Approved for public release; distribution is unlimited.

| Title:        | MODELS AND CODES FOR SPALLATION<br>NEUTRON SOURCES                                            |
|---------------|-----------------------------------------------------------------------------------------------|
| Author(s):    | Stepan G. Mashnik, T-16<br>Laurie S. Waters, APT-TPO<br>Tony Gabriel, ORNL                    |
| Submitted to: | SARE-SISATIF-5 International Workshops<br>OECD Headquarters, Paris, France<br>July 17-21,2000 |
|               | http://lib-www.lanl.gov/la-pubs/00393746.pdf                                                  |

July 17, 2000

### Models and Codes for Spallation Neutron Sources Special Session within the SARE-5/SATIF-5 Meeting

SARE-5/SATIF-5 International Workshops July 17-21, 2000, OECD Headquarters, Paris, France

#### Stepan MASHNIK and Laurie WATERS

Los Alamos National Laboratory Los Alarnos, NM 87545, USA

#### **Tony GABRIEL**

Oak Ridge National Laboratory Oak Ridge, TN 37831,USA

## Models and Codes for intermediate Energy Nuclear Reactions

- Overview
- Evaporation
- Fission Models
- Pre-equilibrium Models
- Intranuclear Cascade
- Multifragmentation, Fermi Breakup
- Semiempirical Systematics
- High-Energy Transport Codes
- Further Work

|                                                   |             | Nucleon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Meson                                 |
|---------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Quark and gluon                                   | $T_0$ (MeV) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| degrees of freedom:                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | q <b>q</b>                            |
|                                                   |             | A CONTRACT OF A |                                       |
| QCD                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                     |
| Dual Parton                                       |             | State Provent State 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ं ब ैे ब                              |
| Pomerons                                          |             | <b>v</b> • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| String Gas                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             | Υ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| VENUS                                             | 10,000      | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | j4                                    |
| GEANT4                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 017                                   |
| FRITIOF                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{\mathbf{Y}}$                 |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| FLUKA                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             | 0.567 0.503 0.2 Frag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 1.22                                |
| Fast direct processes                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                                     |
| rast unect processes.                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Coupled Chargels                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                    |
| Vlasov Equation                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                     |
| VIASOV Equation<br>Boltzman Equation              | 1.000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                     |
| Classical Mechanic                                | 1,000       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| BUU                                               |             | , 'OO'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۣ<br>ڰ                                |
| QMD                                               |             | 1 0, 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| ŔQMD                                              |             | Multifragmentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| INC (Beritini, ISABEL, Dubna,)                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E*                                    |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Pre-compound stage:                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             | 1p. 0h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| FKK, TUL, and NWY Theories                        | 100         | $\perp$ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| MSD and MSC                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Hydrid models<br>Exciton models                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Exciton models                                    |             | <u>↓</u> ∧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| <br>GNASH                                         |             | 3 <i>p</i> . 2 <i>h</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| ALICE                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| MPM (PREEQ1)                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                     |
| $MEM (MODEX \rightarrow PRECOF)$                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             | $\frac{(\bar{n}\cdot 1)}{2}\rho$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Compound nuclei                                   |             | $\frac{(\tilde{n}-1)}{2}h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| Evaporation /Figsion                              | 10          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| $13$ vapor a $1011$ / $1^{\circ}$ 1881011.        | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Waisskopf Ewing Theory                            | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| weisskupt-dwillg Theory<br>Hauser-Feshbach Theory | - 8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Statistical models of fission                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Dynamical models of fission                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Dostrovsky model                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Dresner model                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| RAL model                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| ORNL model                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| •••                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |

# **Evaporation models**

#### Classical:

V. F. Weisskopf and D. H. Ewing, *Phys. Rev.*, 57 (1940) 472; V. Weisskopf, *Phys. Rev.*, 52 (1937) 295.

I. Dostrovsky, Z. Frankel, and G. Friedlander, *Phys. Rev.*, **116** (1959) 683. I. Dostrovsley and Z.Frankel, *Phys. Rev.*, **118** (1960) 781.

L. Dresner, "EVAP – A Fortran Program for Calculating the Evaporation of Various Particles from Excited Compound Nuclei," *ORNL-TM-190*, Oak Ridge (1962).

V. D. Toneev, "Interaction of Fast Nucleons with Nuclei. 11. Evaporation Cascade," JINR Report B1-2740, Dubna (1966) (in Russian).

A. S. Iljinov, M. V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E, Polli, A. R. Reolon, and P. Rossi, *Nucl. Phys. A*, **543** (1992) 517.

J. Benlliure, A. Grewe, M. de Jong, K.-H. Schmidt, and S. Zhdanov, Nucl. Phys. A, 628 (1998) 458.

S. Furihata, "Statistical Analysis of Light Fragment Production from Medium Energy Proton-Induced Reactions," Eprint: nucl-th/0003036, 15 Mar 2000.

Quantum-Mechanical:

W. Hauser and H. Feshbach, *Phys. Rev.*, 87 (1952) 366; H. Feshbach, A. Kerman, and S. E. Koonin, *Ann. Phys.* (*N.Y.*) 125 (1980) 429.

R. Bonetti, L. Colli Milazo, and M. Melanotte, Phys. Rev. C, 27 (1983) 1003.

M. B. Chadwicle, R. Bonetti, and P. E. Hodgson, J. Phys. G:Nucl. Part. Phys., 15 (1989) 237.

M. Herman, G. Reffo, and H. A. Weidenmüller, Nucl. Phys. A, 536 (1992) 124.

## Reviews:

E. Vogt, Adv. Nucl. Phys., 1 (1968) 268.

V. S. Barashenkov and V. D. Toneev, Interaction of High Energy Particle and Nuclei with Atomic Nuclei, (in Russian) Atomizdat, Moscow (1972).

R. Bonetti, M. B. Chadwick, P. E. Hodgson, B. V. Carlson, and M. S. Hussein, *Phys. Rep.*, **202** (1991) 171.

# High Energy Fission

N. Bohr and J. A. Wheeler, Phys. Rev., 56 (1939) 426.

#### Statistical Models of Fission:

P. Fong, Statistical Theory & Nuclear Fission, Gorgon and Breach Science Publishers, New York (1969).

V. D. Toneev, JINR Report B1-2812, Dubna (1966) (in Russian) V. S. Barashenltov and S. Yu. Shmakov, JINR Communication E2-12902, Dubna (1979).

F. S. Alsmiller, R. G. Alsmiller, Jr., T. A. Gabriel, R. A. Lillie, and J. Barish, *Nucl. Sei. Eng.*, 79 (1981) 147; 79 (1981) 166.

H. Takahashi, Nucl. Sei. Eng., 87 (1984) 432.

N. V. Stepanov, ITEP Preprints ITEP-81 and ITEP-55, Moscow (1987 and 1988).

#### Dynamical Models of Fission:

G. D. Adeev, I. I. Gonchar, V. V. Pashkevich, N. I. Pischasov, and O. I. Serdyuk, *Sov. J. Part. Nucl.*, 19 (1988) 529; I. I. Gonchar, *Phys. Part. Nucl.*, 26 (1995) 394.

G. D. Adeev, A. S. Botvina, A. S. Iljinov, M. V. Mebel, N. I. Pischasov, and O. I. Serdyuk, *Preprint INR 816/93*, Moscow (1993).

## Semi-Phenomenological Models:

F. Atchinson, in *Targetsfor Neutron Beam Spallation Sources*, Jul-Conf-34, Kernforschungsanlage Julich GmbH (1980).

Y. Nakahara, J. Nuel. Sci. Technol., 20 (1983) 511.

P. P. Jauho, A. Jokinen, M. Leino, J. M. Parmonrn, H. Penttila, J. Aystö, K. Eskola, and V. A. Rubchenya, *Phys. Rev. C* A9 (1994) 2036.

### Sequental binary decays using the code GEMINI:

R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald, L. G. Moretto, D. G. Sarantites, L. G. Sobotka, G. Guarino, A. Pantaleo, L. Fiore, A. Gobbi, and K. D. Hildenbrand, *Nucl. Phys. A*, **483** (1988) 371.

#### Reviews:

A. S. Iljinov, M. V. Kazarnovsky, and E. Ya. Paryev, *Intermediate-Energy Nuclear Physics*, CRC Press, Boca Raton (1994).

D. Hilscher and H. Rossner, "Dynamics in Nuclear Fission," Ann. Phys. Fr., 17 (1992) 471.

M. G. Jtkis and A. Ya. Rusanov, Phys. Purt. Nucl., 29 (1998) 160.

# Pre-Equilibrium Models (> 100 modifications)

Semi-Classical, Exciton and Hybrid models:

J. J. Griffin, Phys. Rev. Lett., 17 (1966) 478.

C. K. Cline, Nucl. Phys. A, 193 (1972) 417.

G. D. Harp, J. M. Miller, and B. J. Berne, *Phys. Rev.*, **165** (1968) 1166.

M. Blann, Phys. Rev. Lett., 28 (1972) 757.

Reviews:

E. Gadioli and P. E. Hodgson, *Pre-Equilibrium Nuclear Reactions*, Clarendon Press, Oxford (1992).

H. P. Gruppelaar, P. Nagel, and P. E. Hodgson, Riv, Nouvo Cim., 9 (1986) 1.

K. Seidel, D. Seeliger, R. Reif, and V. D. Toneev, Fiz. Elem. Chast. i Atom. Yad. (Sov. J. Part. Phys.), 7 (1976) 499.

M. Blann, Annu. Rev. Nucl. Sci., 25 (1975) 123.

Quantum-Mechanical, MSC and MSD:

H. Feshbach, Proc. Int. Conf on Nucl. Phys., Munich, 1973, p. 631; Proc. Int. Conf on Nucl. Reaction Mechanisms, Varenna, 1977, p. 1.

H. Feshbach, A. Kerman, and S. Koonin, Ann. Phys. (N.Y.), 125 (1980) 429.

Review:

**IE.** Bonetti, A. J. Koning, J. M. Akkermans, and P. E. Hodgson, *Phys. Rep.*, 247 (1994) 1.

## Intranuclear Cascade Models (INC)

**R.** Serber, *Phys. Rev.*, 72 (1947) 1114.

M. L. Goldberger, Phys. Rev., 74 (1948) 1268.

N. Metropolis, R. Bivins, M. Storm, A. Turkevich, J. M. Miller, and G. Friedlander, *Phys. Rev.*, 110 (1958) 185; *Phys. Rev.*, 110 (1958) 204.

 $N, \pi + A$ :

H. W. Bertini, *Phys. Rev.*, 188 (1969) 1711; *Phys. Rev. C*, 1 (1970) 423; 6 (1972) 631.

V. S. Barashenkov, A. S. Il'inov, N. M. Sobolevskii, and V. D. Toneev, Sov. Phys. Usp., 16, 31 (1973).

S. G. Mashnik and A. J. Sierk, "Improved Cascade-Exciton Model of Nuclear Reactions," *Proc. SARE4, September 1998, TN*, p. 29; Eprint: nucl-th/98120669.

Y. Yariv and Z. Frankel, Phys. Rev. C, 20 (1979) 2227.

K. Chen, Z. Fraenltel, G. Friedlander, J. R. Grover, J. M. Miller, and Y. Shimamoto, *Phys. Rev.*, 166, 948 (1968);

J. N. Ginocchio, Phys. Rev. C, 17 (1978) 195.

J. Cugnon, C. Volant, and S. Vuillier, Nucl. Phys. A, 620 (1997) 475.

Bruyerères-le-Châtel INC: O. Bersillon et al., Proc. ADTTA'96, Kalmar, 1996, p. 520; H. Duarte, Proc. ADTTA'99, Praha, 1999, paper MO-0-C17; O. Bersillon, Proc. SARE-5/SATIF-5, Paris, 2000.

Medium Effect in INC: E. Suetomi, N. Kishida, and H. Kadotami, "An Analysis of the Intranuclear Cascade Evaporation Model with In-,Medium Nucleonnucleon Cross Sections," *Phys. Lett. B*, **333**, 22 (1994); H. Takada, "Nuclear Medium Effect in the Intranuclear Cascade Calculation, *J. Nuc. Sci. & Techn.*, **33**, 275 (1996).

## A + A:

J. Cugnon, D. Kinet, and J. Vanderrneulen, Nucl. Phys. A, 379 (1982) 553.

V. D. Toneev and K.K. Gudima, Nucl. Phys. A, 400 (1983) 173c.

Y. Yariv and Z.Frankel, Phys. Rev. C,24 (1981) 448.

•••

 $\gamma + A$ :

C. Y. Fu, T. A. Gabriel, and R. A. Lillie, "PICA95: An Intranuclear-Cascade Code for 25 MeV to 3.5 GeV Photon-Induced Nuclear Reactions," *Proc. SATIF3, Sendai, Japan, May 1997*, p. 49;
T. A. Gabriel and R. G. Alsrniller, Jr., *Phys. Rev.*, **182** (1969) 1035;
T. A. Gabriel, *Phys. Rev. C*, **13** (1976) 240.

A. S. Iljinov, I. A. Pshenichnov, N. Bianchi, E. De Sanctis, V. Muccifora, M. Mirazita, and P. Rossi, *Nucl. Phys. A*, 616 (1997) 575;
K.K. Gudirna, A. S. Iljinov, and V. D. Toneev, "A Cascade Model for Photonuclear Reactions," *JINR Communication P2-4661*, Dubna (1969);
V.S. Barashenkov, F. G. Geregi, A. S. Iljinov, G. G. Jonsson, and V.D. Toneev, *Nucl. Phys. A*, 231 (1974) 462;

T. Gabriel, G. Maino, and S. G. Mashnik, "Analysis of Intermediate Energy Photonuclear Reactions," JINR Preprint E2-94-424, Dubna (1994).

 $\bar{N} + A$ :

A. S. Iljinov, V. I. Nazaruk, and S. E. Chigrinov, Nucl. Phys. A , **382** (1982) 378; S.G. Mashnik, Rev. Roum. Phys., **37** (1992) 179.

J. Cugnon, P. Deneye, and J. Vanderrneulen, Nucl. Phys. A, 517 (1990) 533.

M. R. Clover, R. M. De Vries, N. J. Di Ciacorno, and Y. Yariv, *Phys. ReV. C*, **26** (1982) 2138.

•••

### Reviews:

A. S. Iljinov, M. V. Kazarnovsky, and E. Ya. Paryev, *Intermediate-Energy Nuclear Physics*, CRC Press, Boca Raton (1994).

L. Ray, G. W. Hoffrnann, and W. R. Coker, Phys. Rep., 212 (1992) 223.

Z. Fraenkel, Nucl. Phys. A (1984) 428.

V. S. Barashenkov and V.D. Toneev, Interaction of High Energy Particle and Nuclei with Atomic Nuclei, (in Russian) Atornizdat, Moscow (1972).

# Multifragmentation

- e Probabilistic models
- Macroscopic statistical models
- o Microscopic dynamical models
- e Molecular Dynamics; Quantum Molecular Dynamics
- o Kinetic models
- Sequential evaporation or very asymmetric fission
- o Hybrid models
- o ...

### Reviews:

L. G. Moretto, R. Ghetti, L. Phair, K. Tso, and G. J. Woaniak, *Phys. Rep.*, 287 (1997) 249.

J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, *Phys. Rep.*, 257 (1995) 133.

G. Peilert, H. Stoker, and W. Greiner, Rep. Prog. Phys., 57 (1994) 533.

A. Bonasera, F. Gulminelli, and J. Molitoris, Phys. Rep., 243 (1994) 1.

## In MCNPX, we use only Fermi Breakup:

E. Fermi, Prog. Theor. Phys., 5 (1950) 570.

A. P. Zhdanov, P. I. Fedotov, Sov. Phys. JETP, 18 (1964) 313;
M. Epharre, E. Gradsztajn, J. Phys. (Paris), 28 (1967) 747.

T. S. Subramanian, J. L. Rornero, F. P. Brady, D. H. Fitzgerald, R. Garrett, G. A. Needharn, J. Ullmann, J. W. Watson, C. I. Zanelli, D. J. Brenner, and R. E. Prael, *Phys. Rev.*, C34 (1986) 1580; D. J. Brenner and R. E. **Prael**, *At. Nucl. Data Tables*, **41** (1989) 71.

# Ultrarelativistic energies

## *Gribov-Regge theory* (Perturbative QCD doesn't apply yet)

- e Quark Gluon String Model (QGSM)
- String Gas Model (SGM)
- Dual Parton Model (DPM)
- e QCD Parton Model (PCM)
- Relativistic Quantum Molecular Dynamics (RQMD)
- e HERWIG, ISAJET, PYTHIA, VECBOS, PAPAGENO,..., event generators
- e CALOR89 code
- Lund FRITIOF code
- VENUS (Very Energetic Nuclear Scattering) code
- e GEANT4 code
- e MARS code
- e FLUKA (FLUctuating KAscade code)
- ...

# Reviews:

T. C. Awes and S. P. Sorensen, Nucl. Phys. A, 498, 123c (1989).

K. D. Lane, F. E. Paige, T. Skwarnicki, and W. J. Womersley, *Phys. Rep.*, **278** (1997) 291.

GEANT4, User's Documents, Physics Reference Manual, last update 08/04/99: http://wwwinfo.cern.ch/asd/geant4/G4UsersDocuments/UsersGuides/ PhysicsReferenceManual/html/PhysicsReferenceManual.html

<sup>•••</sup> 

# **Semiempirical Systematics**

## Reviews:

T. A. Gabriel and S. G. Mashnik, "Semiempirical Systematics for Different Hadron-Nucleus Interaction Cross Sections," JINR Preprint E4-96-43, Dubna (1996).

A. J. Koning, "Review of High Energy Data and Model Codes for Accelerator-Based Transmutation," ECN-C-93-005, Petten (January 1993).

J. Hufner, "Heavy Fragments Produced in Proton-Nucleus and Nucleus-Nucleus Collisions at Relativistic Energies," *Phys. Rep.*, 125, 129 (1985).

V. S. Barashenltov and V.D. Toneev, Interaction of High Energy Particles and Nuclei with Atomic Nuclei (Moscow, Atornizdat, 1972).

...

## Recent Useful Systematics:

R. Silberberg, C. H. Tsao, and A. F. Barghouty, "Updated Partial Cross Sections of Proton-Nucleus Reactions," Astrophys. J., 501 (1998) 911-919.

C. H. Tsao, A. F. Barghouty, and R. Silberberg, "Nuclear Cross Sections and the Composition, Transport, and Origin of Galactic Cosmic Rays," in *Topics in Cosmic-Ray Astrophysics*, Horizonts in World Physics series, vol. 230, Nova Science Publishers, Inc., Commack, New York, 1999, pp. 141-168.

K. Summerer and B. Blank, "Modified Empirical Parametrization of Fragmentation Cross Sections," Phys. Rev. C 61, 034607 (2000).

R. K. Tripathi, F. A. Cucinotta, and J. W. Wilson, "Accurate Universal Parametrization of Absorption Cross Sections," Nucl. Instr. Meth. B 117, 347 (1996).

R. K. Tripathi, J. W. Wilsonand, and F. A. Cucinotta, "Nuclear Absorption Cross Sections Using Medium Modified Nucleon-Nucleon Amplitudes," Nucl. Instr. Meth. B 145,277 (1998).

R. K. Tripathi, F. A. Cucinotta, and J. W. Wilson, "Medium Modified Nucleon-Nucleon Cross Sections in a Nucleus," Nucl. Instr. Meth. B 152, 425 (1999). H. Kitsuki, N. Shigyo, and K. Ishibashi, "Parametrization of Neutron Production Double-Differential Cross Sections above Several Tens-Mev by the use of Moving Sourse Model," Proc. 1999 Symp. on Nuclear Data, November 18-19, 1999, JAERI, Tokai, Japan, JAERI-Conf 2000-05, pp. 278-283 (2000).

B. S. Sychev, Cross Sections of High Energy Hadron Interactions on Nuclei (Russian Academy of Science, Moscow Radiotechnical Institute, Moscow, 1999).



$$\sigma(\vec{p})d\vec{p} = \sigma_{in}[N^{cas}(\vec{p}) + N^{prq}(\vec{p}) + N^{eq}(\vec{p})]d\vec{p}$$



September 14, 1998

Simulating Accelerator Radiation Environments Fourth International Workshop (SARE4) Hyatt Regency, Knoxville, TN, September 13-16, 1998

#### Improved Cascade-Exciton Model of Nuclear Reactions

#### Stepan G. NIASHNIK and Arnold J. SIERK

T-2, Theoretical Division Los Alarnos National Laboratory Los Alarnos, NM, 87545

|                                  | CEM97                                                                          | Bertini                                                                               | ISABEL                                              |
|----------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------|
| Method                           | INC + PE + EQ                                                                  | INC $+$ EQ or INC $+$ PE $+$ EQ                                                       | the same                                            |
| INC stage                        | Improved Dubna INC                                                             | Bertini INC                                                                           | ISABEL INC                                          |
| Monte Carlo technique            | "spacelike"                                                                    | the same                                                                              | "timelike"                                          |
| Nuclear                          | $\rho(r) = \rho_0 / \{exp[(r-c)/a] + 1\}$                                      | the same                                                                              | the same                                            |
| density                          | $c = 1.07A^{1/3}$ fm, $a = 0.545$ fm                                           | the same                                                                              | the same                                            |
| distribution                     | $ ho_n(r)/ ho_p(r)\equiv N/Z$                                                  | the same                                                                              | the same                                            |
|                                  | $\rho(r) = \alpha_i \rho(0); i = 1, \dots, 7$                                  | $\rho(\boldsymbol{r}) = \alpha_{\boldsymbol{i}}\rho(0); \boldsymbol{i} = 1, \dots, 3$ | i = 1,,8                                            |
|                                  | $\alpha_1 = 0.95,  \alpha_2 = 0.8,  \alpha_3 = 0.5,$                           | $\alpha_1=0.9, \alpha_2=0.2,$                                                         |                                                     |
|                                  | $\alpha_4 = 0.2, \ o \ s = 0.1, \ \alpha_6 = 0.05,$                            | о з = 0.01                                                                            |                                                     |
|                                  | o 7 = 0.01                                                                     |                                                                                       |                                                     |
| Nucleon                          | $V_N = T_F + B_N$                                                              | the same                                                                              | Nucleon kinetic energy $(T_N)$                      |
| potential                        |                                                                                |                                                                                       | dependent potential<br>$V_N = V_i(1 - T_N/T_{max})$ |
| Pion                             | $V_{,} = 25 \text{ MeV}$                                                       | $V_{\pi} = V_N$                                                                       | $V_{\pi} = 0$                                       |
| potential                        |                                                                                |                                                                                       |                                                     |
| Mean binding                     | $B_N \simeq 7 \text{ MeV}$                                                     | the same                                                                              | initial $B_N$ from mass table;                      |
| nucleon energy                   |                                                                                |                                                                                       | the same value is used                              |
|                                  |                                                                                |                                                                                       | throughout the calculation                          |
| Elementary cross                 | new, CEM97,                                                                    | standard Bertini INC (old)                                                            | standard ISABEL (old)                               |
| sections                         | last update March 1999                                                         |                                                                                       |                                                     |
| <b>A</b> + <b>A</b> interactions | not considered                                                                 | the same                                                                              | allowed                                             |
| $\gamma A$ interactions          | may be considered                                                              | not considered                                                                        | not considered                                      |
| Condition for passing            | $\mathcal{P} =  (W_{mod.} - W_{exp.})/W_{exp.} ,$                              | cutoff energy ~ 7 MeV                                                                 | different cutoff energies for p                     |
| from the INC stage               | P = 0.3                                                                        |                                                                                       | and n. as in VEGAS code                             |
| Nuclear density depletion        | not considered                                                                 | the-same                                                                              | considered                                          |
| PE stage                         | Improved MEM (CEM97)                                                           | MPM (LAHET) model                                                                     | the same <b>*</b>                                   |
| EQ stage                         | CEM97 model for                                                                | Dresner model for                                                                     | the same                                            |
|                                  | n, p, d, t, <b><sup>3</sup>He</b> , <b><sup>4</sup>He</b>                      | n, p, <b>d,</b> t. <sup>3</sup> He. <sup>4</sup> He                                   |                                                     |
|                                  | emission (+ fission) (+ $\gamma$ )                                             | emission (+ fission) (+ $\gamma$ )                                                    |                                                     |
| Level density                    | CEM97 models for                                                               | LAHET models for                                                                      | the same                                            |
|                                  | $\mathbf{a} = \boldsymbol{a}(\boldsymbol{Z}, \boldsymbol{N}, \boldsymbol{E}')$ | $\mathbf{a} = \mathbf{a}(\mathbf{Z}, \mathbf{N}, E')$                                 |                                                     |
| Multifragmentation               | Fermi breakup                                                                  | the same                                                                              | the same                                            |
| of light nuclei                  | as in LAHET                                                                    |                                                                                       |                                                     |
| Fission                          | CEM model for $\sigma_f$ ,                                                     | <b>ORNL</b> or RAL                                                                    | the same                                            |
| models                           | RAL fission fragmentation                                                      | models                                                                                | l                                                   |

#### Comparison between the main assumptions of the CEM97, Bertini, and ISABEL INC models

|                          | MEM (CEM97)                                          | MPM (LAHET)                              |
|--------------------------|------------------------------------------------------|------------------------------------------|
| Master equation;         | MEM (CEM97), differs from MPM;                       | MPM (LAHET), differs from MEM            |
| computation method       | Monte Carlo                                          | the same                                 |
| Nuclear transitions      | An = +2, 0, -2                                       | only $An = +2$                           |
| taken into account       |                                                      |                                          |
| . Matrix elements for    | MEM algorithm:                                       | Kalbach                                  |
| nuclear transitions      | $ M ^2 \sim < \sigma(v_{rel}) v_{rel} > /V_{int}$    | parameterization                         |
| Pauli correction term    | $A = (p^2 + h^2 + p - h)/4 - h/2$                    | $A = E_{Pauli} - [p(p+1) + h(h+1)]/4g_0$ |
| Multiple particle        | allowed, <b>no</b> limitation                        | the same                                 |
| emission                 |                                                      |                                          |
| Type of particle         | n, <b>p</b> , d, t, <sup>3</sup> He, <sup>4</sup> He | the same                                 |
| considered               |                                                      |                                          |
| Level density parameter, | CEM97 parameterization                               | Ignatyuk                                 |
| $g=6a(A,Z,E^*)/\pi^2$    | (+ 9 CEM95 options)                                  | (from GNASH)                             |
| Inverse cross sections   | Dostrovsky                                           | Kalbach parameterization                 |
| Coulomb barriers         | Dostrovsky form                                      | Kalbach form                             |
|                          | $(r_0 = 1.5  \text{fm})$                             | $(r_0 = 1.7 \text{ fm})$                 |
| Angular distribution     | forward picked, <b>CEM</b> algorithm:                | initially, isotropic;                    |
| of preequilibrium        | either by Master equation                            | Kalbach parameterization may             |
| particles                | or from kinematics                                   | be applied later                         |



#### Cross Sections of Spallation Residues Produced in 1A GeV <sup>208</sup>Pb on Proton Reactions

W. Wlazło,<sup>1,6</sup> T. Enqvist,<sup>2,\*</sup> P. Armbruster,<sup>2</sup> J. Benlliure,<sup>2,3</sup> M. Bernas,<sup>4</sup> A. Boudard,<sup>1</sup> S. Czájkowski,<sup>5</sup>

R. Legrain,' S. Leray,' B. Mustapha,<sup>4</sup> M. Pravikoff,' F. Rejmund,<sup>2,4</sup> K.-H. Schmidt,\* C. Stéphan,<sup>4</sup> J. Taieb,<sup>2,4</sup>

L. Tassan-Got,<sup>4</sup> and C. Volant'

<sup>1</sup>DAPNIA/SPhN CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France

<sup>2</sup>GSI, Planckstrasse I, D-64291 Darmstadt, Germany

<sup>3</sup>University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

<sup>4</sup>IPN Orsay, BPI, F-91406 Orsay Cedex, France

<sup>5</sup>CEN Bordeaux-Gradignan, F-33175, Gradignan, France

<sup>6</sup>Jagiellonian University, Institute of Physics, ulica Reymonta 4, 30-059 Kraków, Poland

(Received 11 February 2000)

Spallation residues produced in 1 GeV per nucleon <sup>208</sup>Pb on proton reactions have been studied using the Fragment Separator facility at GSI. Isotopic production cross sections of elements from  $_{61}$ Pm to  $_{82}$ Pb have been measured down to 0.1 mb with a high accuracy. The recoil kinetic energies of the produced fragments were also determined. The obtained cross sections agree with most of the few existing gamma-spectroscopic data. The data are compared with different intranuclear-cascade and evaporation-fission models. Drastic deviations were found for a standard code used in technical applications.

PACS numbers: 25.40.Sc, 24.10.-i, 25.70.Mn, 29.25.Dz

Spallation reactions have recently captured an increasing interest due to their technical applications as intense neutron sources for accelerator-driven subcritical reactors [1] or spallation neutron sources [2]. The design of an accelerator-driven system (ADS) requires precise knowledge of nuclide production cross sections in order to be able to predict the amount of radioactive isotopes produced inside the spallation target. Indeed, short-lived isotopes may be responsible for maintenance problems and longlived ones will increase the long term radiotoxicity of the system. Recoil kinetic energies of the fragments are important for studies of radiation damages in the structure materials or in the case of a solid target. Data concerning lead are particularly important since in most of the ADS concepts actually discussed, lead or lead-bismuth alloy is considered as the preferred material of the spallation target.

The present experiment, using inverse kinematics, is able to supply the identification of all the isotopes produced in spallation reactions and information on their recoil velocity. Moreover, the data represent a crucial benchmark for the existing spallation models used in the ADS technology. The precision of these models to estimate residue production cross sections is still far from the performance required for technical applications, as it was shown in Ref. [3]. This can be mostly ascribed to the lack of complete distributions of all produced isotopes to constrain the models. The available data were generally obtained by chemistry or gamma spectroscopy [4-6] which give access mostly to cumulative yields produced after long chains of decaying isotopes.

In this Letter, we report on complete isotopical production cross sections for heavy fragments produced in spallation of  $^{208}$ Pb on proton at 1*A* GeV, down to 0.1 mb with a high precision. The kinematic properties of the residues are also studied. The cross sections of lighter isotopes produced by fission will be presented in a forthcoming publication.

The experimental method and the analysis procedure have been developed and applied in previous experiments [7-9]. The primary beam of 1A GeV <sup>208</sup>Pb was delivered by the heavy-ion synchrotron SIS at GSI, Darmstadt. The proton target was composed of 87.3 mg/cm<sup>2</sup> liquid hydrogen [IO] enclosed between thin titanium foils of a total thickness of 36 mg/cm<sup>2</sup>. The primary-beam intensity was continuously monitored by a beam-intensity monitor (SEETRAM) based on secondary-electron emission. In order to subtract the contribution of the target windows from the measured reaction rate, measurements were repeated with the empty target. Heavy residues produced in the target were all strongly forward focused due to the inverse reaction kinematics. They were identified using the Fragment Separator (FRS) [11].

The FRS is a two-stage magnetic spectrometer with a dispersive intermediate image plane  $(S_2)$  and an achromatic final image plane  $(S_4)$  with momentum acceptance of 3% and angular acceptance of 14.4 mrad around the beam axis. Two position-sensitive plastic scintillators placed at  $S_2$  and  $S_4$ , respectively, provided the magnetic-rigidity (**Bp**) and time-of-flight measurements, which allowed to determine the mass-over-charge ratio of the particles. In the analysis, totally stripped residues were considered only. In the case of residues with the highest nuclear charges (above  $_{65}$ Tb) an achromatic degrader (5.3 to 5.9 g/cm<sup>2</sup>) of aluminum) was placed at  $S_2$  to obtain a better Z resolution. The elements below terbium were identified from an energy-loss measurement in an ionization chamber (MUSIC). The velocity of the identified residue was determined at  $S_2$  from the **Bp** value and transformed into the frame of the beam in the middle of the target taking into account the appropriate energy loss. About 100



FIG. 2. Isotopic production cross-sections of elements between Z=82 and 61, in the reaction of 1 A GeV <sup>208</sup>Pb on hydrogen, versus neutron number. Stable (resp. radioactive) isotopes are marked by open (resp. full) triangles. Gamma-spectroscopy data regarding shielded isotopes from [6] are plotted as open circles. The solid, dashed and dotted curves were calculated with the Cugnon-Schmidt [20,21], Bertini [16]-Dresner [18,19] and Isabel [17]-Dresner models, respectively.

cross-section is the sum of the production of the ground and the isomeric states. The data agree within their error bars, except for the isotope with the lowest cross-section to the fact that the prediction of the neutron-proton evaporation competition in the Dresner code is not satisfving. The state of the measured and calculated



FIG. 3. Mass distribution (upper panel) and recoil kinetic energy (bottom panel) of the residues produced in 1·A GeV <sup>208</sup>Pb on hydrogen reactions (triangles) versus mass number, compared with the Cugnon-Schmidt (solid line), Bertini-Dresner (dashed line) and Isabel-Dresner (dotted line) models. The dash-dotted line shows the recoil kinetic energies expected from the Morrissey systematics [23].

The velocity distribution of each residue was also determined, from which it was possible to infer information about the recoil kinetic energy in the projectile system. In the bottom part of Fig. 2 the second [19

[20

 $\lceil 1 \rceil$ 

[1

[1

[1

[1-

[1.

[1(

[1'

[1{

# 1 GeV p on Pb208

## residual nucleus production





### Mass yields in Pb-208 irradiated with 1GeV protons



Product isotopic distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+LAHET(isabel)



Product isotop c distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+LAHET(bertini)



Product isotopic distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+INUCL

Product isotopic distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+CASCADE





Product isotopic distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+CASCADE(inpe)



Product isotopic distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+YIELDX

Isotopic distributions of the products in Pb-208+1GeV protons: GSI+ITEP+Codes



Isotopic distributions of the products in Pb-208+1GeV protons: GSI+ITEP+Codes



Isotopic distributions of the products in Pb-208+1GeV protons: GSI+ITEP+Codes





Product isotopic distributions in <sup>208</sup>Pb+1GeV: GSI+ZSR+ITEP+CEM2k

Product mass

### Products in Pb-208 irradiated with 1GeV protons





Further work

- fission cross sections
- fission fragment A-, Z-, T-, E\*-, L-distributions
- inverse cross sections
- complex particle and fragment emission
- where to stop evaporation, at

A = 4 (most models),

- A = 18 (Botvina, Shmakov, Uzhinsky'95),
- A = 20 (Schmidt'98),
- A = 28 (Furihata'00),
- or even further ?
- criteria for transaction from INC to PE and from PE to EV
- do we need to use in-medium elementary cross sections, and where to take them from ?
- reliable optical potential for all particles, not only nucleons
- ...