LA-UR-01-5181

Approved for public release; distribution is unlimited.

Title:	MCNP CALCULATIONS FOR THE OECD/NEA SOURCE CONVERGENCE BENCHMARKS FOR CRITICALITY SAFETY ANALYSIS
Author(s):	Forrest B. Brown, Robert C. Little, Avneet Sood, D. Kent Parsons, Todd A. Wareing
Submitted to:	OECD/NEA Working Party on Nuclear Criticality Safety, Expert Group on Source Convergence Analysis Paris, France, 19 September 2001

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Abstract

MCNP Calculations for the OECD/NEA Source Convergence Benchmarks for Criticality Safety Analysis

FB Brown, RC Little, A Sood, DK Parsons, TA Wareing

Improper source convergence can lead to non-conservative estimates of the k-effective for various fissionable configurations, such as the "Whitesides problem", spent fuel casks, spent fuel storage pools, and fuel processing systems. To improve the robustness of criticality safety analyses with respect to source convergence the OECD/NEA has established an expert group to investigate the long-standing problem of source convergence for certain classes of nuclear criticality safety problems.

Under the guidance of the Working Party on Nuclear Criticality Safety, the major assignments of the Expert Group include:

- Developing criticality safety benchmark problems which exhibit convergence problems.
- Testing fission source algorithms for vulnerability to slow convergence.
- Developing criteria to measure convergence reliability.
- Developing source convergence guidelines for the nuclear criticality safety analysts.
- Exploring and evaluating methods to detect source convergence.
- Publishing the results.

To support this international effort to improve the understanding of criticality calculations, members of the Expert Group have specified and calculated a set of four source convergence benchmark problems using a variety of standard Monte Carlo computer codes. This report documents the calculations performed at Los Alamos National Laboratory using the MCNP Monte Carlo code. Results are presented for the four benchmark calculations, as well as for a number of additional supporting calculations performed with both Monte Carlo and deterministic codes.

OECD/NEA Working Party on Nuclear Criticality Safety Expert Group on Source Convergence Analysis Paris, France — 19 September 2001

Source Convergence Benchmark

Calculations with MCNP

Forrest B. Brown, Robert C. Little, Avneet Sood

Diagnostics Applications Group (X-5) Los Alamos National Laboratory <fbrown@lanl.gov>, <rcl@lanl.gov>, <sooda@lanl.gov>

D. Kent Parsons

Primary Design & Assessment (X-4) Los Alamos National Laboratory <dkp@lanl.gov>

Todd A. Wareing

Transport Methods (CCS-4) Los Alamos National Laboratory <wareing@lanl.gov>

Diagnostics Applications Group (X-5)

Benchmark Calculations with MCNP

Benchmark 1 — Checkerboard Storage of Assemblies — FB Brown

Benchmark 2 — Pincell Array with Irradiated Fuel — A Sood

Benchmark 3 — Three Thick 1D Slabs — RC Little & DK Parsons

Benchmark 4 — Array of Interacting Spheres — RC Little & TA Wareing

OECD/NEA Working Party on Nuclear Criticality Safety Expert Group on Source Convergence Analysis Paris, France — 19 September 2001

Benchmark 1 Checkerboard Storage of Assemblies

MCNP Calculations

Forrest Brown

MCNP Development Diagnostics Applications Group (X-5) Los Alamos National Laboratory <fbrown@lanl.gov>

Outline

- Problem description
- Results for 36 cases
- Additional results

- MCNP input
- MCNP k-eigenvalue strategy

- Contact: Forrest B. Brown LANL, X-5 505-667-7581 fbrown@lanl.gov
- Code: MCNP4C2
- Method: continuous-energy Monte Carlo
- Geometry: exact, as specified
- Cross-sections: ENDF/B-VI, processed by NJOY into MCNP library
- Computer: SGI Origin-2000, using 4-10 processors
- Date: August, 2001

Benchmark 1 — Checkerboard Storage of Assemblies

Material Co	mpositions	MCNP Cross-sections				
Fuel						
U238	2.2380e-2	92238.60c,	endf-VI.2			
0	4.6054e-2	8016.60c				
U235	8.2213e-4	92235.60c,	LANL-proposed endf-VI.2			
Water						
Н	6.6706e-2	1001.60c,	with S(α , β) lwtr.01t			
Ο	3.3353e-2	8016.60c				
Zirconium						
Zr	4.2910e-2	40000.60c,	natural Zr, endf-VI.1			
Iron						
Fe	8.3770e-2	26000.55c,	natural Fe, rmccs			
Concrete						
Н	5.5437e-3	1001.60c,	with S(α , β) lwtr.01t			
С	6.9793e-2	6000.60c,	natural C			
Si	7.7106e-3	14000.60c,	natural Si			
Ca	8.9591e-3	20000.60c,	natural Ca			
0	4.3383e-2	8016.60c				

Benchmark 1 — Checkerboard Storage of Assemblies

Benchmark 1 — K-effective Results

Casas	Total Generations	Skipped Generations	Histories / Generation									
Cases			1000	2000	5000	10000	20000	50000				
Uniform												
1, 13, 25	520	20	0.88008 (114)	0.87818 (70)	0.87996 (53)							
2, 14, 26	540	40	0.87892 (114)	0.87843 (70)	0.88019 (53)							
3, 15, 27	600	100	0.87813 (114)	0.87871 (79)	0.88032 (44)							
37, 38, 40	1100	100				0.87998 (26)	0.88059 (18)	0.88046 (9)				
39, 41	1100	100					0.88064 (18)	0.88125 (9)				
42	5500	500				0.88192 (9)						
43	9055	500				0.88192 (1)						
Location (1,1)											
4, 16, 28	520	20	0.88044 (106)	0.87862 (79)	0.88069 (53)							
5, 17, 29	540	40	0.88100 (106)	0.87939 (79)	0.88127 (53)							
6, 18, 30	600	100	0.88203 (106)	0.88131 (79)	0.88256 (44)							
Location (2	23,3)											
7, 19, 31	520	20	0.87817 (114)	0.87871 (79)	0.87799 (44)							
8, 20, 32	540	40	0.87880 (114)	0.87915 (79)	0.87838 (44)							
9, 21, 33	600	100	0.88060 (115)	0.87987 (79)	0.87889 (44)							
Location (12,2)											
10, 22, 34	520	20	0.87729 (114)	0.87859 (79)	0.87750 (57)							
11, 23, 35	540	40	0.87790 (114)	0.87938 (79)	0.87832 (53)							
12, 24, 36	600	100	0.87935 (114)	0.88003 (79)	0.87893 (53)							

Benchmark 1 — Observations

• Cases 1-36 were specified for Benchmark 1

K-effective Results

- MCNP4C2 performs 10 statistical tests on Keff results all 36 cases passed
- Comparison to MCNP reference (90 M histories): Keff = 0.88192 (1)
 - With no corrections to σ :

Agreement within 1- σ :	3 / 36
Agreement within 2- σ :	8 / 36

— With MacMillan corrections to σ , using various dominance-ratios:

	<u>0.900</u>	<u>0.990</u>	<u>0.999</u>
Agreement within 1- σ :	6 / 36	11 / 36	30 / 36
Agreement within 2- σ :	10 / 36	27 / 36	32 / 36

General trend:

- + More histories/generation \Rightarrow better agreement
- + More skipped generations \Rightarrow better agreement
- + Should use >10K histories/generation, skip >500 generations

Fission Distribution

- MCNP4C2 performs 10 statistical tests on selected tallies, which for these problems applied to the fuel element fission rates:
 - Cases 1-3, 13-15, 25-27 with uniform initial source in fuel pins passed all of the MCNP statistical tests
 - Other cases (4-12, 16-24, 28-36) with initial source in one fuel element failed at least some of the MCNP statistical tests
 - + all failed the test for "no zero bins"
 - + all failed the test for "all relative errors < .1"
- Converged fission distribution, from MCNP reference case (90 M histories):

3	37084	111	71	4239	149	4 87	71	615		354		413		235		120		13		4	
	152	225	565	9 2	2253	958	587		426		321		246		143		50		4		7
	7972	522	26	2118	891	40	66	264		237		173		108		43		9		3	

Benchmark 1 — Additional Results All calculations: 100 settle cycles, 1000 active cycles, 5000 starters Infinite Lattice of Fuel Elements **MCNP** reference for Benchmark 1 Keff = 1.11695(29)Keff = 0.88192(1)Single Fuel Element, Single Fuel Element, surrounded by water water 3 sides, concrete 1 side Keff = 0.85779(34)Keff = 0.86817(34)Single Fuel Element, Single Fuel Element, surrounded by concrete water 2 sides, concrete 2 sides Keff = 0.90390(34)Keff = 0.88017 (35)

Los Alamos

Benchmark 1 -- case= 37 С ====> OECD/NEA Source Convergence Benchmark 1 (FBB) C С Starters: 10000 ====> Skipped gens: 100 С ====> ====> Total gens: 1100 С ====> Start source: uniform in fuel С С _____ С С С ====> Cell cards С ====> Fuel pin, clad, water unit cell С 1 1 0.06925613 -1 \$ fuel u=1 2 2 0.042910 1 -2 \$ clad u=1 3 3 0.100059 2 \$ water u=1 ====> fuel lattice, infinite array of pins in water С 4 -3 u=2 lat=1 fill=1 0 ====> fuel element С 5 0 u=3 fill=2 \$ fuel lattice -4 6 \$ water gap 3 0.100059 4 - 5 u=3 7 4 0.083770 u=3 \$ steel 5 С ====> water element 8 3 0.100059 -5 u=4 \$ water 9 4 0.083770 5 u=4 \$ steel ====> element lattice, infinite С 10 u=5 lat=1 fill= 1:24 1:3 0:0 0 -6 ====> full model С \$ lattice of elements 0 fill=5 11 -7 12 3 0.100059 -8 **\$** water, top 13 -9 \$ water, bottom 3 0.100059 3 0.100059 14 -10 **\$** water, side 15 5 0.0725757 \$ concrete, left -11 16 5 0.0725757 -12 \$ concrete, right 17 5 0.0725757 -13 \$ concrete. side 18 0 14 \$ outer void С С ====> surface cards С С С ====> pin cell 1 RCC 0. 0. 0. 0. 0. 360. 0.44 2 RCC 0. 0. 0. 0. 0. 360. 0.49 3 RPP -.7.7 -.7.7 0.360. ====> fuel & water elements С

4 -10.5 10.5 -10.5 10.5 0. 360. RPP 5 RPP -13. 13. -13. 13. 0. 360. RPP -13.5 13.5 -13.5 13.5 0. 360. 6 ====> full model С ====> for ease in numbering the lattice elements, С pick the lower-left corner to be (13.5,13.5), С ====> not (0,0). This shifts all other surfaces. С ====> 7 RPP 13.5 661.5 13.5 94.5 0. 360. \$ box. elements 13.5 94.5 360. 390. \$ water, top 8 RPP 13.5 661.5 9 RPP 13.5 661.5 13.5 94.5 -30. 0. \$ water, bottom RPP 13.5 661.5 -16.5 13.5 -30. 390. \$ water, side 10 RPP -26.5 13.5 -16.5 134.5 -30. 390. \$ concrete.left 11 RPP 661.5 701.5 -16.5 134.5 -30. 390. \$ concrete, right 12 RPP 13.5 661.5 94.5 134.5 -30. 390. \$ concrete, side 13 RPP -26.5 701.5 -16.5 134.5 -30. 390. \$ outer boundary 14 С С ====> data cards for problem С С _____ kcode 10000 1.0 100 1100 imp:n 1 16r 0 С ====> initial source guess sdef erg=d1 cel=d2 x=d3 y=d4 z=d5 sp1 -3 .988 2.249 **\$** Watt spectrum, thermal u235 fission sp2 D 1. 35r 11:10(1 1 0):-5:4:1 11:10(3 1 0):-5:4:1 si2 L 11:10(5 1 0):-5:4:1 11:10(21 3 0):-5:4:1 11:10(23 3 0):-5:4:1 sp3 C 0. 1. si3 H -10.5 10.5 \$ sample x sp4 C 0. 1. si4 H -10.5 10.5 \$ sample y sp5 C 0. 1. si5 H 0.360. \$ sample z ====> material cards С 92238 2.2380e-2 92235 8.2213e-4 8016 4.6054e-2 \$ fue] m1 m2 40000 4.2910e-2 \$ Zr m3 1001 6.6706e-2 8016 3.3353e-2 \$ water mt3 lwtr m4 26000 8.3770e-2 \$ Fe m5 1001 5.5437e-3 6000 6.9793e-3 14000 7.7106e-3 \$ concrete 20000 8.9591e-3 8016 4.3383e-2 mt5 lwtr ====> tallies: С f4:n (1<4<5<10[110, 310, 510, 710, 17 3 0, 19 3 0, 21 3 0, 23 3 0]<11) T 0.06925613 1 - 6fm4

Diagnostics Applications Group (X-5)

Initial source points:

• N points sampled with user-specified energy, space, angle distributions

For each generation:

- Renormalization: Total starting weight is N, number of starters may vary
- Histories:

At collisions, the probability of producing a fission neutron is p =

$$= \frac{1}{K} \frac{\nabla \Sigma_{f}}{\Sigma_{t}} \cdot W,$$

 ∇

where W = weight entering collision,K = previous generation estimate of Keff

For n = floor(p),with probability p-n, nsites are bankedotherwisen+1 sites are banked

Keff estimators: collision, absorption, track-length, combined estimators

• Statistical Analysis: Many checks on results & uncertainty -- see below

Successive batches are not independent

- Source for current batch depends on histories in last batch,
- Spatial correlation between batches can be important for:
 - Large reactors, with small leakage
 - Heavy-water moderated or reflected reactors

Computed variances are (usually) too small, due to batch-to-batch correlation

- Source site, for current batch
- Potential source site, banked for next batch

Approximate Corrections for Correlation

During the Monte Carlo calculation:

- Compute statistics in the "usual" manner:
- Also compute batch-to-batch correlation coefficient, lag-1:

Approximate corrections for correlation (~1972)

- To be conservative, corrections are applied only if they increase the variance
- Macmillan's prescription:

$$\sigma_{\bar{x}}^2 \approx \tilde{\sigma}_{\bar{x}}^2 \cdot \left[1 + \frac{2R_{x,1}}{1-\rho}\right]$$

Gast's prescription

$$\sigma_{\bar{x}}^2 \approx \tilde{\sigma}_{\bar{x}}^2 \cdot \left[1 + \frac{10 \cdot R_{x,1}^2}{1 - R_{x,1}}\right]$$

$$\bar{x}, \tilde{\sigma}_{\bar{x}}^2$$

R_{x, 1}

D. B. MacMillan,

"Monte Carlo Confidence Limits for Iterated-Source Calculations", *Nucl. Sci. Eng.*, **50**, 73-75 (1973).

R. C. Gast & N. R. Candelore,

"Monte Carlo Eigenfunction Strategies and Uncertainties", ANL-75-2, 162-187 (1974).

MCNP Reference Case — Cumulative Keff(combined) vs Cycle

kcode data from file bench1r

Diagnostics Applications Group (X-5)

MCNP Reference Case — Keff(collision) vs Cycle

• Los Alamos

OECD/NEA Working Party on Nuclear Criticality Safety Expert Group on Source Convergence Analysis Paris, France — 19 September 2001

Benchmark 2 Pincell Array with Irradiated Fuel

MCNP4C2 Calculations

Avneet Sood

MCNP Development Diagnostics Applications Group (X-5) Los Alamos National Laboratory <asood@lanl.gov>

Overview

- Problem description
- Summary of Criticality Convergence Features of MCNP
- Results
- Observations

- Contact: Avneet Sood LANL, X-5 505-667-2119 asood@lanl.gov
- Code: MCNP4C2
- Method: continuous-energy Monte Carlo
- Geometry: exact, as specified
- Cross-sections: mixture of ENDF/B-V and ENDF/B-VI,
- Computer: SGI Origin-2000, using 4-10 processors
- Date: September, 2001

Material Compositions

Fuel

Fresh Fuel EU45 4.5% Fresh Fuel EU40 4.0% UO2 (natural)

Irradiated fuel B21G 21.57 GWD/MTU B24G 24.023 GWD/MTU B30G 30.58 GWD/MTU B40G 40.424 GWD/MTU B55G 54.605 GWD/MTU

Water

Cladding and Endplug Zircalloy-4

MCNP Cross-sections

LANL-proposed endf-VI.2 LANL-proposed endf-VI.2 LANL-proposed endf-VI.2

ENDF-V

Mo-95,Ru-101,Rh-103,Sm-147, Sm-149,Sm-150,Sm-151,Sm-152, Nd-143,Nd-145 ENDF-VI.2 all other isotopes

LANL-proposed endf-VI.2 S(α , β) lwtr.01t (300 K)

ENDF-V -- Cr, Fe ENDF-VI.2 -- Zr

Benchmark 2 — Pincell Array with Irradiated Fuel Top View

Benchmark 2 — Pincell Array with Irradiated Fuel Side View:

Summary of Criticality Convergence Features of MCNP

keff Results Summary Table

Batched keff Tables

keff Results by Cycle, including plots

keff Results by Number of Cycles Skipped, including plots

keff Results Summary Table

Single page summary of calculations

Problem ID, definitions, termination

Were all fissionable cells sampled? - warnings

Normality checks of keff cycle data - warnings

Any trends in last 10 cycles?

Final boxed answer for combined keff (>30 active)

All 7 keff estimate results

Batched keff Table

Useful in examining cycle-to-cycle correlation in spatial source distribution

Collapsed cycle data by increasing batch size

Reports new keff averages, std. dev., and confidence intervals

Normality checks performed on batched results

keff Results by Cycle

List of 3 keff estimates and combined keff by cycle with std. dev.

FOM printed for combined keff

Largest/smallest active cycle results reported for each estimator

Plotted combined keff by cycle with std. dev. User can visually detect trends in final answer.

keff Results by Number of Cycles Skipped

Reports keff, std. dev., combined keff, and confidence intervals by cycles skipped

Normality checks on each

Cycle number of minimum std. dev. for combined keff is listed

Combined keff for first and second half of calculation compared -- warnings

Plotted combined keff by cycles skipped. User can visually detect trends

Problem	keff	Std. Dev.
Case 1-1	1.34253	0.00006
Case 1-2	1.34223	0.00007
Case 1-3	1.34093	0.00006
Case 2-1	1.05324	0.00006
Case 2-2	1.05322	0.00006
Case 2-3	1.05271	0.00007

Benchmark 2 — Case 1-1 Fission Fraction Results Case 1-1

Fuel Region Fission Fraction Rel. Err.

1	0.018755	0.00091
2	0.020270	0.00091
3	0.051246	0.00061
4	0.094811	0.00042
5	0.035885	0.00033
6	0.39925	0.00024
7	0.21574	0.00033
8	0.085150	0.00042
9	0.078897	0.00052

K-effective Results

- 100000 neutrons/cycle, 1000 active cycles -- LONG SIMULATION TIME!
- MCNP4C2 performs 10 statistical tests on Keff results warnings were given!
 - Problem 1-1:

no trends visible in keff or in skipped cycles small changes in confidence interval for batched results (0.00001) minimum std. dev. occurs with 18 inactive cycles 1st and 2nd halves look normally distributed at 68% conf. level

— Problem 1-2:

*no trends visible in keff; visible trends in skipped cycles
small changes in confidence interval for batched results (0.00002)
*minimum std. dev. occurs with 227 inactive cycles
1st and 2nd halves look normally distributed at 68% conf. level

— Problem 1-3:

*Upward trend visible in keff; no visible trends in skipped cycles small changes in confidence interval for batched results (0.00002) minimum std. dev. occurs with 23 inactive cycles

*1st and 2nd halves look normally distributed at 99% conf. level

Benchmark 2 — Observations

K-effective Results - continued

— Problem 2-1:

no trends visible in keff or in skipped cycles *some estimators are normally distributed at 99% confid. level small changes in confidence interval for batched results (0.00001) minimum std. dev. occurs with 53 inactive cycles *1st and 2nd halves look normally distributed at 99% conf. level

— Problem 2-2:

*no trends visible in keff; visible trends in skipped cycles *absorption estimator not normally distribued at 99% confid. level small changes in confidence interval for batched results (0.00002) minimum std. dev. occurs with 76 inactive cycles 1st and 2nd halves look normally distributed at 95% conf. level

— Problem 2-3:

*Upward trend visible in keff; no visible trends in skipped cycles small changes in confidence interval for batched results (0.00002) batched results not normally distributed at 99% conf. level *minimum std. dev. occurs with 278 inactive cycles *1st and 2nd halves not normally distributed at 99% conf. level

Fission Distribution

- MCNP4C2 performs 10 statistical tests on selected tallies, which for these problems applied to the fuel element fission rates:
 - Cases 1-1: missed 1 statistical test -- FOM not constant
 - Cases 1-2: missed 1 statistical test -- trends in last half of answer
 - Cases 1-3: missed 4 statistical test -- trends in last half of answer
 - Cases 2-1: passed all statistical tests
 - Cases 2-2: missed 6 statistical tests -- large relative error, slope, etc
 - Cases 2-3: missed 5 statistical tests -- trends in last half of answer

Date: Institution:	September 2001 MCNP Team, Diagnostic Applications Group (X-5), Los Alamos National Laboratory
Contact person:	Avneet Sood
E-mail address:	asood@lanl.gov
Voice phone number:	505.667.2119
FAX phone number:	505.665.3046
Problem name:	OECD/NEA Source Convergence Benchmark 2: Pincell array with irradiated fuel
Case name:	Case 1_1
Code name:	MCNP4C2
Code type:	Monte Carlo
Cross Section	
Library:	ENDF-V and ENDF-VI
Starting source:	uniform volume sampling in fuel region
nskip:	200 inactive cycles
ngen:	1000 active cycles
nhist:	100000 histories per cycle
ngensh:	1
final k-eff	
estimate: final est. uncert.	1.34253
(1 sigma):	0.00006

Fuel	Volume	Sigma_f*flux	Rel. Err.	Flux	Rel. Err.
Region	(cm^3)	(fissions/cm^3)	(neut/cm^3)	
1	2.66633E+00	8.9753e-03	9.0000e-04	5.1087e-02	6.0000e-04
2	2.66633E+00	9.7004e-03	9.0000e-04	6.8213e-02	5.0000e-04
3	5.33267E+00	1.2262e-02	6.0000e-04	8.6154e-02	4.0000e-04
4	1.06653E+01	1.1343e-02	4.0000e-04	7.8145e-02	3.0000e-04
5	1.52354E+02	3.0054e-04	3.0000e-04	1.1089e-02	3.0000e-04
6	1.06653E+01	4.7766e-02	2.0000e-04	3.2914e-01	1.0000e-04
7	5.33267E+00	5.1621e-02	3.0000e-04	3.6253e-01	2.0000e-04
8	2.66633E+00	4.0749e-02	4.0000e-04	2.8673e-01	3.0000e-04
9	2.66633E+00	3.7757e-02	5.0000e-04	2.1482e-01	3.0000e-04

Fission fractions averaged over all active generations:

Fuel Region Fission Fraction Relative Error

1	1.8755e-02	9.0906e-04
2	2.0270e-02	9.0906e-04
3	5.1246e-02	6.1351e-04
4	9.4811e-02	4.2000e-04
5	3.5885e-02	3.2619e-04
6	3.9925e-01	2.3748e-04
7	2.1574e-01	3.2619e-04
8	8.5150e-02	4.2000e-04
9	7.8897e-02	5.1614e-04

17

-OS Alamos

Case 1-1

Fission Fraction for Case 1-1

September 2001
MCNP Team, Diagnostic Applications Group (X-5)
Los Alamos National Laboratory
Avneet Sood
asood@lanl.gov
505.667.2119
505.665.3046
OECD/NEA Source Convergence Benchmark 2:
Pincell array with irradiated fuel
Case 1_2
MCNP4C2
Monte Carlo
ENDF-V and ENDF-VI
uniform volume sampling in fuel region
200 inactive cycles
1000 active cycles
100000 histories per cycle
1
1.34223
0.00007

Fuel	Volume	Sigma_f*flux	Rel. Err.	Flux	Rel. Err.
Region	(cm^3)	(fissions/cm^3))	(neut/cm^3)	
1	2.66633E+00	1.8909e-02	4.0000e-04	2.6308e-01	3.0000e-04
2	2.66633E+00	2.0387e-02	4.0000e-04	3.5128e-01	2.0000e-04
3	5.33267E+00	2.5822e-02	2.0000e-04	4.4409e-01	2.0000e-04
4	1.06653E+01	2.3911e-02	2.0000e-04	4.0341e-01	1.0000e-04
5	1.52354E+02	3.0061e-04	3.0000e-04	1.1090e-02	3.0000e-04
6	1.06653E+01	2.3334e-04	2.0000e-03	4.0674e-03	1.5000e-03
7	5.33267E+00	2.5209e-04	2.7000e-03	4.4662e-03	1.8000e-03
8	2.66633E+00	1.9900e-04	3.9000e-03	3.5459e-03	2.5000e-03
9	2.66633E+00	1.8385e-04	4.2000e-03	2.6503e-03	2.9000e-03

4.1820e-04

4.1820e-04 2.3429e-04

2.3429e-04

3.2387e-04

2.0037e-03

2.7028e-03 3.9019e-03

4.2018e-03

Fission fractions averaged over all active generations:

Fuel Region Fission Fraction Relative Error

9.1980e-02

2	9.9166e-02
3	2.5121e-01
4	4.6524e-01
5	8.3553e-02
6	4.5401e-03
7	2.4524e-03
8	9.6797e-04
9	8.9428e-04

1

OS Alamos

Case 1-2

.	a
Date:	September 2001
Institution:	MCNP Team, Diagnostic Applications Group (X-5)
	Los Alamos National Laboratory
Contact person:	Avneet Sood
E-mail address:	asood@lanl.gov
Voice phone number:	505-667-2119
EAX phone number:	505 665 3046
Problem name:	OECD/NEA Source Convergence Benchmark 2:
	Pincell array with irradiated fuel
Case name:	Case 1_3
Code name:	MCNP4C2
Code type:	Monte Carlo
Cross Section	
Library:	ENDF-V and ENDF-VI
Starting source:	uniform volume sampling in fuel region
nskip:	200 inactive cycles
ngen:	1000 active cvcles
nhist:	100000 histories per cycle
ngensh	1
final k_off	-
	1 24002
estimate:	1.34093
final est. uncert.	
(1 sigma):	0.00006

Fuel	Volume	Sigma_f*flux	Rel. Err.	Flux	Rel. Err.
Region	(cm^3)	(fissions/cm^3))	(neut/cm^3)	
1	2.66633E+00	1.0904e-02	5.0000e-04	1.5158e-01	4.0000e-04
2	2.66633E+00	1.1726e-02	5.0000e-04	2.0213e-01	3.0000e-04
3	5.33267E+00	1.4873e-02	3.0000e-04	2.5583e-01	2.0000e-04
4	1.06653E+01	1.3784e-02	2.0000e-04	2.3262e-01	2.0000e-04
5	1.52354E+02	3.0356e-04	3.0000e-04	1.1205e-02	3.0000e-04
6	1.06653E+01	1.0488e-02	3.0000e-04	1.7709e-01	2.0000e-04
7	5.33267E+00	1.1181e-02	4.0000e-04	1.9180e-01	3.0000e-04
8	2.66633E+00	8.4061e-03	6.0000e-04	1.5014e-01	4.0000e-04
9	2.66633E+00	7.7616e-03	6.0000e-04	1.1159e-01	4.0000e-04

Fission fractions averaged over all active generations:

Fuel Region	Fission Fraction	Relative Error
1	5.3102e-02	5.1352e-04
2	5.7106e-02	5.1352e-04
3	1.4486e-01	3.2204e-04
4	2.6851e-01	2.3175e-04
5	8.4474e-02	3.2204e-04
6	2.0431e-01	3.2204e-04
7	1.0891e-01	4.1678e-04
8	4.0938e-02	6.1132e-04
9	3.7800e-02	6.1132e-04

21

Los Alamos

Date:	September 2001
Institution:	MCNP Team. Diagnostic Applications Group $(X-5)$.
	Los Alamos National Laboratory
Contact person:	Avneet Sood
E-mail address:	asood@lanl.gov
Voice phone number:	505.667.2119
FAX phone number:	505.665.3046
Problem name:	OECD/NEA Source Convergence Benchmark 2:
	Pincell array with irradiated fuel
Case name:	Case 2_1
Code name:	MCNP4C2
Code type:	Monte Carlo
Cross Section	
Library:	ENDF-V and ENDF-VI
Starting source:	uniform volume sampling in fuel region
nskip:	200 inactive cycles
ngen:	1000 active cycles
nhist:	100000 histories per cycle
ngensh:	1
final k-eff	
estimate:	1.05324
final est. uncert.	
(1 sigma):	0.00006

Fuel	Volume	Sigma_f*flux	Rel. Err.	Flux	Rel. Err.
Region	(cm^3)	(fissions/cm^3)		(neut/cm^3)	
1	2.66633E+00	4.4698e-03	8.0000e-04	7.8073e-02	5.0000e-04
2	2.66633E+00	4.4202e-03	8.0000e-04	9.8097e-02	5.0000e-04
3	5.33267E+00	4.7628e-03	5.0000e-04	1.1137e-01	4.0000e-04
4	1.06653E+01	3.6306e-03	4.0000e-04	9.2234e-02	3.0000e-04
5	1.52354E+02	6.3539e-04	2.0000e-04	1.8167e-02	2.0000e-04
6	1.06653E+01	8.6776e-03	3.0000e-04	2.2049e-01	2.0000e-04
7	5.33267E+00	1.1394e-02	3.0000e-04	2.6655e-01	2.0000e-04
8	2.66633E+00	1.0571e-02	5.0000e-04	2.3473e-01	3.0000e-04
9	2.66633E+00	1.0694e-02	5.0000e-04	1.8697e-01	3.0000e-04

Fission fractions averaged over all active generations:

Fuel Region	Fission Fraction	Relative Error
1	3.0199e-02	8.0982e-04
2	2.9864e-02	8.0982e-04
3	6.4358e-02	5.1556e-04
4	9.8118e-02	4.1929e-04
5	2.4530e-01	2.3622e-04
6	2.3452e-01	3.2527e-04
7	1.5397e-01	3.2527e-04
8	7.1423e-02	5.1556e-04
9	7.2254e-02	5.1556e-04

Los Alamos

Case 2-1

Date:	September 2001
Institution:	MCNP Team, Diagnostic Applications Group (X-5)
	Los Alamos National Laboratory
Contact person:	Avneet Sood
E-mail address:	asood@lanl.gov
Voice phone number:	505.667.2119
FAX phone number:	505.665.3046
Problem name:	OECD/NEA Source Convergence Benchmark 2:
	Pincell array with irradiated fuel
Case name:	Case 2_2
Code name:	MCNP4C2
Code type:	Monte Carlo
Cross Section	
Library:	ENDF-V and ENDF-VI
Starting source:	uniform volume sampling in fuel region
nskip:	200 inactive cycles
ngen:	1000 active cycles
nhist:	100000 histories per cycle
ngensh:	1
final k-eff	
estimate:	1.05322
final est. uncert.	
(1 sigma):	0.00006

Fuel	Volume	Sigma_f*flux	Rel. Err.	Flux	Rel. Err.
Region	(cm^3)	(fissions/cm^3)	(neut/cm^3)	
1.	2.66633E+00	1.5151e-02	4.0000e-04	2.6478e-01	3.0000e-04
2.	2.66633E+00	1.4952e-02	4.0000e-04	3.3221e-01	2.0000e-04
3.	5.33267E+00	1.6131e-02	3.0000e-04	3.7738e-01	2.0000e-04
4.	1.06653E+01	1.2306e-02	2.0000e-04	3.1259e-01	1.0000e-04
5.	1.52354E+02	6.3708e-04	2.0000e-04	1.8214e-02	2.0000e-04
6.	1.06653E+01	1.2237e-07	7.1700e-02	3.3150e-06	5.4100e-02
7.	5.33267E+00	1.0422e-07	1.0240e-01	2.7669e-06	7.3700e-02
8.	2.66633E+00	1.1761e-07	1.4310e-01	2.4484e-06	9.0400e-02
9.	2.66633E+00	1.1340e-07	1.5300e-01	1.9085e-06	1.0320e-01

Fission fractions averaged over all active generations:

Fuel Region Fission Fraction Relative Error

1.	1.0238e-01	4.1765e-04
2.	1.0103e-01	4.1765e-04
3.	2.1800e-01	3.2316e-04
4.	3.3262e-01	2.3331e-04
5.	2.4597e-01	2.3331e-04
6.	3.3073e-06	7.1700e-02
7.	1.4084e-06	1.0240e-01
8.	7.9468e-07	1.4310e-01
9.	7.6624e-07	1.5300e-01

25

-OS Alamos

.

Case 2-2

Date: Institution: Contact person: E-mail address: Voice phone number: FAX phone number: Problem name: Case name: Code name: Code type: Cross Section Library: Starting source: nskip: ngen: nhist: ngensh: final k-eff estimate: final est. uncert. (1 sigma):	September 2001 MCNP Team, Diagnostic App Los Alamos National Labor Avneet Sood asood@lanl.gov 505.667.2119 505.665.3046 OECD/NEA Source Convergen Pincell array with irrad Case 2_3 MCNP4C2 Monte Carlo ENDF-V and ENDF-VI uniform volume sampling 200 inactive cycles 1000 active cycles 100000 histories per cyc 1 1.05271 0.00007	plications Gro ratory nce Benchmark iated fuel in fuel region le	oup (x-5), 2:
Fuel Volume	Sigma_f*flux Rel. Err.	Flux	Rel. Err.
Region (cm^3)	(fissions/cm^3)	(neut/cm^	3)
1 2.66633E+00 2 2.66633E+00 3 5.33267E+00 4 1.06653E+01 5 1.52354E+02 6 1.06653E+01 7 5.33267E+00 8 2.66633E+00 9 2 66633E+00	1.3953e-02 4.0000e-04 1.3771e-02 4.0000e-04 1.4860e-02 3.0000e-04 1.1342e-02 2.0000e-04 6.4107e-04 2.0000e-04 9.7884e-04 8.0000e-04 1.2223e-03 1.1000e-03 1.0248e-03 1.5000e-03 1.0664e-03 1.6000e-03	2.4381e-01 3.0593e-01 3.4765e-01 2.8815e-01 1.8330e-02 2.4904e-02 2.8567e-02 2.4158e-02 1.9048e-02	3.0000e-04 2.0000e-04 1.0000e-04 2.0000e-04 6.0000e-04 7.0000e-04 9.0000e-04

Fission fractions averaged over all active generations:

Fuel Dester	Fiscion Ensction	Dolotivo Ennon
Fuel Region	FISSION Fraction	Relative Error
1	9.4344e-02	4.1675e-04
2	9.3117e-02	4.1675e-04
3	2.0096e-01	3.2200e-04
4	3.0675e-01	2.3170e-04
5	2.4768e-01	2.3170e-04
6	2.6474e-02	8.0851e-04
7	1.6529e-02	1.1062e-03
8	6.9293e-03	1.5046e-03
9	7.2106e-03	1.6043e-03

27

Los Alamos

Case 2-3

OECD/NEA Working Party on Nuclear Criticality Safety Expert Group on Source Convergence Analysis Paris, France — 19 September 2001

Benchmark 3 Three Thick 1D Slabs

MCNP Calculations

Robert C. Little

Diagnostics Applications Group (X-5) Los Alamos National Laboratory <rcl@lanl.gov>

D. Kent Parsons

Primary Design & Assessment (X-4) Los Alamos National Laboratory <dkp@lanl.gov>

Outline

- Problem description
- Results

- MCNP input
- Plots
 - Onedant Results:
 - Onedant Results:
 - Onedant & MCNP:
 - Onedant & MCNP:
 - Onedant & MCNP:
- Onedant & MCNP Results

K-effective vs Asymmetry Fission Fractions vs Asymmetry K-effective for 30 cm Reflector K-effective for 20 cm Reflector K-effective for 10 cm Reflector

- Contact: Robert C. Little LANL, X-5 505-665-3487 rcl@lanl.gov
- Code: MCNP4C2
- Method: continuous-energy Monte Carlo
- Geometry: exact, as specified
- Cross-sections: ENDF/B-VI, processed by NJOY into MCNP library
- Computer: Sun workstation
- Date: August, 2001

Material Compositions MCNP Cross-sections

Uranyl Solution

U235	7.6864e-5	92235.60c,	LANL-proposed endf-VI.2)
U238	6.8303e-4	92238.60c,	endf-VI.2	
Ο	3.7258e-2	8016.60c		
Н	5.9347e-2	1001.60c,	with S(α , β) lwtr.01t	
Ν	2.1220e-3	7014.60c		
Water				
Н	6.6706e-2	1001.60c,	with S(α , β) lwtr.01t	
0	3.3353e-2	8016.60c		

	Thickness				
Case	Unit 1	Unit 2	Water		
1	20	20	20		
	20	20	30		
2	20	18	30		
3	20	15	30		
4	20	12	30		
5	20	20	20		
6	20	18	20		
7	20	15	20		
8	20	12	20		
9	20	20	10		
10	20	18	10		
11	20	15	10		
12	20	12	10		

2000 neutrons/generation

50 generations skipped before tallies

550 active generations

uniform initial source distribution

All dimensions in cm

F1 = fraction of fission neutrons in slab 1

Case	T1	T2	Т3	k _{eff}	Std Dev	F1
1	20	30	20	0.91890	0.00060	0.42155
2	20	30	18	0.91731	0.00061	0.95262
3	20	30	15	0.91674	0.00061	0.98654
4	20	30	12	0.91638	0.00063	0.99273
5	20	20	20	0.92641	0.00059	0.45389
6	20	20	18	0.91900	0.00062	0.83481
7	20	20	15	0.91772	0.00059	0.93144
8	20	20	12	0.91587	0.00060	0.96340
9	20	10	20	0.97089	0.00056	0.48885
10	20	10	18	0.95683	0.00057	0.61508
11	20	10	15	0.94182	0.00057	0.74493
12	20	10	12	0.93467	0.00058	0.83132

Additional MCNP Calculations with One Fissile Region Only

30 cm H2O

Case	T1	T2	Т3	k _{eff}	Std Dev	F1
1	20	30	20	0.91890	0.00060	0.42155
2	20	30	18	0.91731	0.00061	0.95262
2 L	20	30	0	0.91648	0.00061	1
2R	0	30	18	0.87143	0.00061	0
3	20	30	15	0.91674	0.00061	0.98654
3R	0	30	15	0.78929	0.00060	0
4	20	30	12	0.91638	0.00063	0.99273

Case	T1	T2	Т3	k _{eff}	Std Dev	F1
1	20	30	20	0.91890	0.00060	0.42155
2	20	30	18	0.91731	0.00061	0.95262
3	20	30	15	0.91674	0.00061	0.98654
4	20	30	12	0.91638	0.00063	0.99273
5	20	20	20	0.92641	0.00059	0.45389
6	20	20	18	0.91900	0.00062	0.83481
7	20	20	15	0.91772	0.00059	0.93144
8	20	20	12	0.91587	0.00060	0.96340
9	20	10	20	0.97089	0.00056	0.48885
10	20	10	18	0.95683	0.00057	0.61508
11	20	10	15	0.94182	0.00057	0.74493
12	20	10	12	0.93467	0.00058	0.83132

Case	T1	T2	Т3	k _{eff}	Std Dev	F1
1	20	30	20	0.91890	0.00060	0.42155
1A	20	30	20	0.91901	0.00060	0.23027
1B	20	30	20	0.92005	0.00057	0.58971
1C	20	30	20	0.91712	0.00060	0.62459
1D	20	30	20	0.91913	0.00063	0.46762
1E	20	30	20	0.91929	0.00063	0.34748
1F	20	30	20	0.91833	0.00056	0.69936
1G	20	30	20	0.91784	0.00062	0.41487
1H	20	30	20	0.91812	0.00061	0.51532
11	20	30	20	0.91930	0.00059	0.65373

MCNP: K-effective for 10 Replicas of Case-1

Cell 1 Fission Fraction Convergence for 10 Replicas of Case-1

10 replicas of case1

Los Alamos

Cell 1 Fission Fraction Convergence for Case-1

MCNP Reference: Cell 1 Fission Fraction Convergence, Case 2

Benchmark 3 — **Deterministic Calculations**

- Additional supporting calculations were done using Onedant
- Onedant:
 - Sn code, 1D
 - For consistent comparisons with MCNP, a series of calculations was run with both codes, using **multigroup** cross-sections & **P0 scattering**
 - Fine mesh: 1 mm mesh spacing
 - High-order Sn: S96 double-Gauss

Onedant Results: K-effective vs Asymmetry

Onedant Results: Fission Fractions vs Asymmetry

Fission Fractions

Onedant & MCNP: K-effective for 30 cm Reflector

keff for 30 cm reflector

Onedant & MCNP: K-effective for 20 cm Reflector

Onedant & MCNP: K-effective for 10 cm Reflector

keff for 10 cm reflector

Onedant & MCNP: Results for 30 cm Reflector

				onedant			mcnp			
name	lhs fuel	rhs fuel	asymmetry percent	keff	lhs fission fraction	rhs fission fraction	keff	abs error	lhs fission fraction	rhs fission fraction
dase1d	20	21.00	5.00	0.97031	0.019	0.981	0.96730	0.00061	0.051	0.949
test1p	20	20.40	2.00	0.96074	0.053	0.947	0.95885	0.00060	0.237	0.763
test1q	20	20.20	1.00	0.95790	0.095	0.905	0.95642	0.00058	0.445	0.555
dase1b	20	20.10	0.50	0.95648	0.171	0.829	0.95700	0.00060	0.431	0.569
test1n	20	20.05	0.25	0.95580	0.274	0.726	0.95517	0.00058	0.725	0.275
dase1	20	20.00	0.00	0.95527	0.5	0.5	0.95602	0.00059	0.540	0.460
test1m	20	19.95	-0.25	0.95507	0.726	0.274	0.95574	0.00060	0.388	0.612
dase1a	20	19.90	-0.50	0.95502	0.83	0.17	0.95452	0.00060	0.623	0.377
dase1f	20	19.80	-1.00	0.95500	0.905	0.095	0.95361	0.00061	0.436	0.564
dase1e	20	19.50	-2.50	0.95497	0.96	0.04	0.95426	0.00059	0.816	0.184
dase1c	20	19.00	-5.00	0.95497	0.98	0.02	0.95515	0.00061	0.961	0.039
dase2	20	18.00	-10.00	0.95497	0.99	0.01	0.95455	0.00058	0.980	0.020
dase3	20	15.00	-25.00	0.95496	0.997	0.003	0.95494	0.00059	0.998	0.002
dase4	20	12.00	-40.00	0.95496	0.998	0.002	0.95372	0.00064	0.998	0.002
dase5	20	0.00	-100.00	0.95496	1	0	0.95451	0.00059	1.000	0.000

Onedant & MCNP: Results for 20 cm Reflector

	lhs fuel	rhs fuel	asymmetry percent	onedant				mcnp			
name				keff	lhs fission fraction	rhs fission fraction	keff	abs error	lhs fission fraction	rhs fission fraction	
dase1d	20	21.00	5.00	0.96930	0.1265	0.8735	0.96840	0.00062	0.130	0.811	
dase1k	20	20.60	3.00	0.96404	0.1895	0.8105	0.96287	0.00056	0.387	0.613	
dase1p	20	20.40	2.00	0.96145	0.2483	0.7517	0.96130	0.00058	0.335	0.665	
dase1q	20	20.20	1.00	0.95904	0.3467	0.6533	0.95869	0.00057	0.331	0.669	
dase1b	20	20.10	0.50	0.95800	0.4175	0.5825	0.95807	0.00066	0.579	0.421	
dase1n	20	20.05	0.25	0.95756	0.4576	0.5424	0.95656	0.00057	0.499	0.501	
dase1	20	20.00	0.00	0.95716	0.5	0.5	0.95711	0.00061	0.422	0.578	
dase1m	20	19.95	-0.25	0.95683	0.5425	0.4575	0.95576	0.00059	0.437	0.563	
dase1a	20	19.90	-0.50	0.95655	0.5826	0.4174	0.95726	0.00062	0.552	0.448	
dase1f	20	19.80	-1.00	0.95615	0.6534	0.3466	0.95559	0.00061	0.619	0.381	
dase1e	20	19.50	-2.50	0.95558	0.7868	0.2132	0.95441	0.00059	0.678	0.322	
dase1c	20	19.00	-5.00	0.95530	0.8765	0.1235	0.95465	0.00058	0.782	0.218	
dase2	20	18.00	-10.00	0.95514	0.9357	0.0643	0.95458	0.00060	0.941	0.059	
dase3	20	15.00	-25.00	0.95504	0.9766	0.0234	0.95564	0.00058	0.979	0.021	
dase4	20	12.00	-40.00	0.95501	0.9878	0.0122	0.95498	0.00062	0.988	0.012	

Onedant & MCNP: Results for 10 cm Reflector

	lhs fuel	rhs fuel	asymmetry percent	onedant			mcnp			
name				keff	lhs fission fraction	rhs fission fraction	keff	abs error	lhs fission fraction	rhs fission fraction
dase1d	20	21.00	5.00	0.98259	0.403	0.597	0.98293	0.00054	0.396	0.604
dase1k	20	20.60	3.00	0.97934	0.4405	0.5595	0.97963	0.00057	0.433	0.567
dase1p	20	20.40	2.00	0.97781	0.46	0.54	0.97711	0.00058	0.438	0.562
dase1q	20	20.20	1.00	0.97636	0.48	0.52	0.97642	0.00059	0.462	0.538
dase1b	20	20.10	0.50	0.97566	0.49	0.51	0.97516	0.00057	0.479	0.521
dase1n	20	20.05	0.25	0.97532	0.495	0.505	0.97471	0.00061	0.479	0.521
dase1	20	20.00	0.00	0.97498	0.5	0.5	0.97507	0.00060	0.494	0.506
dase1m	20	19.95	-0.25	0.97465	0.505	0.495	0.97417	0.00059	0.492	0.508
dase1a	20	19.90	-0.50	0.97433	0.51	0.49	0.97448	0.00059	0.538	0.462
dase1f	20	19.80	-1.00	0.97370	0.52	0.48	0.97322	0.00056	0.539	0.461
dase1e	20	19.50	-2.50	0.97193	0.55	0.45	0.97166	0.00062	0.561	0.440
dase1c	20	19.00	-5.00	0.96941	0.599	0.401	0.96888	0.00057	0.599	0.401
dase2	20	18.00	-10.00	0.96576	0.683	0.317	0.96644	0.00064	0.677	0.323
dase3	20	15.00	-25.00	0.96079	0.832	0.168	0.96187	0.00059	0.839	0.161
dase4	20	12.00	-40.00	0.95879	0.902	0.098	0.95852	0.00060	0.901	0.099

Reference MCNP calculations (symmetric cases)

100M particles,	~6000 minutes CPU time
Cross-sections:	Multigroup, P0 scatter
Onedant fine mesh:	0.25 mm mesh spacing
High-order Sn:	S96, double Gauss

case	keff (σ)	fine mesh dant keff	<u>(mcnp-onedant)</u> ഗ	lhs	rhs
30 cm reflector	0.95527 (6)	0.95528	-0.17	0.364	0.636
20 cm reflector	0.95723 (6)	0.95717	1.0	0.492	0.508
10 cm reflector	0.97509 (6)	0.97499	1.7	0.499	0.501

OECD/NEA Working Party on Nuclear Criticality Safety Expert Group on Source Convergence Analysis Paris, France — 19 September 2001

Benchmark 4 Array of Interacting Spheres

MCNP Calculations

Robert C. Little

Diagnostics Applications Group (X-5) Los Alamos National Laboratory <rcl@lanl.gov>

Todd Wareing

Transport Methods (CCS-4) Los Alamos National Laboratory <dkp@lanl.gov>

Outline

- Problem Description
- Observations
- Sample MCNP Input File
- Sample Required Output
- Plots
 - K-effective Results
 - Sphere (1,1) Fission Fraction
 - Sphere (3,3) Fission Fraction

- Contact: Robert C. Little LANL, X-5 505-665-3487 rcl@lanl.gov
- Code: MCNP4C2
- Method: continuous-energy Monte Carlo
- Geometry: exact, as specified
- Cross-sections: ENDF/B-VI, processed by NJOY into MCNP library
- Computer: Sun workstation
- Date: August, 2001

Material Compositions MCNP Cross-sections

Highly Enriched Uranium Metal

	U235	4.549e-2	92235.60c,	LANL-proposed endf-VI.2
	U238	2.560e-3	92238.60c,	endf-VI.2
Air				
	Ν	4.3250e-5	7014.60c	
	0	1.0810e-5	8016.60c	

Benchmark 4 — Array of Interacting Spheres

5 x 5 x 1 Array of Spheres

125 neutrons/generation 1000 active generations

Initial Source:

101 neutrons in center of sphere (1,1)

1 neutron in center of each of the other 24 spheres

All dimensions in cm

Other spheres: 8.71 cm diam.

Benchmark 4 — Observations

Notes on OECD / NEA Source Convergence Benchmark #4: Array of Interacting Spheres

Written By: Robert C. Little (<u>rcl@lanl.gov</u>; 505.665.3487) Last Modified: September 6, 2001

Problem Description

Benchmark # 4 is a 5 x 5 x 1 array of highly enriched uranium metal spheres, separated by air. The separation distance is 80 cm. The central sphere has a radius of 10 cm and the other 24 spheres have radii of 8.71 cm. The benchmark was developed by Olivier Jacquet and is adapted from earlier work by Kadotani.

The problem specifications are contrived to emphasize source convergence difficulties. The spatial distribution of starting neutrons is deliberately poor – 101 neutrons in one of the corner spheres and 1 neutron in each of the other 24 spheres. Only 125 starters are used per generation. There are 3 variants required with different numbers of skipped cycles: 0, 200, and 400. Finally, for each of the 3 variants, 100 replicas are run with different random number sequences. For all cases, 1000 active generations were simulated.

Description of Calculations

All calculations were performed with MCNP4C2 (load date 01/20/01) on a SUN Ultra 80. Cross sections are all from the ENDF60 library, which is based on ENDF/B-VI Release 2. MCNP ZAID identifiers are 7014.60c, 8016.60c, 92235.60c, and 92238.60c. A sample input file is shown in Appendix A.

Bounding planes were specified in each dimension at 80 cm perpendicular from the center of the exterior spheres. Neutrons crossing these surfaces were killed. For replica N (N=1,100), the starting random number was chosen to be 1000 * N + 1. The quantity neutron flux times fission cross section times material number density was tallied in each of the 25 spheres. The tally is calculated over all active cycles, not for each individual cycle.

Required Output

The required output for each case is part of the benchmark specification. We have included a sample of such output here as Appendix B. For each of the 300 cases we produced a simple text file with this output. The text files were combined to form one continuous text file and were transmitted electronically to Olivier Jacquet.

The first 12 lines of results for each case include the case number, some summary description, and contact information. The next 4 lines provide the number of skipped generations, the number of active generations, the number of histories per generation, and the number of generations per superhistory. For

MCNP this latter quantity is always 1. The next two lines contain the final k-eff estimate and the one standard deviation absolute (not relative) uncertainty. The values reported here are from the MCNP combined collision / absorption / track-length estimator. For readability we then skip a line. Then we report the individual k-eff estimate for each cycle. For these results we use the MCNP collision estimator. Results are reported for each cycle (inactive or active). We then include another blank line. Finally we report the cumulative fission fraction in each of the 25 uranium spheres. The fractions are derived from the tallies described above multiplied by the cell volumes. The first entry is for sphere 1 (the sphere that dominates the original source distribution), the 13th entry is for the central sphere, etc. These values are cumulative over all active generations and are normalized to 1.

Reference Calculations

To provide a reference result for comparison purposes, an extended calculation was performed. In this case, the initial source was specified to be equal in each of the 25 spheres. 10,000 histories per cycle were simulated. We skipped 1,000 cycles and calculated a total of 6,000 cycles. Therefore we had 50 million active histories in this run. The final combined collision / absorption / track-length estimate of k-eff was 1.11294 with a one sigma absolute standard deviation of 0.00009.

We also have performed eigenvalue calculations for isolated spheres, with radii of 10.0 cm and 8.71 cm. For these runs, all neutrons leaking from the sphere were terminated. We ran 5,000 histories per cycle, skipped 500 cycles, and calculated a total of 2,500 cycles (10 M active histories). The initial source was simply a point in the center of the sphere. For the 10.0-cm sphere, the k-eff was 1.11233 with a one-sigma absolute standard deviation of 0.00019, and for the 8.71-cm sphere, the k-eff was 0.99519 with a one-sigma absolute standard deviation of 0.00019.

Eigenvalue Results

A plot of all 300 eigenvalue results is shown in Figure 1. The results for case 1 with no skipped cycles are in red, for case 2 with 200 skipped cycles are in green, and for case 3 with 400 skipped cycles are in blue. One notes immediately the variation in eigenvalue spread for the different cases. Also, one should compare these results with the reference value of ~ 1.113.

The table below provides some summary information for the eigenvalues for each of the 3 cases. Typical standard deviations reported by MCNP for the individual runs were ~ 0.002 . The mean and standard deviation of the mean were calculated from the 100 replica results using the standard formulas that weight the contributions based on the individual uncertainties. The population estimated standard deviation of the mean is calculated from the observed scatter of the population of replica eigenvalues. The

ratio of the two standard deviations gives some indication of the Monte Carlo underestimation of the individual eigenvalue uncertainties (assuming, of course, unbiased results).

Case	Skipped Cycles	Minimum k-eff	Maximum k-eff	Mean k-eff	Standard Deviation of the Mean	Population Estimated Standard Deviation of the Mean	Ratio
1	0	1.05756	1.11291	1.09399	0.000218	0.001433	6.6
2	200	1.07862	1.11667	1.10738	0.000195	0.000909	4.7
3	400	1.09798	1.11779	1.11094	0.000188	0.000317	1.7

We have also analyzed the eigenvalue results for each case with respect to the reference value provided above. The deleterious impact of skipping too few cycles is particularly clear in the following table where we provide the percent of replicas for each case that lie within various multiples of a standard deviation from the reference result.

Case	Skipped Cycles	> 5 SD	4-5 SD	3-4 SD	2-3 SD	1-2 SD	< 1 SD
1	0	74	9	3	8	4	2
2	200	24	4	6	12	24	30
3	400	3	2	3	14	36	42

If we compare the magnitude of the replica eigenvalues to the reference result, we find that even when skipping 400 cycles, there is clearly an underestimation of the eigenvalue. It has not been determined from this work how many cycles would need to be skipped for unbiased results (given the unrealistically poor initial source guess).

Case	Skipped Cycles	Percent of Replicas with k-eff < Reference Value	Percent of Replicas with k-eff > Reference Value
1	0	100	0
2	200	88	12
3	400	80	20

MCNP performs several statistical checks on the eigenvalue results and warns the user if the statistical checks fail in some manner. In these calculations, 3 main warning messages arose. The first is "The cycle values do not appear normally distributed at the 99% confidence level." This check is performed for each of the 3 estimators: collision, absorption, and track length. The second warning was "The first and second half values of the combined estimator appear to be different at the 99% confidence level." The third is a warning that "There appears to be an {increasing / decreasing} trend in the combined estimator over the last 10 cycles." The percent of the replica runs for each case flagging these warning messages is indicated in the next Table.

Case	Skipped Cycles	Cycle Values Not Normally Distributed	First Half / Second Half Different	Trend in Last 10 Cycles	At Least One Warning Message
1	0	21	81	6	85
2	200	5	35	1	37
3	400	3	13	0	16

For case 1, three of the replicas flagged the warning about "cycle values not normally distributed" for each of the three individual estimators. When this happens, MCNP draws attention to the fact by not printing "boxed" results for the final k-eff. The combined estimators for these 3 runs were 1.06226, 1.07231, and 1.07909. These are some of the worst, but certainly not the absolute worst, k-eff estimates. On the other hand, for the 15 replicas of case 1 with no MCNP eigenvalue warnings, the average k-eff is 1.10704, not great compared to the reference calculation, but much closer than the typical case 1 replica.

Fission Fractions

We will first present fission fraction results from the reference calculation described above. It should be noted, however, that an even longer run is likely necessary to provide true reference fission fractions. Nevertheless, results are given in the following table.

Symmetric Cell ID	Number of Cells	Cells	Average Fission Fraction Per Cell
1	1	13	0.910624
2	4	8, 12, 14, 18	0.011157
3	4	7, 9, 17, 19	0.005783
4	8	2, 4, 6, 10, 16, 20, 22, 24	0.002344
5	4	3, 11, 15, 23	0.000463
6	4	1, 5, 21, 25	0.000254

MCNP errors reported for the number of fissions in each cell are clearly underestimated, likely by a factor of up to several for the outer spheres. We have not as yet analyzed these data however.

The next table provides the average fission fraction over all replicas for each case in 3 specific cells: cell 1, with the artificially high initial source; cell 13, the central sphere; and cell 25, the cell symmetric to cell 1 but all the way on the other side of the array (note that cell 25 also has an artificially high initial source representation, although not nearly as high as cell 1). The reference values from the above table are included for comparison purposes. Once more, we are able to conclude that, using the source specified, skipping 400 cycles is not enough for this problem to be converged. It is also noted that MCNP's statistical checks flagged a trend problem in the fission tallies for each of the 100 replicas in case 1.

Case	Skipped Cycles	Cell 1 Average Fission Fraction	Cell 13 Average Fission Fraction	Cell 25 Average Fission Fraction
1	0	0.089250	0.739715	0.001633
2	200	0.012845	0.862278	0.000655
3	400	0.004325	0.900642	0.000377
Ref		0.000254	0.910624	0.000254

Selected plots of the replica fission fractions are attached. (The values in these plots are actually from the sampled KCODE fission point fractions in each cell, rather than from the tally based fractions described earlier. Therefore, there is an extra degree of stochastic sampling involved in these fractions, and nubar is included here but not in the tally based fractions. These differences do not impact the qualitative conclusions in any manner.)

Deterministic Calculations

Todd Wareing has set up this problem using the deterministic ATTILA code. His initial eigenvalue results are not inconsistent with the Monte Carlo results reported here. We expect more detailed results and analysis in the future.

Appendix A — Sample MCNP Input File

```
OECD/NEA Source Convergence Benchmark 4: Array of Interacting Spheres
     case = 1
С
С
     Benchmark defined by Jacquet (IPSN/DPEA/SEC)
С
     Implemented for MCNP by R.C.Little (June 2001)
С
С
     Case 1,4,7,...298: 0 skipped generations
С
     Case 2,5,8,...299: 200 skipped generations
С
     Case 3,6,9,...300: 400 skipped generations
С
С
       There are 100 replicas for each number of skipped generations
С
         The initial random number is chosen to be (N*1000)+1
С
С
С
           Case:
                                    1
           Skipped Generations:
                                    0
С
           Total Generations:
                                    1000
С
           Initial Random Number:
                                    1001
С
С
     Cell Cards
С
С
     cells 1-25 are the spheres of uranium metal
С
       1-12 and 14-25 are radius 8.71 cm
С
       13 has radius of 10.0 cm
С
1
     1.04805 - 1
2
     1.04805 - 2
3
     1.04805 - 3
     1.04805 - 4
4
5
     1.04805 - 5
6
     1.04805 -6
7
     1.04805 - 7
8
     1.04805 -8
9
     1.04805 - 9
10
     1.04805 - 10
11
     1 .04805 -11
```

```
12
     1 .04805 -12
13
     1 .04805 -13
     1 .04805 -14
14
15
     1 .04805 -15
16
     1 .04805 -16
17
     1.04805 -17
18
     1 .04805 -18
19
     1 .04805 -19
20
     1 .04805 -20
21
     1 .04805 -21
22
     1.04805 -22
23
     1.04805 -23
24
     1 .04805 -24
25
     1 .04805 -25
С
     Air -- Inside Box; Outside Spheres
С
     2 5.406e-05 26 -27 28 -29 30 -31 1 2 3 4 5 6 7 8 9 10
26
     11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
С
     External World (void)
С
27
     0 - 26:27:-28:29:-30:31
С
     Surface Cards
С
С
     24 Small Spheres (surfaces 1-12; 14-25)
С
     1 Large Sphere (surface 13)
С
     s 80 80 0 8.71
1
2
     s 160 80 0 8.71
3
     s 240 80 0 8.71
     s 320 80 0 8.71
4
5
     s 400 80 0 8.71
6
        80 160 0 8.71
     S
7
     s 160 160 0 8.71
     s 240 160 0 8.71
8
9
     s 320 160 0 8.71
```

Diagnostics Applications Group (X-5)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 C C 26 27 28 29 30	<pre>s 400 160 0 8.71 s 80 240 0 8.71 s 160 240 0 8.71 s 240 240 0 10.0 s 320 240 0 8.71 s 400 240 0 8.71 s 80 320 0 8.71 s 160 320 0 8.71 s 240 320 0 8.71 s 320 320 0 8.71 s 400 320 0 8.71 s 400 320 0 8.71 s 160 400 0 8.71 s 160 400 0 8.71 s 240 400 0 8.71 s 320 400 0 8.71 s 400 400 0 8.71 s 400 400 0 8.71</pre>
31 C C C m1 C C C C C C C C Diagr	pz 80 Material Cards M1 - Highly Enriched Uranium Metal 92235 .04549 92238 2.56e-03 M2 - Air 7014 4.325e-05 8016 1.081e-05 Miscellaneous Cards

mode	n					
imp:r	n 1 25r 0					
print	: 130					
dbcn	1001					
C	-					huting at each aval
C	I CHOSE	rnotr το	print ol	ut cumulativ	/e source distr	ibution at each cycle
C	pramp I					
C		nde				
C C	KCODE Cal	lus				
c c	125 neuti	rons ner	cvcle			
c c	initial (distribut	ion			
c	101 nei	utrons in	center	of sphere #	# 1	
c	1 neut	ron in ce	nter of	each of the	e other 24 spher	res
с	initial	keff esti	mate of	1.11 is fro	om preliminary o	calculations
kcode	e 125 1.1	1 0 1000				
ksrc	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 (0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 (0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 (0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0				0
	80 80 0	80 80 0			80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 (0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0 80 80	0
	80 80 0	80 80 0	80 80 0	0 80 80 0	80 80 0	
		80 160	0 80	240 0 80	320 0 80 400	0
	160 80 0	160 160	0 160	240 0 160	320 0 160 400	0
	240 80 0	240 160	0 240	240 0 240	320 0 240 400	0

Diagnostics Applications Group (X-5)

320 80 0 320 160 0 320 240 0 320 320 0 320 400 0 400 80 0 400 160 0 400 240 0 400 320 0 400 400 0 С tally cards С С f4:n neutron flux tally in each of the 25 spheres С multiply the flux tally by the fission cross section (fm -6) С to get fission fractions in each sphere С С f4:n 1 23i 25 fm4 -1 1 -6

Appendix B — Sample Required Output

"Tue Sep 4 14:01:34 MDT 2001" "LANL, X-5 Group" "Robert C. Little" "rcl@lanl.gov" "505-665-3487" "505-665-3046 fax" "Benchmark 4: Array of Interacting Spheres"	1.24085 1.19474 1.10040 1.06713 1.02940 1.01108 1.05377
"Case 001" "MCNP4C2"	1.11250
"Monte Carlo"	0.15627
"ENDFB/VI"	0.00687
"source as specified"	0.00060
0	0.00102
1000	0.00012
125	0.01886
1	0.00337
1.086930	0.01271
0.002250	0.01055
	0.00131
1.27348	0.00043
1.17438	0.01470
1.19847	0.73796
1.00016	0.00862
1.08043	0.00033
1.18062	0.00370
1.00618	0.00434
1.12912	0.00977
1.14904	0.00323
1.02126	0.00102
snip	0.00070
snip	0.00116
snip	0.00022
1.19187	0.00193
1.19697	0.00017

Benchmark 4 — K-effective Results

bm4 replicas

Benchmark 4 -Sphere (1, 1) Fission Fraction Results

0.35 skip 0 skip 200 skip 400 +× ж + 0.3 + 0.25 + cell 1 fission fraction + 0.2 х + 0.15 × + × $^{++}$ 0.1 X × × + 0.05 ××× 0 20 60 80 40 100 0 replica

bm4 replicas

Benchmark 4 -Sphere (3,3) Fission Fraction Results

bm4 replicas

