∫
dP0

[
1

Sf,i

∂Sf,i

∂a

]
Cf,mTmCs,m−1Tm−1 · · ·Cs,1T1Sf,i. (9)

Eq.(8) and (9) represent the first-order differential coefficient without the perturbed fission source effect
and the first-order effect due to the perturbed fission source distribution, respectively. The perturbation
capability in most Monte Carlo codes is based on Eq.(8) and perturbations in the fission source are not
accounted for.

To evaluated Eq.(9), we apply a method developed by one of the authors[6]. In this method, the differential
coefficient of the fission source in the bracket of Eq.(9) (∂Sf,i/∂a) is obtained from the following equation;

∂

∂a
Sf,i(P ) =

∫
Sf,i−1dP ′∫

dP
∫

dP ′KF Sf,i−1

(∫
dP ′ ∂

∂a
[KF Sf,i−1]

−
∫

dP

∫
dP ′ ∂

∂a
[KF Sf,i−1]

∫
dP ′KF Sf,i−1∫

dP
∫

dP ′KF Sf,i−1

)
. (10)

This equation represents the normalization of the additional weights for the differential coefficient of the
fission source at fission sites selected in the (i− 1)-st generation as shown later.

Similarly, we can derive the second-order differential coefficient for ki by differentiating Eq.(8) with regard
to a as presented in Reference [6]. The coefficient includes the first- and second-order differential
coefficients of the fission source (∂Sf,i/∂a, ∂2Sf,i/∂a2) but we neglect these terms in the evaluation of the
second-order differential coefficient in this work.
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2.2. Implementation of the Method to Evaluate the Perturbed Fission Source Effect into MCNP5

In this section, we describe how to implement the above method into MCNP. The following procedure can
be applied to other Monte Carlo codes that have the same normalization scheme for fission neutrons
between cycles.

In MCNP, an integral number of fission sites is generated at collisions based on νσ f/(σt ∗ keff ). These
sites are assumed to have equal weight and are stored for use as the source in the next cycle. The number of
banked fission sites varies in each cycle. At the conclusion of a cycle, the banked particle weights are
normalized so that the total weight in each cycle is constant, equal to the total starting weight for the cycle.
That is, the number of starting sites may vary from cycle to cycle, but the total starting weight is constant
for each cycle. Letting the number of particles generated in the (i− 1)-st cycle and the total weight be
Mi−1 and Nc, respectively, the weight of each source particle in the i-th cycle w f,i can be simply expressed
as follows;

wf,i =
Nc

Mi−1
. (11)

Now we consider each term that appears in Eq.(10). The term
∫

dP ′KF Sf,i−1 represents the score of the
fission rate at each fission site. Of course, the score varies depending on the site but, for estimating the
effects of changing source distribution, we can consider that the weight defined by Eq.(11) is assigned to
each fission neutron (particle) in the normalization process. Therefore, the term is estimated by the
following expression; ∫

dP ′KF Sf,i−1 ⇒ wf,i. (12)

The term
∫

dP
∫

dP ′KF Sf,i−1 can be estimated as the sum of
∫

dP ′KF Sf,i−1 over all fission sites.∫
dP

∫
dP ′KF Sf,i−1 ⇒ wf,iMi−1. (13)

Likewise, the differential terms
∫

dP ′∂ [KF Sf,i−1] /∂a and
∫

dP
∫

dP ′∂ [KF Sf,i−1] /∂a are estimated by
the following expressions; ∫

dP ′ ∂

∂a
[KF Sf,i−1] ⇒ w′

f,m̂
wf,i (14)

∫
dP

∫
dP ′ ∂

∂a
[KF Sf,i−1] ⇒

Mi−1∑
m̂=1

w′
f,m̂

wf,i, (15)

where w′
f,m̂

is the additional weight for the score of the fission rate and defined as

w′
f,m̂

=
1

Cf,m

∂Cf,m

∂a
+

1
Tm

∂Tm

∂a
+

1
Cs,m−1

∂Cs,m−1

∂a
+

1
Tm−1

∂Tm−1

∂a
· · ·+ 1

T1

∂T1

∂a
. (16)

Using the expressions above, the additional weight for the differential coefficient of the fission source (the
term in the bracket of Eq.(9)) can be estimated as follows;

1
Sf,i

∂Sf,i

∂a
⇒ w′

f,m̂
− 1

Mi−1

Mi−1∑
m̂=1

w′
f,m̂

. (17)
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Here we used the following expressions; ∫
Sf,i−1dP ′ ⇒ Nc (18)

Sf,i ⇒ wf,i. (19)

Expression (17) represents the normalization for the additional weight for the score of the fission rate.
Since the fission source is normalized in each cycle, the additional weight must be also normalized
according to Expression (17).

It is straightforward to estimate the perturbed fission source effect (Eq.(9)) when the additional weight for
the differential coefficient of the fission source is obtained. Since the additional weight does not change
during the history of each particle, Eq.(9) can be estimated by multiplying the score of the fission rate by
the additional weight.

3. CALCULATED RESULTS

3.1. Godiva Assembly

The Godiva density perturbation problems[6] were solved with the modified MCNP5 code. There are two
problems; one is the homogeneous density perturbation problem and the other is the localized one. The
former problem addresses the case where the fission source distribution does not change significantly and
the latter problem addresses the case where the perturbation of the distribution is enhanced.

2.741cm

(a) Homogeneous perturbation

6 cm

(b) Localized perturbation

94.73wt% 235U
5.27wt% 238U

Vacuum
boundary

8.741cm

Perturbed Region : density 18.74 20.00 g/cm3

Figure 1. Godiva Geometry and Perturbed Regions

Figure 1 shows the geometry of the Godiva assembly and the perturbed regions. The geometry is a bare
uranium sphere of a radius of 8.741 cm. The original density is 18.74 g/cm 3 and the composition is 94.73
wt% 235U and 5.27 wt% 238U. The perturbed regions are the whole region and the central region of a
radius of 6 cm in the homogeneous and localized cases, respectively. The density is perturbed from 18.74
g/cm3 to 20.00 g/cm3 in both the cases.
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All MCNP eigenvalue calculations including perturbation calculations were performed for 60 inactive and
90 active cycles with 10000 histories per cycle. The JENDL-3.2 MCNP library[8] was used. The k eff value
for the unperturbed case was 1.00205 (1σ = 0.062%).

Table I. Results for the Godiva Homogeneous Perturbation Problem

Method ∆k 1σ ∆k/k 1σ

ONEDANT (70 groups, S8P0) 5.400E-2 — 5.430E-2 —

2 Independent MCNP Runs 5.454E-2 0.086E-2 5.443E-2 0.085E-2

MCNP 1st-Order Differential Operator 5.370E-2 0.012E-2 5.359E-2 0.012E-2

MCNP 2nd-Order Differential Operator 5.252E-2 0.012E-2 5.241E-2 0.012E-2

Only Perturbed Fission Source Effect 0.177E-2 0.037E-2 0.176E-2 0.037E-2

Sum of 2nd-Order & Perturbed Effect 5.428E-2 0.039E-2 5.417E-2 0.039E-2

Table I shows the results for the Godiva homogeneous perturbation problem. The second and fourth
columns list the change in keff and its fractional change, respectively. The reference solution was obtained
from the difference of two keff values with the ONEDANT code[9]. The reference calculations were
performed for S8 angular quadrature and P0 scattering cross section with a 70-group cross section library
JFS-3-J3.2[10, 11] based on JENDL-3.2[12]. The ∆k (or ∆k/k) value obtained from two independent
MCNP runs agrees with the reference one within a standard deviation but the statistical uncertainty is
slightly large.

On the other hand, the result of the conventional MCNP estimate up to the second-order underestimates the
reference one by ∼ 3%. There are two possible causes for the underestimation; one is the higher-order
effect and the other is the perturbed fission source effect. Since the second-order perturbation estimate is ∼
2% of the reference change in keff , the higher-order effect can be assumed to be less. Thus, there exists
somewhat the perturbed fission source effect even in the homogeneous perturbation case. The effect was
estimated to be ∼ 3% of the reference ∆k with the modified MCNP. The original MCNP estimate can be
improved by taking this effect into account as shown in Table I.

Table II shows the results for the Godiva localized perturbation problem. As in the homogeneous case, we
obtained the reference ∆k (∆k/k) with the ONEDANT code, the direct estimate from two independent
MCNP runs and the conventional MCNP perturbation estimates. The direct estimate is in very good
agreement with the reference one but the statistical uncertainty is rather large. The conventional MCNP
estimate up to the second-order underestimates the reference result significantly and the discrepancy is ∼
36%. Obviously, the higher-order effect is very small and the perturbed fission source effect is dominant in
this case.

On the other hand, the result with the perturbed fission source effect is in good agreement with the
reference one and the conventional MCNP estimate is improved significantly as shown in Table II.
Therefore, the effect is estimated correctly and it is found that our method to estimate the effect is also
effective for relatively large fission source distortion.
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Table II. Results for the Godiva Localized Perturbation Problem

Method ∆k 1σ ∆k/k 1σ

ONEDANT (70 groups, S8P0) 2.968E-2 — 2.984E-2 —

2 Independent MCNP Runs 2.968E-2 0.090E-2 2.962E-2 0.090E-2

MCNP 1st-Order Differential Operator 1.936E-2 0.009E-2 1.932E-2 0.009E-2

MCNP 2nd-Order Differential Operator 1.899E-2 0.009E-2 1.896E-2 0.009E-2

Only Perturbed Fission Source Effect 1.109E-2 0.041E-2 1.107E-2 0.041E-2

Sum of 2nd-Order & Perturbed Effect 3.009E-2 0.042E-2 3.002E-2 0.042E-2

3.2. Simplified STACY Model

We also performed perturbation calculations for the simplified STACY model[6] to ensure our method
implemented in MCNP. The geometry of the model is shown in Fig. 2 and the details such as composition
etc. are described in Reference [6]. A perturbation is introduced by decreasing the density in the reflector
region by 10%.

22 cm
1 cm

Uranyl nitrate
solution fuel

Light water
Vacuum
boundary

Perturbed Region : density –10%

Infinite
cylinder

Figure 2. Geometry for the Simplified STACY Model

All MCNP calculations were performed for 70 inactive and 430 active cycles with 10000 histories per cycle
and the JENDL-3.2 library was used. The keff value for the unperturbed case was 1.00284 (1σ = 0.033%).

Table III shows the results for the simplified STACY model. The reference ∆k value is the ANISN result
obtained from two eigenvalue calculations with S 8 angular quadrature and the 107-group JENDL-3.2
library including P1 scattering cross sections[6]. The result of two independent MCNP runs agrees with the
reference one within a standard deviation but the statistical uncertainty is more than 30%. The conventional
MCNP perturbation estimate is not trustworthy at all and the discrepancy is more than 100%. Thus the
perturbed fission source effect is considered to be significant and we cannot obtain the correct ∆k value

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 7/9



Y. Nagaya and F. B. Brown

without the effect. Even in this case, our method is effective and the estimated perturbed fission source
effect improves the conventional MCNP estimate.

Table III. Results for the Simplified STACY Problem

Method ∆k 1σ ∆k/k 1σ

ANISN (107 groups, S8P1) -1.70E-3 — -1.69E-3 —

2 Independent MCNP Runs -1.40E-3 0.47E-3 -1.40E-3 0.47E-3

MCNP 1st-Order Differential Operator -3.67E-3 0.03E-3 -3.66E-3 0.03E-3

MCNP 2nd-Order Differential Operator -3.71E-3 0.03E-3 -3.70E-3 0.03E-3

Only Perturbed Fission Source Effect 1.80E-3 0.28E-3 1.80E-3 0.28E-3

Sum of 2nd-Order & Perturbed Effect -1.90E-3 0.28E-3 -1.90E-3 0.28E-3

4. CONCLUSIONS

In this work, we have implemented a method to estimate the perturbed fission source effect into MCNP5
and have verified it with simple benchmark problems. We have shown that the method is very effective not
only for the homogeneous perturbation case but also the localized perturbation cases. It has, thus, verified
that the method can be applicable for Monte Carlo codes that have the same normalization scheme between
cycles.

One area for future work concerns the relatively large statistical uncertainty for the perturbed fission source
effect. Currently, the additional weight for the differential coefficient of the fission source is propagated
between cycles. This may result in relatively large uncertainty, possibly diverging in pathological cases.
Further investigation is required for the uncertainty analysis.

Another area for future work is the estimation of accurate statistical uncertainties. In the current scheme,
we estimate the statistical uncertainties of differential coefficients and the perturbed fission source effect in
the same way as the usual keff estimation. Namely, the correlations between the coefficients and between
cycles are ignored. The accurate statistical uncertainties must be presented for the Monte Carlo
perturbation technique with our method to provide a reference result in eigenvalue problems.
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