
LA-13744-T
Thesis

Development and Implementation of

Photonuclear Cross-Section Data for

Mutually Coupled Neutron-Photon

Transport Calculations in the

Monte Carlo N-Particle (MCNP)

Radiation Transport Code

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.

Approved for public release;
distribution is unlimited.

This thesis was accepted by the Graduate Faculty of the College of
Engineering, and the Graduate School of the University of Florida,
Gainesville, Florida, in partial fulfillment of the requirements for the
degree of Doctor of Philosophy. The text and illustrations are the inde-
pendent work of the author and only the front matter has been edited by
the CIC-1 Writing and Editing Staff to conform with Department of
Energy and Los Alamos National Laboratory publication policies.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither The Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the University of California, the United States Government, or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of
The Regents of the University of California, the United States Government, or any agency
thereof. Los Alamos National Laboratory strongly supports academic freedom and a
researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Development and Implementation of
Photonuclear Cross-Section Data for
Mutually Coupled Neutron-Photon
Transport Calculations in the
Monte Carlo N-Particle (MCNP)
Radiation Transport Code

Morgan C. White

LA-13744-T
Thesis

Issued: July 2000

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545

v

ACKNOWLEDGMENTS

As with any large research project, there are a myriad of people who deserve

thanks for their contributions to this work. I would like to try to thank as many of you by

name as possible and sincerely apologize if I miss anyone who should have been

included. This has been a long hard stretch of my life, but it was time well spent thanks

to your support and care.

The first words of thanks must go to my mentor and friend, Samim Anghaie. As

chairman of both my masters and doctoral research committees, he has guided me

through my opening steps into a new world. Personally, he has been an inspiration. I

know few people of as fine character and spirit.

To my committee members, my sincerest appreciation for your time and patience

as we have progressed down this path. Without your encouragement and support, this

work would never have been possible. I would like to thank Jatindar Palta, Frank Bova

and Wolfgang Tome for their patience with an engineer trying to understand the medical

physics world; Paul Fishwick for his guidance in the world of computer simulations; and

Robert Hanrahan for his unique perspective. A special thanks is due Bob Little,

Stephanie Frankle and Mark Chadwick. Their contributions in helping me understand the

use of nuclear data for Monte Carlo simulations turned this work into a fulfilling project

of which I am truly proud.

The list of people with whom I have had useful discussions is quite long and I

would like to thank all of them. I would like to acknowledge by name Grady Hughes,

Morgan C White
This is the final text of the thesis presented to the Graduate School at the University of Florida in partial fulfullment of the requirements for the degree Doctor of Philosophy. It has been edited slightly to conform more to the LA-Series report style but no content has been changed. It is suitable for online viewing or double-sided printing. If you choose to print a hard copy, think about skipping Appendices B & C (~300 pages) as these are code listings. (Be kind to the trees.)All questions should be refered to the author. Morgan C White is currently (July 2000) working at the Los Alamos National Laboratory and can be reached via the internet at morgan@lanl.gov.

vi

Larry Cox, Ken Adams, Chris Werner, Tom Booth, Dick Prael, Jack Comly, Joann

Campbell, Judy Briesmeister, Jeff Favorite, Art Forster, Henry Lichtenstein, John

Hendricks, and Gregg McKinney for the many discussions and insights on the Monte

Carlo method. Thanks to Indrin Chetty, John Demarco, Tim Solberg, Jim Smathers, Paul

Deluca and Dave Rogers for the discussions on medical physics and simulating medical

electron accelerators. Thanks to Sam Iverstin and Bill Vernetson for their assistance and

the use of the NAA facility at UF. Thanks to Joon Park, Texin Lee and Seyong Kim for

their assistance in performing the irradiation experiments around the Phillips MEA.

I would also like to acknowledge the support of those people who have been there

for the day to day grind at both the University of Florida and the Los Alamos National

Laboratory. Thanks to Beth Bruce, Joan Morehouse, Christine Jolly and Ann Nagy for

their assistance in making life easier. Thanks to Ed Dugan, Don Shirk, Alexandra Heath

and Tom Seed for their encouragement and support.

I would also like to acknowledge several sources of monetary support. First,

thanks to the U.S. Department of Energy. In one way or another, the DOE has paid for

my time at graduate school. First, through a four-year Nuclear Engineering fellowship as

administered by the Oak Ridge Institute for Science and Education and more recently as a

graduate research assistant at LANL. I also need to thank two other resources. The

project for the Accelerator Production of Tritium sponsored the creation of photonuclear

data here at LANL. This was in part due to the diligent and farsighted efforts of Laurie

Waters. Many thanks. Also, thanks to the Advance Computing Laboratory at LANL.

Many of the calculations presented here were performed using spare CPU cycles from the

Blue Mountain supercomputer.

vii

Finally, I want to thank my family. To my mother and father, you have been the

most wonderful parents a son could have. You taught me the power of imagination and

persistence. To my brother, many thanks for reminding me to always look at things from

a different perspective. And at last, thanks to my wife Sarah for her patience,

encouragement and love. I love you all.

ix

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS .. v

LIST OF FIGURES .. xiii

LIST OF TABLES .. xvii

ABSTRACT .. xxiii

CHAPTERS

1 INTRODUCTION .. 1

2 BACKGROUND .. 7

Introduction ... 7
Physics of Photonuclear Interactions .. 9
Experimental Photonuclear Data .. 13
Previous Photonuclear Studies .. 14
Current Developments .. 17

3 IMPLEMENTATION: COUPLING PHOTONUCLEAR
PHYSICS INTO MCNP(X) .. 19

Introduction to Tabular Monte Carlo Radiation Transport 19
Data Storage .. 20

Photoatomic Versus Photonuclear Data .. 20
Standard ACE Tables .. 21
Photonuclear Class ‘u’ ACE Table ... 24

Data Processing ... 31
Coupling Photonuclear Physics into MCNP ... 36

Introduction ... 36
Setup and Storage ... 39

Material specification .. 39
Photonuclear isotope override card (MPN) .. 41
Table ID specification ... 42
Default LIB specifier .. 43
Table selection and storage ... 45

x

3 IMPLEMENTATION: COUPLING PHOTONUCLEAR
PHYSICS INTO MCNP(X) CONTINUED

Physics Implementation .. 54
Tallies, Summaries and Other Capabilities ... 61

Future Work .. 72

4 VERIFICATION AND VALIDATION ... 74

Introduction to Verification and Validation .. 74
Verification ... 77
Comparison to Theoretical Yields .. 80

Calculating Theoretical Yields ... 80
Simulation Setup ... 82
Comparison to Current Calculations ... 84

Comparison to Measured Yields ... 92
Experimental Setup ... 92
Simulation Setup ... 99
Comparison to Current Calculations ... 103

Conclusions from Verification and Validation ... 116

5 APPLICATION: SIMULATION OF A MEDICAL
ELECTRON ACCELERATOR .. 118

Introduction ... 118
Validating the Simulation ... 119

Background ... 119
Physical geometry ... 119
Transport data ... 121
Radiation source .. 123
Transport algorithms ... 124
Obtaining output ... 125

Experimental Setup ... 125
Simulation Setup ... 133

Physical geometry ... 134
Transport data ... 140
Radiation source .. 142
Transport algorithms ... 143
Obtaining output ... 144

Discussion of the Results .. 151
Depth dose .. 151
Activation .. 160

Implications ... 184

6 SUMMARY AND CONCLUSIONS ... 193

xi

APPENDICES

 A PHOTONUCLEAR ACE TABLE FORMAT .. 200

 B MKPNT PROCESSING CODE ... 237

C PHOTONUCLEAR PATCH FILE ... 403

D MISCELLANEOUS DATA FROM VALIDATION STUDIES 458

E MISCELLANEOUS DATA FROM APPLICATION STUDIES 480

REFERENCES ... 528

SIGNATURE SHEET .. 539

xiii

LIST OF FIGURES

Figure page

2-1 Illustrated representation of the giant dipole resonance and 10
quasi-deuteron absorption mechanisms.

4-1 Calculated versus theoretical neutron yield for electrons of 86
various incident energy on a thick aluminum target.
(Reported values from Swanson, 1979.)

4-2 Calculated versus theoretical neutron yield for electrons of 87
various incident energy on a thick iron target. (Reported
values from Swanson, 1979.)

4-3 Calculated versus theoretical neutron yield for electrons of 89
various incident energy on a thick copper target.
(Reported values from Swanson, 1979.)

4-4 Calculated versus theoretical neutron yield for electrons of 91
various incident energy on a thick tantalum target.
(Reported values from Swanson, 1979.)

4-5 Calculated versus theoretical neutron yield for electrons of 93
various incident energy on a thick tungsten target.
(Reported values from Swanson, 1979.)

4-6 Calculated versus theoretical neutron yield for electrons of 94
various incident energy on a thick lead target. (Reported
values from Swanson, 1979.)

4-7 Experimental setup for the Barber and George experiments. 96

4-8 Setup used for simulation of the Barber and George experiments. 100

4-9 Percentage variation in absolute yield as a function of the 102
percent change in various beam parameters.

xiv

4-10 Calculated versus experimental neutron yield for electrons 105
of various incident energy on a one radiation length thick
aluminum target. (Reported values from Barber and
George, 1959.)

4-11 Calculated versus experimental neutron yield for electrons 106
of various incident energy on a one radiation length thick
copper target. (Reported values from Barber and
George, 1959.)

4-12 Calculated versus experimental neutron yield for electrons 107
of various incident energy on a two radiation length thick
copper target. (Reported values from Barber and
George, 1959.)

4-13 Calculated versus experimental neutron yield for electrons 108
of various incident energy on a three radiation length thick
copper target. (Reported values from Barber and
George, 1959.)

4-14 Calculated versus experimental neutron yield for electrons 109
of various incident energy on a four radiation length thick
copper target. (Reported values from Barber and
George, 1959.)

4-15 Calculated versus experimental neutron yield for electrons 110
of various incident energy on a one radiation length thick
tantalum target. (Reported values from Barber and
George, 1959.)

4-16 Calculated versus experimental neutron yield for electrons 111
of various incident energy on a one radiation length thick
lead target. (Reported values from Barber and
George, 1959.)

4-17 Calculated versus experimental neutron yield for electrons 112
of various incident energy on a two radiation length thick
lead target. (Reported values from Barber and
George, 1959.)

4-18 Calculated versus experimental neutron yield for electrons 113
of various incident energy on a three radiation length thick
lead target. (Reported values from Barber and
George, 1959.)

xv

4-19 Calculated versus experimental neutron yield for electrons 114
of various incident energy on a four radiation length thick
lead target. (Reported values from Barber and
George, 1959.)

4-20 Calculated versus experimental neutron yield for electrons 115
of various incident energy on a six radiation length thick
lead target. (Reported values from Barber and
George, 1959.)

5-1 Diagram of Room 5 at the Shands Cancer Center at the 127
University of Florida.

5-2 Simple schematic of the known geometry in the medical 137
accelerator treatment head.

5-3 Ion chamber trace plots from a standard calibration of the 153
Phillips SL25 in Room 5 of Shands Cancer Center.

5-4 Comparison of ion chamber trace with calculated heating 154
tally for a) a 30x30 field; b) a 10x10 field; and
c) a 5x5 field.

5-5 Percent differences between ion chamber trace and 155
calculated heating tally for a) a 30x30 field; b) a 10x10
field; and c) a 5x5 field. (Percent difference is computed
as (trace – calculation)/trace.)

5-6 Comparison of ion chamber trace with calculated energy 157
deposition for a) a 30x30 field; b) a 10x10 field; and
c) a 5x5 field.

5-7 Percent differences between ion chamber trace and 159
calculated energy deposition for a) a 30x30 field; b) a
10x10 field; and c) a 5x5 field. (Percent difference is
computed as (trace – calculation)/trace.)

5-8 Estimate of electrons incident on target per MU (1 cGy) for 161
the energy range of interest.

5-9 Calculated production rate of 198Au in the ingot located 167
at isocenter.

5-10 Calculated production rate of 196Au in the ingot located at 168
isocenter using MCNP4BPN.

xvi

5-11 Calculated production rate of 196Au in the ingot located at 169
isocenter using MCNP4BNU.

5-12 Calculated production rate of 198Au in the ingot located at 171
isocenter surrounded by A-150 plastic.

5-13 Calculated production rate of 196Au in the ingot located at 172
isocenter surrounded by A-150 plastic using MCNP4BPN.

5-14 Calculated production rate of 196Au in the ingot located at 173
isocenter surrounded by A-150 plastic using MCNP4BNU.

5-15 Calculated production rate of 198Au in the foils distributed 177
radially outward in the cross-plane direction from isocenter
surrounded by the A-150 plastic.

5-16 Calculated production rate of 198Au in the ingot located 179
in the maze.

5-17 Calculated production rate of 196Au in the ingot located in 180
the maze using MCNP4BPN.

5-18 Calculated production rate of 196Au in the ingot located in 181
the maze using MCNP4BNU.

5-19 Theoretical photon dose per monitor unit at isocenter. 186

5-20 Theoretical neutron and photon dose per monitor unit one 188
meter above the target.

5-21 Theoretical neutron and photon dose per monitor unit one 189
meter from the target in the cross-plane.

5-22 Theoretical neutron and photon dose per monitor unit one 190
meter from the target in the in-plane.

5-23 Theoretical neutron and photon dose per monitor unit one 191
meter just inside of the maze.

5-24 Theoretical neutron and photon dose per monitor unit one 192
meter at the door to the maze.

xvii

LIST OF TABLES

Table page

3-1 Standard ACE table description. ... 23

3-2 Description of the NXS Array elements in a photonuclear 25
class ‘u’ ACE format.

3-3 Description of the JXS Array elements in a photonuclear 26
class ‘u’ ACE format.

3-4 Description of the IXS Array elements in a photonuclear 29
class ‘u’ ACE format.

3-5 Association of particles with their symbol and IPT index 30
number as defined in MCNP(X).

3-6 Example problem summary table for neutrons. .. 63

3-7 Example problem summary table for photons. ... 64

3-8 Example page from the neutron weight balance table (Print 66
Table 130).

3-9 Example page from the photon weight balance table (Print 67
Table 130).

3-10 Example page from the neutron activity by nuclide table 69
(Print Table 140).

3-11 Example page from the photoatomic activity by nuclide 70
table (Print Table 140).

3-12 Example page from the photonuclear activity by nuclide 71
table (Print Table 140).

4-1 Materials and properties used by Swanson to calculate 82
theoretical neutron yields.

xviii

4-2 Natural isotopic abundance for elemental target materials 83
and their isotopic representation due to lack of available
tabular data.

4-3 Integrated photoneutron yield cross-sections for copper. 88

4-4 Integrated photoneutron yield cross-sections for tantalum. 90

4-5 Targets and essential experimental parameters are given 99
as used to simulate the experiments of Barber and
George (1959).

5-1 ID, mass, position, start time and length of irradiation 133
of the gold samples.

5-2 Experimental and simulated production rates of 196Au 178
for four configurations.

5-3 Experimental and simulated production rates of 198Au 183
for four configurations.

A-1 Standard table description for the photonuclear class ‘u’ 201
ACE format.

A-2 Description of the NXS Array elements in a photonuclear 202
class ‘u’ ACE format.

A-3 Description of the JXS Array elements in a photonuclear 204
class ‘u’ ACE format.

A-4 Description of the IXS Array elements in a photonuclear 210
class ‘u’ ACE format.

A-5 Association of particles with their symbol and IPT index 211
number as defined in MCNP(X).

A-6 Reaction yield data in the form of a production cross-section. 214

A-7 Reaction yield data in the form of reaction multiplicity. 215

A-8 Interpolation schemes as defined for the ENDF-6 format. 217

A-9 Angular distribution header information. ... 218

A-10 Description of Angular Law 1 32 equi-probable bin angular 219
distribution table.

xix

A-11 Description of Angular Law 2 tabulated angular .. 220
distribution table.

A-12 Emission parameter law header information. ... 221

A-13 Law dependent format for Energy Law 1 (Tabular .. 223
Equi-probable Energy Bins).

A-14 Law dependent format for Energy Law 2 (Discrete 224
Emission Energy).

A-15 Law dependent format for Energy Law 3/33 .. 224
(Level Scattering).

A-16 Law dependent format for Energy Laws 4, 44 and 61 225
(Tabular Energy Distributions).

A-17 Tabular distribution format for Energy Law 4 .. 226
(Tabular energy distribution).

A-18 Tabular distribution format for Energy Law 44 .. 226
(Kalbach correlated energy/angle distribution).

A-19 Tabular distribution format for Energy Law 61 .. 228
(Correlated tabular energy/angle distribution).

A-20 Tabular angular distribution format for Energy Law 61. 228

A-21 Law dependent format for Energy Law 5 ... 229
(General Spectrum).

A-22 Law dependent format for Energy Law 7 ... 230
(Simple Maxwell Fission Spectrum).

A-23 Law dependent format for Energy Law 9 ... 230
(Evaporation Spectrum).

A-24 Law dependent format for Energy Law 11 ... 232
(Energy Dependent Watt Spectrum).

A-25 Law dependent format for Energy Law 22 ... 233
(Tabular Linear Functions).

A-26 Tabular distribution format for Energy Law 22. ... 233

xx

A-27 Law dependent format for Energy Law 24 ... 234
(Tabular Energy Multiplier).

A-28 Law dependent format for Energy Law 66 ... 235
(N-body Phase Space Distribution).

A-29 Law dependent format for Energy Law 67 ... 235
(Tabulated Angle/Energy).

A-30 Tabular distribution format for Energy Law 67. ... 236

A-31 Tabular energy distribution format for Energy Law 67. 236

D-1 Reported and calculated yields for a “semi-infinite” 460
aluminum target.

D-2 Reported and calculated yields for a “semi-infinite” 461
iron target.

D-3 Reported and calculated yields for a “semi-infinite” 462
copper target.

D-4 Reported and calculated yields for a “semi-infinite” 463
tantalum target.

D-5 Reported and calculated yields for a “semi-infinite” 464
tungsten target.

D-6 Reported and calculated yields for a “semi-infinite” 465
lead target.

D-7 Reported and calculated yields for an approximately 466
one radiation-length thick aluminum target.

D-8 Reported and calculated yields for an approximately....................................... 467
one radiation-length thick copper target.

D-9 Reported and calculated yields for an approximately 468
two radiation-length thick copper target.

D-10 Reported and calculated yields for an approximately 469
three radiation-length thick copper target.

D-11 Reported and calculated yields for an approximately 470
four radiation-length thick copper target.

xxi

D-12 Reported and calculated yields for an approximately 471
one radiation-length thick tantalum target.

D-13 Reported and calculated yields for an approximately 472
one radiation-length thick lead target.

D-14 Reported and calculated yields for an approximately 473
two radiation-length thick lead target.

D-15 Reported and calculated yields for an approximately 474
three radiation-length thick lead target.

D-16 Reported and calculated yields for an approximately 475
four radiation-length thick lead target.

D-17 Reported and calculated yields for an approximately 476
six radiation-length thick lead target.

D-18 Effect of changes in beam energy over a ten .. 477
percent variation.

D-19 Effect of changes in target thickness over a ten .. 478
percent variation.

D-20 Effect of changes in beam radius over a ten ... 479
percent variation.

xxiii

DEVELOPMENT AND IMPLEMENTATION OF PHOTONUCLEAR
CROSS-SECTION DATA FOR MUTUALLY COUPLED

NEUTRON-PHOTON TRANSPORT CALCULATIONS IN THE
MONTE CARLO N-PARTICLE (MCNP) RADIATION TRANSPORT CODE

by

Morgan C. White

ABSTRACT

The fundamental motivation for the research presented in this dissertation was the

need to development a more accurate prediction method for characterization of mixed

radiation fields around medical electron accelerators (MEAs). Specifically, a model is

developed for simulation of neutron and other particle production from photonuclear

reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport

code. This extension of the capability within the MCNP code provides for the more

accurate assessment of the mixed radiation fields.

The Nuclear Theory and Applications group of the Los Alamos National

Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select

group of isotopes. These data provide the reaction probabilities as functions of incident

photon energy with angular and energy distribution information for all reaction products.

The availability of these data is the cornerstone of the new methodology for state-of-the-

art mutually coupled photon-neutron transport simulations.

The dissertation includes details of the model development and implementation

necessary to use the new photonuclear data within MCNP simulations. A new data

xxiv

format has been developed to include tabular photonuclear data. Data are processed from

the Evaluated Nuclear Data Format (ENDF) to the new class ‘u’ A Compact ENDF

(ACE) format using a standalone processing code. MCNP modifications have been

completed to enable Monte Carlo sampling of photonuclear reactions. Note that both

neutron and gamma production are included in the present model.

The new capability has been subjected to extensive verification and validation

(V&V) testing. Verification testing has established the expected basic functionality.

Two validation projects were undertaken. First, comparisons were made to benchmark

data from literature. These calculations demonstrate the accuracy of the new data and

transport routines to better than 25 percent. Second, the ability to calculate radiation dose

due to the neutron environment around a MEA is shown. An uncertainty of a factor of

three in the MEA calculations is shown to be due to uncertainties in the geometry

modeling. It is believed that the methodology is sound and that good agreement between

simulation and experiment has been demonstrated.

1

CHAPTER 1
INTRODUCTION

At the beginning of this work, several of the graduate students and faculty from

both the Nuclear and Radiological Engineering Department and the Department of

Radiation Oncology at the University of Florida had begun an intensive exploration of

the radiation environment around typical radiotherapy equipment. The goals in mind

were more accurate measurement and simulation of these radiation environments.

During the course of these early studies, it was observed that the simulation of

photonuclear interactions had not received the systematic treatment that electron,

photoatomic and neutron interactions receive in the generally available radiation transport

codes. This presented a ripe opportunity for a doctoral project and the work you read

today is the final result.

The initial course of action was to determine what tools were available for the

task of simulating photonuclear interactions. It was quickly determined that the single

greatest obstacle to performing photonuclear simulations was the lack of complete

double-differential cross sections describing the reaction cross sections as well as the

secondary particle emission spectra from the reactions. Complete, evaluated tabular

cross-section data are the fundamental keys to performing high-accuracy Monte Carlo

radiation transport simulations. As a result of the lack of such data, the concept proposed

at the beginning of this work was to make the best of what was available by developing a

method for using experimental photoneutron data to assess interaction probabilities and

2

nuclear modeling to estimate emission spectra. Then, using this data, a working

simulation would be implemented for use in making general predictions of the neutron

flux in the vicinity of high-energy medical electron accelerators (MEAs).

The importance of the assessment of the neutron field around MEAs is a long-

standing subject of debate. It has been known since early in the development of high-

energy electron accelerators that they create neutrons as a by-product. The term by-

product is used because neutrons are typically viewed as a contaminant, not an asset.

Since MEAs have become the workhorse of the radiotherapy community, the production

of neutrons from these machines is a significant concern. In the use of MEAs for

radiotherapy, the desire is to minimize the harm caused by the neutron dose to the patient

and workers during the necessary delivery of electron-photon dose to treat cancerous

growths.

The most intense investigation of the neutron production and transport around

MEAs was during the 1970’s and early 1980’s when the electron energies used in routine

treatments began to climb above the threshold for significant photoneutron production.

The two most noteworthy publications on this subject date from that time. In 1979, the

National Bureau of Standards held a conference devoted to examining the production of

neutrons from MEAs [1]. Several years later, in 1984, the National Council on Radiation

Protection and Measurements (NCRP) released a report [2] documenting their

recommendations for assessing risks associated with the production and transport of

neutrons within a MEA treatment room. However, despite a wealth of studies produced

before, during and since those seminal works, the systematic treatment of the simulation

3

of photoneutron production has not been addressed, hence the defining motivation for the

current work.

It should be noted that this work has been approached from the perspective of

nuclear and radiological engineering, not necessarily that of medical physics. To

reinforce the difference, the goal of this work is clearly stated here. This work seeks to

provide a systematic treatment of photoneutron production as a part of the simulation of

electron accelerators. It is an applied objective in the sense that the end product is a tool

capable of simulating the production and transport of neutrons around a MEA and

quantifying the uncertainty. The final product may then be used by future researchers to

continue efforts in this field aimed at understanding, evaluating and reducing neutron

contamination around electron accelerators.

Early in this work, it was decided that the Monte Carlo N-Particle (MCNP)

radiation transport code [3] would be used as the base for the development of a

simulation code including photoneutron production. This choice was made for a number

of reasons. First and foremost, it was desired to build upon an well-established code in

order to take advantage of existing validated algorithms. In addition, the author was

already familiar with the use of MCNP for transport simulations.

MCNP provided the desired base for starting an effort to integrate photonuclear

physics into a radiation transport code. It already included the algorithms and data

necessary for modeling electron, photoatomic and neutron transport. More than that, it

has been the product of hundreds of man-years of development dating back to the very

originators of the Monte Carlo radiation transport method [4]. This development work

has been verified and validated through the efforts of thousands of users for a wide range

4

of problems. Specifically, MCNP includes both an electron-photon and a neutron

transport package, each of which have a well-established history of use. In fact, as will

be discussed in the following chapter, MCNP had already been used for simple

uncoupled simulation of photoneutron production and subsequent neutron transport.

Therefore, all that remained was to formalize the coupling between the two transport

packages and provide verification and validation of the new functionality.

However, the modification of a large code is a daunting task. MCNP is 40,000

lines of highly interdependent, extremely terse Fortran77 code. When it was first

developed, the formal idea of software management had not yet been conceived.

Therefore, after floundering among the bits, the author approached the X-5 group at the

Los Alamos National Laboratory (LANL), who maintain the MCNP code and its tabular

data, about the possibility of a collaboration to pursue this work. The reception this idea

received was much more than expected.

For the author, this work embodies the saying about being in the right place at the

right time. As discussed above, the primary obstacle to accurate simulation of

photonuclear interactions has been the lack of complete, evaluated data necessary for

tabular Monte Carlo sampling. Not only were the staff at LANL interested in pursuing a

collaboration, they were willing to install the author onsite with access to the MCNP

development team and, more importantly, access to first-of-a-kind evaluated

photonuclear data. The full significance of this will be discussed in the following

chapter.

The remainder of this dissertation is composed of four main chapters and the

conclusions. The next chapter provides a basic understanding of the mechanics of

5

photonuclear physics and the data and models available to describe them. While there is

not an abundance of experimental data or validated nuclear models, it is important to

discuss what is available. In particular, the creation of the newly available evaluated

photonuclear data is discussed. As part of this chapter, previous photonuclear studies

will be mentioned to indicate how the available data have determined the fidelity of

simulation ability possible.

The third chapter begins the original work presented here for consideration. It

opens with a brief discussion on the data needed to perform a Monte Carlo simulation.

From there it progresses through the development of the necessary formats for storing the

data, how evaluated data are manipulated into those formats and, finally, how the data are

actually used within the transport code. This chapter is the core of the work presented.

The developments discussed meet and exceed the original goal of providing a systematic

treatment of photoneutron production.

With this new ability to perform fully coupled photonuclear simulations, the next

step was to estimate the uncertainty in the use of the simulation with the current

evaluated data. The fourth chapter presents the concepts of verification and validation as

methods to assess how well the newly developed simulation capability is able to calculate

neutron production from high-energy electrons incident on materials for which evaluated

data exist. It presents two sets of yield measurements found in the literature and shows

comparisons to the current calculated values. Conclusions about the uncertainty in the

new capability are drawn from these comparisons.

As the original motivation for this work was the more accurate simulation of

medical electron accelerators, the fifth chapter presents an initial assessment of one of the

6

accelerators currently in use at Shands Cancer Center at the University of Florida. The

difficulties in modeling such facilities are discussed and an estimate is made about the

uncertainties involved based on experimental measurements made around the MEA

during this work. The final chapter summarizes the developments and conclusions of this

work.

7

CHAPTER 2
BACKGROUND

Introduction

The single greatest obstacle to accurate simulation of photonuclear interactions

within the confines of Monte Carlo radiation transport has been the lack of evaluated,

complete data. The use of probabilities to sample interaction rates and resultant products

is the key defining feature of Monte Carlo transport. This can be done either through

nuclear models or by tabular data. Evaluated tabular data contain the most accurate

description of the data available as determined by an evaluator based on judgement of the

experimental measurements and nuclear modeling available. For tabular data, complete

indicates that in addition to reaction cross sections, all resultant products are given with

energy and angular emission spectra as a function of incident particle energy.

Evaluated data are based on the best judgement of a data evaluator. This small

field of researchers has in-depth knowledge of both the experimental data and the nuclear

models available to describe nuclear reactions for an incident particle on a given target

nucleus. Both experimental data and nuclear models are required for this process.

Experimental measurements are the best descriptions of physical reality as they

demonstrate measured fact. However, experimental measurements are difficult to obtain

and never cover the full regime of interest. Nuclear models are complete descriptions of

interactions based on theory. Both are subject to error. Therefore, the evaluator must use

8

experience and judgement to meld theory and experiment into the best available

description of the data.

For transport simulations, it is necessary to have complete descriptions of the

interactions. Cross sections describe the interaction probability for a particle traversing a

material as a function of the incident particle’s energy. Emission spectra describe the

energy and angle of the secondary particles resulting from an interaction once it has

occurred. It is in the estimation of this second set of information that nuclear models are

essential. They can provide self-consistent complete descriptions of the emission spectra.

Evaluated, complete tabular data are generally considered the most accurate

description of the interactions available. Until very recently such data have not existed

for photonuclear interactions. As will be discussed in the section of this chapter entitled

Current Developments, several groups of evaluators, both in the United States and

internationally, have recently provided such data. Before discussing the newly available

data, it is worth stepping back and taking a brief look at the physics of photonuclear

interactions and the history of the experimental data and simulation models describing

them.

First it is necessary to clarify the use of the term data. “Data” is a much abused

word and it must be placed in context for it to be truly meaningful. Within the body of

this work, the phrase “experimental data” refers to measurements made under laboratory

conditions. “Theoretical data” refers to values computed using some form of an

analytical model based strictly on theory or guided by, but not directly taken from,

experimental data. The term “evaluated data” has been described above. “Tabular data”

indicate values listed at discrete points in the phase space. “Benchmark data” are

9

theoretical, experimental or calculated data considered to be correct. To confuse the

issue, data often fall into more than one category.

Physics of Photonuclear Interactions

It is important to spend a few moments discussing the physics behind

photonuclear reactions in order to provide a context for describing the information

contained within the evaluated data. The description presented here is not intended to be

a comprehensive explanation of the nuclear physics underlying this phenomena. Rather

it is intended to be an illustrative description presenting the basic concepts and providing

useful references for further details.

A photonuclear interaction begins with the absorption of a photon by a nucleus.

There are many mechanisms by which this can occur. The data currently available focus

on the energy range up to 150 MeV incident photon energy. The value of 150 MeV was

chosen as this energy is just below the threshold for the production of pions and the

subsequent need for much more complicated nuclear modeling. Below 150 MeV, the

primary mechanisms for photoabsorption are the excitation of either the giant dipole

resonance or a quasi-deuteron nucleon pair. A conceptual illustration of these processes

is given in Figure 2-1.

The giant dipole resonance (GDR) absorption mechanism can be conceptualized

as the electro-magnetic wave, the photon, interacting with the dipole moment of the

nucleus as a whole. This results in a collective excitation of the nucleus. It is the most

intense process by which photons interact with the nucleus. It occurs with highest

probability when the wavelength of the photon is comparable to the size of the nucleus.

However, this resonance is peaked with a width of only a few MeV. For deformed

Collective excitation from the
giant dipole moment

Excitation on a correlated
quasi-deuteron pair

Figure 2-1. Illustrated representation of the giant dipole resonance and quasi-deuteron absorption mechanisms.

11

10

11

nuclei, a double peak is seen due to the variation of the nuclear radius. Outside of the

peak region, the GDR reactions are negligible. A more complete description of this

process, and of nuclear physics in general, can be found in the text by Bohr and

Mottelson [5].

The quasi-deuteron (QD) absorption mechanism can be conceptualized as the

electro-magnetic wave interacting with the dipole moment of a correlated neutron-proton

pair. In this case, the neutron-proton pair can be thought of as a quasi-deuteron having a

dipole moment with which the photon can interact. This mechanism is not as intense as

the GDR but it provides a significant background cross section over all incident photon

energies. The seminal work describing this process was published by Levinger [6,7].

Recent efforts to model this process includes the work of Chadwick et al. [8].

Once the photon has been absorbed by the nucleus, one or more secondary

particle emissions can occur. The secondary particles typically emitted for the energy

range below 150 MeV are neutrons, protons, deuterons, tritons, helium-3 or alphas, or a

combination thereof. Any emission process that does not leave the residual nucleus in

the ground state will also produce secondary gamma-ray emission. The photonuclear

threshold for the production of a given secondary particle is governed by the separation

energy of that particle. Pre-equilibrium and equilibrium emission are responsible for

most of the secondary particles emitted by photon interactions over the energy range

under discussion though direct particle emission is possible.

Pre-equilibrium emission can be conceptualized as a particle within the nucleus

that receives a large amount of energy from the absorption mechanism and escapes the

binding force of the nucleus after at least one but very few interactions with other nuclei.

12

Typically this occurs from QD absorption of the photon where the incident energy is

initially split between the neutron-proton pair. Particles emitted by this process tend to

be characterized by higher emission energies and forward-peaked angular distributions.

Several references are available on the general emission process after photoabsorption [9-

11].

Equilibrium emission can be conceptualized as particle evaporation. Typically

this process occurs after the available energy has been generally distributed among the

nucleons. In the classical sense, particles boil out of the nucleus as they penetrate the

nuclear potential barrier. The barrier may contain contributions from coulomb potential

for charged particles and effects of angular momentum conservation. It should be noted

that for heavy elements, evaporation neutrons are emitted preferentially as they are not

subject to the coulomb barrier. Particles emitted by this process tend to be characterized

by isotropic angular emission and evaporation energy spectra. The same references [9-

11] apply as for pre-equilibrium emission.

For all of the emission reactions discussed thus far, the nucleus will most

probably be left in an excited state. It will subsequently relax to the ground state by the

emission of one or more gamma-rays. The gamma-ray energies follow the well known

patterns for relaxation. The only reactions which do not produce gamma-rays are direct

reactions where the photon is absorbed and all available energy is transferred to a single

emission particle leaving the nucleus in the ground state.

Reactions at higher energies, greater than 150 MeV, require more complete

descriptions of the underlying nuclear physics. The delta resonance and other absorption

mechanisms become significant and the amount of energy involved in the reaction

13

presents the opportunity for the production of more fundamental particles, e.g. pions.

While beyond the scope of this current work, descriptions of the physics involved can be

found in the paper by Fasso et al. [12].

The study of photonuclear physics has been important for two communities,

nuclear physics and health physics. Obviously, the current work approaches this subject

from the viewpoint of the second community. As such, the descriptions above have tried

to convey a general picture of the mechanisms governing photonuclear interactions. To

bring this into the overall picture of photon transport, the probability that a photon will

undergo a photonuclear interaction is not more than, and typically much less than, seven

percent of the total photon interaction probability. However, this mechanism can provide

a source of nuclear particles, specifically neutrons, that constitute a significant health

physics risk.

Experimental Photonuclear Data

Experimental measurements provide the fundamental values describing

interaction probabilities, i.e. reaction cross sections, and the subsequent yield and spectra

of secondary particles. Unfortunately, there are relatively few accurate measurements of

the photonuclear reaction cross sections in comparison to the measurements that have

been made for neutron reactions. The vast majority of the available experimental data are

the result of unfolding measurements made by bremsstrahlung irradiation. These data

suffer from extremely large uncertainties due to the unfolding process and are not

generally accurate enough to be used on their own as a basis for evaluated data. The

cross section measurements using tagged bremsstrahlung or photon emission from in-

flight positron annihilation are generally considered to be highly accurate. However,

14

relatively few measurements of this type have been made. Further, similar to neutron

data, these measurements typically do not include photonuclear secondary emission

spectra. For the experimental data that are available, several compilations similar to the

Neutron Barn Book [13] exist.

The first comprehensive listing of experimental data was produced by Fuller

working at the National Bureau of Standards (NBS) and is generally known as the

Photonuclear Data Sheets [14,15]. This compilation includes references to all known

publications of experimental data at that time. Dietrich and Berman published two

editions of the Photonuclear Atlas [16,17]. These compilations contain only

measurements made with photons produced from the in-flight annihilation of positrons or

tagged bremsstrahlung. The most recent compilation of photonuclear data has been

carried out by Varlamov et al. [18]. These are the primary references for locating the

available experimental photonuclear data.

As most of the references in these publications contain the measured data in the

form of plots, it is worth mentioning two further resources. Dietrich and Berman created

an electronic tabulation of the cross-section measurements. The tabulation is available

from the authors. The EXFOR database [19] maintained by the National Nuclear Data

Center contains tabular listings of many, but not all, of the reported measurements.

Varlamov et al. have tried to update the EXFOR database with the data from their

compilation but it still contains only a small percentage of the reported data.

Previous Photonuclear Studies

This section provides a brief description of some of the known studies that have

assessed photonuclear interactions for various reasons. It is not a comprehensive review

15

of the available literature but rather provides examples of the type of work performed in

past. It is described here in order to provide a context by which to show how the current

work has advanced the previously available capabilities.

One of the first studies in this field was the work of Alsmiller et al. [20-22]

carried out at the Oak Ridge National Laboratory in the late 1960’s. These calculations

were performed using an intra-nuclear-cascade model to estimate the neutron yield and

spectra from 150 MeV electrons incident on selected materials. This work was carried

out in part to help select the target material for use as a photoneutron source in the Oak

Ridge Electron Linear Accelerator Facility (ORELA). Subsequent work by this group

included extending their code, known as PICA, to handle higher-energy incident photons

[23,24]. Similar studies have been performed by Hansen et al. [25] and Kase et al. [26].

The FLUKA [12], MARS [27] and CEM [28] codes provide Monte Carlo

sampling of photonuclear interactions in the medium- to high-energy regime. These

codes compute the interaction probabilities and secondary particle emission spectra on-

the-fly during the transport process from nuclear models. Recent work on the FLUKA

radiation transport code is particularly noteworthy in that it uses empirical fits to

experimental data to extend its applicability to the GDR (low-energy) region.

These codes are all alike in the sense that they suffer from inaccuracies inherent in

estimating the photoabsorption process. While there are systematic trends in the

photoabsorption data, there can be significant dissimilarities for some isotopes that

neither theoretical nuclear models nor empirical fits reproduce. These dissimilarities are

most noticeable at lower energies, especially around the GDR peak, and for lighter

isotopes. However, these codes are primary used for intermediate- to high-energy (100’s

16

of MeV to TeV) particle-accelerator modeling and as such the inaccuracies inherent in

the models at low energies are not of great concern. It should be noted that transport

based primarily on nuclear models has the advantage that reactions can be computed on

any target material and emission descriptions are available for all secondary particles.

Many studies needing an accurate assessment of neutron production from photons

in the low-energy regime have used a different methodology. The photon flux in a given

geometry can be calculated either by analytical theory or by an electron-photon transport

code. This flux can then be folded with an experimental photoneutron cross section to

estimate the neutron production. Emission energy and angle spectra are assumed and the

neutron source “manufactured” in this manner may undergo further transport. Examples

of studies using this method include works by Swanson [29-33], McCall et al. [2],

Manfredotti et al. [34], Agosteo et al. [35,36], Gallmeier [37], Liu et al. [38] and

Chadwick et al. [39]. These studies have focused on estimating the health physics effects

of neutrons produced from low-energy electron accelerators. The use of this method for

that purpose is difficult due to the meticulous care necessary in coupling the procedures

and significant error is possible if done inappropriately.

The are many difficulties in using experimental data in an uncoupled simulation.

Experimental data must be found covering the relevant reactions, isotopes and energy

range of interest to the simulation. Where such data do not exist, interpolation should be

used but introduces an unknown source of error. Experimental data describing emission

spectra do not generally exist. Therefore, emission spectra must be estimated using

nuclear modeling or other techniques. The simple models that have been used in past to

estimate these distributions often do not fully represent the true emission spectra.

17

Simulations using this methodology are typically run in a series of incremental

steps. First, the photon flux is used to estimate the neutron production. Error can be

introduced at this step by the inadequacies in the description of the photon flux, the

experimental photoneutron cross-section data and the folding method used to estimate the

neutron source. The neutron source is then given energy and angular distributions and

subsequent neutron transport is performed. Error can be introduced at this step by the

inadequacies in the spatial description of the sampled neutron source and in the energy

and angular distributions and their appropriate assignment to the source neutrons. Lastly,

the statistical correlation to estimate the uncertainty in the simulation are lost because the

transport is not fully coupled. The works referenced in the previous paragraph have

attempted to solve one or some of these problems. The current work seeks to address all

of these problems.

Current Developments

The greatest obstacle to Monte Carlo simulation of fully coupled photon-neutron

transport using tabular data has recently been overcome. Several projects at the Los

Alamos National Laboratory (LANL) have discovered the need to account for

photonuclear interactions in accelerator environments. Therefore, the Nuclear Theory

and Applications Group (T-2) of the Theoretical Division was commissioned by the

Accelerator Production of Tritium (APT) project to produce a number of photonuclear

evaluations as part of the LA150 data library [40]. These evaluations were created using

the GNASH nuclear model code [41] as guided by experimental data. The library

produced contain complete, evaluated data for incident neutrons, protons and photons

(for photonuclear reactions) for the energy range up to 150 MeV. For a limited set of

18

isotopes, evaluated data were created in association with the MCNPX code to

significantly advance the state-of-the-art in Monte Carlo radiation transport.

To backtrack for a moment, the Monte Carlo N-Particle (MCNP) radiation

transport code [3] has the goal of being the most accurate simulation code for neutron-

photon-electron radiation transport available. It seeks to accomplish this goal by the use

of tabular evaluated data. Interestingly, these same data define the scope of MCNP’s

applicability. MCNPX [42] has the goal to extend the region of applicability of MCNP to

those particles and energies present around high-energy accelerators. It seeks to

accomplish this goal by incorporating tabular evaluated data where available and

supplementing the tabular data with nuclear models where necessary. Both of these

codes desire the incorporation of photonuclear interactions to enable the coupled

simulation of photon-neutron transport problems. This work presents the development

and implementation of the newly available evaluated photonuclear data for that purpose.

The research community at LANL is not the only group which has recognized the

need to provided evaluated photonuclear data. It is interesting to note that the

International Atomic Energy Agency (IAEA) has created a Coordinated Research Project

(CRP) entitled “Compilation and Evaluation of Photonuclear Data for Applications” [43].

A library containing photonuclear evaluations of 160 isotopes, including some of those

produced by T-2 at LANL, will be released in 2000 together with documentation in an

IAEA report [44]. This library should provide sufficient tabular data to perform most

simulations where photonuclear reactions are of interest.

19

CHAPTER 3
IMPLEMENTATION: COUPLING PHOTONUCLEAR PHYSICS INTO MCNP(X)

Introduction to Tabular Monte Carlo Radiation Transport

Monte Carlo radiation transport as defined within the scope of the Monte Carlo

N-Particle (MCNP) code is the transport of radiation through a geometry by random

sampling of tabular interaction probabilities. MCNPX is built upon the same foundation

but includes the extension to use nuclear models to generate interaction probabilities if

tabular data do not exist. The focus of this chapter is to show the steps necessary to

provide and use evaluated tabular photonuclear data within MCNP(X). MCNP(X) is

used through-out this chapter in reference to both MCNP and MCNPX. A general

familiarity with either of these codes is assumed in the following discussion.

Many steps are necessary to implement photonuclear physics within the

MCNP(X) code. First the photonuclear data must be available in a format that can be

used in a transport code. Traditionally, that means raw evaluated data stored as

Evaluated Nuclear Data Files (ENDF) must be processed into A Compact ENDF (ACE)

table suitable for Monte Carlo sampling of interaction probabilities. This processing is

typically necessary to transform data structures into more easily sampled forms.

Once the data are available in an appropriate ACE format, they must be loaded

into the code at runtime and used by the collision routines. This involves defining a user

interface to specify which data tables are to be used, extending the i/o routines to store

the new data and integrating new algorithms to sample photonuclear collisions.

20

Provisions must be made within these steps to ensure that existing capabilities,

particularly tallies, work correctly and that summary tables include relevant information

about the sampling of photonuclear interactions.

The sections of this chapter provide the detailed step-by-step account of the steps

taken by this work. Key concepts and algorithms are explained along with the intricate

details, e.g. the name of the internal MCNP variable containing the table index. The level

of information included is meant to be exhaustive. These are the details necessary such

that upon reading the actual coding, the intent of specific code is obvious. This will

facilitate the maintenance and extension of this code. It is necessary to document these

details here because the MCNP coding style (that was followed for this work) dictates

that terse code with minimal comments should be used. Between this philosophy and the

sheer complexity of the existing code base, it is often difficult to follow what ought to be

simple routines.

Data Storage

Photoatomic Versus Photonuclear Data

Data storage was the first major issue addressed by this work. The MCNP

radiation transport code name derives originally from the fact that it was capable of

neutron and photon transport. It later became N-Particle when electron transport was

added. MCNPX extends further the latter meaning behind the name. However, only

photoatomic interactions have been treated in past: photoelectric absorption, elastic

scattering, inelastic scattering and pair production. (Note that the cross section for triplet

production is included in pair production and treated identically.) The MCNP(X) ACE

files containing these data descriptions are tabulated as cross sections by element.

21

Photonuclear interactions, indeed all nuclear interactions, are dependant on the specific

target nucleus. This creates the first problem. Similar to neutron data, photonuclear data

should be tabulated and used by isotope, not by element.

As the separate storage and use of photoatomic and photonuclear data is

considered counterintuitive by some, several additional arguments are made to enforce

why this should be. Photoatomic and photonuclear data evaluations are not typically

from the same source. Most experimentalists, theoreticians and evaluators concentrate on

providing data for one or the other, not both. Compilations of the data are generally

separate. Photoatomic data are usually updated as a complete, consistent library for all

elements. Photonuclear data are expected to follow the path of neutron data where

updates occur for individual isotopes as they become available. If they were stored by

element, it would be necessary to create a new ACE data set every time either was

updated.

For these reasons and more, photonuclear data is stored and accessed separately

from photoatomic data. This philosophy removes the necessity of determining how to

mix elemental and isotope data in the same storage table and generally provides for easier

maintenance and access of the different ACE data sets. However, it also necessitates the

creation of a new class of ACE table to contain the photonuclear data for use in

MCNP(X).

Standard ACE Tables

The tabular data tables used by MCNP(X) are known by the acronym ACE. This

acronym stands for A Compact ENDF. The Evaluated Nuclear Data File (ENDF) is a

collection of formats for storing data and procedures for creating and sampling that data

22

[45]. It is the de facto international standard for storing nuclear data and is maintained

by the National Nuclear Data Center (http://www.nndc.bnl.gov/nndc/) at the Brookhaven

National Laboratory. The ACE table format contains this data in a form more suitable for

random sampling by a transport code.

There are currently eight classes of ACE data tables in use by MCNP: continuous-

energy neutron ‘c’, discrete-reaction neutron ‘d’, neutron dosimetry ‘y’, S(α,β) thermal

‘t’, continuous-energy photon ‘p’, continuous-energy electron ‘e’, multigroup neutron

‘m’ and multigroup photon ‘g’ tables. MCNPX extends this to nine classes with

continuous-energy proton ‘h’ tables. Photonuclear tables will now add a new class of

data to MCNP(X). As this new data describes characteristic nuclear interactions, the

photonuclear table format draws heavily on the continuous-energy neutron and proton

table formats. Therefore it is useful to examine how the continuous-energy format has

evolved for storing nuclear interaction data.

ACE tables use a system of parameters and locators to access data stored in a one-

dimensional array. Table 3-1 shows the standard structure for an ACE table. As

originally conceived, the NXS array stores all parameters, the JXS array stores all

locators and the XSS array contains the actual data. In a library file, each set of tabular

data has its own header with NXS and JXS entries and its own XSS array. In the

MCNP(X) executable code, a single XSS array contains all tabular data necessary for the

simulation and NXS/JXS are two-dimensional arrays (by array entry and table index).

For describing a single incident and emitted particle type, a fixed NXS/JXS array

size is a reasonable solution. The original neutron data tables used only five parameters

and twelve locators to do this. Photon production data were added later by duplicating

23

Table 3-1. Standard ACE table description.

Line Address
Relative Absolute

Contents Format
(Fortran Standard)

1 IRN ZAID, Atomic Weight,
Temperature, Date Processed

A10, 2E12.0,1X, A10

2 IRN+1 Comment A80
3 – 6 IRN+2 – IRN+5 Inherited fields currently unused

(Fill with zeros or leave blank)
4(I7, F11.0) per line

7 – 8 IRN+6 – IRN+7 (NXS(I):I=1..16) 8(I9) per line
9 – 12 IRN+8 – IRN+11 (JXS(I):I=1..32) 8(I9) per line
13 - … IRN+11 – … (XSS(I):I=1..LXS) 4(E20.0) per line

key elements (parameters and locators for secondary emission data) to reference photon

production data. This required three new parameters and eight new locators. Two

additional locators for neutron data were also added to form the table which exists for use

by MCNP4B [3, Appendix F]. More recently, delayed neutron data added yet another

parameter and four new locators [46].

MCNPX expands the capabilities of MCNP to include tracking light-ions as well

as other particles of interest to high-energy particle accelerators [42]. Whereas MCNP

only expects to transport secondary photons and neutrons, MCNPX transports all light

particles. To do this, the data libraries needed to be expanded to include emission

information for an arbitrary number of new secondary particles. Currently, these new

neutron tables include, as appropriate, secondary emission data for proton, deuteron,

triton, helium-3 and alpha particles in addition to neutron and photon data. This placed a

burden on the neutron continuous-energy tables that could not be solved by using the

traditional NXS/JXS framework. It was solved by escaping the box and introducing the

IXS array.

24

The IXS array was introduced into the neutron continuous-energy format to store

locators to secondary charged-particle emission information [47,48]. Unlike NXS and

JXS that are fixed in length, the IXS array is stored within the XSS array and can be

expanded to contain entries for as many sets of secondary-particle information as needed.

In the expanded neutron table, the JXS array is used to locate the neutron and photon

production data and the IXS array for all other secondary particles. Proton tables were

adapted in this format as well. The photonuclear data table takes the next logical step and

references all secondary-emission information through the IXS array.

Photonuclear Class ‘u’ ACE Table

Photonuclear interactions describe photon-induced nuclear processes. The

evaluated files used to store photonuclear data make use of the same ENDF formats and

procedures as neutron and proton data. This implies that the same concepts used in ACE

tables to store other nuclear data should be used for the photonuclear table such that the

existing storage and sampling algorithms can be used for all types of nuclear interaction.

However, the established neutron/proton table has become extremely convoluted.

Therefore, photonuclear tables have logically reorganized the data to significantly

simplify access.

The photonuclear format has been modified from the existing neutron/proton

format to treat all secondary-particle production in a self-consistent manner. However,

this table still draws heavily on the sub-formats established for neutron and proton data.

The remainder of this section focuses on presenting the key concepts for the photonuclear

class ‘u’ ACE table format. This description is supplemented by Appendix A that

includes the full details of all appropriate data structures, how they are stored, what error

25

checking can be performed and recommendations on use of specific sub-formats for

photonuclear data.

The NXS array now contains only those parameters that apply to the table as a

whole. The NXS parameters are presented in Table 3-2. The first entry is the length of

the XSS array. This entry is mandatory for all ACE tables such that they may be

manipulated in a generic fashion. The second entry contains a target identifier and is

standard for those ACE tables where it is applicable. The next three entries contain the

only three global parameters needed for transport: the number of energies in the main

energy grid, the number of cross sections included in the table and the number of

secondary particles for which emission data are included.

Secondary particle information consists of parameters and locators. The

parameter NEIXS (in conjunction with NTYPE) can now be used to determine the

memory requirement to store the IXS array elements. The IXS array has twelve entries in

this format version. The parameter NPIXS is the number of secondary-emission

Table 3-2. Description of the NXS Array elements in a photonuclear class ‘u’ ACE
format.

Entry Parameter Fixed numeric descriptive
NXS(1) LXS Length of the XSS data block
NXS(2) ZA Atomic and mass number of the target isotope

ZA = Z*1000 + A
NXS(3) NES Number of energy entries in the main energy grid
NXS(4) NTR Number of reaction cross sections
NXS(5) NTYPE Number of secondary particle types with emission information
NXS(6) NPIXS Number of parameter entries in the IXS array

2 of 12 IXS entries in the current format are parameters
NXS(7) NEIXS Number of entries in IXS array per secondary particle

The current table format includes 12 IXS entries
NXS(8-15) Unused (Fill with value zero)
NXS(16) TVN Table Format Version

TVN=1 for the current table format

26

parameters at the start of each IXS array. There are two parameters in this format

version. All other IXS array entries are assumed to be locators and are subject to updates

as data are moved within memory in the MCNP(X) executable at runtime.

The table format version parameter (TVN) is the first attempt at documenting

each table-type format as it is produced. This marks photonuclear format number one. If

it is changed later, e.g. expanded to hold a new sub-format, the table-format-version

would be updated at that time to indicate what information may be within the table. This

also introduces a mechanism whereby backwards compatibility can be maintained

without rigidly enforcing the exact table structures.

Similar to the NXS array, the JXS array has also been reduced to contain only

those locators that are general to the table. The JXS array entries are presented in Table

3-3. The first five entries for this table are locators for reaction data that traditionally has

been accessed through the overloaded ESZ entry. As the overall number of JXS entries

Table 3-3. Description of the JXS Array elements in a photonuclear class ‘u’ ACE
format.
Entry Locator Offset to array of…
JXS(1) ESZ Main energy grid
JXS(2) TOT Total cross-section data
JXS(3) NON Total non-elastic cross-section data
JXS(4) ELS Elastic cross-section data
JXS(5) THN Total heating number data
JXS(6) MTR MT reaction numbers
JXS(7) LQR Q-value reaction energy data
JXS(8) LSIG Cross-section locators (relative to SIG)
JXS(9) SIG Primary locator for cross-section data
JXS(10) IXSA First word of IXS array
JXS(11) IXS First word of IXS block
JXS(12-32) Unused (Fill with zeros)

27

has been reduced, it is felt that overloading the ESZ locator was unnecessary. Therefore,

each set of reaction data is accessed through its own locator.

By tradition the first locator, ESZ, is the index in the XSS array for the main

energy grid. The four other reaction data sets that have traditionally been accessed

through this entry now have individual locators. The total cross-section is now located

by second entry, TOT. The energy and total cross-section data are the fundamental

values necessary for computing the distance-to-collision during photon transport.

The elastic cross section is now located by the fourth entry, ELS. The elastic

cross section for photons interacting with the nucleus is negligible in comparison to other

photonuclear reactions. The evaluated data files are not required to include it. Therefore,

since this locator has isolated the elastic cross-section entries, if the elastic cross section

is not included in the original evaluation, its locator is set to zero, no entries are made in

the XSS block and the elastic scattering of photons on the nucleus is ignored during the

transport process.

The absorption cross section has typically been included for the purpose of

biasing. For shielding problems, it is sometimes useful to simulate capture implicitly. In

this type of simulation, only non-absorption reactions are considered at the collision site

and the particle weight is updated accordingly. This biasing technique ensures that a

neutron or photon always leaves the collision site. This is the default treatment for both

neutron and photoatomic interactions.

Photonuclear absorption almost always produces a secondary gamma ray. Only

photonuclear processes involving a transition directly to the ground state of the nucleus

do not. Additionally, the secondary particle of interest from the photonuclear interaction

28

is rarely, if ever, a photon. Therefore, the implicit capture biasing technique is not useful

and the absorption cross section has been replaced by the non-elastic cross section.

The non-elastic cross section is located by the third entry, NON. This change has

the benefit that when the elastic cross section is not present, the non-elastic cross section

is identically the total cross section. Therefore, the locators can be set to index the same

data, thereby reducing storage needs.

The total heating numbers are located by the fifth entry, THN. Energy deposition

is often of interest and the F6 tally in MCNP(X) uses the heating numbers for this

purpose. The total heating number is an estimate of the average amount of energy the

incident particle deposits locally at the collision site. There are numerous assumptions

involved in calculating this value (see Appendix A for a more complete description). As

it is difficult to compute and not used by this work, this locator is given a zero value to

indicate that no data are currently available. When the ability to produce class ‘u’ ACE

tables migrates into the NJOY nuclear data processing code, it will be possible to

compute the heating numbers.

The next four locators provide information about the reaction cross sections. The

MTR locator is the index to the reaction-type listing. These are the MT reaction-type

numbers as defined in the ENDF format manual [45]. The LQR locator is the index to an

array of Q-values corresponding to each reaction. The LSIG and SIG locators index the

location of the cross-section arrays.

The IXSA locator is an index to the IXS array. As described above, the IXS array

contains the parameters and locators for all secondary-emission information. The

meanings of the IXS array entries are described below. The IXS locator is a

29

convenience. The data within an ACE table can be listed in any order desired, so long as

the locators are appropriately updated. However, for the sake of sanity, the data should

be listed in the order corresponding to their appearance in the table description. If this is

done, the IXS locator is the first word of the IXS block of secondary-particle information

located within the XSS array.

The IXS array should be thought of as a two-dimensional array containing a set of

parameters and locators for each secondary particle. There are NTYPE (1 … J …

NTYPE) secondary particle emission descriptions in the IXS block. The IXS array

entries are listed for the Jth secondary particle in Table 3-4. Two parameters are

necessary for each set of emission data. The secondary particle type is identified by the

parameter IPT as described in Table 3-5. The number of reactions that produce this

secondary particle is given by parameter NTRP.

Table 3-4. Description of the IXS Array elements in a photonuclear class ‘u’ ACE
format.

Entry Parameter Fixed number descriptive
IXS(1,J) IPT(J) Particle IPT number
IXS(2,J) NTRP(J) Number of MT reactions producing this particle
Entry Locator Offset to array of…
IXS(3,J) PXS(J) Total particle production cross-section data
IXS(4,J) PHN(J) Particle average heating number data
IXS(5,J) MTRP(J) Particle production MT reaction numbers
IXS(6,J) TYRP(J) Reaction coordinate system data
IXS(7,J) LSIGP(J) Reaction yield locators (relative to SIGP)
IXS(8,J) SIGP(J) Primary locator for reaction yield data
IXS(9,J) LANDP(J) Reaction angular distribution locators (relative to ANDP)
IXS(10,J) ANDP(J) Primary locator for angular distribution data
IXS(11,J) LDLWP(J) Reaction energy distribution locators (relative to DLWP)
IXS(12,J) DLWP(J) Primary locator for energy distribution data

30

Table 3-5. Association of particles with their symbol and IPT index number as defined in
MCNP(X).

Particle Name Symbol IPT
neutron n 1
photon p 2
electron e 3
proton h 9
deuteron d 31
triton t 32
helium_3 s 33
alpha a 34

There are ten locators that have been determined to be necessary for locating

secondary-emission data. The locators and parameters are kept separate, parameters first,

within the IXS array such that the locators can be updated as described within the Setup

and Storage section below. As mentioned above, a full description of the heating number

concept is found in Appendix A. Heating numbers are not used by this work and thus all

PHN locators have been set to zero and no further values are given.

The locators PXS, MTRP, LSIGP, SIGP and the parameter NTRP are used to

determine the secondary-particle production. The production cross section for the

secondary particle is located by the entry PXS. The reactions which contribute to the

production of this particle are located by the entry MTRP. The yield data for each

reaction are contained in the SIGP block as located by the LSIGP array entries. This is a

change from the neutron table format which overloaded the TYRP entries to contain yield

data as well as the reaction coordinate system. The TYRP array entries designate the

reaction coordinate system. The emission distributions are stored in the ANDP and

DLWP blocks as located by the offsets in the LAND and LDLWP arrays. The full details

31

of the emission formats are complex. In order to avoid cluttering this chapter more than

is already the case, they have been included in Appendix A.

Data Processing

As discussed in the previous section, evaluated data are available in the ENDF

format. It is therefore necessary to have a data processing code capable of translating the

ENDF formatted data into the appropriate ACE format. This has traditionally been done

by the NJOY code [49]. However, as this was an iterative process to develop the new

table format, it was preferable to write a stand-alone processing code that was easily

changed in order to explore different formatting options.

The MKPNT data processing code was developed to process data stored in the

ENDF format into the ACE class ‘u’ photonuclear format described above and in

Appendix A. As this was a developmental tool whose capability will be subsumed by the

NJOY code, it was not necessary to implement full functionality for all possible ENDF

formats. Instead, MKPNT is focused on the data that were currently available. This

section will discuss how the data were processed and what formats were used. The full

source code for MKPNT is given in Appendix B.

For the purposes of this work only data from the LA150 library produced at the

Los Alamos National Laboratory have been used for simulations. Some preliminary data

have been made available from the other institutions involved in the International Atomic

Energy Agency (IAEA) Coordinated Research Program (CRP). However, the IAEA data

were provided on the condition that they were to be used for testing purposes only.

Therefore, some functionality has been implemented in the MKPNT processing code for

the IAEA data which was not necessary for this work but looked to long-term goals.

32

MKPNT works by loading the ENDF data into memory and then creating the

corresponding sections in the ACE format. The ENDF format contains information

needed for the ACE table in six “files”. Each section of the ENDF format is known as a

file and given a file type index MF, e.g. file MF 6. MKPNT was implemented with a

limited understanding of the these six files as described below.

File MF 1 contains general information about the data set. The target identifier

ZA is the atomic number times 1000 plus the mass number. ZA, the atomic weight ratio

(AWR) and the temperature are taken directly from the corresponding entries. ZA is also

used to create the table identifier ZAID by adding an ID. The library number plus the

table identifier ‘u’, to indicate a photonuclear table, are collective the table ID. The

library number is a unique two digit number chosen at the processing time. All ACE

tables also include the date processed.

With preliminary data read, the first step in building the table is to form a unified

energy grid. The photonuclear data processed to date have contained relatively few, on

the order of tens to hundreds, energy grid points. The energy points are obtained as a

superset of the energy grids from each of the reaction cross sections. The units must be

adjusted from eV, in ENDF, to MeV, in ACE. All reaction cross sections are found in

ENDF File MF 3 and are given as energy/cross-section pairs. Reactions which involve

thresholds are checked to ensure that the cross-section values start at zero, if necessary

adding the new point. Because there are so few points in these files, as compared to

certain neutron data sets that can contain tens of thousands of energy points, thinning of

the energy grid is not required.

33

There can be additional energy points contained within yield tables. Yields are

found in File MF 6 of the ENDF format. These energy points are added to the main

energy grid if present. The addition of these points allows the verification process to

exactly match emission spectra. With this done, the total number of energy points, global

NXS parameter NES, is now fixed as well as the data entries for array ESZ.

The locators ELS and THN are currently set to zero. None of the evaluated data

provided to date have included the elastic cross section. As discussed in the previous

section, THN is a complicated value which was not needed for this study. Algorithms

exist in NJOY to compute the total and partial heating numbers and it was felt

unnecessary to duplicate that capability within MKPNT.

The cross-section data are obtained next. Each reaction cross-section is taken

from its file MF 3 entries and stored in the SIG block as located by the LSIG offsets. The

corresponding MT number and Q-value are stored in the MTR and LQR arrays,

respectively. The number of reactions is stored in the parameter NTR. The total cross

section is computed from the appropriate partials and checked against the values from the

ENDF MT 1 total cross section. The verified computed totals are then stored in the TOT

array. As no elastic cross sections are present, the NON locator is set equal to the same

value as TOT.

Secondary-particle emission data can be specified by either of two methods in the

original ENDF evaluation. The first method described here is not recommended but still

allowed. For reactions which produce neutrons, files MF 4 and MF 5 give the angular

distributions and energy distributions, respectively, as a function of incident particle

energy. MF 5 energy distributions are useful for representing certain photonuclear

34

interactions, e.g. fission reactions. Currently, MKPNT can process MF 5 laws 5, 7, 9 and

11. The corresponding MF 4 angular distribution must be isotropic. The neutron yields

for fission are taken from file MF 2. All other yield data for reactions specified by this

method are implicitly given by the reaction type, e.g. reaction MT 16 implies two

emission neutrons. The data from these three files are merged appropriately into the

neutron secondary-particle information. To date only IAEA data have used this format.

It is highly recommended that all photonuclear reactions be described by the following

method as all secondary particles, not just neutrons, can be included.

Secondary-particle emission spectra may also be described in the ENDF file MF 6

format. ENDF file MF 6 contains one section describing each reaction with appropriate

subsections for every product from that reaction. MKPNT loops over each file MF 6

section and extracts the appropriate secondary-particle emission data into the ACE table.

Currently MKPNT extracts emission data for secondary neutrons, photons, protons,

deuterons, tritons, helium-3 ions, and alphas. This set of particles represents was chosen

as an alpha particle is the heaviest ion that can be transported by MCNPX. Obviously,

MCNP is limited to the transport of secondary neutrons and photons. This processing

method uses the standard assumption that all other reaction products are stopped at the

collision site without producing any further secondary particles of interest.

MKPNT currently processes LAW 1 correlated energy-angle distributions from

file MF 6. The yield for each particle is taken directly from the energy/yield pairs given

and the data are stored in the SIGP block as located by the corresponding LSIGP offset.

Likewise, the MT number for the production reaction and the coordinate system for the

emission particle are stored in the MTRP and TYRP arrays, respectively.

35

The LANG 1 angular option presents a tabular-energy distribution with Legendre

coefficients describing angular dependence. MKPNT only processes isotropic

distributions and they are stored as tabulated-energy distributions, ACE Energy Law 4, in

DLWP with the corresponding offset in LDLWP. The isotropic angular distribution is

indicated by a zero value in the LANDP array and no entries in the ANDP block.

 The LANG 2 angular option specifies a tabular-energy distribution with

Kalbach88 angular systematics. This emission distribution is stored with the appropriate

LDLWP offset in the DLWP block as ACE Energy Law 44. The corresponding LANDP

entry is given the value negative one to indicate the presence of the correlated

energy/angle distribution and no entries are made in the ANDP block. The Kalbach slope

parameter, designated ‘a’, is computed according to Chadwick’s correction [11] of

Kalbach’s original formalism [50,51] to account for the reduced momentum of the

photon.

The LA150 photonuclear evaluations all use the ENDF format MF 6 LAW 1

LANG 2. As the LA150 evaluated data are used exclusively in this study, processing of

the LAW1 LANG 2 format has been exhaustively tested. This is a tedious procedure

done either by hand or by script to ensure that the ACE data match the original ENDF

data. The other options discussed were implemented to process data provided by the

IAEA CRP and their processing has not been checked with the same rigor. All ENDF

emission distribution formats not specifically mentioned are not supported.

At this stage the ACE table is almost complete. The photonuclear cross sections

and the associated yields for each secondary particle are used to compute the total

particle-production cross section that is stored in the PXS array. The number of reactions

36

producing the particle is stored as the parameter NTRP. The particle heating-number

locator, PHN, is given a value of zero to indicate no heating numbers are included. The

final processing verifies the values for the locators, stores the total number of XSS entries

as the NXS parameter LXS and prints the final table to an ASCII file.

With the appropriate additions to the MCNP(X) cross-section directory file

XSDIR, the data are now ready for use in a simulation. At the time the simulations in

this study were performed, the LA150 library contained evaluated photonuclear data for

the following isotopes: 27Al, 40Ca, 56Fe, 63Cu, 181Ta, 184W, 206Pb, 207Pb and 208Pb. The

evaluated data were processed into the ACE photonuclear format using the MKPNT code

as described here. The collection was given the ID 03u as earlier testing had been done

using library numbers 01 and 02.

Coupling Photonuclear Physics into MCNP(X)

Introduction

The work presented here describes a prototype code based on MCNP4B2 [3].

MCNP was chosen as the base code for the reasons described earlier. This section

describes the modifications that were made to MCNP4B2 to produce the photonuclear-

capable prototype code designated MCNP4BPN. Once verification was complete, these

changes were frozen and the final version described here was used for all subsequent

calculations presented in this work. Where standard MCNP capabilities are discussed,

see the users guide [3] if further explanations are necessary.

The MCNP code package is maintained by the X-5 group of the Los Alamos

National Laboratory. A project homepage is maintained and can be accessed through the

X-division homepage (http://www-xdiv.lanl.gov/). The code package is distributed by to

37

persons and companies within the U.S. by the Radiation Safety Information

Computational Center (http://www-rsicc.ornl.gov/rsic.html). Foreign distribution is

handled by the Nuclear Energy Agency (NEA) in Paris, France. Changes to this code are

to be made via patch files as documented in the users guide [3, p. C-4]. Appendix C of

this dissertation contains the patch file corresponding to the changes described here.

Before launching into the gory details of the changes, a few moments will be

spent providing an overview. There were four major tasks necessary to implement

photonuclear interactions into MCNP: (1) the user interface needed to be modified to

allow specification of photonuclear tables for a given material; (2) the nuclear data

sampling routines needed modification to appropriately handle particles other than

neutrons; (3) the photon collision routines needed to be updated to include sampling

photonuclear events; and (4) the file i/o routines needed to be updated to include reading

photonuclear tables and printing summary information about photonuclear interactions.

The specification of materials is done in a very standard manner within MCNP.

Several needs drove the final interface for photonuclear. First, the standard interface

must be kept. However, it was designed with the concept of one table type for each

particle type. Further, it assumes there is always a table available for each component of

the material.

The solution to the specification of photonuclear tables was to keep the standard

interface as is and augment it to work similarly for specification of the new tables. That

is, the components of the material are defined by the material card. Component ZAID

entries can be specified directly in the entry or indirectly through the ZA with a default or

38

user specified library ID. Neutron, electron, photoatomic and photonuclear table ZAIDs

or library IDs are all acceptable.

However, the interface has also been augmented to include an isotope override for

photonuclear tables. Specifically, because more complete isotopic data will likely be

available for neutron transport, the best description of the material should be given on the

material card by neutron table. The new override card allows the isotope to be changed

for any or all of the material components. This promotes the use of the best neutron and

photonuclear tabular data for a material. It should be considered at some point in the

future to allow material specification by incident particle in MCNP(X).

The nuclear data sampling routines were originally written for incident neutron,

neutron emission interactions. They were later updated to include photon emission.

Recent interest, including the current work, needed to expand the tables to handle

incident photons, protons or neutrons and the subsequent emission of any particle type.

The set of updates this necessitated is described only briefly below. It is now commonly

known as the ACE modifications and has been implemented [52,53] in the current

versions of both MCNPX and MCNP [54].

The revision of the photon collision routines to include photonuclear interactions

is the key objective of this work. These routines have been updated to include use of the

photonuclear cross section, in addition to the photoatomic, for the sampling of distance-

to-next-collision. At a photon collision site, either natural or biased collisions can occur.

Biased photonuclear collisions indicate that a contribution from photonuclear interaction

to secondary-particle production is to be obtained at every photon collision. In either

39

case, secondary particles are sampled from the evaluated tabular data and made available

for further transport.

There are no unexpected changes in the file input/output. A past MCNP user will

be able to fully utilize this new capability based on their previous experiences using the

code. As mentioned before, the standard material interface will work unchanged. All

tables are loaded from standardized ACE libraries specified through one XSDIR

directory file. The few new interface options available are simple to use when necessary

and are not required. All tallies and summary information include the effects of

photonuclear interactions as presented in standard MCNP output tables. Thus, the

average user can begin using this capability immediately and become an expert user

familiar with all the intricacies over time.

Setup and Storage

Material specification. The first task necessary to use the photonuclear data

within MCNP was to implement user options to specify which data to load and to store

that data appropriately. It was determined that the material specifications to load

photonuclear data should be as similar to what was currently done as possible. However,

some extensions have also been made.

At present each material has one list of isotopes and atomic fractions associated

with it. For example, the material description for an electron target might be given by the

MCNP input card “m1 71000 1” or by “m1 71180 0.00012 71181

0.99988”, both of which indicate that material one is natural tantalum. The first

specifies elemental tantalum directly and the second specifies the constituent isotopes by

their atomic fractions. Since photoatomic data is stored by element, either card could be

40

used to specify which tables, or in this example table, should be used. However, neutron

data is stored by isotope, with a few exceptions, such that the second description is the

more accurately represents the material. Photonuclear tables are also stored by isotope

and therefore more accurately described by isotopic tables.

Unfortunately, very few photonuclear evaluations were available for this study.

Even after the IAEA library is made available, not all isotopes will have an evaluated

data file. Some prevision is necessary to allow the user to specify the best photonuclear

data available without compromising the fidelity of the representation by other tables, in

particular neutron tables. Therefore, a photonuclear isotope override card has been

implemented.

To illustrate this problem, consider a material input card describing natural

tungsten. The best description for neutron transport is given by the material card “m1

74182 0.263 74183 0.143 74184 0.3067 74186 0.286.” Notice

that this description is incomplete; isotopic 180W with a natural atomic fraction of 0.0013

is not included in the description because a neutron table is not available. MCNP will

compensate for this by re-normalizing the sum of the other atom fractions to one.

However, photonuclear data are currently available only for 184W. Following the logic of

drop what is unavailable and re-normalize, the significant contributions by other isotopes

for neutron transport would be missed simply because of the lack of photonuclear tables

for the remaining isotopes. The desire for the best representation for both neutron and

photonuclear interactions in the material requires a new capability in material input

specification.

41

Photonuclear isotope override card (MPN). The photonuclear isotope override

card, designated MPN, has been implemented to allow substitution of photonuclear data.

Specifically, for the example above the photonuclear isotope override card “mpn1

74184 74184 74184 74184” used in conjunction with the material specification

card from the previous paragraph would provide the best data for all particles transported

through the material. MCNP4BPN would use photoatomic data for elemental tungsten,

the four available neutron tables for the major tungsten isotopes and the 184W data table

for all photonuclear collisions.

There are several restrictions on the use of the photonuclear isotope override card.

It must be used in conjunction with a material specification card, i.e. M1 with MPN1

describes material one. The override card must come after the corresponding material

specification card in the standard MCNP input deck. There must be one entry on the

MPN card corresponding to each ZAID entry on the M card. Entries on the MPN card

must correspond to a ZA for which a photonuclear table exists or be zero to indicate no

photonuclear interactions should be considered for that portion of the isotope.

The photonuclear isotope card has been implemented as a new input card. The

number of cards for use in the code was increased by one by incrementing the nkcd

parameter in the deck jc. The new card, cnm(89), was initialized in the deck ibldat with

the option to allow only integer entries. (The use of boldface type in this chapter

indicates names of subroutines in the MCNP source code. Likewise, italic type signifies

the names of variables within those subroutines.)

This capability requires an array to store a different ZA for photonuclear

interactions than the default for the material. The M card stores ZA/atom-fraction pairs

42

in the arrays iza and fme, respectively. The new izn array mirrors the iza array as a

storage location in the dynamically-allocated common-block dac. They are both set to

length mix, the number of isotope/fraction pairs for the specific problem, at runtime.

No processing was necessary for the MPN card during the first reading of the

input deck. Therefore the routines newcd1, nxtit1 and oldcd1 ignore this card. Several

processing options are necessary during the final reading of the input deck. When the

MPN card is first encountered, the routine newcrd checks to ensure that photonuclear

physics is turned on in the simulation. If photonuclear physics is on, it then checks to

ensure that a material card has already been seen describing the material. If either of

these conditions is not met, the MPN card is ignored and a warning message is printed.

Each entry for the card is checked and stored individually. From the card

initialization set in deck ibldat, the entries are automatically checked to ensure that they

are integer numbers. The routine chekit refines this criteria to ensure that a valid ZA, in

the range 000001 to 999999, or zero has been entered. A fatal error is issued for invalid

ZA entries. The routine nextit then stores each entry in array izn to correspond to the

appropriate M card entry. Finally, the routine oldcrd checks to ensure that the number of

entries on the MPN card corresponds to the number of entries on the M card. If they do

not match, all isotopic values are reset to the material default and a warning message is

printed stating the card was ignored. If the isotope override has been successful, a

warning is printed for each isotope override. It is the responsibility of the user to ensure

that appropriate substitutions have been made.

Table ID specification. MCNP allows the user to specify the data table ID to be

used for each nuclide by several methods. The first method is to describe materials by

43

complete ZAIDs. For example, natural copper can be described by the material

specification card “m1 29063.60c 0.6917 29065.60c 0.3083.” The

“.60c” is the table identifier, ID, indicating the neutron class ‘c’ tables should come from

the ENDF60 library, ENDF60 tables having the unique library number 60. Photonuclear

tables can be specified in an analogous manner. The table identifier “.00u” can be used

to specify the library, with 00 appropriately replaced, from which to load the

photonuclear tables.

The second method to specify a data table for an isotope is to use the defaults as

defined in the XSDIR directory file. The XSDIR file includes the lookup table used to

determine what data tables are available in each library. If no table identifier (ID) has

been specified, the first match to ZA for each class of table will be used. For example, if

the XSDIR file contains entries for 29063.22c and 29063.60c in that order and the M card

asks for ZA 29063 without an ID in a problem transporting neutrons, the 29063.22c table

will be used for neutron collisions in that material as it was seen first. Thus, the order of

the ZAID entries in the XSDIR file can be used to determine which tables are used in a

problem. This is the reason the default XSDIR file distributed with the MCNP code is

ordered such that the recommended tables appear first.

Default LIB specifier. The default library used for a table class can be specified

using a material option entry on the material specification card. For MCNP, three

material options are available to do this. They are the NLIB, PLIB and ELIB options

corresponding to the neutron, photoatomic and electron default library specifiers,

respectively. The names of the material options are stored in the variable hmopt in the

character common block of deck jc as initialized by deck ibldat.

44

To illustrate the use of the default library specifier, consider the M card “m1

29063 0.6917 29065.60c 0.3083 nlib=22c plib=01p.” Any

combination of material options can be used as needed but they only apply to that M

card. The order of precedence for selecting a ZAID is the full ZAID in the entry pair, the

ZA from the entry with the ID from the default library specifier or the first appropriate

match to the ZA in the XSDIR file. Back to the example, the neutron, photoatomic and

electron tables are selected using the standard XSDIR file as follows. The neutrons

tables 29063.22c and 29065.60c are used, the first from the ZA and NLIB library

specifier and the second specified directly by ZAID. The photoatomic table 29000.01p is

used, selected by the ZA shortened to elemental Z and PLIB library specifier. The

electron table 29000.01e is used, selected as the first appropriate electron table listed in

the XSDIR file.

The material option PNLIB has been added so that the user can specify the

photonuclear default library for a material in an analogous manner. This was done by

incrementing the number of material options in deck jc and adding the string constant

‘pnlib’ to the variable hmopt initialization in deck ibldat.

To make use of the PNLIB material option, consider the example M card “m1

29063 0.6917 29065 0.3083 pnlib=03u” with the corresponding MPN card

“mpn1 29063 29063.” The override card specifies that 63Cu should be used in

place of 65Cu for photonuclear reactions in the second isotope of the material. The

PNLIB default library specifier indicates all photonuclear tables should come from the

LA150 revision 3 photonuclear data library, with library number 03. Thus, the

45

29063.03u table would be attached to both material entries for handling photonuclear

collisions.

Table selection and storage. The portion of the coding that controls data table

selection and storage required extensive changes to enable loading a new class of table.

The storage allocation process was completely rewritten. The specific changes are

documented here.

The original section of code responsible for determining the storage needs for the

cross-section data used a restrictive, complicated algorithm. It contained dependencies

that assumed one table type per particle type attached to each material constituent, i.e.

only neutron, photoatomic and electron tables. (This is not strictly true as thermal tables

augment the neutron data and are stored separately but that is handled as a separate

optional exception.) As implemented, this algorithm was not extensible to include a

separate photonuclear table required in addition to a photoatomic table. The algorithm’s

complexity derived from a convoluted process whereby it determined the number of

duplicate tables requested in order to reduce the memory allocated for use in table header

and storage arrays. This was an unnecessarily complex process for relatively minor

savings in total memory needs.

The section of code that reads material specification cards was heavily revised.

Several new arrays were introduced to mirror the existing data pointers. The array izn

has been described above. To reiterate, the array izn contains the material isotope listing

for the purpose of simulating photonuclear collisions mirroring the array iza which

contains the default isotope listing for all other isotope/atom-fraction constituents of the

material.

46

All dynamically allocated memory in MCNP is placed in a single long array, das,

and referenced by offsets. This creates a confusing situation because all dynamically

allocated arrays are actually the same array, through either the Fortran77 equivalence or

pointer statement. To illustrate this consider the array jxs, itself located in the das array,

contains locators that are indexes into the other arrays also located in the das array.

Therefore, all arrays must be referenced by their own pointers, e.g. ljxs, that contain the

index of the first word of the corresponding array.

In the description of the table format in a previous section above, NXS, JXS and

IXS are shown as one and two dimensional arrays. In use within the code, arrays nxs, jxs

and ixs are given an additional dimension corresponding to their table index, variable iex.

Each table has a unique index assigned by its order within the array xss. Thus, in use the

fifth element of the NXS array for the fourth table is found at the location nxs(lnxs+5,4).

Similarly, the third element of the IXS array for the second emission particle in the fifth

table is found at the location ixs(lixs+3,2,5).

There are numerous variables and arrays associated with the table selection and

storage. The array lme has dimensions of the number of constituents specified on the

material cards by the number of particles available for transport, i.e. mix by mipt. It

contains the neutron, photoatomic and electron table indices for each constituent of all

materials in the current simulation. The array lmn has dimension mix and contains the

photonuclear table indices. Arrays iza and izn have dimensions mirroring lme and lmn

and contain the ZA identifiers for the neutron/photoatomic/electron and photonuclear

material constituents, respectively. The tables are selected using their ZA, from either

array iza or izn, and their ID, from either the directly specified ID in array kmm or the

47

default specifier located in either array lxd or lxn. The arrays nxs, jxs and ixs contain the

entries corresponding to each of the mxe tables in the simulation. The arrays izn, lmn, lxn

and ixs have been added to the appropriate common blocks to mirror the arrays iza, lme,

lxd and nxs/jxs, respectively. The parameters maxsec and mixs are added to the deck zc

to indicate the maximum number of secondary particles per table and the maximum

number of IXS array entries, 8 and 12, respectively.

A number of other new variables are also necessary to the task at hand. The

variable ispn is added to the fixed common block fixcom to hold the flag indicating

whether photonuclear physics is on or off. The array pnt is added to the fixed,

dynamically-allocated common block dac to contain the lowest photonuclear threshold-

energy for each material. The variable totpn is added to the task common block tskcom

to hold the total photonuclear cross-section value for the current photon at its

corresponding energy for each task transporting particles. The variable npum is added in

the variable common block varcom for use in printing an error message. The variable

htn has been added to the character common block in deck vv to contain the string

‘cdytpmgue’ listing the classes of table in their default order.

Several existing variables have been enlarged to contain new values. The arrays

pax and paxtc contain the weight values by particle type for the overall summary tables

for the problem as a whole and the individual tasks, respectively. Their dimensions have

been incremented by one, from 16 to 17, to store photoabsorption and photoproduction

information by particle. The array jrwb is the mapping from particle termination type,

nter, to the appropriate storage location in the array pax. Its dimensions have also been

incremented by one to account for photoabsorption termination of the photon. The array

48

pwb contains event information for each particle type for each cell. Its dimensions have

been incremented in size by two, from 19 to 21, to store photoabsorption and

photophoton production for photons as well as photoproduction for other particles. The

array pan stores interaction activity information by table, currently only photoatomic and

neutron, for each cell. Its dimensions have been expanded to include space for

photonuclear tables, first index from 2 to 3, as well as new entries, second index from 6

to 8, for the additional photonuclear interactions.

Now that the key variables are known, the initialization algorithms can be

described. MCNP starts a problem by reading the default input file “inp”. It makes two

passes through the cards in the file. The term card derives from the days of punch cards

and is simply a single line of input. The first pass sets up the storage necessary to process

the input and stores a few key user input parameters. The second pass stores the

remaining user input values.

Since photonuclear interactions is a new capability to MCNP(X), it was decided

that during the time it is a beta test capability the user should have to turn on

photonuclear physics. This was done in large part so that the existing regression test suite

could be used without change. The default may eventually be changed to have

photonuclear physics on such that the best available transport algorithms are used unless

the user turns them off. The fourth entry on the PHYS:P card is set to flag the use of

photonuclear physics. It is read in the first pass through the input file and stored in the

variable ispn. Any non-zero integer number will indicate that photonuclear physics is to

be used during the current transport simulation. Any positive integer indicates natural

49

photonuclear collisions are to be sampled; any negative integer indicates biased

photonuclear collisions are to be sampled.

During the first pass, several key parameters are determined about the materials

specified. The number of materials specified in the input deck is stored in variable nmat1

as incremented by routine newcd1. The number of isotope/atom-fraction pairs specified

on a material card is stored in variable nwc as incremented for each entry in the routine

nxtit1. The number of pairs for the material is then used to update several other variables

in the routine oldcd1. The total number of pairs seen on all material cards is stored in

variable mix. The maximum number of pairs for any material is stored in variable mnnm.

The variable npn sets the storage for the array pan and is incremented by the number of

pairs times the number of cells containing this material. Thermal neutron tables, which

contain low energy scattering data to augment neutron tables, are handled by the MT

card. The variable indt contains the total number of thermal table entries for all MT cards

as updated by routine oldcd1.

After this first pass through the input file, the storage requirements are computed

in the routines imcn and setdas for the table headers as well as other dynamically

allocated variables. The new coding takes a simple approach to allocating space for table

headers. In routine imcn just after the call to pass1 that read the input file the input file

for the first time, do the following. Count the number of particles that are to be

transported in the problem assuming one table set is needed per particle. If photons are

transported and electrons are not, increment the count because an electron table set is

needed for the thick-target bremsstrahlung routines. If photons are being transported and

photonuclear physics is on, increment the count to indicate that two sets of tables are

50

needed for photons. Remember that the variable mix contains the total number of

isotope/atom-fraction pairs for all materials. The maximum number of tables needed for

the problem can be computed by multiplying mix times the table sets needed and then

adding indt to account for thermal tables. This value is stored in variable mxe1 which is

then used in routine setdas to allocate storage for table headers.

The set of routines described above has simplified the original coding. It assumes

that every isotope/atom-fraction pair will need a set of tables and every thermal table

requested is different. The original logic in these routines attempted to account for tables

that were used by more than one material and remove the storage allocated for duplicates.

This represents a small memory savings in comparison to the amount of coding and work

needed. It therefore has been eliminated from the current coding.

Once the routine setdas has allocated the dynamic memory, variables are

initialized as necessary and the second pass of the input file is made. The arrays lxd and

lxn are initialized to the default table type for each particle for each material (‘ ’ for

neutrons, ‘p’ for photoatomic, ‘e’ for electrons and ‘u’ for photonuclear). The array pnt

is initialized to parameter huge, the largest real value allowed by the system. All other

arrays of interest to materials are initialized with zero values.

The second pass though the input file checks and stores the remaining user input.

In the routine newcrd, material cards are checked to ensure they are used by either a cell

or a tally multiplier. The M card is ignored otherwise and a warning is printed. The

number of materials after discarding those not used is stored in variable nmat. The name,

i.e. the number from the M card deck, of each material is stored in the array nmt in the

order they are seen.

51

The routine chekit examines each item on the material card before it is passed to

the routine nextit to be stored. User input default library specifiers are examined to

ensure that the table type is suitable and that the corresponding particle is being

transported. Material constituent fractions are checked to ensure they are non-zero and

either all atom or all weight fractions. Warning or fatal error messages are printed as

appropriate.

The routine nextit actually stores the user input values from the input deck in the

correct memory location. The ZAID entries are split apart. The ZA is stored in arrays

iza and izn. The MPN card, which must follow the corresponding M card, can then

overwrite the ZA value in the array izn. The material constituent fractions are stored in

array fme. Positive values are atom fractions. Negative values are weight fractions that

are changed to atom fractions in the routine rhoden. A user input default material library

specifiers is stored appropriately in either array lxd or lxn.

The routine oldcrd then makes final error checks and completes the storage of

material information. If any ZAID entry does not have a corresponding fraction, a fatal

error is issued. Otherwise, the number of pairs for the material is stored in array npq and

locators for the material entries are stored in array jmd. Warnings are printed to remind

the user if the photonuclear isotope override has been used.

The routine stuff determines the actual cross-section tables to be loaded. The

array ixl contains a coded list of all cross-section tables to be loaded. The first section of

the routine stuff adds the neutron, photoatomic and electron tables requested to this list.

The array lme is updated with the table index into array ixl to associate each table for

each particle type with the appropriate material constituent. A new section of code adds

52

the photonuclear tables requested and performs a similar update for the array lmn. The

thermal tables are also added to array ixl and array lmt is used to associate them with the

appropriate material.

The order of precedence for the table ID is determined by the algorithms in

routine stuff. The exact ZAID is requested if specified in the material entry. The ZA and

default ID are requested otherwise. The default ID can be from a material option in

which case it can include a library number. Otherwise, the request is for the first table of

the appropriate type in the XSDIR file.

The list of requested tables in array ixl is then sorted and checked for duplicates.

The list is sorted by default table order and then alpha-numerically by ZA to facilitate

finding and loading the tables. Duplicate entries are removed from the list. Warnings are

issued to the user for near duplicate entries, e.g. ZAIDs 29063.22c and 29063.60c. The

table index arrays lme, lmn and lmt are updated to maintain correspondence to the

appropriate material entry.

The array ixl is passed to routine ixsdir that determines the tables available for

use. The available cross-section tables are listed either on XS cards in the input deck or

in the default XSDIR file. The XS card or XSDIR entry provides basic information about

the cross-section table including its location in the computer file system. The ZAID

entries are checked first against the XS cards and then against the XSDIR entries. The

first near match, i.e. correct ZA and table type, is kept in case an exact match is not

found. The information from either the near match or the exact match, if found, is stored

in the array ixc. Near matches are not used for fully specified ZAIDs. For example, if

53

only 29063.60c was found and but ZAID 29063.22c was requested, the near match would

not be used.

All array ixl entries should now be matched with array ixc table location

information. As the process may have introduced duplicate entries for matches to

partially unspecified tables, they are removed. If any isotope is missing a needed table,

the simulation is stopped and an error message is printed. The transport process cannot

be run if any cross-section table is missing. Remember that the photonuclear isotope

override may request no table be used in which case no table is needed. This completes

the input file processing.

The cross-section tables are loaded by the routine xact and its subroutines. All

cross-section tables are loaded, processed and stored individually except for electron

tables. Electron tables are a special case. The electron data tables are loaded last and

processed all at once. The new photonuclear tables are handled individually just as all

other normal tables.

The routine getxst is called to process each individual table. After finding the

location of the next table in the appropriate library file, it calls the routine sread to read

the data into memory. The routine sread first checks to ensure that the table header

matches the table requested. It then stores the NXS and JXS entries in the corresponding

array and all other entries in the xss array. Back in the routine getxst, the jxs locator

values are updated to become indices into the runtime xss array. If appropriate, the IXS

entries are then extracted from the xss array and stored in the appropriate ixs array. The

locators in ixs are updated in a manner similar to jxs. If appropriate, data that are not

54

needed in the current transport simulation are expunged from the xss array again

appropriate updating all locators.

To this point only one data table has been stored in the xss array at any time.

During the transport process all data tables are stored consecutively in the xss array.

Therefore, all locators are updated one more time to point to where the data will be

during the simulation. The table is then written to the file “runtpe” and the next table is

processed. When all tables have been processed, the array xss, now with all the tables

stored in order, is loaded back into memory from the file runtpe. This completes the

setup and storage phase.

It is worth noting here that this coding has been subject to extensive review in

addition to what was needed for this work. The MCNPX code has recently been updated

with the capability to load evaluated proton data to enable tabular sampling of nuclear

events. The coding to do this corresponds to the description above except without an

isotope override card. This coding has been implemented in MCNPX and was reviewed

again at that time. The process was documented [55] and the coding has been in use in

MCNPX with no bugs reported to date.

Physics Implementation

In the tabular data regime, MCNP(X) implements a statistical Monte Carlo

method to simulate radiation transport. This means that the details of any one history do

not necessarily represent physical reality. It is only when the details of many histories are

accumulated and considered as a set that average values corresponding to physically

meaningful quantities can be determined. This has a significant impact on the data

needed to perform the simulation as well as on how the simulation is conducted.

55

The ACE tabular data include reaction cross sections and the average emission

parameters of the secondary particles. For most evaluated data, the word average implies

that if a reaction produces two neutrons from a (x,2n) reaction, the emission energy

spectrum is the average considering both neutrons together, not separately. In a real

collision, the amount of energy the first neutron takes away determines the energy

available for the emission of the second neutron. In a statistical sampling process, one

averaged emission spectrum is used to sample both neutrons. It is therefore possible to

sample reactions in which energy is not conserved for the collision. However, given that

enough collisions are sampled, the average emission parameters for the secondary

particles are correct.

Statistically average data requires considerably less memory than does true

sampling data. As current statistical tables require as much as two megawords of storage

per table, routinely using complete data is prohibitively expensive. A complete table

would need to include appropriate distributions for every second, third, etc. emission

particle and would exponentially increase the storage requirements.

The algorithm for statistical Monte Carlo sampling is simple and straight-forward.

During the transport process, the distance to the next event is used along with the

direction of flight to move particles through a simulation geometry. If the particle is in a

material, the distance-to-collision is one of the possible next events. The distance-to-

collision is sampled using a random number and the probability of the particle colliding

with an atom in the material. The probability of collision is known as the total

macroscopic cross section and is typically given in units of inverse centimeters. The

macroscopic cross section is the atom density times the total microscopic cross section

56

for all reactions involving an incident particle type in a given material. The microscopic

cross sections are tabulated as a function of the incident particle energy in the ACE

tables.

As the routine hstory tracks a photon through a medium, it first calls the routine

photot to compute the total microscopic cross section for the current energy in the

current material. Previous to this work, the routine photot returned only the total

photoatomic cross section. The value of the total photoatomic cross section is stored in

variable totm. The logic to compute the photoatomic total cross section is left untouched.

However, a new test in routine photot checks to see if photonuclear physics is on and if

so calls the routine pnctot.

The routine pnctot has been added to compute the total photonuclear microscopic

cross section. It accumulates the total photonuclear cross-section in the variable totpn.

This variable is initialized to zero upon entering the routine. If the incident energy is

below the photonuclear threshold, as stored in array pnt by material, the routine is done.

Otherwise, the total cross section for each isotope in the material is accumulated in totpn.

Additionally, as each cross section is located, the current energy, the index and offset of

the current energy in the main energy grid and the value of the cross section for the

isotope are stored in the array ktc and rtc. This is done such that these values are

available immediately if the next request matches the current energy.

Once back in routine photot, the total photonuclear cross section for the material

is added to the total photoatomic cross section and stored in totm just before returning to

routine hstory. The routine hstory uses this value to compute the total macroscopic

cross section, variable rho, the atom density, times variable totm. The inverse of this

57

value is known as the mean free path and stored in variable gs. The distance-to-collision,

stored in variable pmf, is then computed from the well known Monte Carlo sampling

formula. (For general information on the Monte Carlo method for simulating radiation

transport, see the reference by Carter and Cashwell [56].) This is an important step in

achieving a more correct photon simulation as the use of only the photoatomic cross

section can overestimate the distance-to-collision by up to seven percent for photon

energies in the giant dipole resonance region and therefore skew the photon collision

distribution.

If the next event is a photon collision, the routine colidp is called to handle the

interaction. Similar to the treatment in routine photot, photonuclear interactions are

treated in a separate subroutine. If photonuclear physics is on and the photon is above the

photonuclear threshold energy, the routine coldpn is called at the beginning of colidp to

handle a possible photonuclear event.

Photonuclear events are rare in comparison to photoatomic events. For this

reason, it is useful to have a method to bias the sampling. The variable ispn, set by the

user as the fourth entry on the PHYS:P card, controls the biasing method. If the value is

a positive integer, photonuclear events occur at their natural frequency. That is, sample a

random number from zero to one and if it is less than the ratio of the total photonuclear

cross section to the total cross section, the collision is a photonuclear event. If not,

account for not sampling a photonuclear event, return to the routine colidp and sample a

photoatomic event in the normal manner.

Biasing forces a photonuclear collision. If the user has set the variable ispn to a

negative integer, the photon is split. Two particles each of reduced weight (a measure of

58

their importance) are created. One is forced to undergo photonuclear absorption and the

other is passed back to the routine colidp for normal photoatomic sampling. The weight

is adjusted by the probability of each type of event, photonuclear or photoatomic.

Specifically, the weight of the photon that undergoes forced photonuclear sampling is

scaled by the ratio of the photonuclear cross section to the total cross section. The weight

of the photon that undergoes photoatomic sampling is the original photon weight minus

the portion that underwent photonuclear absorption.

For either natural or biased photonuclear collisions, it is necessary to update the

summary information. If it is a natural sampled photonuclear collision, the summary

arrays pax and pwb are updated to indicate the photon was terminated by a photonuclear

absorption. If it is a forced collision, the summaries are updated to account for the weight

and energy loss, but do not indicate absorption as the original photon with the remaining

weight continues onward.

Once it has been decided that all or part of the incident photon will undergo a

photonuclear collision, the target isotope must be chosen. A random number is sampled

and a target isotope is chosen based on the ratio of its partial cross section to the total

cross section. This is done by accumulating the cumulative probability that the reaction

occurred for each isotope in the material in turn until reaching the randomly sampled

probability. After the target isotope is chosen, the array pan is updated to indicate a

collision using that isotope’s table.

Based on the target isotope and the incident photon energy, a production cross

section can by calculated for each secondary particle of interest. The ratio of the

secondary particle-production cross section to the total cross section for that isotope is

59

stored in variable fp and represents the average number of particle emissions expected.

An integer number of particles suitable for sampling can be obtained by adding a random

number from zero to one to the average value fp and taking the integer, floor, value. This

number is stored in variable np. Again, realize that because this is statistical Monte

Carlo, the average number of particles emitted is preserved only over large numbers of

histories.

Because biased photonuclear particle production can cause considerable

variations in weight, it is desirable to have a method to control the emission particle’s

weight. The weight windows present a reasonable method for achieving this. Weight

windows are user input values that control the value of particle weight in an energy

region in a spatial region. If the particle is above the weight-window limit, the weight is

reduced by splitting it among several identical particles such that the new particles fit in

the window. If the particle is below the weight-window limit, Russian roulette is played

and particles which survive have their weight increased to a value within the window.

The splitting or roulette of particle is limited to a reasonable value for any given step.

If only one energy group exists for the particle of interest at its current position,

the weight window control can be applied before sampling the emission parameters.

Specifically, the np particles to be sampled are split or rouletted appropriately. This is

advantageous for two reasons. First, it prevents sampling particles that do not undergo

further transported, thus saving CPU time. Second, it splits particles of high weight

before sampling emission parameters. This generally provides better statistics faster as

more of the emission phase-space is sampled per collision. Obviously, if more than one

60

energy group exists for the weight window, the scheme can only be applied after the

particle is sampled and its energy is known. This is done as described below.

A loop over the integer number of particles to be emitted is used to select

appropriate emission parameters. Similar to the selection of target isotope, a production

reaction is randomly sampled from those available. Once the reaction is picked, the

energy and scattering angle are sampled using the standard ACE sampling routines and

returned in the laboratory system. The current center-of-mass to laboratory transform

does not account for the photon momentum. The routine rotas then updates the emission

particle’s direction of flight. Note that this is a statistical method that randomly samples

the reactions producing the emission particles, e.g. if two neutrons are emitted, one may

be from a (γ,2n) and the second from a (γ,fission) reaction.

Updates to the ACE sampling routines were needed for four different efforts. The

delayed neutron capability implemented by Chris Werner [57] needed to sample neutron

emission spectra from a new location in the class ‘c’ table. The upcoming release of a

new ACE continuous-energy neutron library built from the latest release of the ENDF/B-

VI evaluated data library will use correlated tabular energy-angle spectra. The coding to

implement Energy Law 61, correlated tabular-energy/tabular-angular distribution, and

Angular Law 2, tabular angular distributions, were written by Bob Little of X-5 at LANL.

The ACE sampling routines have only been used for incident neutron, emitted neutron-

photon reactions. Sampling for incident photons and protons with subsequent emission

of all light particles required removing certain dependencies within these routines and

updating certain algorithms. The effort to use proton tables in MCNPX and the effort to

use photonuclear tables in both MCNP and MCNPX required these changes.

61

In order to avoid multiple implementations, one set of source code was needed

implementing the necessary changes. The integration of these changes was coordinated

within the scope of this work. The implementation and testing of the updated ACE

routines, done in cooperation with Larry Cox of the MCNP development team and Grady

Hughes of the MCNPX development team, is documented in two internal memoranda

[52,53]. The details of the modifications are left to those documents.

Once the emission particle has been sampled, several updates must be made. The

arrays pax, pwb and pan are updated to reflect the particle creation. Particles below their

respective energy cutoff are killed. The routines dxtran and tallyd are called to calculate

contributions to dxtran spheres and point detectors. The particles weight is checked

against the value for the weight-window, if in a region with energy depend weight

windows, and adjusted as described above. Finally, assuming no errors have been

encountered, the particle is banked for further transport by the routine hstory.

Tallies, Summaries and Other Capabilities

The major MCNP capabilities are all fully functional with the creation of

secondary particles from photonuclear interactions as implemented in the present work.

Contributions to dxtran spheres and point detectors are calculated as appropriate. Created

particles are transported using the standard routines. The weight window scheme is used

to control particle weights. The standard MCNP tallies work without change. Only a

few auxiliary functions not necessary to transport remain to be integrated.

Summary table information is the last important topic to cover. Biased Monte

Carlo can be dangerous if used as a black box. It is possible to force the random walk to

skip large areas of importance within a problem such that the answer produced does not

62

reflect physical reality. In order to avoid this, MCNP provides the user a number of

summary tables to enable better understanding of the details of the simulation. The

example summary tables discussed below are located at the end of the chapter.

All MCNP simulations print a general problem summary. This is a set of tables

by particle type that present creation and loss information for external, physical and

variance reduction events. Photonuclear adds three new events to the standard MCNP

tables: photonuclear absorption of photons, creation of photophotons and creation of

photoneutrons. MCNPX will include similar entries for photoproduction of other light

particles. Examples of the expanded summary tables for neutrons and photons are shown

in Table 3-6 and Table 3-7, respectively.

Implementing the new entries for the problem summary tables was straight-

forward. The array pax is used to hold the values for these tables. It has been expanded

and updated as described above. The routine sumary actually prints the table to the

output file. New headers were added to this routine for the new table entries. The tables

are printed via a loop over each set of entries for each particle type. This loop was

appropriately updated to include printing of the new entries. The auxiliary information

such as average-time-to-event has also been updated.

Often more insight into the problem is needed than the general problem summary

provides. There are three optional print tables that provide more detailed information.

This information is provided by cell in each case. This allows the expert user to

understand the flow of events within the simulation and hopefully determine if an area or

event is under sampled or inappropriately biased.

Table 3-6. Example problem summary table for neutrons.
 neutron creation tracks weight energy neutron loss tracks weight energy
 (per source particle) (per source particle)

 source 0 0. 0. escape 20394 3.8037E-05 6.9346E-05
 energy cutoff 0 0. 0.
 time cutoff 0 0. 0.
 weight window 0 0. 0. weight window 0 0. 0.
 cell importance 0 0. 0. cell importance 0 0. 0.
 weight cutoff 0 0. 0. weight cutoff 0 0. 0.
 energy importance 0 0. 0. energy importance 0 0. 0.
 dxtran 0 0. 0. dxtran 0 0. 0.
 forced collisions 0 0. 0. forced collisions 0 0. 0.
 exp. transform 0 0. 0. exp. transform 0 0. 0.
 upscattering 0 0. 0. downscattering 0 0. 1.0571E-05
 capture 11 3.6632E-08 1.6110E-07
 (n,xn) 0 0. 0. loss to (n,xn) 0 0. 0.
 fission 0 0. 0. loss to fission 0 0. 0.
 (gamma,xn) 20405 3.8073E-05 8.0078E-05
 total 20405 3.8073E-05 8.0078E-05 total 20405 3.8073E-05 8.0078E-05

 number of neutrons banked 20405 average time of (shakes) cutoffs
 neutron tracks per source particle 8.1620E-03 escape 5.3788E-01 tco 1.0000E+34
 neutron collisions per source particle 1.2217E-02 capture 2.5072E-01 eco 0.0000E+00
 total neutron collisions 30543 capture or escape 5.3760E-01 wc1 0.0000E+00
 net multiplication 0.0000E+00 0.0000 any termination 5.3760E-01 wc2 0.0000E+00

63

Table 3-7. Example problem summary table for photons.
 photon creation tracks weight energy photon loss tracks weight energy
 (per source particle) (per source particle)

 source 0 0. 0. escape 245286 5.6053E-02 6.5491E-01
 energy cutoff 306851 1.9838E-02 5.0886E-02
 time cutoff 0 0. 0.
 weight window 0 0. 0. weight window 0 0. 0.
 cell importance 0 0. 0. cell importance 0 0. 0.
 weight cutoff 0 0. 0. weight cutoff 0 0. 0.
 energy importance 0 0. 0. energy importance 0 0. 0.
 dxtran 0 0. 0. dxtran 0 0. 0.
 forced collisions 233325 0. 0. forced collisions 0 0. 0.
 exp. transform 0 0. 0. exp. transform 0 0. 0.
 from neutrons 0 0. 0. compton scatter 0 0. 1.7336E-01
 bremsstrahlung 226688 9.0549E-02 1.0609E+00 capture 2 3.2140E-07 3.4372E-06
 p-annihilation 0 0. 0. pair production 94574 1.4754E-02 1.8006E-01
 electron x-rays 0 0. 0.
 1st fluorescence 0 0. 0.
 2nd fluorescence 0 0. 0.
 (gamma,xgamma) 186700 2.2239E-04 3.7871E-04 loss to pn. abs. 0 1.2621E-04 2.0788E-03
 total 646713 9.0771E-02 1.0613E+00 total 646713 9.0771E-02 1.0613E+00

 number of photons banked 646713 average time of (shakes) cutoffs
 photon tracks per source particle 2.5869E-01 escape 3.0983E-02 tco 1.0000E+34
 photon collisions per source particle 9.4855E-02 capture 1.7548E-02 eco 8.2721E+00
 total photon collisions 237138 capture or escape 3.0983E-02 wc1 0.0000E+00
 any termination 2.5211E-02 wc2 0.0000E+00

64

65

Print Table 126 provides general cell activity by particle. It contains information

about the population of particles and their average weight, energy and mean free path.

No changes were necessary to the methodology for this print table. The values are

updated using information that is consistent with the new photonuclear capability.

Print Table 130 provides a detailed weight balance for each cell by particle type.

It is split into three parts: external, variance-reduction and physical events. The original

version of this table printed with events listed horizontally across the page and cells listed

vertically down the page. This completely filled the available 132-column width and

could not be expanded to include photonuclear events without exceeding the column

limitation. Therefore, when the new photonuclear events were added, the format was

rotated such that events are listed vertically down the page and cells are listed

horizontally across the page. A maximum of nine cells are printed across the page before

the process is repeated. A sub-total for each event type is included as well as a total over

all cells. Table 3-8 and Table 3-9 show examples of the new format for the neutron and

photon weight balance tables, respectively.

The change in format for Print Table 130 required that the print sequence be

revised to print the information rotated as described above. During the revision, the

coding was encapsulated in its own routine, tbl130, called as needed by routine action. It

is implemented as a simple series of print statements. For each event, it first prints the

header and then the individual cell values one at a time across the page. The 132-column

limit corresponds to a maximum of nine cells across the page. New pages are generated

as needed and headers are printed each time. The dimension for storage array pwb has

been incremented by one to provide storage for the calculation of the total over all cells.

Table 3-8. Example page from the neutron weight balance table (Print Table 130).
1neutron weight balance in each cell print table 130

 cell index 1 2 3 4 5 6 7 8 9
 cell number 35 40 41 42 401 402 403 404 405

 external events
 entering 2.2513E-04 6.7504E-05 2.2992E-05 2.7263E-04 1.4666E-03 1.4397E-03 2.1264E-03 1.3038E-03 1.4402E-03
 source 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 energy cutoff 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 time cutoff 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 exiting -2.2511E-04 -1.0820E-04 -2.2992E-05 -2.7262E-04 -1.4666E-03 -1.5762E-03 -2.1262E-03 -1.3038E-03 -2.0719E-03
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 subtotal 1.8482E-08 -4.0691E-05 0.0000E+00 5.6769E-09 0.0000E+00 -1.3655E-04 1.6550E-07 7.8432E-09 -6.3166E-04

 var.red. events
 weight window 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 cell imp. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 weight cutoff 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 energy imp. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 dxtran 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 forced coll. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 exp. trans. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 subtotal 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

 physical events
 (n,xn) 0.0000E+00 1.8420E-08 0.0000E+00 0.0000E+00 0.0000E+00 8.1360E-09 0.0000E+00 0.0000E+00 7.2428E-08
 fission 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 capture -1.8482E-08 -3.9059E-06 0.0000E+00 -5.6769E-09 0.0000E+00 -9.8012E-07 -1.6550E-07 -7.8432E-09 -1.0274E-05
 loss to (n,xn) 0.0000E+00 -9.2100E-09 0.0000E+00 0.0000E+00 0.0000E+00 -4.0680E-09 0.0000E+00 0.0000E+00 -3.6214E-08
 loss to fission 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 (gamma,xn) 0.0000E+00 4.4588E-05 0.0000E+00 0.0000E+00 0.0000E+00 1.3752E-04 0.0000E+00 0.0000E+00 6.4190E-04
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 subtotal -1.8482E-08 4.0691E-05 0.0000E+00 -5.6769E-09 0.0000E+00 1.3655E-04 -1.6550E-07 -7.8432E-09 6.3166E-04

 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 total 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

66

Table 3-9. Example page from the photon weight balance table (Print Table 130).
1photon weight balance in each cell print table 130

 cell index 1 2 3 4 5 6 7 8 9
 cell number 35 40 41 42 401 402 403 404 405

 external events
 entering 1.6142E-03 4.6749E-03 1.6677E-03 1.2534E-06 6.7342E-03 2.4362E-03 2.2120E-01 1.6007E-01 5.6669E-02
 source 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 energy cutoff -1.3090E-05 -1.3067E-03 -6.2040E-08 0.0000E+00 0.0000E+00 -3.9943E-03 -8.3939E-05 -3.0400E-06 -3.0342E-02
 time cutoff 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 exiting -1.6016E-03 -6.8340E-04 -1.6678E-03 -1.2534E-06 -6.7342E-03 -2.2175E-01 -2.2140E-01 -1.6007E-01 -1.0477E-02
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 subtotal -4.9792E-07 2.6848E-03 -1.2408E-07 0.0000E+00 0.0000E+00 -2.2331E-01 -2.7929E-04 -5.8938E-06 1.5850E-02

 var.red. events
 weight window 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 cell imp. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 weight cutoff 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 energy imp. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 dxtran 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 forced coll. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 exp. trans. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 subtotal 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

 physical events
 from neutrons 0.0000E+00 8.0097E-08 0.0000E+00 0.0000E+00 0.0000E+00 3.2331E-08 0.0000E+00 0.0000E+00 1.1550E-06
 bremsstrahlung 4.0946E-06 6.3284E-04 1.2408E-07 0.0000E+00 0.0000E+00 2.3342E-01 3.0498E-04 6.3281E-06 6.0550E-02
 p-annihilation 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 electron x-rays 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 flourescence 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 pe. capture 0.0000E+00 -4.3389E-05 0.0000E+00 0.0000E+00 0.0000E+00 -1.3489E-04 0.0000E+00 0.0000E+00 -1.5582E-03
 pair production -3.5967E-06 -3.3323E-03 0.0000E+00 0.0000E+00 0.0000E+00 -1.0162E-02 -2.5684E-05 -4.3428E-07 -7.5133E-02
 pn. absorbtion 0.0000E+00 -3.8444E-05 0.0000E+00 0.0000E+00 0.0000E+00 -1.1947E-04 0.0000E+00 0.0000E+00 -6.2929E-04
 (gamma,xgamma) 0.0000E+00 9.6437E-05 0.0000E+00 0.0000E+00 0.0000E+00 3.0068E-04 0.0000E+00 0.0000E+00 9.1914E-04
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 subtotal 4.9792E-07 -2.6848E-03 1.2408E-07 0.0000E+00 0.0000E+00 2.2331E-01 2.7929E-04 5.8938E-06 -1.5850E-02

 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 total 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

67

68

The total over all cells is accumulated as the table is printed and is printed just after the

last cell. This process is done for each particle type being transported. It has been

verified that the values of the array pwb have not been corrupted and that the new print

sequence appropriately places the entries.

Print Table 140 provides details of particle interactions by nuclide for each cell.

Two tables previously provided information by nuclide and cell for neutron and

photoatomic interactions. A new table provides similar information for photonuclear

interactions. Table 3-10, Table 3-11 and Table 3-12 show examples of the format for

each type of interaction.

For unknown reasons, the production of photons due to neutron interactions was

previously listed in the photoatomic summary table. The photon statistics include the

total number of tracks produced as well as the average weight and energy of the photons

produced. The new location of these values in the neutron nuclide summary is

highlighted in Table 3-10. The removal of this information from the photoatomic

summary is shown in Table 3-11.

The information provided in Print Table 140 for collisions sampled using

photonuclear tables is similar to that provided for neutron tables. The nuclide and its

atom fraction for the cell in question are listed first. The total number of collisions and

the average weight per collision are listed next. The number of tracks and the average

weight and energy of the secondary particles produced are given for both photophotons

and photoneutrons. Totals by nuclide are also included.

The changes necessary to implement the revised Print Table 140 were extensive.

The array pan was expanded in dimension from two to three to allow for a new table type

Table 3-10. Example page from the neutron activity by nuclide table (Print Table 140).
1neutron activity of each nuclide in each cell, per source particle print table 140

 cell cell nuclides atom total collisions wgt. lost wgt. gain wgt. gain tot p wgt. of avg p
 index name fraction collisions * weight to capture by fission by (n,xn) produced p produced energy

 1 35 7014.60c 7.71E-01 2538 1.7247E-06 1.8482E-08 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 8016.60c 2.20E-01 898 5.9341E-07 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 18000.35c 9.60E-03 21 9.5974E-09 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00

 2 40 74184.60c 1.00E+00 512134 3.7335E-04 3.9059E-06 0.0000E+00 9.2100E-09 202 8.0097E-08 6.0720E+00

 3 41 7014.60c 7.71E-01 11 9.3721E-09 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 8016.60c 2.20E-01 4 2.4485E-09 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 18000.35c 9.60E-03 0 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00

 4 42 7014.60c 7.71E-01 629 4.1720E-07 5.6769E-09 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 8016.60c 2.20E-01 242 1.7373E-07 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 18000.35c 9.60E-03 12 4.7780E-09 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00

 6 402 74184.60c 1.00E+00 175033 1.2015E-04 9.8012E-07 0.0000E+00 4.0680E-09 74 3.2331E-08 6.2259E+00

 7 403 7014.60c 8.20E-01 9473 6.3122E-06 1.6550E-07 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 8016.60c 1.80E-01 2933 1.8493E-06 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00

… … … … … … … … … … … …

 total 41876433 2.8194E-02 1.7193E-04 0.0000E+00 2.4140E-07 8832 1.0267E-05 6.5069E+00

 total over all cells by nuclide total collisions wgt. lost wgt. gain wgt. gain tot p wgt. of avg p
 collisions * weight to capture by fission by (n,xn) produced p produced energy

 1001.60c 1620572 1.0082E-03 4.1615E-06 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 7014.60c 14171 9.4608E-06 2.1668E-07 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 8016.60c 2606175 1.6344E-03 3.0568E-07 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 11023.60c 84243 5.2891E-05 9.9389E-07 0.0000E+00 0.0000E+00 12 2.4892E-07 6.3981E+00
 13027.60c 77373 4.9247E-05 9.2334E-07 0.0000E+00 0.0000E+00 8 4.9632E-07 7.3646E+00
 14000.60c 729203 4.6399E-04 6.0115E-06 0.0000E+00 0.0000E+00 21 1.2409E-06 6.9548E+00
 18000.35c 33 1.4375E-08 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00 0.0000E+00
 20000.60c 84712 5.4344E-05 2.0322E-06 0.0000E+00 0.0000E+00 90 1.3265E-06 6.3210E+00
 26056.60c 44103 2.7849E-05 1.7703E-06 0.0000E+00 0.0000E+00 73 1.5110E-06 7.1853E+00
 28058.60c 13225 9.1831E-06 5.4031E-08 0.0000E+00 0.0000E+00 1 3.2775E-08 8.6418E+00
 29063.60c 11865 8.3006E-06 5.3625E-08 0.0000E+00 0.0000E+00 2 3.7590E-08 7.2947E+00
 51000.42c 1069402 6.9361E-04 2.1539E-05 0.0000E+00 0.0000E+00 1084 2.3606E-06 6.2558E+00
 74184.60c 19110650 1.3344E-02 1.3293E-04 0.0000E+00 1.9194E-07 7341 2.9072E-06 6.0824E+00
 82208.60c 16410706 1.0838E-02 9.3757E-07 0.0000E+00 4.9455E-08 200 1.0533E-07 6.4524E+00

69

Table 3-11. Example page from the photoatomic activity by nuclide table (Print Table 140).
1photoatomic activity of each nuclide in each cell, per source particle print table 140

 cell cell nuclides atom total collisions wgt. lost
 index name fraction collisions * weight to capture

 1 35 7000.02p 7.71E-01 212 1.3152E-05 0.0000E+00
 8000.02p 2.20E-01 85 5.2717E-06 0.0000E+00
 18000.02p 9.60E-03 11 6.8244E-07 0.0000E+00

 2 40 74000.02p 1.00E+00 78346 4.8017E-03 4.3389E-05

 3 41 7000.02p 7.71E-01 1 6.2040E-08 0.0000E+00
 8000.02p 2.20E-01 0 0.0000E+00 0.0000E+00
 18000.02p 9.60E-03 0 0.0000E+00 0.0000E+00

 4 42 7000.02p 7.71E-01 0 0.0000E+00 0.0000E+00
 8000.02p 2.20E-01 0 0.0000E+00 0.0000E+00
 18000.02p 9.60E-03 0 0.0000E+00 0.0000E+00

 6 402 74000.02p 1.00E+00 240672 1.4666E-02 1.3489E-04

 7 403 7000.02p 8.20E-01 1616 9.9386E-05 0.0000E+00
 8000.02p 1.80E-01 410 2.4941E-05 0.0000E+00

… … … … … … …

 total 6384769 3.8309E-01 4.3187E-03

 total over all cells by nuclide total collisions wgt. lost
 collisions * weight to capture

 1000.02p 653 3.5293E-05 0.0000E+00
 7000.02p 1981 1.2196E-04 0.0000E+00
 8000.02p 44143 2.3585E-03 0.0000E+00
 11000.02p 1321 6.9470E-05 0.0000E+00
 13000.02p 5731 3.2715E-04 0.0000E+00
 14000.02p 34281 1.8295E-03 1.2408E-07
 18000.02p 11 6.8244E-07 0.0000E+00
 20000.02p 6146 3.3039E-04 1.2407E-07
 26000.02p 1500 7.9856E-05 1.2409E-07
 28000.02p 3742 2.2802E-04 1.2384E-07
 29000.02p 384 2.1824E-05 0.0000E+00
 51000.02p 36061 2.1981E-03 1.3205E-05
 74000.02p 3873350 2.3013E-01 2.2326E-03
 82000.02p 2375465 1.4536E-01 2.0724E-03

70

Table 3-12. Example page from the photonuclear activity by nuclide table (Print Table 140).
1photonuclear activity of each nuclide in each cell, per source particle print table 140

 cell cell nuclides atom total collisions tot p wgt. of avg p tot n wgt. of avg n
 index name fraction collisions * weight produced p produced energy produced n produced energy

 2 40 74184.03u 1.00E+00 53756 3.8444E-05 94815 9.6437E-05 1.1576E+00 57388 4.4588E-05 1.4209E+00

 6 402 74184.03u 1.00E+00 165705 1.1947E-04 291682 3.0068E-04 1.1578E+00 175227 1.3752E-04 1.4152E+00

 9 405 82208.03u 9.34E-01 1069157 6.2929E-04 915777 9.1914E-04 1.6709E+00 1048772 6.4190E-04 2.2029E+00

 10 451 82208.03u 9.34E-01 343129 1.8974E-04 276449 2.6978E-04 1.6433E+00 333256 1.9253E-04 2.1867E+00

 12 406 74184.03u 9.98E-01 624461 3.7915E-04 958159 9.1936E-04 1.1622E+00 617744 4.1598E-04 1.3695E+00
 29063.03u 1.00E-03 435474 5.0690E-08 398280 1.0306E-07 1.4272E+00 20 2.5686E-08 1.5598E+00

 14 407 74184.03u 9.98E-01 1564103 1.0354E-03 2575333 2.5601E-03 1.1564E+00 1603294 1.1685E-03 1.3979E+00
 29063.03u 1.00E-03 934420 1.2750E-07 856207 2.4837E-07 1.1638E+00 77 8.7239E-08 1.6041E+00

 total 5190205 2.3916E-03 6366702 5.0658E-03 1.2768E+00 3835778 2.6011E-03 1.6517E+00

 total over all cells by nuclide total collisions tot p wgt. of avg p tot n wgt. of avg n
 collisions * weight produced p produced energy produced n produced energy

 13027.03u 3889 1.1872E-07 2848 1.4591E-07 1.6055E+00 321 2.6097E-08 1.5615E+00
 20040.03u 47339 3.9092E-07 29003 1.4934E-07 3.8396E+00 29 4.1120E-09 7.6706E-01
 26056.03u 6889 1.4796E-07 5803 1.3887E-07 2.3300E+00 2759 1.0913E-07 1.6223E+00
 29063.03u 1369894 1.7819E-07 1254487 3.5144E-07 1.2410E+00 97 1.1293E-07 1.5940E+00
 74184.03u 2408025 1.5724E-03 3919989 3.8766E-03 1.1579E+00 2453653 1.7666E-03 1.3932E+00
 82208.03u 1412286 8.1903E-04 1192226 1.1889E-03 1.6646E+00 1382028 8.3443E-04 2.1991E+00

71

72

and from six to eight to allow for additional information. The expansion for additional

information allowed the photon production from neutron collision data to be moved back

into the neutron table listing. The new listing for photonuclear collisions is updated in

the routine coldpn to account for the number of collisions and their weight as well as the

number, weight and average energy of photons and neutrons produced.

Similar to the routine tbl130, a new routine was written for Print Table 140. The

routine action now calls routine tbl140 to print the nuclide activity information. Again, a

simple, brute-force solution was implemented to print the necessary information. It

follows the same format as in the original Print Table 140 though it has been condensed

in width to allow for the additional information as described above. The values for the

values for these existing tables have been checked to verify they have not been corrupted

by the relocation. The new values have been checked by hand.

Future Work

The next step in this effort is to implement the prototype coding into the MCNPX

code for release to a beta-user community. It is believed that this is the best audience to

begin using the new photonuclear physics capability. Over the last three years, these

users have helped guide the evolution of the MCNPX code by testing new capabilities

and suggesting future directions. As the last features necessary to implement the

photonuclear physics capability are finalized, the assistance of this community should

ensure that the final product is bug free and user friendly.

There are a few areas of known concern in the current coding. The LA150

photonuclear data make use of only one reaction cross section with secondary particle-

production based on appropriate yields and emission spectra given by Kalbach

73

systematics. The errors and warnings in the prototype have been verified to ensure they

would catch problems with the LA150 data but further checks are needed to verify they

will catch all generic data errors. Similarly, the sampling routines have been verified to

correctly use the LA150 data, but further checks are needed to verify that other processed

data will work correctly. Last, MCNP and MCNPX are riddled with hidden

dependencies. It is expected that further user testing will produce several minor glitches.

The current sampling of photonuclear data using Energy Law 44 is based on the

original formalism by Kalbach [50,51]. Chadwick has proposed [11] that the reduced

momentum of the photon particle incident on the heavy target is more realistically

sampled as isotropic for multi-step compound decay. A new Energy Law including this

modification needs to be proposed to the Cross Section Evaluation Working Group

(CSEWG), the group which controls the ENDF format.

MCNP(X) provides many auxiliary functions in addition to its mainstream

capabilities. Some of these features, such as event log printing, have updated to include

photonuclear information. However, several others, including but are not limited to the

tally multiplier card, cross section plotting and ptrac file writing, have not been updated.

For this work, these features were not necessary. As time permits, they will be added

into future implementations.

74

CHAPTER 4
VERIFICATION AND VALIDATION

Introduction to Verification and Validation

In today’s scientific world, the computer has become an essential tool. However,

the use of the computer is still an evolving subject. An entire field of study has devoted

itself to software quality assurance. The cornerstones of software quality assurance are

verification and validation. As this work is in large part a software coding project, it is

desirable to address the question of verification and validation here.

Verification in the context of software quality assurance is the process of ensuring

the functionality of the software. It can also be thought of as tackling the subtler issue of

the garbage in equals garbage out problem. The issue is how to ensure that the

functionality of the coding performs in the manner expected and does so for all valid

cases. A brief summary of the verification of the present work is presented in the next

section. The larger problem of ensuring that the results are not garbage is the domain of

validation and the primary focus of this chapter.

The quest of validation in the context of software quality assurance is to prove

that the coding and data in question perform with reliable results in the region of interest.

For the purpose of this work, the region of interest is the production of neutrons from

bremsstrahlung photons in the energy range up through several tens of MeV. As the

ability to use tabular photonuclear data within MCNP has not been generally available

75

before, the validation results discussed here provide the basis for estimating the general

uncertainty for the this new capability as a whole.

For the purpose of this work, the ideal validation benchmark should include the

production of photons via bremsstrahlung radiation and the subsequent production of

neutrons from those photons. Additionally, such a benchmark should contain as few

extraneous complications as possible and must document enough of the setup and

analysis to conclude that a fair comparison to any simulation is being obtained. The

literature has been searched for such benchmarks with minimum results.

There is a dearth of experimental data available in the area of photonuclear

physics. Of the published results, few are suitable for use as benchmarks. Many early

experimentalists measured the photonuclear cross section of materials with

bremsstrahlung photons. The raw data of neutrons observed for a specific experimental

configuration would be an ideal benchmark. However, the raw data is typically

“unfolded” and represented as a set of cross sections. The experimental data thus

presented is unusable as a benchmark as the unfolding method is not documented and

typically a poor quality cross-section measurement in comparison to those obtained with

mono-energetic photons.

There are numerous other measurements in the literature that would be useful but

come from complicated systems that are not well documented. Measurements that are

based on poorly documented systems cannot be used as benchmarks because too many

assumptions must be made in the simulation model. For a measurement to be useful as a

benchmark, it must contain a description of the experimental setup that thoroughly

documents every significant parameter.

76

Two studies have been chosen from the available literature for the purpose of

validation of the work presented in this dissertation. Swanson [31,32] folded differential

photon fluxes calculated from analytical shower theory with measured cross sections to

obtain neutron yields from electrons incident on semi-infinite slab geometry. Barber and

George [58] reported absolute measurements of neutrons produced per electron incident

on several materials.

The results presented by Swanson are not true experimental measurements.

However, they are useful for a number of reasons. The Barber and George experiment

was the only work found to date that contains the details necessary to be defined as

experimental benchmark data. As a second study was desired for comparison, the work

of Swanson was chosen. That this study was chosen was not an arbitrary decision. The

original motivation for this work was the assessment of the neutron field in a medical

accelerator room. The defining work in this area is NCRP Report 79 [2]. Swanson

participated as a consultant to the task force which wrote this report. The method he has

used to calculate theoretical neutron yields is recommended in the report to calculate the

neutron source produced within an accelerator.

Swanson utilizes analytical shower theory and experimental cross-section

measurements to obtain an expected neutron yield released by electron bombardment of a

material. The accuracy of the neutron yield calculated is highly sensitive to the accuracy

of the cross-section measurements used. However, in the absence of the equivalent direct

measurement, this is a useful way to calculate neutron yields.

The Barber and George results are experimental and they are considered an

excellent benchmark. As such benchmark data are rare, great pains have been taken here

77

to explain how the data was taken in the hopes that experimentalists who read this might

be compelled to perform similar measurements. It is hoped that the availability of this

new ability to simulate photonuclear interactions in radiation transport will encourage

such benchmark experiments.

Comparison of current calculations to each of the sets of data described are

presented as a section of this chapter. In each section, the original study is described in

enough detail to understand what must be taken into consideration in the simulation. The

setup of the simulation including any assumptions is depicted and the results of the

current calculation versus the original results are discuss. For completeness, the actual

MCNP input decks are included in Appendix D. Comparisons are included for each

material which has a corresponding tabular photonuclear data set. The final section of

the chapter will summarize the conclusions that have been drawn from these comparisons

and assess the overall uncertainty attributable to the evaluated data and its use by the

current coding.

Verification

Anyone who has ever written even the simplest piece of software has had to learn

something about verification. Rarely does a piece of software compile and run as it is

supposed to on the first attempt. Typically, it is necessary to debug the code to remove

errors in implementation. Even if it does compile and appear to run, it is wise to run test

cases to ensure that reasonable input conditions give reasonable results. Additionally,

there are numerous tasks that can be performed during the development cycle of the

software to ensure that it functions as expected.

78

There were four major changes implemented within the existing MCNP code in

order to establish the functionality desired by this work. The verification of each major

change is discussed separately. This documentation is meant to provide an overview of

the verification that was done without actually showing all the details.

The input routines were revised in order to allow specification of a photonuclear

table for use by a material. As discussed in the implementation chapter, this required

extensive revisions to the original coding. The final implementation was inspected by

several code walkthroughs. (A code walkthrough is a detailed inspection of the code

modifications by two or more persons to ensure that revisions in question accurate

implement the desired functionality.) In addition, the arrays used to store the tabular data

were checked during debugging runs to ensure that the appropriate data was stored

correctly.

In addition to these algorithms implementation within MCNP for loading

photonuclear tables, they were duplicated within MCNPX for loading proton tables [55].

They were also subjected to a code walkthrough at that time. They have seen active use

since their implementation with no bugs reported.

The tabular data sampling routines were revised to correctly sample emission

parameters for any combination of incident and emitted particle. These changes been

duplicated in MCNPX in order to correctly handle proton tables and in MCNP for

miscellaneous other reasons [52,54,59]. There have been subjected to several code

walkthroughs at various stages in this work. During their implementation into the

distribution version of MCNP, they were subjected to extensive verification and quality

79

assurance testing [53]. They have been in active use by this prototype, MCNPX and

MCNP with no bugs reported.

The output tables were updated to include details about the photonuclear

interactions in a simulation. These changes have been subjected to a walkthrough. They

have also undergone testing via debugging runs to ensure that the numbers reported

accurately reflect the experience of the simulation. They have been in use throughout

this work with no known problems.

The last major section of code revision is the addition of the photonuclear

collision routine. This set of algorithms represents the keystone of this work. Similar to

the other revisions, it has been subjected to code walkthroughs and debugging runs. In

addition, it has undergone a number of testing runs to ensure that it functions

appropriately. These tests generally check a specific feature. For example, a simulation

can be contrived to look for the correct attenuation of photons through a material in order

to ensure that the appropriate cross section is being used. Another example is the use of a

thin target surrounded by tally regions to check appropriate sampling of secondary

emission energy and angle. Numerous other tests were run to check various aspects of

the functionality [60].

In addition to the testing described above, MCNP has a set of regression tests

covering it core functionality. These tests were used throughout the development process

to ensure that the new or revised capabilities did not damage existing functionality.

Additional regression tests were added to check new functionality.

It is worth noting here that verification of large codes is a complicated process.

Inherent interdependencies can be overlooked and left unchecked. Despite the variety of

80

verification performed during the development process, a bug was found in the

photonuclear collision routine very late in this process. It only affected the activation

simulations discussed in the following chapter but it serves as a reminder that verification

is a long-term effort over the life of a software project.

Comparison to Theoretical Yields

Calculating Theoretical Yields

During the late 1970’s and early 1980’s, there was general interest in developing a

methodology for estimating the neutron yields at various research and medical electron

accelerators for subsequent use in radiation protection calculations. William Swanson,

then at the Stanford Linear Accelerator Facility, documented a methodology and reported

neutron yields per electron incident on various materials at selected energies up to the

GeV range [31,32]. His work has been used by others to provide guidance on neutron

source-term calculations for electron accelerators.

Swanson folded experimental photoneutron cross-section measurements with

calculated photon fluxes to calculate “theoretical” neutron yields. In the results shown

here, analytical shower theory is used to predict the differential photon flux for an

electron of a specified energy incident on a semi-infinite (a half-space geometry)

material. Experimental photoneutron production cross sections were obtained either as a

piecewise continuous function or as a Lorentz parameterization. These were then

integrated together by folding the predicted flux with the macroscopic cross-section to

calculate the neutron yield.

It is worth digressing for a moment to state the obvious. The use of analytical

shower theory to calculate the differential photon flux can be replaced by the use of

81

Monte Carlo electron-photon simulation. In fact, Swanson checked some of his

analytical flux predictions against the Monte Carlo generated differential photon fluxes of

Alsmiller and Moran [20] for a 10 radiation length thick (practically equivalent to semi-

infinite) lead target. The use of Monte Carlo to estimate the photon flux for a specific

geometry and material provides a better estimate of neutron yield from a real component

as spatial dependence can be obtained. However, Swanson was focused on obtaining a

general method.

Swanson reported yields for twelve materials in their natural elemental state.

There is a corresponding evaluated photonuclear data set available for aluminum, iron,

copper, tantalum, tungsten and lead. Each of these elements is listed in Table 4-1 with

their radiation length, density and the source of the photoneutron production cross-section

data used in calculating the “theoretical” yield as reported by Swanson. (For a definition

of the radiation length along with the original source for Swanson’s values, see the work

by Yung-Su [61].)

It is important to remember that the error in these calculations is a function of the

error in the prediction of the photon flux and the error in the cross-section data. Either

can have large influences on the results. In Swanson’s conclusions within the second

study, he states that the values obtained in the present work lie as much as 50 percent

below the original calculations in the energy range typical for radiation therapy. He then

goes on to say that the uncertainties in his present calculations are less than 20 percent

[32, p. 357]. This is meant to show that the change in the approximations used to obtain

the photon flux improved the results but it also shows the sensitivity of these calculations

to the underlying data and assumptions. However, as his comments point out, given the

82

Table 4-1. Materials and properties used by Swanson to calculate theoretical neutron
yields.

Material Radiation Length
(g/cm2)

Density
(g/cc)

Source of photoneutron cross-section data

Aluminum 24.01 2.699 Veyssiere et al. [62]
Iron 13.84 7.875 Montalbetti et al. [63]

Data normalized to agree with the Fe/Cu yield
ratio determined by Price et al. [64]

Copper 12.86 8.96 Fultz et al. [65]
Tantalum 6.82 16.6 Bergere et al. [66]
Tungsten 6.76 19.3 Veyssiere et al. [67]
Lead 6.37 11.35 Pb-206,7 from Harvey et al. [68]

Data scaled by 1.36 [32, p.348]
Pb-208 from Veyssiere et al. [69]

correct geometry and an accurate photon flux the underlying uncertainty in the cross

sections still leaves a large uncertainty in the yields.

Simulation Setup

Part of the reason these calculations were used as a benchmark was the simplicity

of the geometry involved. The neutron yields are reported on semi-infinite slabs.

Swanson refers several times to the fact that the semi-infinite condition is practically

achieved at a target thickness of 10 to 20 radiation lengths. With this in mind, the

simulations presented here use a mono-energetic, point electron beam incident on a recto-

linear slab 20 radiation lengths thick with the beam centered such that it is 20 radiation

lengths to each edge. The mono-energetic, point representation of the beam is equivalent

to the assumptions in the original work.

The yields as reported are for neutron production only. Neutron transport and

absorption within the material is not considered. In order to match these numbers, the

value calculated by the simulation is taken from the MCNP neutron creation summary

83

table, i.e. the absolute neutron production per incident electron excluding absorption

within the target material. A tally of the neutrons escaping the sample is used to

determine when neutron production has converged and also to estimate the uncertainty in

the neutron yield.

The yields are reported for naturally occurring, elemental materials. The natural

abundance of each material is given in Table 4-2 along with the tabular data used for

photonuclear and neutron interactions within the sample. For many materials, only

selected isotopes have photonuclear evaluated data files available. If this is the case, the

isotope(s) available was (were) used by splitting the missing weight equally among those

on hand. The implications of this practice are discussed below.

Neutron tables were chosen to match the available photonuclear tables. All

isotopes except tantalum had a corresponding LA150 [40] neutron evaluation covering

the energy range of interest up to 150 MeV. The tantalum evaluation used is from the

standard ENDF60 library [70] with an upper energy limit of 20 MeV. As the yields are

Table 4-2. Natural isotopic abundance for elemental target materials and their isotopic
representation due to lack of available tabular data.

Material Natural Isotopic Abundance’s
(atom %)

Photonuclear ZAIDs
(Atomic Abundance’s)

Aluminum 27Al (100%) 13027.03u (100%)
Iron 54Fe (5.8%), 56Fe (91.72%),

57Fe (2.2%) and 58Fe (0.28%)
26056.03u (100%)

Copper 63Cu (69.17%) and 65Cu (30.83%) 29063.03u (100%)
Tantalum 180Ta (0.012%) and 181Ta (99.988%) 73181.03u (100%)
Tungsten 180W (0.13%), 182W (26.3%),

183W (14.3%), 184W (30.67%) and
186W (28.6%)

74184.03u (100%)

Lead 205Pb (1.4%), 206Pb (24.1%),
207Pb (22.1%) and 208Pb (52.4%)

82206.03u (24.5667%),
82207.03u (22.5667%) and
82208.03u (53.8666%)

84

quoted neglecting neutron transport and absorption within the target, this does not affect

the comparison. Electron tables are from the MCNP standard EL1 library and

photoatomic tables from MCPLIB02.

Neutron yields are tabulated for ten incident electron energies in the revised study

[32]: 10, 15, 20, 25, 34, 50, 100, 150, 500 and 1000 MeV. Because MCNP4B has an

upper energy limit for the current electron tables of 100 MeV, only the first seven

energies are used in this comparison. Future plans for the MCNP family of codes include

the integration of electron tables covering the energy range up to 100 GeV and the

inclusion of the CEM nuclear physics module to handle photonuclear interactions above

the range of tabular data. Additionally, the IAEA photonuclear data library will include

many of the isotopes currently missing. As these advances are made, this set of

calculations should be revisited to complete the verification-validation process.

Comparison to Current Calculations

The comparisons between the theoretically derived data and the MCNP

calculations are presented here as a set of graphical figures. The error bars on the

theoretically derived values are the 20 percent uncertainty quoted by Swanson. The

simulations have been run until the relative error in the calculation is negligible. The

overall uncertainty of the simulation method and data is the final goal of this discussion.

Each figure presents the experimental data as diamonds connected by a solid line with

calculated values represented as squares connected by a dashed line. The graphs are

presented on a log-scale to enable viewing of the entire range of data at once. It is

desired that the reader achieve only a sense of relative comparison from the figures with

85

explanation of the details given in the text. The MCNP input decks and the reported and

calculated values are available in Appendix D.

The comparison for aluminum presented in Figure 4-1 shows very good

agreement except for the two lowest energy values. Despite using essentially the same

threshold energy, there is a factor of five difference in the value of the yield at 15 MeV.

This may be explained by differences in the shape of the photoneutron cross section in its

rise to the peak value.

Swanson’s values are based on the photoneutron cross section as measured at

Saclay [62]. Experimental data from a number of institutes [62,71-73] were used in the

evaluation process. However, the evaluated data do not include possible small resonance

in the rise region as seen in the data from Saclay. The small resonances are physically

realistic and these small changes in this region may have large influences on yield

calculations for incident energies near threshold.

Iron was a very difficult evaluation as very little experimental data exist for

guidance. Of the four naturally occurring iron isotopes, only 56Fe is currently available as

an evaluated data set. Considering only 56Fe is probably reasonable considering it

represents more than 90 percent of the elemental composition. However, the current

calculations over predict the reported values by 30 to 40 percent as shown in Figure 4-2.

The large difference seen between the reported and calculated values may be

explained by differences in the photoneutron cross sections. The reported values are

based on the experimental data of Montalbetti et al. [63] as scaled [32, p. 355] to agree

with data reported by Price et al. [64]. The evaluation is based on more recent

experimental data [73-76]. This once again points out the need for evaluated data to

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-1. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
aluminun target. (Reported values from Swanson, 1979.)

 86

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-2. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
iron target. (Reported values from Swanson, 1979.)

 87

88

ensure that accurate representations are provided based on multiple experimental data

sets.

Copper shows very good agreement between the current calculations and the

reported values of the yields. This is expected since both the reported values and the

current work are based on the original measurements by Fultz et al. [65]. However,

Figure 4-3 shows an increasing discrepancy between the values as the incident energy

increases.

One possible explanation for the discrepancy between the current calculation and

the reported value is the lack of an evaluated 65Cu photonuclear data set. One way to

estimate the influence of the missing cross-section data is to examine the cross sections

for 63Cu versus 65Cu versus NatCu. Table 4-3 shows the values for the integrated

photoneutron-yield cross sections. Note that, as expected, the current work is in close

agreement to the 63Cu experimental data of Fultz et al. However, it underestimates the

photoneutron production from natural copper. As the photon flux increasing, e.g. with

increasing incident energy, this underestimation will cause a larger discrepancy.

Table 4-3. Integrated photoneutron yield cross-sections for copper.

Isotope Emax

(MeV)
Current Valuea

(mb-MeV)
Reported Value
(mb-MeV)

Source of cross-sections for
reported value

63Cu 27.8 688 680 Fultz et al. [65]
63Cu 25.1 619 584 Sund et al. [77]
65Cu 27.8 688 817 Fultz et al. [65]
NatCu 27.8 688 710 Fultz et al. [65]
NatCu 19.6 371 450 Miller et al. [78]
a Current values are based only on 63Cu, i.e. they contain no estimation of the influence of
65Cu.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-3. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
copper target. (Reported values from Swanson, 1979.)

 89

90

There is very good agreement, as shown in Figure 4-4, between the calculated and

reported yields for tantalum. The slight variations are most likely small differences in

(γ,n) and (γ,2n) cross-section shapes. The current work is based on experimental data

from Lawrence Livermore [79] scaled by 1.22 as recommended by Lee et al. [80]. The

reported yields are based on the experimental data from Saclay [66] which are believed

to contain an error in the multiplicity [80] which may account for the slight variations

seen.

It is worth examining the three available experimental cross-section

measurements, listed in Table 4-4, in order to emphasize a key theme. The small group

of individuals who perform nuclear data evaluations have available important information

that is not readily apparent to the outsider. It is generally believed that many of the early

cross-section measurements at Lawrence Livermore are 15 to 25 percent too low. It is

this kind of knowledge that is essential in determining that the higher cross-section values

reported in Table 4-4 are more probably correct and the Livermore data should be scaled

upwards to match. This need for in-depth knowledge of the experimental data is the

reason evaluated data exists and why it is important to the novice to trust the judgement

of those who produce this evaluated data.

Table 4-4. Integrated photoneutron yield cross-sections for tantalum.

Isotope Emax

(MeV)
Current Value
(mb-MeV)

Reported Value
(mb-MeV)

Source of cross sections for
reported value

181Ta 22.0 3623 2970 Miller et al. [78]
181Ta 24.6 3879 3735 Bramblett et al. [79]

Scaled by 1.22 [80]
181Ta 25.2 3929 3799 Bergere et al. [66]

1.E-04

1.E-03

1.E-02

1.E-01

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-4. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
tantalum target. (Reported values from Swanson, 1979.)

 91

92

The calculated yields under predict the reported yields for tungsten at all but the

highest energies shown in Figure 4-5. The difference is largest near threshold.

Swanson’s reported values are based on natural tungsten with a threshold of 6.2 MeV.

The current evaluated data is only isotopic 184W and has a threshold of 7.5 MeV. Both

works are derived from the original measurements of Veyssiere et al. [67]. It is

hypothesized that if the remaining isotopes, comprising 70 atomic percent, of tungsten

were included the agreement would be closer.

The cross sections for lead have been reanalyzed since the Swanson study was

concluded. Based on an analysis performed by Berman et al. [81], the Livermore

measurements of Harvey et al. [68] are believed to be too low by a factor of 1.22, not

1.36 as was proposed by Fuller [32, p. 385]. Berman et al. also suggested the Saclay

measurement [69] of 208Pb was too high and should be scaled down by a factor of 0.93.

Keeping these differences in mind, Figure 4-6 shows acceptable agreement between the

calculated and reported values for lead.

Comparison to Measured Yields

Experimental Setup

In an experiment by Barber and George [58], an electron beam was impinged on a

variety of targets at various energies and the absolute yield of neutrons per electron was

measured. The targets were composed of elemental materials of varying thickness

including Al, Cu, Ta and Pb. It is a testament to the diligence in making and reporting

these measurements that they have been cited within the literature more than 25 times,

including Swanson in his study described above. Their results are worthy of use as

benchmarks and ideal for benchmarking the current methodology and data.

1.E-04

1.E-03

1.E-02

1.E-01

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-5. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
tungsten target. (Reported values from Swanson, 1979.)

 93

1.E-04

1.E-03

1.E-02

1.E-01

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-6. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
lead target. (Reported values from Swanson, 1979.)

 94

95

The Barber and George measurements were made at the Stanford Linear

Accelerator Facility (SLAC). The measurements are of use primarily due to the care that

was taken both in making the measurements and in documenting how they were made.

The Mark II linear accelerator offered a well characterized electron beam. The SLAC

facility presented a carefully controlled environment in which to make the measurements.

The parameters of interest in representing the experiment as reported in the original paper

are discussed below. Experimentalist please take note, these are the issues that must be

addressed when defining a benchmark.

A diagram of the experimental layout is shown in Figure 4-7. The electron beam

leaving the Mark II linear accelerator is collimated to a diameter of 0.187 inches. This

collimated diameter translates to a 0.5 inch beam diameter at the target location for a

nominal energy of 30 MeV. No information is provided on the variation in spot size with

beam energy and it is shown to be negligible by later simulations. After leaving the

collimator, the beam travels through the first of two identical 30-degree deflecting

magnets. These magnets translate the main axis of the beam in order to reduce the

background radiation escaping through the shielding wall.

The energy of the beam was variable over the range 10 to 36 MeV. The absolute

energy was estimated to be calibrated to within 2 percent error by measurements using

the photonuclear thresholds of deuterium, oxygen and copper. The energy spread is

controlled by the two variable-slit collimators located between the two deflecting

magnets. An energy spread of ∆E0/E0 equal 2 percent was used throughout the

experiment as set by the slit collimators.

Electron flight path
through the
SLAC electron accelerator Ionisation Chamber and

Neutron Counting System

Figure 4-7. Experimental setup for the Barber and George experiments.

 96

97

The final beam parameter needed for obtaining absolute neutron yields is the

number of electrons per beam pulse. Barber had previously validated a method for

determining this parameter [82]. An ionization chamber is located just before the

experimental apparatus. It consisted of 0.005 inches of Mylar comprising two windows

and an 8 inch thick chamber through which hydrogen flowed at one atmosphere of

pressure. The response of the ionization chamber to the beam current had been well

determined in the previous study. For this set of yield measurements, it was recalibrated

at a few energy points by comparison with a Faraday-cup monitor. No estimate was

given on the uncertainty in the electron beam intensity.

After transiting the ionization chamber, the electrons passed into a Lucite vacuum

chamber and struck the target material. The chamber was 8 inches in diameter and 19

inches long. There were two target locations although the exact position of either is not

reported nor the position used for each specific measurement. Lucite was chosen as the

vacuum-chamber wall material because its constituents have high photonuclear

thresholds and low neutron production cross-sections. A target size of 4.5 inches square

was chosen to ensure that even electrons that underwent multiple scattering in the

ionization chamber would still strike the target. The only important point not discussed

in the paper is if measurements were made to determine the background level, i.e. the

neutron count rate with the electron beam and no target present. The comparisons to

simulations seem to indicate background levels were considered.

The absolute yield was measured by surrounding the target in a large paraffin-

moderator box. The 32 inch square box extended 19 inches along the beam axis.

Moderated neutrons were detected by two enriched BF3 proportional counters extending

98

the length of the box and located symmetrically about the target chamber. Background

due to neutrons produced outside of this box was reduced by cladding the box with a thin

layer of boron carbide and an outside layer of paraffin 8 inches thick. Again, it is not

discussed if a measurement was made to determine the background counting level and if

it was accounted for in the reported data.

The absolute counting efficiency of the neutron box assembly was determined

with a RaBe neutron source and verified with measurements on photonuclear production

in heavy water. For the RaBe source, an efficiency of (0.92±0.05) percent was observed.

The D(γ, n)H reaction presents a system in which the neutron yield could be calculated

with reasonable accuracy. Using the efficiency determined from the RaBe source,

comparison of the calculated versus the measured yields for the heavy-water system

agreed within the limits of the relevant uncertainties.

The electron beam delivers an intense photon pulse that temporarily overloads the

counting apparatus. To counter this effect, the scaling circuits are gated off for 7.5

microseconds following the beam pulse to allow the associated circuitry to recover from

the large pile-up. Since the lifetime of thermal neutrons in the paraffin is much longer

than this period, this method is estimated to introduce minimal error (less than three

percent). It was further necessary to limit the beam intensity for the high-Z materials in

order to maintain this same gating time. It is not reported what effect changing the beam

intensity might have, if any, on the other parameters.

Barber and George estimate the uncertainty of their results using the experimental

apparatus described above to be 15 percent. Table 4-5 lists the experimental parameters

of interest for the subset of experiments that could be modeled using the evaluated data

99

Table 4-5. Targets and essential experimental parameters are given as used to simulate
the experiments of Barber and George (1959).

Target Density
(g/cc)

Thickness
(g/cm2)

Energies (in MeV) for which
measurements are reported

Al-I 2.699 24.19 22.2, 28.3 and 34.3
Cu-I 13.26
Cu-II 26.56
Cu-III 39.86
Cu-IV

8.96

53.13

16.1, 21.2, 28.3, 34.4 and 35.5*
(*only for Cu-I)

Ta-I 16.6 6.21 10.3, 18.7, 28.3 and 34.3
Pb-I 5.88
Pb-II 11.42
Pb-III 17.30
Pb-IV 22.89
Pb-VI

11.35

34.42

18.7, 28.3 and 34.5

available at this time. In general, the portion of the target identifier, e.g. Al-I, after the

dash indicates the approximate thickness of the target in units of radiation length. As

their results were presented as a series of graphical figures, it was necessary to digitize

and estimate the value of both the yield and energy for each point of interest.

Simulation Setup

The simulation of the experiment was able to simplify the layout because of the

design of the experiment and the way in which the yields were reported. With the

information available, it was only necessary to model the electron beam incident on the

target material and tally the neutrons exiting the target boundaries. All other

complications have been estimated by the original authors. Thus a total neutron yield, i.e.

the number of neutrons escaping the target, per incident electron can be computed using

the simplified schematic shown in Figure 4-8.

1/2" Diameter Beam
Monoenergetic Energy
Perpendicularly Incident

4 1/2" Square Target
Various Thickness’

e-

e-

e-
e-

e-

Yield tallied as
neutron current escaping target
per incident electron

Figure 4-8. Setup used for simulation of the Barber and George experiments.

100

101

The electron beam model was further simplified to reduce complications in the

input specifications. The relationship of the beam parameters, i.e. how the energy varied

as a function of radius in the beam and its subsequent angular distribution, was not

documented. The beam was therefore modeled as a mono-energetic, perpendicularly

incident source directly on the target.

An estimate of how much a variation in energy could effect the results was made

by adjusting the absolute energy of the beam. A one radiation thick tantalum target with

a 28.3 MeV electron beam perpendicularly incident was used as a baseline for such

changes. The results are presented in Figure 4-9. As the beam spread should be

Gaussian about the mean, the net effect of the energy tails should cancel out. This

estimate also serves as a predictor for uncertainties due to possible inaccurate reporting of

the absolute value of the energy.

Deviations in angle are more difficult to estimate. One method is to look at

changes in target thickness. This was done for the baseline case as described above and

Figure 4-9 shows that possible deviations in thickness are not negligible. Deviations in

incident angle of 1, 2, 3 and 5 degrees result in changes in apparent thickness of 1.7, 3.5,

5.2 and 8.7 percent, respectively. However, since these parameters are undocumented it

is believed that a mono-energetic beam is adequate for the level of accuracy desired and

that the error induced by variations in the beam should be considered as represented in

the experimental uncertainty. As a last note, variations from a beam radius of 0.25 inches

were considered and shown to have negligible impact.

Similar to the simulations used for comparison to the Swanson study, the

materials with more than one isotope in the natural elemental form had to be represented

0.85

0.9

0.95

1

1.05

1.1

1.15

-10 -8 -6 -4 -2 0 2 4 6 8 10

Percent Change in Value

Pe
rc

en
t C

ha
ng

e
in

 Y
ie

ld

Energy
Thickness
Radius
Point Beam

Figure 4-9. Percentage variation in absolute yield as a function of the percent change in various beam parameters.

 102

103

with the evaluations available. Table 4-2 shows the exact details of which evaluations

were used for each target material. Implications of these substitutions will be discussed

in the comparison section.

There are several other points worth mentioning about the simulations. The

photonuclear threshold marks the lowest energy photon that could produce a neutron. It

is therefore unnecessary to track either photons or electrons below this energy. Further,

forced collisions can be turned on in the target material such that every photon traversing

the target undergoes at least one collision. Photonuclear biasing can be used to force a

contribution to photonuclear interaction from each collision. This combination of

techniques allows the relative error of the calculated yield to be minimized using run

times of approximately 10 to 50 minutes on a single processor of an Origin2000 system.

Note that the relative error is a measure of the precision of the calculation, not the

accuracy of the simulation. The MCNP input decks as well as the reported and calculated

yield values are listed in Appendix D.

Comparison to Current Calculations

The comparisons between the experimental data and the calculations are

presented here as a set of graphical figures. The error bars on the experimental values are

the 15 percent uncertainty quoted by Barber and George. The calculated yield values are

taken directly from the relevant MCNP output deck. The relative error from the

calculation is negligible. The uncertainty in the simulations will be discussed in the

conclusions. Each figure presents the experimental data as diamonds connected by a

solid line with calculated values represented as squares connected by a dashed line.

104

The comparison of the experimental versus calculated yield for aluminum is

shown in Figure 4-10. The agreement shown is reasonably good although it is uniformly

low by about 20 percent. As the first data point is at 22 MeV, these data support no

further conclusions about possible changes needed in the threshold to peak region of the

cross section suggested by the comparison to Swanson’s yield values.

The comparison of the experimental versus calculated yield for the four thickness’

of copper are shown in Figures 4-11 through 4-14. All four comparisons show similar

results. They show good overall agreement with the experimental results, within 15 to 25

percent. As discussed above, the elemental copper has been represented by isotopic 63Cu.

The addition of a 65Cu evaluated data set will improve the agreement, probably by five

percent overall, and also improve the match of the shape.

The comparison of the experimental versus calculated yield for tantalum shows

excellent overall agreement. As seen in Figure 4-15, the results for the region away from

threshold are almost identical. However, the calculated value at 10 MeV is an order of

magnitude too low. As the threshold energy is believed correct, this raises the possibility

that the values of the cross section between threshold and the GDR peak needs to be

increased.

The comparison of the experimental versus calculated yield for all five thickness’

of lead are shown in Figures 4-16 through 4-20. The results are consistent for all five

thickness’. The calculations are generally 20 percent lower than the experimental yields.

This is acceptable agreement.

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-10. Calculated versus experimental neutron yield for electrons of various incident energy on a one radiation
length thick aluminum target. (Reported values from Barber and George, 1959.)

 105

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

1.8E-03

16 18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-11. Calculated versus experimental neutron yield for electrons of various incident energy on a one radiation
length thick copper target. (Reported values from Barber and George, 1959.)

 106

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

16 18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-12. Calculated versus experimental neutron yield for electrons of various incident energy on a two radiation
length thick copper target. (Reported values from Barber and George, 1959.)

 107

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

16 18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-13. Calculated versus experimental neutron yield for electrons of various incident energy on a three radiation
length thick copper target. (Reported values from Barber and George, 1959.)

 108

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

16 18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-14. Calculated versus experimental neutron yield for electrons of various incident energy on a four radiation
length thick copper target. (Reported values from Barber and George, 1959.)

 109

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

10 12 14 16 18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-15. Calculated versus experimental neutron yield for electrons of various incident energy on a one radiation
length thick tantalum target. (Reported values from Barber and George, 1959.)

 110

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-16. Calculated versus experimental neutron yield for electrons of various incident energy on a one radiation
length thick lead target. (Reported values from Barber and George, 1959.)

 111

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-17. Calculated versus experimental neutron yield for electrons of various incident energy on a two radiation
length thick lead target. (Reported values from Barber and George, 1959.)

 112

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-18. Calculated versus experimental neutron yield for electrons of various incident energy on a three radiation
length thick lead target. (Reported values from Barber and George, 1959.)

 113

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-19. Calculated versus experimental neutron yield for electrons of various incident energy on a four radiation
length thick lead target. (Reported values from Barber and George, 1959.)

 114

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

18 20 22 24 26 28 30 32 34 36

Incident Electron Energy (MeV)

N
eu

tro
ns

 p
er

 E
le

ct
ro

n

Calculated

Reported

Figure 4-20. Calculated versus experimental neutron yield for electrons of various incident energy on a six radiation
length thick lead target. (Reported values from Barber and George, 1959.)

 115

116

Conclusions from Verification and Validation

It has been shown that the current evaluated data and the new photonuclear

interaction coding provide reasonable results for simulating neutron production from

materials for which an evaluated data set exists. Most important to the current work,

these comparisons have covered the prominent target, filter and shielding materials used

in medical electron accelerators. The overall uncertainty in the evaluated data is

estimated to be less than 25 percent.

As a last note in reference to Swanson’s theoretical yields, these comparisons are

considered something more than simple verification but not quite true validation. Good

agreement is seen between most of the data sets but those are typically based on the same

underlying experimental data. It is worth noting that analytical shower theory and Monte

Carlo electron-photon transport appear to provide similar results. This argues that the

neutron production is not highly sensitive to the photon production mechanism.

The evaluated photonuclear data library, like all other nuclear data libraries, will

evolve as practical experience using the data feeds back into the evaluations. This will be

a long process. The first part of this process should involve will be the further validation

of the evaluated photonuclear data as it becomes available. Hopefully, the ability to

simulate this class of problems will encourage experiments worthy of becoming

benchmarks.

To repeat this theme, validation data for the purposes of photonuclear physics is

sorely lacking. Only aluminum, copper, tantalum and lead have been directly validated

against true integral experimental data. The remainder of the evaluated data are

“validated” only in the sense that they were created through the same process and have

117

derived from the best known cross-section measurements. This also elucidates the point

that further measurements of photonuclear cross sections will be necessary for isotopes

previously not measured or with multiple measurements that disagree.

It should also be noted that only the photoneutron yields are directly validated by

the simulations above. Emission characteristics, the energy and angle of the secondary

particles, are only validated in the sense that GNASH [41] has a long standing, well-

validated ability to produce such data. Experiments measuring energy and angle spectra

are needed.

Last, it is recommended that once this ability is made generally available, each

user community perform its own experiments to validate the data and code for their class

of problem. This set of validation activities shown above has set an uncertainty only on

the use of this data and coding for the calculation of neutron yields for simple geometries

and materials which have photonuclear evaluated data available. Simulations involving

production and transport through complex physical geometries and containing materials

for which evaluated data may not be available will be considerably more difficult. It is

incumbent on the user performing such work to understand the uncertainties of their

specific simulation.

118

CHAPTER 5
APPLICATION: SIMULATION OF A MEDICAL ELECTRON ACCELERATOR

Introduction

It is now time to remember that the original motivation for this work was the

enhanced understanding of the radiation environment in the vicinity of a medical electron

accelerator (MEA). To this end, this chapter will discuss the previously available ability

to simulate electron-photon transport within a MEA and the extension of this ability by

the current work to include photonuclear physics and simulate electron-photon-neutron

transport. Two major sections are presented.

The first section demonstrates the ability to simulate electron-photon and

electron-photon-neutron environments by comparison to experimental data. The data

were obtained from measurements around the Phillips SL Series MEA located in

Treatment Room 5 of the Shands Cancer Center (SCC) at the University of Florida (UF).

The validation is further divided to cover the electron-photon model and the electron-

photon-neutron model. Once the simulation model has been validated, it can then be

used to investigate the interesting aspects of the radiation environment.

The second section of this chapter explores two questions of interest for MEAs in

general. The first question of major importance is the determination of the dose,

particularly the neutron dose, to the patients and workers in the vicinity of the machine.

The second question is the effect of increasing electron energy on the relative neutron to

119

photon dose. Within both of these discussions, some fundamental lessons learned are

highlighted and several issues suitable for future work are proposed.

Validating the Simulation

Background

A computer model may generally be defined as the virtual world necessary to

adequately simulate the corresponding real world. The virtual world is never an exact

reproduction of reality but instead attempts to capture the essential details. The major

items necessary for radiation transport simulations are representing the physical

environment, providing transport data for the constituent materials, describing the initial

radiation source, implementing the transport algorithms to propagate the radiation source

and obtaining the resultant output information. It is worth digressing for a moment to

discuss in general terms what is important to each of these tasks and why.

Physical geometry. A standard MEA treatment room is an extremely complex

physical space. First and foremost of concern to the simulation is the electron accelerator

itself. This is typically a linear accelerator or a cyclotron consisting of a few thousand

pounds of meticulously engineered parts designed to deliver an intense radiation field to a

precise location. The bulk of this equipment is usually located within the treatment room

in a machine closet such that only the treatment head is visible in the main room. To

further complicate matters, MEAs are often designed with treatment heads capable of

delivering either electron or photon fields at multiple energy levels and involving

extremely complex parts. Finally, the as-installed configuration can include changes

from the original specifications for particular needs including increased shielding.

120

Surrounding the MEA is the treatment room itself. It serves two essential

purposes. First, it is there to contain the radiation for the protection of those in the

vicinity. Second, it provides an esthetically-soothing, working environment in which to

treat cancer patients. For the purpose of shielding the radiation, these rooms are typically

constructed as concrete vaults though in some cases other shielding material may be used.

For the purpose of creating a working space, they are typically finished with wall-board,

drop ceilings, carpeting, cabinetry, instrumentation and associated miscellaneous items

typical of a clinical environment.

For the goal of simulating the electron-photon dose to a patient, it is only

necessary to include detailed modeling of the MEA treatment head. Specifically this

would include the electron target or scattering foil and all materials in the immediate

vicinity of the subsequent beam path. In the typical electron-photon simulation, e.g.

[83,84], only the target, collimators, filters and associated items are modeled.

Jumping slightly ahead, a typical dose calculation that uses a complete room

model in addition to the treatment head model gives the following characteristic results.

The electron-photon dose to the patient from a typical treatment using a Phillips SL

Series MEA in the high-energy photon mode consists of the following sources:

approximately 80 percent directly from photons produced in the electron target;

approximately 15 percent from photons produced or scattered in the filters and other

materials in the beam path; approximately four percent from photons produced or

scattered in the collimators; and less than one percent from room return and other

sources. Hence, there is justification for ignoring anything very far outside of the

electron-photon beam path for most electron-photon dose calculations.

121

Simulating electron-photon-neutron transport makes life much more difficult.

Neutrons are notorious in the world of health physics for their ability to penetrate

materials either directly or by finding streaming paths. In practical terms, this means that

the exact geometry of the MEA and the room are necessary for accurately representing

the simulation environment. With their ability to scatter, any path between the neutron

production site and the patient or worker is a concern. However, even if complete

shielding coverage could be achieved, their penetrating ability ensures that some level of

neutron radiation will always be present.

Again, it is important to consider some characteristic results from later

simulations here in order to set an appropriate frame of mind. The neutron dose for two

standard photon field sizes, 5x5 and 30x30 sq. cm. respectively, consists of the following

sources: approximately 56-36 percent from room return; approximately 16-44 percent

from neutrons produced or scattered in the primary collimator; approximately 21-12

percent from neutrons produced or scattered in the secondary collimators; and the

remainder from neutrons produced or scattered at other locations in the treatment head.

Hence, for an accurate simulation it is necessary to account for the placement of

practically all the material around the treatment head and most of the material in the room

itself.

Transport data. Once the extent of the physical space is known, it is necessary

to provide transport data for each material found in the geometry. Transport data are

defined here as tabulated listings of interaction probabilities, i.e. reaction cross sections,

and the emission spectra for the resultant particles suitable for use in Monte Carlo

transport algorithms. For traditional MCNP simulations, these data are available by

122

element for incident electrons and photons and by isotope for incident neutrons. Note

that the photon data to date has only included photoatomic interactions. The current

work has integrated photonuclear data, by isotope, into this mix.

Electron and photoatomic transport data exist as a complete library for the

elements from hydrogen to plutonium (Z equal 1 to 94) in the standard MCNP

distribution. Photoatomic data are provided over the incident energy range from 1 keV to

100 GeV [85] and electron data over the incident energy range from 1 keV to 100 MeV.

This means that electron-photon problems can be simulated for any typical condition

found in a MEA treatment room. The exclusion of photonuclear data from photon

interactions was found to make no significant difference in the electron-photon portion of

the dose calculated for a typical treatment plan.

Neutron and photonuclear transport data exist for a limited selection of isotopes

and over a varying range of incident energies. In the case of neutron data, the coverage

of isotopes is nearly complete in the incident energy range up to 20 MeV. There are

some significant isotopes missing, e.g. any germanium isotope. There are also some

materials which are represented as average “elemental” data rather than by individual

isotope, e.g. magnesium. However, most of the major isotopes have neutron data

available. Unfortunately, at this time photonuclear data exist for a very limited set of

isotopes.

In a practical sense, this means that neutron and photonuclear simulations must

make approximations in their representation of materials. Often this is trivial. For

example, splitting the 0.13 atom percent of tungsten-180 among the other four isotopic

data sets to represent elemental tungsten introduces negligible error into most

123

simulations. However, serious error can occur when the missing constituent is more

significant, e.g. the lack of a germanium data set to simulate neutron transport in a

germanium detector. The problem of missing isotopes will play a significant role in

simulations requiring photonuclear data until such time as the evaluation of the major

isotopes is completed.

Radiation Source. Radiation transport starts from the creation, either artificially

or naturally, of a radiation source. For a MEA operating in a photon mode, the radiation

source is electrons which have been accelerated and directed onto a converter to produce

bremsstrahlung photons. The final spatial-directional-energy distribution of the electrons

incident on the target is system dependent. In most simulations, the final dose is not

sensitive to the exact distribution of electrons and a simplified description is acceptable.

A typical simulation uses a mono-energetic beam, perpendicularly incident on a

point on the target. This seems to be a fair approximation in the sense that it gives

reasonable results. It can be improved by uniformly distributing the electrons over a spot

rather than a point and by spreading the incident energy over a Gaussian distribution

though these are expected to be rather modest gains in accuracy. To date, the author has

not seen any work which methodically documents the effects of the variations in the

incident electron beam distribution.

Because detailed electron-photon transport is difficult and time consuming over

long distances, the radiation source is typically recomputed one or more times at

intermediate locations in the geometry. Specifically, the upper section of the treatment

head geometry is fixed for a treatment modality. One initial simulation of this

immovable portion of the treatment head can be used to create a phase-space file [84,86]

124

of the radiation field passing through a plane just above the first movable object. The

phase-space file can be used as the radiation source for subsequent transport simulations

though the remainder of the geometry. Obviously, this step can be repeated. Since there

is typically only minor feedback from changing the lower geometry, this approach can

save a significant amount of time while introducing relatively minimal errors.

Transport algorithms. Once the radiation source is determined and the physical

world has been represented, the next step is to transport the radiation through the

geometry. For neutral particle transport, e.g. of neutrons and photons, the Monte Carlo

algorithms necessary to sample continuous-energy transport data are straight forward and

well established. However, the algorithms used for charged-particle transport, e.g. of

electrons, are a subject area still undergoing significant improvements.

Around this mix of transport algorithms, it is necessary to have a framework to

handle all the other details. As the radiation propagates through the geometry, it is

necessary to update the transport data for its current location. The distribution of

sampling must be monitored to ensure that the phase space of the problem has been

adequately covered. Summary information should be collected for later presentation.

Error states should be checked and appropriate warnings issued. All of this should be as

tightly coupled as possible.

It is generally accepted that separating portions of the transport tends to introduce

error into the simulation. The only way to avoid these errors is to pass the next portion of

the simulation a complete description of the necessary information. In the case described

above where the geometry is separated, the phase-space file must contain as accurate as

possible a description of the radiation source propagating into the subsequent geometry.

125

This same situation exists for coupling the transport algorithms. It is desirable to have

one framework which includes the necessary components to handle electron, photon and

neutron transport.

Obtaining output. The best simulation model in the world still has to be able to

present the results in a reasonable manner. If the desired information is not conveyed to

the user, or it is conveyed in a misleading manner, the simulation has not finished its

work. The ideal would be to have all the details of everything that influenced the

simulation available. For example, it might be useful to know the energy distribution of

the photon flux as a function of spatial position over all locations. In practice, the

information available is typically constrained by the amount of memory and time

available to track these details. For the example, it might be enough to known the energy

distribution of the photon flux within a cell or at a point. A fine balance is needed.

It is these five issues that must be kept squarely in mind when evaluating a

radiation transport simulation. Understanding of these issues will lead to more thorough

comprehension of how the simulation relates to the physical world. Only with adequate

depth of knowledge can extrapolations be made back into the physical world.

Experimental Setup

The experimental data were obtained from the Phillips SL Series MEA in

Treatment Room 5 of the Shands Cancer Center at the University of Florida. Two sets of

experimental data were desired. The data desired and the basics of how they were

obtained are discussed in general here. More details are provided in the following section

as they relate to what was modeled in the simulation.

126

The layout of the treatment room is shown in Figure 5-1. The MEA treatment

head is positioned as indicated and mounted on an extension such that it can rotate about

a fixed point in space. That point is known as isocenter and is located on the center-line

axis of the treatment head 100 cm source-to-surface distance (SSD) from the electron

target. The room contains a set of laser lights that are aligned in the in-plane (wall to

treatment head) and cross-plane (parallel to the maze) directions at the correct height

such that they cross at isocenter. A mirror and light system can also project through the

treatment head to indicate the SSD of an object in the beam path.

As part of the calibration of the MEA unit, a set of depth dose curves are taken.

This procedure uses a 48x40x40 cm (width x depth x height) Lucite tank with 1 cm thick

walls filled with water. The tank is placed such that it is centered directly below the

treatment head and the surface of the water is 100 cm from the electron target (100 cm

SSD, source to surface distance). A depth dose curve is the relative dose at each point

along the central axis in the water tank starting from isocenter.

The relative dose is measured by use of an ion chamber and a positioning system.

An Ion Chamber IC 10 connected to an Electrometer WP 5006 current monitor was used

in this experiment. A WP600 Controller is used to control the position of the ion

chamber and relay the position and current to a standard PC computer. The current and

position information is stored to disk along with the details of the treatment mode, e.g.

energy setting and collimator opening. A set of depth dose curves for photon field sizes

of 5x5 sq. cm., 10x10 sq. cm. and 30x30 sq. cm. with the machine in the high-energy

photon mode were obtained in this manner. The incident energy of the electrons in the

high-energy mode of the MEA can be estimated by simulating this data.

Figure 5-1. Diagram of Room 5 at the Shands Cancer Center at the University of Florida.

Isocenter

TREATMENT ROOM #5 CONTROL ROOM

MAZE

 127

128

The second set of experimental data desired is an estimate of the absolute neutron

production in the treatment room. One method to obtain this information is to measure

the activation of a known sample of material in the presence of the accelerator’s radiation

field. Activation is the transmutation of a nucleus from one isotope to an unstable

isotope. The decay of the unstable isotope is then measured and the number of such

isotopes observed can be used to estimate the radiation field the original sample

experienced. This technique is known as activation analysis. Many texts exist on the

subject, e.g. Alfassi [87], as well as specific guidance for measurements around MEAs

[88].

For the purpose of these experiments, gold was the material chosen. It has a

number of useful properties. First, in its elemental form, gold is mono-isotopic.

Therefore only one set of cross-section data are needed. The 197Au(n,γ)198Au cross

section as a function of incident neutron energy is very large (98.8 barns for thermal

neutrons). More importantly, it is commonly used in activation analysis and the cross

section is well known, probably not more than 20 percent in error at any given energy

with an aggregate accuracy of better than 5 percent. Last, the decay of 198Au is well

documented and easily distinguished for counting by gamma-ray spectroscopy.

Activation analysis requires a calibrated detector system capable of discriminating

the radiation emission of interest. The Neutron Activation Analysis (NAA) laboratory at

the University of Florida Test Reactor (UFTR) facility maintains a set of germanium

detectors and associated equipment for this purpose. As their equipment was available

for use, it was unnecessary to setup and certify a new system. The counting system

utilizes the GammaVision software produced by EG&G Ortec.

129

Eleven small foils and three large ingots of gold were available for use in these

experiments. Each sample was cleaned with alcohol, weighed, sealed within a plastic

sleeve and numbered. The activation in the gold is a function of the number of atoms

present and the number of neutrons available. Consequently, for the same neutron

population, the larger the mass of gold, the more activation, i.e. 198Au isotopes, produced.

The original motivation for using the ingots was that their 31.1 g (one troy ounce) mass

would activate quickly even in the relatively low neutron fluence of the treatment room.

They could therefore be used for a set of measurements without the need for long

irradiation times.

All of the samples had been subject to previous irradiation. The background

counts present in all the samples were evaluated at the NAA laboratory prior to their

irradiation. The foils had not been previously irradiated in more than one year and

showed no significant background. The ingots had been irradiated within the treatment

room slightly more than one month prior to this set of experiments. They showed a slight

background which had to be subtracted off the later counts. The GammaVision software

produces a report showing the energy boundaries of the gamma-ray peaks observed as

well as the net counts seen for the peak and the estimated one sigma error.

Gold has a second reaction of interest for these experiments. The photonuclear

(γ,n) threshold for 197Au is 8.0711 MeV. Thus, in the presence of high-energy photons,

196Au is produced. The 196Au decay scheme is also well known and easily distinguished

for counting by gamma-ray spectroscopy. The 197Au(γ,n)196Au cross section has been

measured experimentally [69,78,89,90] and is believed accurate to within 25 percent.

130

While not directly a measure of the neutron production, simulation of the 196Au

production provides a secondary check of the photon production and transport.

Activation of the available gold samples was conducted on Sunday afternoon,

April 18, 1999. Table 5-1 provides the number, mass and position of each sample. Due

to the small mass of some of the foils, sets were combined into one sample such that the

mass of each foil sample was about the same. Each sample was positioned to look at a

different aspect of the neutron population. The accelerator was set to the high-energy

photon mode with a 10x10 cm field size at 100 cm SSD throughout these experiments.

The first sample, I1, was placed bare at isocenter. It was situated on top of a

cardboard box such that the long axis of the ingot was in the cross-plane direction. This

was further supported by the treatment couch. The exact positioning was checked by the

lighting system . The cardboard box provided separation from the treatment couch to try

and lesson any effect it may have on the neutron population. The primary objective was

to observe the total neutron flux seen at isocenter including the room return. The

secondary objective was to observe the high-energy photon flux at isocenter.

The second sample, I2, was placed at isocenter surrounded by a moderator. A-

150 plastic was chosen as the moderating material as it was readily available and easier to

set up than a water tank. The plastic slabs are uniform in area, 30x30 cm, and of varying

thickness. A 16 cm tall block was constructed on top of the treatment couch such that the

center of the block was situated at isocenter. The sample was aligned such that the long

axis of the ingot was in the cross-plane direction. The position was checked by the

lighting system. The dimensions of the block were checked by ruler. The primary

131

objective was to observe the effect of the moderator on the neutron population. The

secondary objective was to observe the high-energy photon flux at isocenter.

The third sample, I3, was placed in the maze corridor. It was taped in place on

the inside, i.e. nearest the room, wall such that it was 240 cm from the corner to the room

and 150 cm above the floor. The long axis of the ingot was parallel to the maze corridor.

The position was checked by ruler. The primary objective was to observe the neutron

population in the maze. The secondary objective was to observe the high-energy photon

flux from other sources within the accelerator. One possible secondary source of high-

energy photons is that the energy selection slit within the Phillips bending magnet

system. It constitutes a possible source of background contaminate photons and thus

neutrons. The sample was aligned near the in-plane axis to check for this effect.

The remaining samples, foil samples 1-6, were placed in the moderator block

similar to sample I2. They were distributed radially outward from isocenter along the

cross-plane axis with the spacing indicated in Table 5-1. The position was checked by

the light system and the spacing by ruler. The primary objective was to observe the

neutron population in the moderator as a function of depth into the block. The secondary

objective was to observe the in-beam versus out-beam high-energy photon flux.

The irradiation was carried out in 500 monitor unit (MU) increments. (The

monitor unit is measured by an ion chamber within the accelerator and 1 MU nominally

corresponds to 1 cGy absorbed dose at isocenter.) The start time and the total irradiation

for each sample are also listed in Table 5-1. Samples I1 and I2 were each irradiated for

3000 MU. Sample numbers 1 through 6 were irradiated with all the foils in place for a

total of 6000 MU. Sample I3 was expected to receive the least activation and was

132

therefore left in place throughout the duration of the entire irradiation process for a total

of 12000 MU.

A standard EG&G high-purity germanium detector and associated equipment

were available in the control room at the time of the irradiation. Sample I1 was checked

at the 1000, 2000 and 3000 MU irradiation levels to determine its count rate for the

gamma-rays of interest. It was determined that count rate was sufficient after 3000 MU

irradiation. Sample I2 was run to match sample I1. The foil samples, because of their

smaller size, were irradiated for twice as long.

Final counting of the activated samples was performed at the NAA laboratory. As

discussed above, background counts were taken prior to irradiation. Final counting was

performed once later the same day as the irradiation and a second time the following day

to ensure no false readings were observed. The 333 and 356 keV decay lines from 196Au

and the 412 keV decay line from 198Au provided accurate assessment of the activation

due to each of these isotopes. This activity is used to compute production rate of the

isotopes seen while the beam was energized. The value is compared to simulation

calculations of the value in the comparison discussion below.

Two certified sources were also observed during the second set of counts. This

set of counts was used to determine the efficiency of the detector system for the gamma-

rays of interest in the counting geometry. It also ensured that the energy calibration of

the gamma-ray detection system was accurate. The final results are discussed in the

comparison below.

133

Table 5-1. ID, mass, position, start time and length of irradiation of the gold samples.

Sample # Radial
Position (cm)

Individual
ID #

Mass (g) Start Time
EST

Irradiation
(MU)

I1 0 I1 31.1 14:13 3000
I2 0 I2 31.1 14:34 3000
I3 Maze I3 31.1 14:13 12000
1 0 1 0.0664
2 3 2 0.0634
3 6 3 0.0512
4 9 set (4,10) 0.0676
5 11.5 set (5,6,9) 0.0782
6 14.5 set (7,8,11) 0.0790

14:51 6000

- - 4 0.0514 - -
- - 5 0.0159 - -
- - 6 0.0466 - -
- - 7 0.0472 - -
- - 8 0.0158 - -
- - 9 0.0157 - -
- - 10 0.0162 - -
- - 11 0.0160 - -

Simulation Setup

The two sets of experimental data require modeling at very different levels of

detail. As discussed in the Background section, electron-photon dose calculations for a

patient or equivalent phantom do not require modeling of anything outside the main beam

path. On the other hand, the neutron problem is influenced by every object in the room

and especially the exact details of the treatment head. Likewise, the way in which the

transport is run and the goals of the output are also very different.

Before describing these models, the goals of each should be stated. There are two

key unknowns in the descriptions of the MEA obtained for use here: the mean electron

energy and the number of electrons incident on the target. The simulation of the depth

dose has as its goal the validation of the beam path geometry with its associated materials

134

and the determination of these two unknowns. The value of these two unknowns is part

of the starting point for the second set of simulations. The second simulation attempts to

validate the neutron production and transport by matching the activation seen in the gold

samples.

Physical geometry. Simulation of the depth dose curves is an electron-photon

transport problem to solve the energy deposition in the water phantom. As such, it

requires an accurate description of the area directly around the beam path. It turns out

that this bit of physical geometry is the most difficult item to obtain.

Trying to obtain the exact schematics of a MEA is like trying to extract a sore

tooth from a man who hates dentists. Upon asking if the tooth is sore, he answers that it

might be but it’s nothing for a dentist. Upon finally going to the dentist and learning it

must come out, he makes the dentist promise he won’t pull it without his permission.

When the dentist asks for permission, the patient hems and hahs and talks about how the

rest of his teeth are fine and only with the greatest of reluctance gives up anything at all.

When the author first asked for blueprints of the Phillips MEA in question, he was

told that they existed but they were proprietary documents. This was understandable but

unfortunate. At that time, the author felt is was important to remain outside of the

obligations of handling proprietary data as it was desired to be able to publish full details

of the model without restriction in this dissertation. This was considered an absolute

must as without those details, the work presented cannot be replicated. Therefore, a

compromise was reached and a hand-drawn schematic of the beam path as well as a

generic diagram of the treatment head profile were made available.

135

During the course of this work, the author has had opportunity to speak with

many researchers in this field. While many were willing to share experiences trying to

model MEAs, all except one were unwilling to share exact details of their models

because of obligations due to the proprietary nature of their source information. The

author believes that this is a very unfortunate state of affairs as it means each group must

start from scratch and no group can exactly replicate another's work as no two models

will be exactly the same. It should also be noted that several persons with access to

proprietary information made further statements to the effect that even with detailed

blueprints, the specifications were sometimes out of date and key details had changed

between the blueprints and the MEA as built.

The author owes a great debt to John Demarco and Indrin Chetty of the University

of California at Los Angeles Department of Radiation Oncology. They were the one

group willing to share their experiences using MCNP as a simulation tool [91] as well as

their well validated models of the Phillips SL series MEA [92]. In terms of simulating

electron-photon radiation transport in MEAs for calculating dose distributions, they have

significantly advanced the state-of-the-art. For the purposes of this work, being able to

start with their model meant no great effort was necessary to refine and validate the

geometry model.

The geometry model thus obtained included the electron target, the target

housing, the primary collimator, a hardening filter, two flattening filters and an ionization

chamber. Dimensionally it matched the hand-drawn schematic obtained earlier with one

exception. The exception was an aluminum ring just outside the second flattening filter.

It was determined to be outside the main beam path and therefore ignored. The

136

placement and size of the secondary collimators and the water tank were determined

through discussions with the staff and engineers onsite at SCC.

The MCNP geometry specification was reordered and restructured during early

trial runs without affecting the original specifications except to speed up calculations.

MCNP geometry specifications can greatly influence run-times depending on the

complexity per cell description. The reordering served the secondary purpose of

describing the model in a more commented, structured manner for the sake of readability.

During these same runs it was found that presence of the ion chamber made no

significant contribution to the overall transport process and it was removed. A simple

schematic of the final simulation geometry is shown in Figure 5-2 and the details for the

MCNP input decks are given in Appendix E.

The second set of simulations has as its aim the accurate assessment of neutron

production and distribution within the treatment room. As discussed in the background

above, this is a considerably more difficult challenge than the depth dose simulations. In

fact, as the discussion in the comparison will show, while the challenge has been met

with more comprehensive techniques, the results still leave much to be desired. The

following discussion will point out a number of approximations which have been made

that contribute to the uncertainty in the final results.

The greatest single difficulty lies in adequately defining the physical space of

consequence. The starting point used here is the treatment head as defined in the depth

dose simulations. To this has been added the bare concrete walls of the treatment room.

The dimensions and materials of the room were derived from the original architectural

Figure 5-2. Simple schematic of the known geometry in the medical
accelerator treatment head.

 137

138

drawings and specifications [93] as obtained from the archives of the Shands Facility

Management. For the primary simulations, nothing else was included.

It is worth spending some time on the known unknowns this approximation

introduces and why it was made. First and foremost, only about one-third of the total

material in the treatment head is represented. The remainder is significantly outside the

primary beam path and therefore was not necessary for the electron-photon simulation

and was not included in any of the available references.

A detailed representation of the lead and tungsten shielding, structural steel and

other materials in the treatment head is necessary for an accurate simulation of the

electron-photon-neutron problem. Without truly accurate descriptions of the locations

and compositions of these materials, anything done is subject to large error. The final

results presented below are obtained only with what is known. With that said, there are a

significant number of variations and/or educated guesses on placement of lead and

tungsten shielding that can be made to estimate the influence of this missing material.

It is recommended that future work undertake to obtain this information by direct

inspection of the MEA. It might be attempted to obtain this information through

blueprints or specifications but the final model should be matched against the actual

dimensions as measured. It was not feasible to obtain that information for the purpose of

the current study.

There is also a significant amount of material within the room that is not

represented in the simulation. Again, this is done due to the difficulty in obtaining

information on the placement and composition of the objects. It was not readily apparent

from the specifications if the room was finished as is typical for similar facilities. If this

139

is the case, there are aluminum or steel studs providing cable runs between the concrete

and finished wall. The finished wall itself is probably gypsum board covered by paint

and/or wallpaper. Cabinetry and furnishings have been provided to make the room a

useful workspace. Additionally, the main bulk of the accelerator itself, the wall

partitioning the machinery room and many other miscellaneous items also reside within

the concrete vault.

This list of missing materials and unknowns could be continued though it

certainly becomes less significant. However, of probable importance are certain

construction materials and the accelerator itself. It is estimated [94] that one to two and a

half tons of structural steel or aluminum reside in the walls; one and a half to two and a

half tons of gypsum wall board, ceiling tiles or the equivalent coverings cover the walls

and ceiling; and, several hundred pounds of cabinetry are located against the walls. The

accelerator components, associated machinery and treatment couch account for hundreds,

if not thousands, of pounds of additional metals. The partition wall forming the

machinery closet is also left out. This lack of this material in the simulation represents an

unknown error that could play a significant role in neutron scattering and absorption.

Starting from this simplified model, four variations were used to simulate the

activation experimental setup. These are: the bare room; the room with detailed ingots at

isocenter and in the maze; the room with the moderator block at isocenter; and, the room

with the moderator block and detailed ingots at isocenter and in the maze. During the

course of this study, several variations have also been explored though none have been

included in the final simulations.

140

Transport data. Those materials in the treatment head which were specified in

the simple drawing are the same as those specified in the UCLA model. The target is

tungsten alloyed with 10 weight percent rhenium and has a density of 19.47 g/cc. The

target housing is natural copper and has a density of 8.96 g/cc. The primary collimator is

tungsten alloyed with 1.5 weight percent copper and 3.5 weight percent nickel and has a

density of 18.78 g/cc. The hardening filter is natural aluminum and has a density of 2.7

g/cc. The flattening filters are both steel with a density of 7.9 g/cc. The composition was

not listed on the hand drawing so the UCLA definition was taken. The steel is iron with

18 weight percent chromium, 9 weight percent nickel, 2 weight percent manganese and 1

weight percent silicon. The secondary collimators are lead. The lead may or may not be

alloyed with antimony. For this model it was taken as natural lead and has a density of

11.35 g/cc.

For the transport simulation of the depth dose curves, electron and photoatomic

tables were available for all of the elements specified above. Tables are also available for

simulating the hydrogen and oxygen of the water tank. While available, the air was taken

to be a void for these simulations. The detailed material descriptions used in the actual

input decks are listed in Appendix E.

For the activation simulations, the concrete walls, air, gold and A-150 plastic have

been added to the physical description. Other materials may be present in the room but

are not included as they are not represented in the geometry. The definitions of those

materials present and not established earlier have been taken from well established

sources. Exact details of the material compositions used are once again found in

Appendix E.

141

As with almost all MCNP simulations, tables are available for all elements of

interest for electron and photoatomic interactions. For neutron interactions, tables are

available for almost all isotopes and those unavailable constitute minor isotopes of

natural elements (less than 5 percent in all cases; less than 1 percent in most). However,

difficulty arises because only nine evaluated photonuclear tables are available for use:

27Al, 40Ca, 56Fe, 63Cu, 181Ta, 184W, 206,207,208Pb.

The difficulty is deciding what is reasonable when no table exists for an isotope of

interest. What has always been done in past is to completely ignore the photonuclear

contributions. However, this virtually guarantees that the simulation will underpredict

the neutron production. Therefore, it seems more reasonable to follow the example used

in picking neutron tables and to use an available isotope, e.g. 184W, to represent all the

isotopes present in the natural element, e.g. 180,182,183,184,186W. However, the reason these

tables are compiled by isotope is that each individual species in a naturally occurring

element has unique thresholds and reactions. Still, engineering practicality says that

something is better than nothing. As a result, the original argument is extended to say

that it is reasonable to use a table for an isotope of similar atomic weight if the necessary

isotopic table is missing. However, beware, you get what you pay for.

For the purposes of representing the materials in this simulation, missing tables

were substituted by isotope within an element or by nearest atomic neighbor.

Specifically, the 184W table was used to represent elemental tungsten and rhenium. The

63Cu table was used to represent elemental copper and nickel. The 27Al table represents

elemental aluminum and was also used to represent elemental silicon. The 56Fe table was

used to represent elemental iron, chromium and mangenese. The 40Ca table was used to

142

represent elemental calcium. The major isotopes of lead, 206,207,208Pb, have tables

available leaving only 1.4 atom percent 204Pb to be covered by an appropriate mixture.

No photonuclear table was associated with hydrogen, carbon, nitrogen, oxygen, flourine,

sodium, magnesium, sulphur or argon. The exact definitions of the materials as well as

the geometry used in the simulation can be found in Appendix E.

Radiation source. The radiation source in the MEA is electrons on the target.

The electrons are produced by an electron gun, formed into bunches and accelerated

through a microwave chamber. They are then guided through a set of vacuum tubes to

the treatment head. A system of three bending magnets [95] then spread the beam, direct

it through an energy selection slit, refocus it and direct it onto the target. The actual

electron distribution on the target is probably a chopped Gaussian in energy, impinging

on a relatively small spot with a slight angular distribution about the normal. This

distribution as modeled in the simulation is a whole Gaussian in energy having a full

width at half maximum of 780 keV and perpendicularly incident on a spot size 1 mm in

diameter. This description is taken directly from the original UCLA model and is

believed accurate enough as it has been used to successfully match experimental data.

One of the key unknowns is the mean energy of the electrons incident on the

target. It will always be dependent on the specific MEA in use as it is a function of the

microwave cavity and RF tuning. The UCLA model gives this value as 22 MeV. Taking

22 MeV as a starting point, depth dose simulations were run at 1 MeV increments for 3

MeV on either side of this value, i.e. 19, 20, 21, 22, 23, 24 and 25 MeV. The details are

listed in Appendix E.

143

The radiation source for the activation simulations is the exactly as described

above. However, it is worth noting that while this is still a good approximation to the full

source, it leaves out one portion which has the potential to be significant. As the

electrons pass through the system of bending magnets, they pass through the energy

selection slit. The bremsstrahlung photons occurring as a result of this process do not

affect the electron-photon dose as a significant amount of shielding blocks their direct

path to the treatment area. However, any high-energy photons from this process can

contribute to the production of neutrons.

Transport algorithms. The MCNP radiation transport code is the work of

hundreds of people over decades of time. One of the principal reasons the current work

was performed using the MCNP code as a base was the comprehensive validation of its

primary transport algorithms. This validation has been accomplished through the

diligence and use of thousands of users. MCNP is one of, if not the, gold standard in

neutron-photon transport and its electron-photon transport package has made great

advances over the last decade. For neutron and photon transport, there are many papers

in the literature validating the accuracy of the data combined with MCNP’s transport

algorithms.

Electron transport was added relatively recently in MCNP’s lineage and is still

undergoing significant improvements. However, the current set of electron transport

algorithms are derived from the well established ITS code [96] and have proven to be

accurate for most situations. Several papers have been published since electron transport

was first added to MCNP showing its application to electron accelerator environments.

Recent examples include work by Love et al. [97] and Jeraj et al. [98]. These show that

144

while there is still work needed in this area, MCNP is capable of simulating this class of

problems.

However, since it was desired to run the depth dose simulations with the best

electron-photon physics transport package available, they have been run using the most

up-to-date electron physics package. As part of the upcoming release of MCNP version

4C, Ken Adams of the MCNP code development team has worked to correct some of the

known discrepancies in the electron transport algorithms [99]. A prototype code has been

designated MCNP4BNU to indicate it is based on MCNP4B2 and includes the new

electron package. The prototype was made available to the author for use in these

simulations [100].

The bulk of the current work has been directed at providing the algorithms

necessary to include photonuclear interactions in MCNP. The resultant prototype code is

designated MCNP4BPN to indicate that it is based on MCNP4B2 and includes

photonuclear physics. It has been well documented in Chapter 3 and validated in Chapter

4. The neutron, photoatomic and electron routines remain those of MCNP4B and as such

have been validated as previously described. MCNP4BPN is used for the bulk of the

activation simulations.

Obtaining Output. The MCNP code has a very well established, comprehensive

set of output tables. The have been well tested over the years by the users and present a

wealth of information about the simulation. Creation and loss tables present a summary

of the overall events. If needed, details are available about the events by cell and by the

type of interaction. And most important of all, a standardized tally package provides

requested results along with statistical analysis of their uncertainty.

145

Part of the problem in simulating the depth dose calculations is doing detailed

electron-photon transport over more than a meter in distance. It is trivial to obtain the

bremsstrahlung spectrum from the target and transport it into the region of interest, i.e.

the water tank. It is more slightly more difficult to obtain the bremsstrahlung spectrum

from the other major components in the beam path and transport them to the region of

interest. It is extremely difficult to transport the scattered electrons to the region of

interest. Because of this, the typical approach has been to break the geometry up into

distinct regions and create a phase-space file which adequately describes the electron-

photon “source” at the start of each new location.

In the true spirit of engineering mentality, i.e. always use the biggest hammer

available, these simulations were run from the original electron source incident on the

target. This was done at great expense in terms of CPU time though it considerably eased

the amount of time that would have been necessary to understand and use phase-space

files. The generation and use of phase-space files is, in the opinion of the author, still an

art form rather than a science. Therefore a large number of CPU cycles were facilitated

by the availability of standardized variance reduction techniques within MCNP to run

these simulations from top to bottom.

A dxtran sphere allows a volume of interest to receive a representative neutral

particle from every collision site outside of the volume. In order to keep the Monte Carlo

game fair, any particle actually reaching the boundary of the dxtran sphere is killed. For

the purpose of these simulations, a photon dxtran sphere was placed around the water

tank. To illustrate how effective this method is, consider that a typical example

simulation shows that 8 million photons were killed at the dxtran boundary but 200

146

million particles entered the sphere, a significant net gain of particles interacting with the

water tank.

Unfortunately, there is no method currently available to propagate electron

contributions over a distance. Therefore the electron transport had to proceed the

traditional way. Each electron reaching the water tank was the result of a long series of

collisions which managed to penetrate the full length of the treatment head and still be

going in the right direction at the bottom. Part of the requirement for long run-times

derives from the need to have enough of these particles contribute to the dose very near

the surface of the water tank.

The dose along the central axis of the water tank was calculated from the surface

to 30 cm. A three square centimeter column was defined extending along the central

axis. It was cut up into 39 vertical slices: the first five each 0.2 cm thick, the next nine

each 0.5 cm thick, the next 24 each 1 cm thick and the last cell 0.5 cm thick. The energy

deposited in each cell can be tallied and, with that, the absorbed dose calculated.

The standard MCNP tally package includes two methods for estimating energy

deposition. The first is a heating tally. This method computes the average energy

deposited in the volume of interest for each photon collision assuming all secondary

energy is deposited instantaneously and locally. This requires that the region in question

has reach electron equilibrium. This occurs for homogeneous regions away from

boundaries. Thus it is a reasonable approximation for those points after the build-up

region and peak dose. As this method depends primarily on the photon transport, it does

not require as much time to achieve a converged answer as the next method.

147

The second method to estimate energy deposition in a volume is to measure the

net energy flow through its boundaries. This is achieved simply by tracking each particle

and adding its energy to the tally when it enters and subtracting off its energy when it

leaves. The primary energy loss mechanism is the slowing down of electrons within the

cell. Obtaining convergence for this energy deposition tally is difficult because it is

necessary to have a large number of particles, particularly electrons, traverse the volume

in order to obtain an accurate measure of the average energy deposited.

The energy deposition tally is also sensitive to the electron and photon energy

cutoffs. Because the energy of the particle is added to the cell when it enters, any

mechanism that prevents it from leaving will cause the energy to remain added to the

tally. Thus if the electron and photon energy cutoffs, the energy below which no further

transport is done, are too high, the tally will probably overestimate the absorbed dose. It

was found through preliminary simulations that electron and photon cutoffs of 0.5 and

0.1 MeV, respectively, gave reasonable answers in acceptable run times.

All standard MCNP tally outputs include a wealth of statistical information to

help the user determine the precision of the answer. These simulations were run until the

energy deposition tally showed convergence at less than 3 percent relative error. The

heating tallies could be run at the same time thereby making better use of the time spent.

The run-times needed to achieve convergence in the energy deposition tallies

corresponded to a relative error level in the heating tallies of less than 0.5 percent.

However, it should be remembered that these both these error levels indicate the

precision of the Monte Carlo results and not necessarily its true accuracy. There

accuracy will be discussed in detail in the comparison sub-section.

148

Results were obtained in the manner described above for three field sizes. The

secondary collimators were set such that the photon field incident on the water tank 100

cm SSD was 5x5 cm, 10x10 cm and 30x30 cm, respectively. Each of the seven incident

energy distributions was considered. All other conditions were held constant such that 21

variations were run.

A debt of gratitude is owed to the Advanced Computing Laboratory (ACL) at Los

Alamos National Laboratory (LANL). They operate the world’s fastest integrated

computer (at least for today), the Blue Mountain SGI cluster [101]. At the time these

simulations were performed, the machine was severely underutilized. After about 4,000

hours of time to obtain some preliminary results, the final set of simulations took 35,000

hours of CPU time. However, this time was cheap in comparison to the learning curve

necessary to understand and utilize phase-space files.

Two standard MCNP tallies were used to obtain estimates of the activation in the

gold foil. The track length estimate evaluates the particle flux in a volume. A point

detector evaluates particle flux at a point. Either can be multiplied as a function of

energy with a production cross section and an atomic density to obtain the production rate

of an isotope per source electron per volume. Track length estimators were used to

evaluate the isotopic production rate in the ingots as measured over finite volumes. Point

detectors were used to evaluate the isotopic production rate in the foils as approximated

at a point. Again, the statistical analysis package provides useful information for

evaluating the precision of the results.

Several techniques were used by the activation simulations to reduce the CPU

time required. A dxtran sphere, as discussed above, was used to surround the volume

149

where a track length estimate of particle production was made. Since electrons and

photons with an energy below the lowest photonuclear threshold are no longer capable of

producing neutrons they are not transported. This is done by setting the particle energy

cutoff to remove them from the simulation when they fall below 5.7 MeV, the lowest

photonuclear threshold in the simulation. The electron energy cutoff represents the most

substantial time savings as electron transport becomes much more CPU intensive at lower

energies. Photonuclear biasing was used such that the neutron production from every

photon collision would be evaluated. Finally, a single weight window was used for each

particle type to ensure that particle weight due to the biasing schemes did not cause

unnecessary fluctuations in the tallies.

It should be noted that dxtran spheres are not used in conjunction with point

detectors. Point detectors are also known as next event estimators. They work in a

manner analogous to dxtran spheres. A contribution is made to the flux at the point

detector from every particle collision. Therefore, dxtran spheres are used in those

simulations with a finite ingot defined and point detectors are used otherwise.

The activation simulations included the production rates of both 198Au and 196Au.

The (n,γ) cross section necessary for estimating production of 198Au was available in the

ZAID 79197.60c data set found in the standard ENDF60 continuous-energy neutron

library [102]. The (γ,n) cross section necessary for estimating production of 196Au was

taken from the Saclay 197Au photoneutron cross-section evaluation [69] as available

electronically in the Atlas of Photonuclear Cross Sections [17].

There were five simulation setups of interest: the bare ingot at isocenter; the

moderated ingot at isocenter; the ingot located in the maze; the foils in moderator; and,

150

the foils without the moderator. The point detector estimate used for the foils without the

moderator is useful for comparison purposes even though the equivalent experiment was

not performed. Considering the seven energy distributions, this lead to 35 simulations.

Each of these simulations was duplicated, for 196Au production only, using

MCNP4BNU to determine if the enhanced electron physics would significantly change

the production rate. The simulation thus run is not quite identical to the MCNP4BPN

simulation in that MCNP4BNU does not include the photonuclear cross section.

Inclusion of the photonuclear cross section will shorten the photon mean free path

slightly but due to the relatively small change, it has very little effect on the gross photon

transport.

As with the depth dose simulations, it was desired to run until the statistical

package reported convergence for all the tallies. This was indeed the case for almost all

of the volume tallies. The few discrepancies involved warnings although other

indications showed that the tally had converged. The point detectors had a more difficult

time.

Point detectors are best used in a vacuum outside the main region of transport.

Because they are next event estimators, most contributions to them tend to be of low

weight as the particle has had to manage to scatter in the right direction and traverse a

significant amount of material. Unfortunately, when used in a material they suffer from

the occasional particle which collides relatively close by and has a high probability of

scattering in the direction of the detector. These particles, to use a technical term, clobber

the tally by introducing a sample with much higher weight than the average.

151

The activation simulations used point detectors residing within materials, in some

cases within dense materials. As such, many of the these tallies did not converge due to

the problem described above. After many attempts to remedy the situation and long run-

times to see if enough normal particles could overcome the occasional offending particle,

the final results were taken despite some continuing problems. User judgement is used to

evaluate those results which did not converge and estimate their uncertainties in light of

those results which were converged.

As discussed above, the author holds with the notion that all credible scientific

work must be reproducible. In order to facilitate the reproduction of the data presented

here, Appendix E contains the information necessary to reconstruct the input decks. The

coding for the algorithms added to MCNP4B2 has also been provided as well as the

coding necessary to reproduce the cross-section library used. The cross-section data are

available in the ENDF format from the LANL T-2 web site [103]. The only set of

information which would have been useful to include, but is not, is the actual MCNP

output files. Unfortunately, they form several hundred megabytes worth of text files and

their inclusion was not practical.

Discussion of the Results

Two sets of experimental data and simulation results have been described. This

section will discuss how well the simulations match the experimental data and make

suggestions about where to concentrate future work to improve these results. The

comparison of the depth dose data is presented first, followed by the activation data.

Depth dose. The experimental data exists as three relative depth dose curves for

photon field sizes of 5x5, 10x10 and 30x30 cm at 100 cm SSD. The original

152

experimental data is presented in Figure 5-3. It was provided at 1 mm intervals without

an estimate of the error bars though they are expected to be small. The data was averaged

over each cell in order to facilitate comparison to the simulation results.

The heating tally results for each of the seven incident electron energies and for

each of the three field sizes are shown in Figure 5-4 compared to their respective ion

trace. Since this tally is only valid once electron equilibrium is achieved, the comparison

is only for those points after and including the peak value of the ion trace. The sum of

the squares of the difference between each tally value considered to the average of the ion

trace in the cell volume was then minimized. Remember that the ion trace is a set of

relative values. The general conclusion based on this graph is that the simulations appear

to be in the right neighborhood. However, despite the fact that they meet the “eyeball

norm”, no further conclusions can be readily made strictly from this graph.

Three difference plots between each heating tally result and the ion trace are

presented in Figure 5-5. This set of graphs provides much better insight into the true

measure of each simulation. The first conclusion to be drawn is that the simulation

model has fairly accurately modeled the true experiment. None of the results are more

than four percent different. However, there are still some discrepancies.

Figures 5-4 and 5-5 are presented without error bars. Error bars are not included

on these graphs as they would obscure the information being conveyed. The error bars

are not available for ion chamber trace. The error bars for the heating tallies are all less

than 0.3 percent of the tally value.

The first area of concern is the large slope in the difference plots just after the

peak value. This is most probably due to electron equilibrium not having been fully

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Depth (cm)

In
te

ns
ity

 (A
rb

itr
ar

y
U

ni
ts

)

5x5 Field 10x10 Field 30x30 Field

Figure 5-3. Ion chamber trace plots from a standard calibration of the Phillips SL25 in Room 5 of
Shands Cancer Center.

 153

0

200

400

600

800

1000

0 5 10 15 20 25 30

0

200

400

600

800

1000

0 5 10 15 20 25 30

0

200

400

600

800

1000

0 5 10 15 20 25 30

Depth (cm)

Trace 19 MeV 20 MeV 21 MeV
22 MeV 23 MeV 24 MeV 25 MeV

D
os

e
(A

rb
itr

ar
y

U
ni

ts
)

30x30 Field Size

10x10 Field Size

5x5 Field Size

Figure 5-4. Comparison of ion chamber trace with calculated heating tally for
a) a 30x30 field; b) a 10x10 field; and c) a 5x5 field.

 154

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

Depth (cm)

19 MeV 20 MeV 21 MeV 22 MeV
23 MeV 24 MeV 25 MeV

30x30 Field Size

10x10 Field Size

5x5 Field Size

Pe
rc

en
t D

iff
er

en
ce

Figure 5-5. Percent differences between ion chamber trace and calculated heating tally
for a) a 30x30 field; b) a 10x10 field; and c) a 5x5 field. (Percent difference is
computed as (trace-calculation)/trace.)

 155

156

reached until just after the peak value. Remember that the heating tally is not valid near

boundaries where electron populations are in a non-equilibrium state.

The second area of concern is the increasing difference seen between the

simulations and the ion trace for the 10x10 and 5x5 cm field sizes. One hypothesis for

this difference is that the relative size of the tally volume is a much larger percentage of

the total photon field size as that field size is decreased. The area of the central column

used for defining the tally is 3 cm2. This corresponds to 1/3, 3 and 12 percent of the

30x30, 10x10 and 5x5 cm field sizes, respectively. It may be that the tally is being

influenced by the edges of the field boundary. Further study is needed.

Overall, the simulation geometry seems to have captured the essence of the

physical space within the beam path. Further, from the difference graphs, the energy of

the incident electrons would appear to be in the 20 to 21 MeV range. This value is based

on user judgement in evaluating the curves. If the 30x30 cm field size simulation is taken

as the most accurate, it would appear that the incident electron energy is above 20 MeV.

Granting that the 10x10 and 5x5 cm field size simulations are not as accurate they still

indicate that the higher energies are becoming more divergent especially above 21 MeV.

The energy deposition tally results for each of the seven incident electron energies

and for each of the three field sizes are shown in Figure 5-6 compared to their respective

ion trace. Again a least squares fit was used to match each simulation result to the ion

trace. Similar to the heating tally results, these graphs seem to indicate that the

simulation geometry is a fairly accurate representation of the treatment head along the

beam path. The discrepancy near the peak is discussed below.

0

200

400

600

800

1000

0 5 10 15 20 25 30
Depth (cm)

Trace 19 MeV 20 MeV 21 MeV
22 MeV 23 MeV 24 MeV 25 MeV

5x5 Field Size

0

200

400

600

800

1000

0 5 10 15 20 25 30

10x10 Field Size

0

200

400

600

800

1000

0 5 10 15 20 25 30

30x30 Field Size
D

os
e

(A
rb

itr
ar

y
U

ni
ts

)

Figure 5-6. Comparison of ion chamber trace with calculated energy deposition for
a) a 30x30 field; b) a 10x10 field; and c) a 5x5 field.

 157

158

The percent differences between each energy deposition result and the ion trace

are presented in Figure 5-7. Due to the larger relative error in these results, they do not

provide as much insight as the heating tallies. Again no error bars are provided on the

graphs themselves as they would obscure the information to be conveyed. The error bars

for the simulation results are less than 3 percent. No error bars are available for the ion

traces.

The first discrepancy causing concern is the increasingly poor match between the

build-up region in the simulation versus the experiment. The build-up region is volume

near the surface where the electron population has not reached equilibrium. The results

for the simulation show discrepancies of approximately 30, 40 and 60 percent difference

in the surface cell for the 5x5, 10x10 and 30x30 cm field sizes, respectively. This is most

probably due to the lack of air in the simulation model. The air would provide a source

of Compton scattered electrons impinging on the surface of the water tank. This

explanation seems reasonable as the effect is worse for increasing field size where more

electrons would be produced by this mechanism.

The area beyond the build-up region seems to substantiate the results of the

heating tally. The overall agreement in this region is on the order of 5 percent or less.

Though it is more difficult to observe, the same divergence seen in the heating tallies

seems to be apparent here. Due to the larger relative errors, no conclusions about the

appropriate incident electron energy can be drawn directly from these graphs though

nothing seems to refute the conclusions drawn from the heating tallies.

The original goals of the depth dose simulation were to assess the incident

electron energy and the number of electrons on target per MU. The mean energy has

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30

Depth (cm)
19 MeV 20 MeV 21 MeV 22 MeV
23 MeV 24 MeV 25 MeV

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30

5x5 Field Size

10x10 Field Size

30x30 Field Size

Pe
rc

en
t D

iff
er

en
ce

Figure 5-7. Percent differences between ion chamber trace and calculated energy
deposition for a) a 30x30 field; b) a 10x10 field; and c) a 5x5 field. (Percent difference
is computed as (trace-calculation)/trace.)

s

 159

160

been estimated to be in the 20 to 21 MeV range. Remembering that one monitor unit

corresponds to one centigray of absorbed dose at the peak of the depth dose curve for the

10x10 photon field size, Figure 5-8 shows the estimate of the number of electrons per

MU as a function of energy for each of the two tally approximations. Based on the errors

seen to this point, 10 percent error bars are included on these values. Taking the center of

the expected energy range, the estimate of (1.36±0.14)⋅1013 electrons incident on the

target per MU is predicted.

The overall conclusion drawn by the depth dose comparison is that the

simulation’s treatment of the physical space in the area of the beam path is substantially

correct. Based on the results of simulations the mean incident energy is estimated to be

(20.5±0.5) MeV corresponding to (1.36±0.14)⋅1013 electrons on target per MU. Given an

average dose rate of 400-425 MU per minute, this represents an average of approximately

15 microamps of beam current. This number is a good sanity check for the work so far as

it makes physical sense.

Activation. The experimental data consists of an estimate for both 196Au and

198Au production for four different configurations. Several of these production rates have

been simulated via two different methods. The final estimates of the production rate for

both 196Au and 198Au by experiment and by simulation are given in Tables 5-2 and 5-3,

respectively. How these numbers were calculated is the subject of the following

discussion.

Each activation simulation reports the production rate in atoms produced per

electron incident on the target per cubic centimeter of original atoms. The number of

electrons per MU was estimated in the previous comparison. Thus the production rate

0.0E+00

2.0E+12

4.0E+12

6.0E+12

8.0E+12

1.0E+13

1.2E+13

1.4E+13

1.6E+13

1.8E+13

2.0E+13

19 20 21 22 23 24 25

Energy (MeV)

El
ec

tro
n

Pe
r M

U

Average F6 Average F8 Average

Figure 5-8. Estimate of electrons incident on target per MU (1 cGy) for the energy range of interest.

 161

162

expressed in atoms produced per MU per cubic centimeter encapsulates the integral result

of the simulations. For the purpose of comparison, it is desired to express the

experimental data into this same format.

The raw data from the experiments consisted of several sets of counts for specific

decays as determined by gamma-ray spectroscopy. The two strongest emission lines

from 196Au decay are a 333 keV gamma from 24.4 percent of the decays and a 355.72

keV gamma from 93.6 percent of the decays. The strongest emission line from 198Au

decay is a 411.8 keV gamma from 95.53 percent of the decays. Note that the decay data

used throughout this section is taken from the Nuclide Navigator program [104]. The

GammaVision software [105] used to control the counting provides an estimate of the net

counts for each peak observed. All three of these peaks were present and well defined in

each counting session. Other possible peaks of interest were not as well defined and

therefore ignored.

Assuming the production rate is constant in time over the length of the irradiation,

the number of counts seen is a function of that one value. Therefore, a system of

equations can be written to express the count rate as a function of the production rate in

atoms produced per MU per volume of sample atoms. Simple algebraic manipulation can

be used to solve for the production rate in terms of the count rate and the count rate can

be fed into these equations to estimate the production rate seen by each sample.

The number of counts seen by the detector can be calculated from Equation 5-1.

Here, C is the number of counts observed and D is the true number of decays that

occurred during the counting session. The dead time is accounted for by multiplying by

the ratio of LT, the live time of the detection system, to RT, the real time elapsed during

163

the counting session. BR is the branching ratio, i.e. the number of gamma-rays of a

specified energy seen per decay. The times and branching ratios are assumed to have

negligible error.

The last three factors in Equation 5-1 require more significant explanation.

Because the dimensions of the ingots are significant in comparison to the mean free path

of the gamma-rays, self shielding (SS) occurs. The correction factors used here have

been computed by Monte Carlo simulation. Photons are produced uniformly within the

volume of a mock ingot and the average number which escape the boundary is tallied.

Given an ingot size of 4.1 x 2.4 x 0.1636 cm and a total mass of 31.1 g, the self-shielding

factors are 0.445, 0.477 and 0.541 for 333, 355.72 and 411.8 keV photons, respectively.

Although the Monte Carlo simulations for self shielding were run to convergence and

negligible simulation error, the distribution of the photons in the ingot remains an

unknown and the self-shielding factors are assigned a 10 percent uncertainty.

Self shielding in the foils was assumed to be negligible and assigned a factor of

unity. Although self-shielding effects might be present, they should be minimal. An

uncertainty of 5 percent should be assigned to this factor.

The detector efficiency (ED) is a function of the gamma-ray energy and the

position of the photon source in relation to the detector. Two certified check sources,

133Ba and 137Cs, were available to determine the absolute efficiency of the counting

system. Four decay lines were of interest. The decay of 133Ba includes 302.71, 355.86

and 383.7 keV gamma rays. The decay of 137Cs includes a 661.62 keV gamma ray.

Based on the counts rates observed from these four lines, detector efficiencies of 0.0504,

164

0.0484 and 0.0437 were used for the 333, 355.72 and 411.8 keV photons, respectively.

The uncertainty in these efficiencies is estimated to be 10 percent.

At the time the counts were taken, it was not contemplated that the large finite

size of the ingot samples would have an effect other than self-shielding. During the final

analysis, it was discovered that the values estimated by the foils and the ingots differed

significantly. The only reasonable suspect for such a difference was the much larger size

of the ingots leading to a different detector efficiency than a point source. Therefore a

finite size (FS) factor has been added to the equation.

FSSSBRE
DT
LT

DC D ⋅⋅⋅⋅⋅= (5-1)

Working back towards the production rate, the next step is to relate the true

number of decays (D) to the number of atoms present at the start of the counting session

(NT). The fraction of atoms that survive the counting session is given by the familiar

exponential decay term. TSC and TEC are the start and end time for the counting session,

respectively. The decay constant λ is found in many sources and the values 1.30E-7 and

2.97E-7 per second are used for 196Au and 198Au, respectively. The relation describing

the number of decays is written in full in Equation 5-2. The times and decay constants

are assumed to have negligible error.

())(1 ECTSCT
T eND −⋅−−⋅= λ (5-2)

The total number of atoms of interest in the sample at the beginning of the

counting session is a function of the number of atoms produced in each irradiation and

their subsequent decay. The total present at the start of the counting sessions is the sum

165

of each of the individual contributions as shown in Equation 5-3. NP,i is the number

produced during irradiation i. The exponential decay term accounts for the number that

decayed between the end of the irradiation (TE,i) and the start of the counting

session(TSC). Again, the times and decay constants are assumed to have negligible error.

∑ −⋅−⋅=
i

SCTiEPT
iPT eNN

),(
,

λ (5-3)

Finally, the number of atoms produced from the irradiation is a direct function of

the production rate as shown in Equation 5-4. The production rate is given in units of

atoms produced per volume(V) of sample per dose(ADi) as measured in MU. The rate is

in terms of MU, as opposed to electrons, as that is the experimental measure of the

amount of irradiation. The decay of atoms during the irradiation time is ignored. This is

justified by the fact that less than one-quarter of one percent of the atoms produced

during any given irradiation decay before the end of the irradiation. The volume and the

dose are assumed to have negligible error.

iiP ADVPN ⋅⋅=, (5-4)

The linear system of equations relating the production rate to the count rate has

now been established. It is a trivial matter to solve for the production rate in terms of the

count rate. The uncertainty of the count rates varies by gamma-ray and by counting

session but on the whole is less than one percent for the ingots and a few percent for the

foils. The issue of the finite size factor has not been resolved and is left for further

discussion below.

The five configurations for the simulations have been described above. The final

results are production rates as a function of incident electron energy given in units of

166

atoms produced per electron per volume of sample. These are changed to units of atoms

produced per MU per volume by multiplying the number of electrons per MU as

estimated in the previous set of simulations. The uncertainty in the number of electrons

per MU is estimated to be 10 percent. The uncertainty in the simulations is discussed in

more detail below.

The first experimental configuration simulated was the bare ingot at isocenter.

Simulations were run to calculate production of 198Au using MCNP4BPN and production

of 196Au using MCNP4BPN and MCNP4BNU. The results of the simulations are shown

in Figures 5-9 through 5-11, respectively.

For all of the simulations calculating the production rate of 196Au using both

MCNP4BPN and MCNP4BNU, almost no difference was seen. This can be attributed to

the fact that the gross photon transport characteristics are unaffected by the presence or

absence of the photonuclear portion of the photon cross section. It also indicates that the

changes in electron transport and bremsstrahlung production from version 4B to 4BNU

do not significantly affect this simulation. Therefore, while both sets of results will

continue to be shown, their results are discussed without differentiating between the two.

Similar to the depth dose simulation, the production rate of 196Au depends mainly

on the electron-photon transport through the treatment head in the vicinity of the beam

path. The point estimates of the production rate in the beam path indicate that the high-

energy photon flux in this region is fairly uniform. The experimental values also confirm

this. It is also evident from the simulations that self shielding in the ingots has an effect

though in this case it changes the results by less than 10 percent. The best estimate of the

production rate for 196Au is 1.49⋅10-7 atoms/e/cc from the volume estimate (the track

0.0E+00

5.0E-09

1.0E-08

1.5E-08

2.0E-08

2.5E-08

3.0E-08

3.5E-08

4.0E-08

4.5E-08

5.0E-08

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

8 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (Isocenter) Pt. Est. (3 cm)

Figure 5-9. Calculated production rate of 198Au in the ingot located at isocenter.

 167

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

6 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (Isocenter) Pt. Est. (3 cm)

Figure 5-10. Calculated production rate of 196Au in the ingot located at isocenter using MCNP4BPN.

 168

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

6 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (Isocenter) Pt. Est. (3 cm)

Figure 5-11. Calculated production rate of 196Au in the ingot located at isocenter using MCNP4BNU.

 169

170

length tally) and its uncertainty is estimated to be 25 percent. This uncertainty derives

mainly from uncertainties in the 197Au(γ,n)196Au cross section.

The production rate of 198Au is very sensitive to the production and transport of

the neutrons. For the reasons discussed above, all the simulations attempting to simulate

the production of 198Au have a high level of uncertainty. It would be fair to say that these

simulations represents an accurate solution of the problem described but that the problem

described is incomplete. It is still worth discussing the results and drawing some

conclusions.

For production of 198Au in the bare ingot at isocenter, both the simulation using

point estimates and the simulation using a volume estimator give reasonable results.

However, these results are a factor of four different. This can be attributed to self

shielding in the gold ingot causing less neutron flux to be seen within the larger volume.

The volume estimate is clearly the best choice due to the self shielding in the sample.

The production rate of 198Au is estimated to be 6.18⋅10-9 atoms/e/cc and the uncertainty is

estimated to be a factor of three.

The second experimental configuration simulated was the moderated ingot at

isocenter. Simulations were run to calculate production of 198Au using MCNP4BPN and

production of 196Au using MCNP4BPN and MCNP4BNU. The results of the simulations

are shown in Figures 5-12 through 5-14, respectively.

The presence of the moderator block reduces the high-energy photon flux

available for production of 196Au. However, the results are very similar to those obtained

for the bare ingot. One difference is that the point detectors are subject to more high

weight variations in this region and therefore more subject to error. Self shielding in the

0.00E+00

2.50E-08

5.00E-08

7.50E-08

1.00E-07

1.25E-07

1.50E-07

1.75E-07

2.00E-07

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

8 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (Isocenter) Pt. Est. (3 cm)

Figure 5-12. Calculated production rate of 198Au in the ingot located at isocenter surrounded by A-150 plastic.

 171

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

6 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (Isocenter) Pt. Est. (3 cm)

Figure 5-13. Calculated production rate of 196Au in the ingot located at isocenter surrounded by A-150 plastic
using MCNP4BPN.

 172

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

6 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (Isocenter) Pt. Est. (3 cm)

Figure 5-14. Calculated production rate of Au in the ingot located at isocenter surrounded by A-150 plastic
using MCNP4BNU.

 173

196

174

sample volume still reduces the activation by something less than 10 percent. The

volume estimate gives a value of 1.22⋅10-7 atoms/e/cc for the 196Au production rate and

the estimated uncertain is about 25 percent.

The presence of the moderator block dramatically alters which neutrons are

causing activation in the sample. In the bare ingot, thermal neutrons scattered within the

room are readily available for absorption within the gold. The mean from path for the

average neutron in the moderator block is about 0.5 cm. This means that any room

scattered neutron must penetrate a minimum of 16 mean free paths to contribute to

production of 198Au. However, high-energy source neutrons have a longer mean free

path and can more readily penetrate to the center of the moderator. In this same process,

they are thermalized such that they are more easily absorbed in the gold. Again the

volume estimate is used for the final results. The production rate of 198Au is estimated to

be 2.10⋅10-8 atoms/e/cc and the uncertainty is estimated to be a factor of three.

The third experimental configuration simulated was the moderated foils

distributed in the cross-plane. Simulations were run to calculate production of 198Au

using MCNP4BPN and production of 196Au using MCNP4BPN and MCNP4BNU. The

results for all the foils were obtained using point detectors. Unfortunately, point

detectors are subject to large errors as described above. Therefore, these results did not

prove as generally useful as those from the ingots. However, they did provide some

insight into the modeling and, most importantly, insight into the probable value for the

finite size factor.

The production rate of 196Au in the foils drops dramatically outside the region of

the photon field. In fact, due to the low exposure of those foils outside this region the

175

experimental data is virtually meaningless. However, the two foils located in the primary

beam path provide some useful data. The simulation results for these foils are presented

in Figures 5-13 and 5-14. The point estimate at isocenter and 3 cm radially outward

along the cross-plane show essentially the same result. These estimates give a value of

1.23⋅10-7 atoms/e/cc for the 196Au production rate and the estimated uncertain is about 25

percent.

It should be remembered that small, thin foils are typically used for activation

analysis because their size closely resembles the calibration sources used to determine

detector efficiency. Self shielding and finite size typically are not considered as

significant factors in computing the activation in the sample based on the decays counted.

It can be shown that the foils used in this experiment do not appear to suffer from

self shielding or finite size effects. Taking the self shielding and finite size factors to be

unity for the foils, the experimental value for the 196Au production rate in samples 1 and 2

is approximately 1.64⋅106 atoms/MU/cc with an uncertainty of 12 percent. The point

detector estimation of the production rate is 1.36⋅10-7 atoms/e/cc with an uncertainty of

about 25 percent. Using the electron per MU value from above, this corresponds to a

production rate of 1.85⋅106 atoms/MU/cc. This is a satisfactory match between the

experimental and simulation values. It continues to enforce the conclusion that the

electron-photon transport through the treatment head to the region around isocenter is

accurately modeled.

Knowing that the simulation model appears to be accurately representing the

electron-photon transport, the 196Au production calculated can be taken as sufficiently

near truth. The moderated foil and moderated ingot simulations give results that are

176

within 10 percent of each other. This indicates that the experimental production rates

should be within that same error margin. Taking self-shielding as computed above, the

experimental value from the ingot is a factor of 1.6 too high when compared to the value

from the foil. Based on the match between the foil estimate and the simulation, the

simulation for the ingot should be substantially correct. Therefore a value of 1.6 is

estimated for the finite size factor and used in calculating the experimental production

rate from the ingot samples. As the estimate of the finite size value is based only on this

one data point, it is assigned a 50 percent uncertainty. At a later date, this study should

be redone using only foils in order to avoid having to use a value like this.

The production rate of 198Au in the foils as estimated from the simulation is nearly

worthless. The point detectors used for this estimate were subject to large fluctuations

due to the problems described earlier. Using a healthy dose of user judgement, the

production rate of 198Au is estimated to be 8.36⋅10-8 atoms/e/cc and the uncertainty is

estimated to be a factor of three.

Though the remaining foils have been eliminated from the major comparison,

they are worth considering for a moment longer. The experimental data show a trend in

the moderator block that the 198Au production is highest in the main beam path where

high-energy neutrons can traverse the treatment head with little downscatter. Figure 5-15

shows that the simulation reproduces this trend though not as well defined as the

experimental data.

The last experimental configuration simulated was the bare ingot located in the

maze corridor. Simulations were run to calculate production of 198Au using MCNP4BPN

0.0E+00

4.0E-08

8.0E-08

1.2E-07

1.6E-07

2.0E-07

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

8 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Pt. Est. (iso.) Pt. Est. (3 cm) Pt. Est. (6 cm)

Pt. Est. (9 cm) Pt. Est. (11.5 cm) Pt. Est. (14.5 cm)

Figure 5-15. Calculated production rate of 198Au in the foils distributed radially outward in the cross-plane
direction from isocenter surrounded by the A-150 plastic.

 177

178

and production of 196Au using MCNP4BPN and MCNP4BNU. The results of the

simulations are shown in Figures 5-16 through 5-18, respectively.

The production rate of 196Au in the ingot located in the maze is anticipated to be

very low. It is expected that the only significant contributions from the radiation source

as modeled will be for electrons that have scattered such that they can produce

bremsstrahlung heading towards the sample. The volume estimate gives a 196Au

production rate of 4.65⋅10-13 atoms/e/cc and an estimated uncertain of 25 percent.

The production rate of 198Au in the ingot located in the maze is anticipated to be

significant. Neutrons scatter off concrete very well and the maze corridor presents an

ideal streaming path. The volume estimate gives a 198Au production rate of 7.83⋅10-10

atoms/e/cc and the uncertainty is estimated to be a factor of three.

With all of the assumptions going into the experimental and simulation

production rates now documented, the final values can be compared and conclusions

drawn. Tables 5-2 and 5-3 present the final values for the production rates of 196Au and

198Au, respectively. The values are tabulated in units of atoms produced per monitor unit

per cubic centimeter of gold sample. The ratio of the values is given to aid in

comparison.

Table 5-2. Experimental and simulated production rates of 196Au for four configurations.

Production Rate (196Au/MU/cc197Au)Configuration
Experiment (E) Simulation (S) S/E

Sample I1
Bare Ingot at Isocenter (1.88±0.94)⋅106 (2.03±0.51)⋅106 1.080

Sample I2
Moderated Ingot at Isocenter (1.63±0.82)⋅106 (1.71±0.43)⋅106 1.049

Samples 1 & 2
Moderated Foil Near Isocenter (1.64±0.18)⋅106 (1.85±0.46)⋅106 1.128

Sample I3
Bare Ingot in Maze (1.84±0.92)⋅104 (6.33±1.58)⋅100 3⋅10-4

0.0E+00

1.0E-09

2.0E-09

3.0E-09

4.0E-09

5.0E-09

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

8 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (w/ mod.) Pt. Est. (w/o mod.)

Figure 5-16. Calculated production rate of 198Au in the ingot located in the maze.

 179

0.0E+00

2.0E-13

4.0E-13

6.0E-13

8.0E-13

1.0E-12

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

6 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (w/ mod.) Pt. Est. (w/o mod.)

Figure 5-17. Calculated production rate of 196Au in the ingot located in the maze using MCNP4BPN.

 180

0.0E+00

2.0E-13

4.0E-13

6.0E-13

8.0E-13

1.0E-12

19 20 21 22 23 24 25

Incident Electron Energy (MeV)

A
to

m
s 19

6 A
u

pe
r E

le
ct

ro
n

pe
r c

c
19

7 A
u

Track Length Est. Pt. Est. (w/ mod.) Pt. Est. (w/o mod.)

Figure 5-18. Calculated production rate of 196Au in the ingot located in the maze using MCNP4BNU.

 181

182

The production rate of 196Au supports the conclusion that the electron-photon

transport through the primary beam path in the treatment head is accurately simulated by

this model. The comparison shows three matches within 15 percent difference which is

in turn well within the accuracy of the individual values. The only anomaly is the

production rate in the sample in the maze.

From the discussion above, it should be remembered that the secondary objective

of the sample in the maze was to determine if high-energy photons were being produced

outside of the target area. The experimental production rate for that sample is four orders

of magnitude greater than the simulation. This is a clear indication that there is either an

unknown streaming path through the primary collimator, an unlikely situation, or that

there is another source of high-energy bremsstrahlung photons. It is believed that there is

a secondary source and that the source is the energy selection slit in the bending magnet

system. Due to their initial direction and the shielding in their path, photons produced at

the energy selection slit would not significantly affect the photon flux in the beam path

near isocenter. However, if such photons are being produced, they could represent a

significant source of high-energy photons, and thus photoneutrons, that are not included

within this model. The experimental observation of high-energy photons in the maze

supports this hypothesis.

The production rate of 198Au supports the conclusion that the electron-photon-

neutron model is inadequate to simulate neutron estimates with an uncertainty of less

than a factor of three. This uncertainty was derived from these final numbers although it

has been quoted in the discussion above. With that said, this methodology still represents

183

Table 5-3. Experimental and simulated production rates of 198Au for four configurations.

Production Rate (198Au/MU/cc197Au)Configuration
Experiment (E) Simulation (S) S/E

Sample I1
Bare Ingot at Isocenter (4.67±2.34)⋅104 (8.40±x.xx)⋅104 1.799

Sample I2
Moderated Ingot at Isocenter (5.37±2.69)⋅105 (2.86±x.xx)⋅105 0.533

Samples 1 & 2
Moderated Foil Near Isocenter (2.28±0.25)⋅106 (1.14±x.xx)⋅106 0.500

Sample I3
Bare Ingot in Maze (3.30±1.65)⋅103 (1.07±x.xx)⋅104 3.242

a giant leap forward in the state-of-the-art for simulating these quantities in that coupled

simulations can be run and an accurate assessment of their uncertainty is available.

Further, the data make clear the areas of highest concern and help to prioritize future

work to improve the accuracy of this simulation model.

The final conclusion from the 196Au production data above indicate the possible

existence of a photoneutron source not modeled in the current simulation. The

comparison for the moderated foil and the moderated ingot both indicate that the neutron

production is too low, possibly by a factor of two. These two bits of evidence lend

credence to the hypothesis that the energy selection slit is a significant source of high-

energy photons and therefore photoneutrons. This should be one of the first areas

addressed by future work.

Further, from the 198Au production data it is concluded that the simulation of

neutron scattering and absorption is inadequate. During the course of this study, many

variations of physical geometry and materials were explored. It was found from these

studies that the scattered neutron flux was most sensitive to the materials, in particular

tungsten, in the treatment head outside the primary beam path. With no other changes,

184

the 198Au production in the bare ingot at isocenter could be reduced by a factor of three

by realistic increases in the size of the primary collimator. This is primarily due to the

fact that tungsten has an thermal absorption cross section two orders of magnitude greater

than lead. Placement of lead throughout the treatment head had a lessor, though still

significant, effect. One of the recommendations discussed above is to visually inspect the

treatment head in order to obtain an accurate model of the shielding outside the beam

path.

Several other factors also have a significant, though smaller, impact on the

neutron scattering and absorption. Once the two questions raised above have been

answered, the lesser problems will become more important to solve. Included in this is

an accurate description of the finished wall. Every scattered neutron traverses this

geometry numerous times. If any material with a significant capture cross section exists

within the general wall-board, it will have an impact. The main body of the accelerator

and the partition wall of the machine closet represent a significant amount of material

available to scatter or absorb neutrons. These and possibly other materials in the room

will eventually have to be modeled. Last, as new cross-section data becomes available,

the description of the neutron production will improve.

Implications

Now that the region of applicability for this simulation model is known, it can be

applied to the general problems at hand. In particular, two pressing questions exist. The

first is to estimate the dose due to photoneutrons around the MEA. The second is

evaluate the relative contributions from the photon and neutron components of the dose

185

as the mean electron energy is increased. These two questions are addressed

simultaneously in this section.

For the purpose of addressing these questions, the physical model used for the

activation simulations is used without change. In reality, the accelerator would be

redesigned for any significant change in the incident electron energy in order to provide

an appropriate photon field in that target area. However, that is beyond the scope of this

study.

For the purpose of calculating the dose, the electron-photon dose and the neutron

dose are calculated separately. Similar to the studies performed above, MCNP4BNU is

used for the electron-photon transport problem and MNCP4BPN is used for the electron-

photon-neutron transport problem. The dose is estimated using point detector tallies

multiplied by appropriate flux-to-effective-dose conversion factors. The conversion

factors are taken from a tabulation by Rogers [106] for photons and the tabulation by the

ICRU [107] for neutrons. A hidden assumption necessary for this comparison is that the

number of electrons on target stays constant (1.36⋅1013) throughout these calculations.

Figure 5-19 shows the dose at isocenter over the mean electron energy range 10 to

100 MeV. Note that both the photon and neutron dose are not strongly dependent on the

field size. Field size is therefore ignored in the following discussion despite the fact that

it is included for each of the graphs. It can be observed that the ratio of the photon to

neutron dose remains fairly constant in this comparison.

The neutron dose at isocenter is approximately three orders of magnitude below

the photon dose. This is as it should be. Many state regulations specify an upper limit of

0.1% of the dose from neutrons. However, the figure shows that the two curves converge

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

D
os

e
pe

r M
U

 (c
Sv

)

Neutron (5x5 Field) Neutron (10x10 Field) Neutron (30x30 Field)
Photon (5x5 Field) Photon (10x10 Field) Photon (30x30 Field)

Figure 5-19. Theoretical neutron and photon dose per monitor unit at isocenter.

 186

187

somewhat in the 15 to 50 MeV range with the point of closest approach around 20 to 25

MeV. The ratio in this energy range is around 0.0035 to 0.005, slightly above what is

desired. While this is of concern, it should be reviewed with the understanding that there

is a large uncertainty in the calculated value.

Figures 5-20 through 5-22 present the dose at one meter above, in front of and to

the side of the electron target, respectively. As might be expected due to the symmetric

nature of the treatment head model, they show very similar results. Of significant note is

that the neutron dose quickly exceeds the 0.1% limit desired. This is due to the lack of

shielding around the treatment head and can be remedied.

It is also worth noting that the photon dose is relatively flat in these locations. In

fact, the photon dose is relatively flat for all locations except at isocenter. This is useful

because it indicates that photon shielding in place is adequate for this entire energy

regime.

The neutron dose becomes the primary shielding problem in the maze corridor.

This is not unexpected. The neutron’s ability to scatter and utilize streaming paths has

already been discussed. The purpose of the maze is to create a longer distance between

their inception and their leakage into occupied areas. Figures 5-23 and 5-24 show the

dose at both extremities of the maze corridor.

The effective dose calculated at the entrance door for a typical 2000 MU

treatment is 0.001 cSv (1 millirem). This calculation is too high and again argues that

more work is needed to create a more detailed simulation model. The error is probably

due to the large uncertainties in the neutron shielding around the treatment head and the

uncertainties in modeling possible neutron absorbers in the room and maze.

0.00001

0.0001

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

D
os

e
pe

r M
U

 (c
Sv

)

Neutron (5x5 Field) Neutron (10x10 Field) Neutron (30x30 Field)
Photon (5x5 Field) Photon (10x10 Field) Photon (30x30 Field)

Figure 5-20. Theoretical neutron and photon dose per monitor one meter above the target.

 188

0.00001

0.0001

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

D
os

e
pe

r M
U

 (c
Sv

)

Neutron (5x5 Field) Neutron (10x10 Field) Neutron (30x30 Field)
Photon (5x5 Field) Photon (10x10 Field) Photon (30x30 Field)

Figure 5-21. Theoretical neutron and photon dose per monitor unit one meter from the target in the
cross-plane.

 189

0.00001

0.0001

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

D
os

e
pe

r M
U

 (c
Sv

)

Neutron (5x5 Field) Neutron (10x10 Field) Neutron (30x30 Field)
Photon (5x5 Field) Photon (10x10 Field) Photon (30x30 Field)

Figure 5-22. Theoretical neutron and photon dose per monitor unit one meter from the target in the in-
plane.

 190

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

D
os

e
pe

r M
U

 (c
Sv

)

Neutron (5x5 Field) Neutron (10x10 Field) Neutron (30x30 Field)
Photon (5x5 Field) Photon (10x10 Field) Photon (30x30 Field)

Figure 5-23. Theoretical neutron and photon dose per monitor unit just inside of the maze.

 191

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

10 20 30 40 50 60 70 80 90 100

Incident Electron Energy (MeV)

D
os

e
pe

r M
U

 (c
Sv

)

Neutron (5x5 Field) Neutron (10x10 Field) Neutron (30x30 Field)
Photon (5x5 Field) Photon (10x10 Field) Photon (30x30 Field)

Figure 5-24. Theoretical neutron and photon dose per monitor unit at the door to the maze.

 192

193

CHAPTER 6
SUMMARY AND CONCLUSIONS

The development and implementation of a systematic treatment of photonuclear

physics for use in coupled photon-neutron simulations has been presented. This

capability is based on the use of evaluated photonuclear data to enable Monte Carlo

sampling of tabulated data describing photonuclear interactions and the resultant

products. As such, it represents the state-of-the art in simulation capability using the

most accurate data available. These new developments have been assessed through the

process of verification and validation. Additionally, an initial application to the

simulation of medical electron accelerators (MEAs) has been presented.

The Evaluated Nuclear Data File (ENDF) format is the international standard for

representation of nuclear cross-section data in a complete manner. The Cross Section

Evaluation Working Group (CSEWG) of the National Nuclear Data Center (NNDC)

maintains ENDF/B-VI data library containing the recommended values for the United

States. For the first time ever, evaluated photonuclear data have been made available in

this format and they are undergoing review for inclusion into the ENDF/B library.

The Nuclear Theory and Applications Group of the Los Alamos National

Laboratory has created the Los Alamos LA150 cross-section evaluation library that

includes evaluated data up to 150 MeV incident energy for photonuclear interactions with

selected materials. The evaluated data provided are complete descriptions of all possible

photonuclear reactions. That is, the absorption of the photon and the subsequent

194

emission of all secondary particles is handled in a self-consistent manner to describe the

spectra of all emission products, not just neutrons. It is expected that these new

photonuclear evaluations will be formally accepted for inclusion in the ENDF/B-VI

library by CSEWG at a forthcoming meeting.

Further, the International Atomic Energy Agency (IAEA) has maintained a

Coordinated Research Project over the last three years with the goal to establish an

internationally accepted evaluated photonuclear library. That library and its associated

report are expected to be released later in 2000 and will include the evaluations in ENDF

format for the major isotopes of interest for photoneutron production. The newly

available evaluated data from both T-2 and IAEA represents a first-of-a-kind

advancement in this field that will help bring the accuracy to photonuclear simulations

that was previously available only to neutron, electron and photoatomic simulations.

The Monte Carlo N-Particle (MCNP) radiation transport code has long

represented the state-of-the-art in neutron, electron and photoatomic transport

simulations. The reputation of this code is in large measure due to the quality of the data

underlying the calculations. The MCNP code uses tabular data that include interaction

probabilities with complete descriptions of the resultant products. These data are

maintained in A Compact ENDF (ACE) format derived from evaluated data in ENDF

format. The current work has defined a new class of ACE table for the inclusion of

photonuclear data and presented a simple data processing code for the conversion of

ENDF evaluated photonuclear data into this new ACE format. The LA150 photonuclear

data available have been processed in this manner.

195

The implementation of photonuclear interactions into MCNP has also been

presented. This included the definition of new user interface options for specifying the

photonuclear data to be used in a transport simulation. The standard definitions available

in MCNP have been extended to accept the specification of photonuclear tables and

libraries. In addition, since evaluated photonuclear data may not exist for the

corresponding neutron data, provisions have been added to allow the code user to specify

the most accurate neutron and photonuclear data separately. The setup and storage

sections of the code have been updated such that the tabular data specified for use is read

into memory in the standard manner.

With the introduction of complete evaluated data and their conversion into ACE

formatted tables, the sampling of emission particles from photonuclear absorption can be

performed using the existing ACE sampling routines. Slight modifications to these

routines were necessary to ensure the appropriate handling of new incident and emitted

particle types. These modified routines have the additional benefit of immediate use for

sampling nuclear interaction from new tabular proton data within the MCNPX code.

The photon collision routines within MCNP have been updated to include

sampling of photonuclear interactions. This includes accounting for the photonuclear

cross section in the distance-to-collision calculation and appropriately sampling

secondary particles produced from a photonuclear collision. This coding is fully

integrated such that coupled simulation of photon-neutron transport uses the standard

MCNP framework of routines. This means that tallies, variance reduction techniques and

summary information all reflect the coupled simulation.

196

Since the photonuclear interaction is a rare event, a biasing scheme has been

introduced to increase the sampling of these events. The code user now has the ability to

simulate the photonuclear contribution to the radiation field from every photon collision.

Further, the photonuclear collision routine has been integrated with the standard MCNP

weight-window scheme to ensure that particle weights from photonuclear production do

not unnecessarily introduce large variations in the tally results. These enhancements

significantly reduce the computational run-times necessary to achieve statistically valid

results.

The accuracy of the results from the new ability to simulate coupled photon-

neutron radiation transport has also been appraised. Verification of the coding was done

to ensure that the newly implemented algorithms performed as expected. Validation of

the new data was achieved by comparison of simulation results with two sets of data

found in the literature.

The National Council on Radiation Protection and Measurement (NCRP)

provided recommendations for assessing the neutron production and transport around

medical electron accelerators [2]. This report recommends the method developed by

Swanson [31,32] for estimating neutron production. Swanson’s work documents neutron

yields from electrons incident on selected materials. Comparison of calculated yields

from the current work to Swanson’s revised [32] values shows that the current

methodology is able to accurately assess the neutron production within the uncertainty of

the underlying experimental data.

The experimental measurements of Barber and George [58] are the defining

benchmark for neutron production from electrons incident on selected materials.

197

Comparison between the current calculated yields and the reported values shows

agreement to better than 25 percent. These results directly validate those materials for

which tabular data and experimental measurement were available. They indirectly

validate the methodology used to create the tabular data and provide a basis for

hypothesizing that all the available data are probably accurate to 25 percent for the

prediction of neutron production. Further benchmark data will be necessary to directly

conclude this. It should be noted that the difficulties in assessing nuclear interactions are

well known and for this problem 25 percent uncertainty is considered an excellent first

step.

An initial study has been prepared to determine the course future work should

take for the accurate assessment of the neutron environment around medical electron

accelerators. During the course of this study, it was demonstrated that the electron-

photon component of the MEA treatment beam is accurately modeled using current

simulation techniques.

However, despite the availability of a coupled simulation code and evaluated

photonuclear data, the current simulations are unable to reproduce experimental

measurements of neutron flux around the MEA with an accuracy better than a factor of

three. It is concluded that this is primarily due to limitations in the simulation model’s

description of the materials and their placement within the treatment head of the MEA

and to a lesser extent the placement of materials within the surrounding room. The lack

of certain isotopic evaluations in the current photonuclear library also introduces a source

of error though contributions from this source are expected to be less than those

mentioned above. Therefore, the first task that must be completed by future work is the

198

more accurate modeling of the physical space around the medical electron accelerator

than has been necessary for electron-photon simulation.

Some interesting results have been obtained from the medical electron accelerator

simulation model currently available. It was shown that the neutron dose to a patient

during a typical radiotherapy treatment using high-energy photons (20 to 25 MeV) is on

the borderline of what is generally considered acceptable. This was expected and has

been a known concern for this type of treatment. This new capability provides a tool

which can be used to refine the estimation of the neutron dose and explore the

possibilities for reducing it. Of significant note, it was found by this study that tungsten

is an excellent neutron shielding material for use in MEAs due to its larger neutron

capture cross section. On the other hand, lead was seen to influence the neutron energy

distribution but have negligible effort on the population.

The simulation methodology was also shown to be able to assess the health

physics concerns around a typical medical electron accelerator. The model is capable of

estimating the direct neutron dose to technicians working near the MEA though further

refinement is necessary to reduce the large uncertainties. Future work should first

concentrate on refining the simulation model to improve this assessment. Other work

may also be undertaken to simulate the photon dose due to neutron activation of materials

within the treatment room and their subsequent gamma-ray decay.

The development and implementation of a systematic treatment of photonuclear

interactions in coupled photon-neutron simulations paves the way for many follow-on

studies. As the effort to integrate the new evaluated data into the transport codes has

been carried out under the supervision of staff from the Los Alamos National Laboratory,

199

these developments are expected to make their way into publicly released versions of the

MCNP and MCNPX codes. The data processing capability for creation of photonuclear

ACE files has been integrated into the NJOY99 nuclear data processing code and

released last December (1999).

In addition to the recommendations above, many other possibilities have been

discussed with researchers in this field. Future studies may include the assessment of the

charged particle dose to patients undergoing radiotherapy from light-ions produced by

photonuclear reactions in tissue; the assessment and placement of neutron shielding for

both personnel and equipment around electron accelerators used for radiotherapy and

radiography; the assessment of the neutron source created by in-flight annihilation

photons impinging on a heavy water target; the assessment of material compositions for

unknown samples by photon interrogation; and many other interesting concepts. The

capability to simulate photonuclear interactions is therefore offered up with great hope

and expectation on what the future will bring.

200

APPENDIX A
PHOTONUCLEAR ACE TABLE FORMAT

Introduction

This appendix documents the class ‘u’ ACE table format as used by this work.

ACE tables are compact versions (A Compact ENDF) of Evaluated Nuclear Data Files

(ENDF). The MKPNT (MaKe PhotoNuclear Table) data processing code (described in

Chapter 4 and listed in full in Appendix B) converts ENDF formatted data into the ACE

‘u’ table format as described here. Limitations on the formats MKPNT will handle are

discussed in Chapter 4. Data in the ACE class ‘u’ format can then be used by the

photonuclear version of MCNP (described in Chapter 4 and listed in Appendix C) for the

simulation of radiation transport.

As the class ‘u’ format used here derives from the standard ACE format, the

descriptions of the data presented have been adapted from those in Appendix F of the

MCNP Users Guide [3]. However, many changes have been made to both streamline and

augment the old format. Comments are included to document where changes have been

made and to give guidance on appropriate uses of various representations. This appendix

was written to be suitable for inclusion in the appropriate location in the MCNP [3] and

MCNPX [42,108-110] user guides. Because of this, there is some information that is

redundant to Chapter 4.

201

Table Layout

There are no changes from the standard ACE table layout. It is presented here in

Table A-1. The format as shown describes an ASCII text file. The binary version of the

file contains the data in the same order except stored in the machine dependent format for

integers, reals and characters, respectively. There is one generally accepted exception

from this format. Integers in the XSS array are typically written to the ASCII file in the

(I20) format for readability although they are stored as real value numbers in the binary

file and within the MCNP program.

A standard data library file contains multiple data tables, e.g. the MCPLIB02

library contains one photoatomic data set for each element from hydrogen to plutonium.

A specific table within the library file is found by looking up its starting line (whose

value is IRN) and referencing the data relative to the appropriate starting line. Similarly,

when stored as binary data the address of the first entry for the table in question is the

absolute starting point.

Table A-1. Standard table description for the photonuclear class ‘u’ ACE format.

Line Address
Relative Absolute

Contents Format
(Fortran Standard)

1 IRN ZAID, Atomic Weight,
Temperature, Date Processed

A10, 2E12.0,1X, A10

2 IRN+1 Comment A80
3 – 6 IRN+2 – IRN+5 Inherited fields currently unused

(Fill with zeros or leave blank)
4(I7, F11.0) per line

7 – 8 IRN+6 – IRN+7 (NXS(I):I=1..16) 8(I9) per line
9 – 12 IRN+8 – IRN+11 (JXS(I):I=1..32) 8(I9) per line
13 - … IRN+11 – … (XSS(I):I=1..LXS) 4(E20.0) per line

202

NXS Array Elements

Only data common to the whole table are stored in the NXS array. Specifically, it

contains the information necessary to understand the details within the remainder of the

table. Examples of this type of information include the number of energy points used, the

number of reaction cross sections listed and the number of secondary particles with

emission data. Because the format of this table was modified over several iterations, key

details about the table format itself are also included here. The significance of each entry

in the NXS array is documented in Table A-2.

Two elements of the NXS array have standard definitions. The first element of

the NXS array is always the length (number of entries) of the XSS array. This

standardization makes it possible to read in a generic table without knowing the details of

the sub-arrays. The second element of the NXS array is typically the target identifier.

This document pertains to format version one (TVN=1) of the ACE class ‘u’

table. For this version of the table, the number of parameter entries in each IXS array is

two (NPIXS=2), the number of entries in each IXS array is twelve (NEIXS=12).

Table A-2. Description of the NXS Array elements in a photonuclear class ‘u’ ACE
format.

Entry Parameter Fixed numeric descriptive
NXS(1) LXS Length of the XSS data block
NXS(2) ZA Atomic and mass number of the target isotope

ZA = Z*1000 + A
NXS(3) NES Number of energy entries in the main energy grid
NXS(4) NTR Number of MT entries in the reaction-type listing
NXS(5) NTYPE Number of secondary particle types with IXS information
NXS(6) NPIXS Number of parameter entries (fixed values) in the IXS

array
NXS(7) NEIXS Number of entries (fixed values and locators) in IXS array

per secondary particle
NXS(8-15) Unused (Fill with value zero)
NXS(16) TVN Table Format Version

203

Parameters are fixed values listed first in the array. Other entries are assumed to be

locators and their values updated as the table is shifted in memory. The maximum

number of secondary particles (NTYPE) for which emission data can be given is eight.

This structure and values of this table are subject to revision at which time the table

version number will be incremented.

JXS Array Elements

The JXS array elements contain locators to global data contained within the XSS

data block. Similar to the NXS elements, global applies to the main energy grid, the

cross-sections, additional information associated with each reaction and a pointer to the

secondary data array IXS. Locators are offsets into the XSS array. Descriptions of the

JXS locators are given in Table A-3. For example, the first value for the main energy

grid is located at XSS(ESZ).

This format has deviated from the traditional style in that it references all

secondary particle emission data through the use of the IXS construct. The use of the

IXS construct was first done for the LA150 neutron library [47,48]. This library was

constructed for use in MCNPX where emission descriptions for protons, deuterons,

tritons, helium-3 and alphas were desired in addition to neutrons and photons. The table

presented here completes the transition in that all emission data (including photon and

neutron) are referenced through the IXS array. This was done so that the table is now

consistent in its treatment of all secondary particle emission data. As a result, only data

general to the whole table should be referenced from the JXS array.

Another major change is the addition of the locators TOT, NON, ELS and THN.

In neutron type ‘c’ tables, the locator ESZ does quintuple duty. That is the energy grid,

204

Table A-3. Description of the JXS Array elements in a photonuclear class ‘u’ ACE
format.

Entry Locator Offset to array of…
JXS(1) ESZ Main energy grid
JXS(2) TOT Total cross-section data
JXS(3) NON Total non-elastic cross-section data
JXS(4) ELS Elastic cross-section data
JXS(5) THN Total heating number data
JXS(6) MTR MT reaction numbers
JXS(7) LQR Q-value reaction energy data
JXS(8) LSIG Cross-section locators (relative to SIG)
JXS(9) SIG Primary locator for cross-section data
JXS(10) IXSA First word of IXS array
JXS(11) IXS First word of IXS block
JXS(12-32) Unused (Fill with zeros)

the total cross-section, the absorption cross section, the elastic cross section and the

heating numbers are referenced through the ESZ locator. These have now been

separated. The absorption cross section has been replaced by the non-elastic cross

section.

XSS Block

XSS Array

The XSS array is the generic container for the data. Because of this, it is also

referred to as the XSS Block. Descriptions of each of the arrays and their associated

values as located within the XSS block are presented here. It should be noted that the

ACE format uses only one energy grid for all cross-section data and that all cross sections

use linear-linear interpolation to determine intermediary values.

205

ESZ Array

The ESZ array contains the data entries for the main energy grid. It represents a

superset of all energies used by any reaction cross section listed in the table. Energy

values are given in units of MeV. The entries should consist of a series of monotonically

increasing, positive values located at (XSS(I): I=ESZ..ESZ+NES-1). Duplicate entries

are not allowed. Sharp transitions should be represented as occurring over a finite

transition region rather than a true step change. Error checking should be done to ensure

the conditions specified.

TOT Array

The TOT array contains the data entries for the total cross section. Cross-section

values are given in units of barns. There must be an entry corresponding to each entry in

the ESZ array and they should be located at (XSS(I): I=TOT..TOT+NES-1). Error

checking should be performed to ensure that these values are equivalent to the sum of the

elastic and non-elastic cross sections. This array must be present.

NON Array

The NON array contains the data entries for the total non-elastic cross section.

Cross-section values are given in units of barns. There must be an entry corresponding to

each entry in the ESZ array and they should be located at (XSS(I): I=NON..NON+NES-

1). Error checking should be performed to ensure that these values are equivalent to the

sum of all partial cross sections excluding the elastic and any sub-totals. This array must

exist if any non-elastic cross-section data are present.

The non-elastic cross-section is listed rather than the absorption for convenience.

If the elastic cross section has not been included, the non-elastic cross section is identical

206

to the total cross section and NON should be set equal to TOT and only one set of cross-

section entries is needed. One justification for not including the total absorption cross

section is that it does not make physical sense for the photonuclear process. Gamma

rays are emitted for all reactions that do not transition directly to a ground state.

ELS Array

The ELS array contains the data entries for the elastic cross section. Cross-

section values are given in units of barns. There must be an entry corresponding to each

entry in the ESZ array and they should be located at (XSS(I): I=ELS..ELS+NES-1). For

photonuclear physics, this cross section is negligible and typically is not included in the

original evaluation data file. If it is not included, ELS must be set to zero and no entries

are included in the XSS array.

THN Array

The THN array contains the data entries for the average heating numbers, i.e. the

average energy deposited per collision. Heating-number values are given in units of

MeV per collision. There must be an entry corresponding to each entry in the ESZ array

and they should be located at (XSS(I): I=THN..THN+NES-1). If no data have been

calculated for heating numbers, THN and each PHN entry (see discussion below) must be

set to zero and no entries are made in the XSS array.

The total heating number has recently undergone a revision. Since the MCNPX

code is capable of transporting most particles of interest, it is necessary to be able to

adjust the total heating numbers appropriately. Specifically, at the time of the simulation,

the total heating number should be adjusted to represent the average amount of energy

deposited per collision in a given material for all particles that are not transported.

207

In order to obtain an “average” heating number, several assumptions are

necessary. Particles that are extremely penetrating, e.g. neutrinos, are assumed to deposit

their energy elsewhere. Particles that are of “limited” range, including neutrons and

photons, are not considered extremely penetrating. All particles of “limited” range are

assumed to deposit their energy instantaneously at the collision site. This is a poor

assumption for any situation that does not approximate an infinite, homogeneous medium

with a steady-state source.

In order to accurately represent energy deposition, particles for which secondary

distribution data exist and should be transported and their contribution to the total heating

number subtracted off the total before beginning the simulation. Again, if heating tallies

are used, it is essential to transport all particles for which instantaneous, local energy

deposition is not a good assumption. Note that the sum of the partial heating numbers

(PHNs) given in the table may not add up to the total unless all possible secondary

particles (including the recoil particles) are included.

MTR Array

The MTR array contains the data entries for the reaction type MT numbers.

Reaction type MT numbers are taken directly from the ENDF-102 File Format Manual

[45]. There must be one MT value in the array for every reaction cross section to be

listed and they should be located at (XSS(I): I=MTR..MTR+NTR-1). The entries should

be in ascending order according to their numeric value.

Production cross sections for reaction products of interest may also be listed in the

MT array by using the ZA number in place of the ENDF MT number. An isotope’s ZA

number is defined as the atomic number (Z) times one-thousand plus the atomic mass

208

number (A). For example, 9Be would have ZA equal to 4009. There is not a conflict

with MT numbers as the currently defined ENDF MT numbers end at 1000. Note that

production cross sections, i.e. all reactions with a MT value greater than 1000, are not

valid for transport and are used only as tally multipliers.

LQR Array

The LQR array contains the data entries for the Q-value associated with each

reaction. Q-values are given in units of MeV. There must be one entry corresponding to

each MT array entry and they should be located at (XSS(I): I=LQR..LQR+NTR-1). For

reactions which are not physical events, e.g. production and summation listings, the Q-

value should be given as a zero (0) entry.

LSIG Array

The LSIG array contains the entries for the cross-section locators. Cross-section

locators are the array index to the first word of the corresponding MT reaction data

relative to the SIG locator. There must be one entry corresponding to each MT array

entry and they should be located at (XSS(I): I=LSIG..LSIG+NTR-1).

SIG Array

The SIG locator is the primary reference for finding the reaction cross-section

data. By tradition and for convenience, all reaction cross-section data are listed

sequentially at one location within the XSS array. Cross-section values are given in units

of barns. Each cross-section locator must point to a valid reaction cross-section.

Reaction cross-section data are given over a defined range of energies on the main

energy grid. The entries follow the format IE, NE, VALUES where IE is the starting

209

index corresponding to an entry on the main energy grid and NE is the number of entries.

Thus the entries VALUES(1..NE) are the reaction cross-section values corresponding to

the energies ESZ(IE..IE+NE-1). The cross-section entries should be located at ((XSS(I):

I=SIG+LSIG(K)-1..SIG+LSIG(K)+NE): K=1..NTR) where LSIG(K) is the offset value

from the LSIG array that corresponds to the Kth reaction MT as listed in the MTR array.

Error checking should be done to ensure that IE is not less than one, that NE is not

greater than NES and that IE+NE-1 is less than or equal to NES.

For cross-section data that do not cover the entire energy range of the table, the

value of the last entry is assumed to be constant for the remainder of the main energy

grid. That is, for all energies up to the first entry, the cross-section value of the first entry

is used. Therefore, reactions with threshold values must start with a zero value entry.

Similarly, reactions which are negligible after a certain energy should contain a zero

value as their last entry.

IXS Block

The IXS block is a conceptual figment created to equate the secondary particle

information storage structure to the general storage model of the NXS/JXS/XSS block. It

is described as its own set of parameters, locators and data in order to help separate it

conceptually and make it easier to understand. In reality all the components of the IXS

array and its associated data are stored in the XSS block. To stress the point, references

to IXS(i) are equivalent to XSS(i). The secondary data should be listed sequentially by

particle type and not spread throughout the XSS block.

210

IXS Array

The IXS array emulates the parameter/locator concept of NXS/JXS for secondary

particle information. Since a full set of IXS elements is needed for each secondary

particle, there are typically multiple IXS arrays in a table. They are listed sequentially

located at ((XSS(I): I=(IXSA+NEIXS*(J-1)) .. (IXSA+NEIXS*(J-1))+(NEIXS-1):

J=1..NTYPE). The elements of the IXS array are described in Table A-4.

The photonuclear table differs from the neutron and proton table versions in that

parameters specific to a secondary particle are also included in the IXS array. Thus, IXS

elements perform functions similar to NXS (parameter) and JXS (locator) elements. In

practice, they are used in an analogous manner to their conceptual equivalents. For

example, for the third (3) emission particle the parameter NTRP(3) (stored as IXS[2,3])

and the locator MTRP(3) (stored as IXS[5,3]) can be used to find the array of MT

reactions that produce that particle located at (XSS(I): I=MTRP(3)..MTRP(3)+NTRP(3)-

1).

Table A-4. Description of the IXS Array elements in a photonuclear class ‘u’ ACE
format.

Entry Parameter Fixed number descriptive
IXS(1,J) IPT(J) Particle IPT number
IXS(2,J) NTRP(J) Number of MT reactions producing this particle
Entry Locator Offset to array of…
IXS(3,J) PXS(J) Total particle production cross-section data
IXS(4,J) PHN(J) Particle average heating number data
IXS(5,J) MTRP(J) Particle production MT reaction numbers
IXS(6,J) TYRP(J) Reaction coordinate system data
IXS(7,J) LSIGP(J) Reaction yield locators (relative to SIGP)
IXS(8,J) SIGP(J) Primary locator for reaction yield data
IXS(9,J) LANDP(J) Reaction angular distribution locators (relative to ANDP)
IXS(10,J) ANDP(J) Primary locator for angular distribution data
IXS(11,J) LDLWP(J) Reaction energy distribution locators (relative to DLWP)
IXS(12,J) DLWP(J) Primary locator for energy distribution data

211

This table also differs from neutron and proton tables in that all secondary particle

information is referenced through the relevant IXS elements. This is a change in that the

previous tables still referenced the incident particle type emission data (e.g. neutron in,

neutron out) through the JXS array. Photophoton emission data in a photonuclear table

are referenced through the IXS array exactly as photoneutron or photoproton emission

data.

The secondary particles for which data are supplied are identified by the index

IPT. These numbers were originally defined by the MCNP code for neutrons, photons

and electrons. They have been extended by the MCNPX code to cover the particles of

interest in high-energy accelerator environments. At the current time, only those particles

listed in Table A-5 have emission data available in the table. This is the source of the

maximum value limit for the parameter NTYPE.

PXS Array

This array contains the data entries for the total secondary particle-production

cross section. Production cross-section values are given in units of barns. The data

values follow the IE, NE, VALUES format as described in the SIGP array section above

Table A-5. Association of particles with their symbol and IPT index number as defined
in MCNP(X).

Particle Name Symbol
(from mode card)

IPT

neutron n 1
photon p 2
electron e 3
proton h 9
deuteron d 31
triton t 32
helium_3 s 33
alpha a 34

212

and are referenced to the main energy grid. The array must exist if any reaction data exist

for the particle type and is located at ((XSS(I): I=PXS(J)..PXS(J)+NE+1): J=1..NTYPE).

Error checking should be done to ensure that the value of each entry corresponds to the

sum of the relevant reaction yields.

PHN Array

This array contains the data entries for the particle average heating numbers. The

data values follow the IE, NE, VALUES format as described in the SIGP array section

above and are located at ((XSS(I): I=PHN(J)..PHN(J)+NE+1): J=1..NTYPE). Particle

average heating-numbers are given in units of MeV per collision. As described in the

discussion of the THN array above, these values are the contribution to the total heating

number by this particle type assuming that the particle’s average emission energy is

deposited locally. Error checking should be done to make sure that PHN is not greater

than THN.

MTRP Array

This array contains the data entries for the MT reaction-type numbers that

produce this secondary particle. MT-reaction numbers are specified in the same manner

here as for the MTR array and are located at ((XSS(I): I=MTRP(J)..MTRP(J)+NTRP(J)-

1): J=1..NTYPE). The entries should be in ascending numeric order. Error checking

should be done to ensure that all MTRP entries correspond to a MTR entry at the JXS

level.

213

TYRP Array

This array contains the data entries for the coordinate system of the reaction

producing the secondary particle. The emission-coordinate-system parameter indicates

either the lab system (value = 1) or the center-of-mass system (value = -1) and the entries

are located at ((XSS(I): I=TYRP(J)..TYRP(J)+NTRP(J)-1): J=1..NTYPE). Error

checking should be done to ensure that an entry exists for each reaction and that it

contains one of the two allowed values. This array is different than the TYR array for

neutron tables in that multiplicity data are not included in TYRP but instead utilize the

SIGP array.

LSIGP Array

This array contains the entries for the reaction yield locators. Reaction yield

locators are the relative location of the corresponding MT reaction data in the SIGP array.

There must be one entry corresponding to each MTRP array entry and they should be

located at ((XSS(I): I=LSIGP(J)..LSIGP(J)+NTRP-1): J=1..NTYPE). The notation

LSIGP(K,J) indicates the Kth entry (XSS(LSIGP(J)+K-1)) for the Jth secondary particle.

SIGP Array

The SIGP locator is the primary reference for finding the reaction yield data. All

reaction cross-section data for this secondary particle are listed sequentially within the

SIGP array. Reaction yields are given either as production cross sections or as

multiplicity data. There must be one set of data for each reaction specified in the MTRP

array and it is located as described in the relevant table below.

Production cross-section data are the simpler of the two yield descriptions.

Production cross-section values are given in units of barns. Data of this type are typically

214

Table A-6. Reaction yield data in the form of a production cross-section.

Location in XSS Parameter Description
SIGP(J)+LSIGP(K,J)-1 MFTYPE 13 – Production cross-section
SIGP(J)+LSIGP(K,J) IE Starting index on main energy grid
SIGP(J)+LSIGP(K,J)+1 NE Number of consecutive entries
SIGP(J)+LSIGP(K,J)+2 ..
SIGP(J)+LSIGP(K,J)+NE+1

PXS(I)
I=1..NE

Production cross-section values for
corresponding MT reaction
(linear-linear interpolation)

derived from File 13 of an ENDF evaluation and are therefore labeled with the MFTYPE

equal 13. The entries for this reaction yield are described in Table A-6. The average

“multiplicity” for the reaction as a function of energy can be calculated from the data by

dividing the production cross-section value by the corresponding MT reaction cross-

section value.

Alternatively, the multiplicity of the reaction may be used in conjunction with the

corresponding MT reaction cross section to determine the production cross section.

Multiplicity is unitless and implies the number of particles emitted per collision.

Multiplicities can be constant, e.g. for fixed reactions like (γ,2n), or they can be variable,

e.g. for fission nubar values. Note that the general reaction, MT 5, can include any

combination of true reactions in a variable multiplicity. Also note that fission nubar data

are now included generally in this array rather than specifically in their own array.

Yield data of this type are typically found in File 6 or 12 of the ENDF-6 format

and hence are assigned the MFTYPE of 6 or 12. MFTYPE 16 is also allowed due to a

backwards compatibility issue arising from the fact that the value 16 has been used in

past to indicate MF File 6 yield data in neutron tables. Yield data for MFTYPE 6, 12 and

16 are described in Table A-7. This table and many of those to follow use the INT

215

interpolation parameter as defined by ENDF. Defined INT values and their associated

formalism are listed in Table A-8. Error checking should be done to ensure that all

values of MTMULT match a reaction in the MTR listing.

This description provides a concise method to define a varying yield. For

example, the MT 5 general reaction has a set of energy/yield pairs which is typically

shorter than the defining the corresponding production cross section. The disadvantage

of this format is that it requires the lookup of the cross section and the yield followed by a

multiplication of the two to obtain the production cross section.

Table A-7. Reaction yield data in the form of reaction multiplicity.

Location in XSS Parameter Description
IXS+SIGP(J)+LSIG(K,J)-1 MFTYPE 6,12 or 16 – Reaction

multiplicity
IXS+SIGP(J)+LSIG(K,J) MTMULT MT reaction to which

multiplicity applies
IXS+SIGP(J)+LSIG(K,J)+1 NR Number of interpolation

regions for multiplicity data
(If NR = 0, NBT and INT are
omitted and linear-linear
interpolation is assumed
across all points)

IXS+SIGP(J)+LSIG(K,J)+2 ..
IXS+SIGP(J)+LSIG(K,J)+1+NR

NBT(I)
I=1..NR

Starting index to which the
corresponding interpolation
parameter applies

IXS+SIGP(J)+LSIG(K,J)+2+NR ..
IXS+SIGP(J)+LSIG(K,J)+1+2*NR

INT(I)
I=1..NR

ENDF defined interpolation
parameters

IXS+SIGP(J)+LSIG(K,J)+2+2*NR NE Number of energies at which
the multiplicity is defined

IXS+SIGP(J)+LSIG(K,J)+3+2*NR ..
IXS+SIGP(J)+LSIG(K,J)+2+2*NR+NE

E(I)
I=1..NE

Energy grid on which
multiplicities are defined

IXS+SIGP(J)+LSIG(K,J)+3+2*NR+NE..
IXS+SIGP(J)+LSIG(K,J)+3+2*NR+2*NE

Y(I)
I=1..NE

Multiplicity (production
cross-section = reaction MT
cross-section * multiplicity)

216

LANDP Array

This array contains the entries for the angular distribution locators. An angular

distribution locator is the location of the angular distribution data for the corresponding

MT reaction relative to the ANDP locator. There must be one entry corresponding to

each MTRP array entry and they should be located at ((XSS(I): I=LANDP(J)..

LANDP(J)+NTRP-1): J=1..NTYPE). LANDP(K,J) is the Kth entry for the Jth secondary

particle type.

Several LANDP array values have special meanings. A zero (0) locator value

indicates a reaction where all particles are emitted isotropically in the reference frame

defined by the corresponding entry in the TYRP array. Correlated energy/angle data are

indicated by a negative one (-1) locator value. In this case, the angular distribution data

are included with the energy emission distribution data in the DLWP array. For both

cases, no angular data are entered in the ANDP array. All other locators must be positive

integer values and indicate that the angular distribution data are contained in the ANDP

array.

ANDP Array

The ANDP locator is the primary reference for finding angular distribution data.

All angular distribution data for this secondary particle are listed sequentially in this

array. Three types of angular distribution table are currently allowed: isotropic, 32 equi-

probable bin or tabulated angular-bin data. There must be one set of distribution data for

each reaction specified in the MTRP array that is neither isotropic nor correlated

energy/angle. The angular distribution data is located as described in the relevant table.

217

Table A-8. Interpolation schemes as defined for the ENDF-6 format.

Interpolation Scheme INT Value Interpolation Equation
Histogram 0 y(x) = y(x0)
Linear-Linear 1

00
01

01)()(yxx
xx
yy

xy +−
−
−

=

Log-Linear 2
0

0

0

1

01 ln
ln

)(y
x
x

x
x
yy

xy +

−

=

Linear-Log 3

()

+−
−

= 00
01

0

1

ln)(
ln

exp)(yxx
xx

y
y

xy

Log-Log 4

()

+

= 0
0

0

1

0

1

lnln
ln

ln
exp)(y

x
x

x
x

y
y

xy

If all reactions are isotropic or correlated energy/angle (i.e. no data are present in the

ANDP array), ANDP should be set to zero.

The angular distribution data are a set of tables comprising the average-emission

angles for the Jth emission particle having the Kth reaction. These table are located using

the angular distribution header information is described in Table A-9. An example of

how to find a particular header in the ANDP array is given here. The appropriate angular

distribution header information for the second reaction listed in MTRP producing the

third secondary-emission particle starts at the array location

(XSS(ANDP(3)+LANDP(2,3)-1). ANDP(3) is the ninth IXS value for the third emission

particle (IXS(9,3)) and LANDP(2,3) is the value of the second entry in the LANDP array

for the third emission particle (XSS(IXS(10,3)-1+2)).

218

Table A-9. Angular distribution header information.

Location in XSS Parameter Description
ANDP(J)+LANDP(K,J)-1 NE Number of energies at which

angular distributions are
tabulated

ANDP(J)+LANDP(K,J) ..
ANDP(J)+LANDP(K,J)+NE-1

E(L)
L=1..NE

Energy grid for the Kth
reaction angular distribution

ANDP(J)+LANDP(K,J)+NE ..
ANDP(J)+LANDP(K,J)+2*NE-1

LC(L)
L=1..NE

Locators for the angular data
corresponding to energy grid

Once the angular distribution header information is located, the incident energy is

used to find the locator for the appropriate angular data table. Positive locators indicate

32 equi-probable binned data, zero locators indicate isotropic distributions and negative

locators indicate tabulated angular data. Isotropic distributions have no further data

entries.

Angular Law 1 is 32 equi-probable binned cosine angles. It has been the

traditional method used to represent angular distributions. A positive value for the

angular data locator indicates it contains Angular Law 1 data. This data consists of 33

cosine angle bin-boundaries which mark the points 1/32 apart in cumulative probability

density. There location in the ANDP array is described in Table A-10. The cosine of the

scattering angle is chosen by linear-linear interpolation of a randomly chosen point in the

cumulative density space. This method’s primary advantages are its speed of execution

and small memory requirements. As memory and CPU power are much more readily

available today than when this method was first conceived, it is no longer recommended

for use.

The Angular Law 2 tabulated angular distribution was recently introduced [111]

to more accurately reproduce highly anisotropic scattering distributions. It is generally

219

Table A-10. Description of Angular Law 1 32 equi-probable bin angular distribution
table.

Location in XSS Parameter Description
ANDP(J)+LC(L)-1 N/A First word of angular distribution data for

incident energy point L
LC(L) is greater than zero

ANDP(J)+LC(L)-1 ..
ANDP(J)+LC(L)+31

CAB(M)
M=1..33

Cosine angle boundaries of the 32 equi-probable
scattering bins

accepted that distributions with very anisotropic behavior, in particular very forward

peaked distributions, are not well represented by Angular Law 1. Specifically, the detail

of the high-probability area is well represented at the expense of the remainder of the

distribution. Angular Law 2 distributions remedy this by allowing a tabular distribution

of points. The description for Angular Law 2 data is given in Table A-11. The scattering

angle is chosen based on the random sampling of the cumulative probability density with

proper interpolation of its corresponding cosine value.

LDLWP Array

This array contains the entries for the energy distribution locators. An energy

distribution locator is the location of the emission law data for the corresponding MT

reaction relative to the DLWP locator. There must be one entry corresponding to each

MTRP array entry and they should be located at ((XSS(I):

I=LDLWP(J)..LDLWP(J)+NTRP-1): J=1..NTYPE). The elastic collision is now

explicitly included here if the data are included. All locators must be positive integer

values and indicate that emission distribution data are contained in the DLWP array.

220

Table A-11. Description of Angular Law 2 tabulated angular distribution table.

Location in XSS Parameter Description
ANDP(J)+|LC(L)|-1 N/A First word of angular distribution data for

incident energy point L
LC(L) is less than zero

ANDP(J)+|LC(L)|-1 JJ Interpolation parameter for cosine
distribution ENDF defined interpolation
parameters (Only histogram or linear-
linear is allowed.)

ANDP(J)+|LC(L)| NP Number of points in the distribution
ANDP(J)+|LC(L)|+1 ..
ANDP(J)+|LC(L)|+NP

CA(M)
M=1..NP

Cosine of the scattering angle

ANDP(J)+|LC(L)|+1+NP ..
ANDP(J)+|LC(L)|+1+2*NP

PDF(M)
M=1..NP

Probability density function

ANDP(J)+|LC(L)|+2+2*NP ..
ANDP(J)+|LC(L)|+1+3*NP

CDF(M)
M=1..NP

Cumulative density function

DLWP Array

The DLWP locator is the primary reference for finding emission distribution data.

All emission distribution data for this secondary particle are listed sequentially in the

DLWP array. Typically, the emission data described here are the energy spectra for the

secondary particle. However, many new data evaluations are taking advantage of the

correlated, energy and angle, emission distributions. If the angular distribution data are

contained in the emission distribution, the corresponding LANDP entry must be negative

one (-1). For all other cases, there must be a corresponding set of entries, as located by

LANDP and ANDP, to describe the appropriate angular distribution. There must be at

least one set of emission data for each reaction specified in the MTRP array.

Law Header. Each reaction has at least one emission distribution associated with

it as described in the relevant law header information data. The entries in the law header

information data are described in Table A-12. This header exists to facilitate describing

reactions that require more than one sampling law to describe the emission parameters

221

correctly. An example of this would be second chance fission. The law header

containing the appropriate emission distribution(s) for the second reaction producing the

third emission particle starts at the array location (XSS(DLWP(3)+LDLWP(2,3)-1).

Here DLWP(3) is the twelfth IXS value for the third emission particle (IXS(12,3)) and

LDLWP(2,3) is the second entry in the LDLWP array for the third emission particle

(XSS(IXS(11,3)+2-1)).

Table A-12. Emission parameter law header information.

Location in XSS Parameter Description
DLWP(J)+LDLWP(K,J)-1 LNWi Location of next law header

relative to DLWP(J)
If LNWi = 0, then this law is
used regardless

DLWP(J)+LDLWP(K,J) LAWi Name (#) of this law
DLWP(J)+LDLWP(K,J)+1 IDATi Location of law dependent

data relative to DLWP(J)
DLWP(J)+LDLWP(K,J)+2 NR Number of interpolation

regions; if NR = 0, NBT and
INT are omitted and linear-
linear interpolation is
assumed for (E,P) pairs

DLWP(J)+LDLWP(K,J)+3 ..
DLWP(J)+LDLWP(K,J)+2+NR

NBT(I)
I=1..NR

Starting index to which the
corresponding interpolation
parameter applies

DLWP(J)+LDLWP(K,J)+3+NR ..
DLWP(J)+LDLWP(K,J)+2+2*NR

INT(I)
I=1..NR

ENDF defined interpolation
parameter in each region

DLWP(J)+LDLWP(K,J)+3+2*NR NE Number of energies
DLWP(J)+LDLWP(K,J)+4+2*NR ..
DLWP(J)+LDLWP(K,J)+3+2*NR+NE

E(I)
I=1..NE

Tabular energy points

DLWP(J)+LDLWP(K,J)+4+2*NR+NE ..
DLWP(J)+LDLWP(K,J)+3+2*NR+2*NE

P(I)
I=1..NE

Probability of law validity

… … …
DLWP(J)+IDATi-1 LDAT First word of law dependent

data for LAWi

… … …
DLWP(J)+LNWi-1 LNWi+1 First word of next law header
… … …

222

Once the appropriate law header is located, the specific emission distribution is

determined based the probability of its validity at the incident energy. Because of the

number of laws that can be used, the description of the remainder of this array can be

daunting. The key to remember is that each reaction producing a given particle has a law

header that provides the location of the appropriate sampling law. Each of the laws and

their associated data is described in discussion below. The variable J always indicates the

Jth emission particle and the variable K always indicated the Kth reaction producing that

particle.

Energy Law 1. Energy Law 1 uses an equi-probable energy bin structure for

sampling emission energies. Its data format is described in Table A-13. It is similar in

nature to the Angular Law 1 and suffers from the same lack of fidelity for distributions

with groupings of high-probability regions. It is recommended to use Energy Law 4,

tabulated-energy-distribution, instead. Error checking should be done to ensure that each

Eout table is a set of monotonically increasing real values ending with a value less than the

corresponding Ein.

Energy Law 2. Energy Law 2 is primarily for discrete photon-emission lines

produced by neutron interactions. Its data format is described in Table A-14. Its use is

discouraged with photonuclear reactions though it is possible to use it as a discrete line

emission, i.e. Eout = EG, for LP=0 or LP=1. Use of the LP=2 option is strongly

discouraged for photonuclear interactions as it assumes simple neutron kinematics for

computing the emission energy, i.e. Eout = EG + (AWR/(AWR+1)) * Ein. Error checking

should be done to ensure that LP is in the range 0 to 2 and that EG is a positive real value.

223

Table A-13. Law dependent format for Energy Law 1 (Tabular Equi-probable Energy
Bins).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi dependent
data (from law header)

LDAT(1) NR Number of interpolation regions
(If NR = 0, NBT and INT are omitted
and linear-linear interpolation is
assumed)

LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation parameter
applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

ENDF defined interpolation parameter
in each region
Only histogram or linear-linear

LDAT(2+2*NR) NE Number of incident energies tabulated
LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

Ein(N)
N=1..NE

List of incident energies for which Eout

is tabulated
LDAT(3+2*NR+NE) NET Number of outgoing energies listed in

each Eout table
LDAT(4+2*NR+NE) ..
LDAT(3+2*NR+(NET+1)*NE)

Eout1(N)
N=1..NET;
Eout2(N)
N=1..NET;
…
EoutNE(N)
N=1..NET

Eout table have NET energies listed
comprising the boundaries of (NET-1)
equi-probable bins. Sampling uses a
linear-linear interpolation between bin
boundaries.

Energy Laws 3 & 33. Energy Law 3 and 33 are inelastic level scattering. The

data format is described in Table A-15. Law 3 indicates neutron incident, neutron

emission. Law 33 indicates any combination of particles incident and emitted. Its use is

allowed for photonuclear interactions though the parameters must be chosen for

photonuclear kinetics instead of neutron kinetics. Sampling of this law follows the

simple formula of Eout = LDAT(2) * (Ein – LDAT(1)) in the center-of-mass system. Error

checking should be done to ensure that the corresponding TYRP entry is negative one.

224

Table A-14. Law dependent format for Energy Law 2 (Discrete Emission Energy).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..2
Primary reference for lawi

dependent data (from law header)
LDAT(1) LP Indicator of whether the emission

particle is primary or non-primary
LDAT(2) EG Emission energy (if LP=0 or LP=1)

Binding energy (LP=2)

Table A-15. Law dependent format for Energy Law 3/33 (Level Scattering).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..2
Primary reference for lawi

dependent data (from law header)
LDAT(1) MT For neutron scattering

((A+1)/A) * |Q|
LDAT(2) CR For neutron scattering (A/(A+1))2

Energy Laws 4, 44 & 61. Energy Laws 4, 44 and 61 are tabular energy

distributions. The common portion of the data format for this set of laws is described in

Table A-16. The tabular energy distribution provides the most flexibility of the energy

laws. Any energy-emission-spectral shape can be formed provided enough grid points

are used. Energy sampling is accomplished by determining the two closest incident

energy grid points, sampling a random cumulative probability to find the emission energy

from each grid and using histogram or linear-linear interpolation between them. If

discrete lines are used in the emission grid, correspondence of these lines must be

maintained between grids. Error checking should be done to ensure only histogram or

linear-linear interpolation between distributions is used and to ensure that discrete lines

are correctly handled. The format of the tabular distribution itself is dependant on which

law is specified.

225

Table A-16. Law dependent format for Energy Laws 4, 44 and 61 (Tabular Energy
Distributions).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions (If

NR=0, NBT and INT are omitted
and linear-linear interpolation is
assumed)

LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

ENDF defined interpolation
parameter in each region; only
histogram and linear-linear
interpolation are allowed

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

E(N)
N=1..NE

List of incident energies

LDAT(3+2*NR+NE) ..
LDAT(2+2*NR+2*NE)

LTB(N)
N=1..NE

Locators for tabular distributions
relative to DLWP(J)

Energy Law 4 contains only energy-emission information. Its data format is

described in Table A-17. Angular distribution data must be included using the ANDP

array. Sampling is achieved by choosing a random number between zero and one,

finding the cumulative bin in which the random number falls and taking the

corresponding energy, appropriately interpolated. Error checking should be done to

ensure that the largest emission energy for any endothermic reactions is not more than its

corresponding incident energy, that the probability density function integrates to the

cumulative and that the cumulative density is monotonically increasing from zero to one.

The tabular distribution format for Energy Law 44 expands the Law 4 format to

include the Kalbach parameters for each emission energy. Its data format is described in

Table A-18. The parameters are used to compute the angular distribution based on the

226

Table A-17. Tabular distribution format for Energy Law 4 (Tabular energy distribution).

Location in XSS Parameter Description
DLWP(J)+LTB(N)-1 N/A First word of tabular distribution

data for incident energy point N
DLWP(J)+LTB(N)-1 INTT’ Overloaded variable:

Interpolation scheme for
distribution
mod(INTT’,10) = 1 -> Histogram
mod(INTT’,10) = 2 -> Lin.-Lin.
Number of discrete points in
distribution ND = int(INTT’ / 10)

DLWP(J)+LTB(N) NP Number of points in the distribution
DLWP(J)+LTB(N)+1 ..
DLWP(J)+LTB(N)+NP

Eout(O)
O=1..NP

Emission energy grid

DLWP(J)+LTB(N)+1+NP ..
DLWP(J)+LTB(N)+2*NP

PDF(O)
O=1..NP

Probability density function

DLWP(J)+LTB(N)+1+2*NP ..
DLWP(J)+LTB(N)+3*NP

CDF(O)
O=1..NP

Cumulative density function

Table A-18. Tabular distribution format for Energy Law 44 (Kalbach correlated
energy/angle distribution).

Location in XSS Parameter Description
DLWP(J)+LTB(N)-1 N/A First word of tabular distribution

data for incident energy point N
DLWP(J)+LTB(N)-1 INTT’ Overloaded variable:

Interpolation scheme for
distribution
mod(INTT’,10) = 1 -> Histogram
mod(INTT’,10) = 2 -> Lin.-Lin.
Number of discrete points in
distribution ND = int(INTT’ / 10)

DLWP(J)+LTB(N) NP Number of points in the distribution
DLWP(J)+LTB(N)+1 ..
DLWP(J)+LTB(N)+NP

Eout(O)
O=1..NP

Emission energy grid

DLWP(J)+LTB(N)+1+NP ..
DLWP(J)+LTB(N)+2*NP

PDF(O)
O=1..NP

Probability density function

DLWP(J)+LTB(N)+1+2*NP ..
DLWP(J)+LTB(N)+3*NP

CDF(O)
O=1..NP

Cumulative density function

DLWP(J)+LTB(N)+1+3*NP ..
DLWP(J)+LTB(N)+4*NP

R(O)
O=1..NP

Kalbach pre-compound fraction r

DLWP(J)+LTB(N)+1+4*NP ..
DLWP(J)+LTB(N)+5*NP

A(O)
O=1..NP

Kalbach-Chadwick angular
distribution slope value a

227

Kalbach-87 formalism [50,51]. For photonuclear reactions, the slope value must be

computed at the time the table was produced according to Chadwick’s modification [11]

to Kalbach’s original formalism. Sampling of Law 44 emission energy is analogous to

Law 4. Error checking should be done to ensure that the value for all R entries is in the

range from zero to one and that the value for all a entries is a non-negative real number.

Currently, the emission angle in MCNP is sampled using Kalbach’s original

formalism. It is under discussion whether a new law should be added to address the fact

that secondary particle emission from photonuclear multi-step compound reactions is

more correctly represented as isotropic. Due to the relatively small a values typical of

photonuclear emissions, this would be a small, less than five percent, correction.

The tabular distribution format for Energy Law 61 expands the Law 4 format to

include a pointer to an angular distribution. Its data format is described in Table A-19.

Positive angular distribution locators indicate a tabular angular distribution is available

and it is sampled by the same algorithm as Angular Law 2 data. Table A-20 describes the

data format for Law 61 tabular angular distribution data. A zero value for a locator

indicates an isotropic distribution. Angular Law 1 data is not allowed. All stipulations

for Law 4 still apply to the energy distribution and all stipulations for Angular Law 2 data

apply to relevant angular information. Error checking should also be done to ensure that

the value of all angular locators is either zero or a positive integer value.

Energy Law 5. Energy Law 5 is a temperature scaled equi-probable binned

function. Its data format is described in Table A-21. At the current time, no Los Alamos

National Laboratory supported library uses this law. The emission energy is computed

228

Table A-19. Tabular distribution format for Energy Law 61 (Correlated tabular
energy/angle distribution).

Location in XSS Parameter Description
DLWP(J)+LTB(N)-1 N/A First word of tabular distribution

data for incident energy point N
DLWP(J)+LTB(N)-1 INTT’ Overloaded variable:

Interpolation scheme for
distribution
mod(INTT’,10) = 1 -> Histogram
mod(INTT’,10) = 2 -> Lin.-Lin.
Number of discrete points in
distribution ND = int(INTT’ / 10)

DLWP(J)+LTB(N) NP Number of points in the distribution
DLWP(J)+LTB(N)+1 ..
DLWP(J)+LTB(N)+NP

Eout(O)
O=1..NP

Emission energy grid

DLWP(J)+LTB(N)+1+NP ..
DLWP(J)+LTB(N)+2*NP

PDF(O)
O=1..NP

Probability density function

DLWP(J)+LTB(N)+1+2*NP ..
DLWP(J)+LTB(N)+3*NP

CDF(O)
O=1..NP

Cumulative density function

DLWP(J)+LTB(N)+1+3*NP ..
DLWP(J)+LTB(N)+4*NP

LAD(O)
O=1..NP

Angular distribution locators

Table A-20. Tabular angular distribution format for Energy Law 61.

Location in XSS Parameter Description
DLWP(J)+LAD(O)-1 N/A First word of tabular angular

distribution data for emission
energy O

DLWP(J)+LAD(O)-1 JJ Interpolation parameter for cosine
distribution (Only histogram or
linear-linear allowed)

DLWP(J)+LAD(O) NP Number of points in the distribution
DLWP(J)+LAD(N)+1 ..
DLWP(J)+LAD(N)+NP

CBB(P)
P=1..NP

Cosine bin boundaries

DLWP(J)+LAD(N)+1+NP ..
DLWP(J)+LAD(N)+2*NP

PDF(P)
P=1..NP

Probability density function

DLWP(J)+LAD(N)+1+2*NP ..
DLWP(J)+LAD(N)+3*NP

CDF(P)
P=1..NP

Cumulative density function

229

Table A-21. Law dependent format for Energy Law 5 (General Spectrum).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions

(If NR=0, NBT and INT are
omitted and linear-linear
interpolation is assumed)

LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

ENDF defined interpolation
parameter in each region

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

Ein(N)
N=1..NE

List of incident energies

LDAT(3+2*NR+NE) ..
LDAT(2+2*NR+2*NE)

T(N)
N=1..NE

Temperature based on incident
energy

LDAT(3+2*NR+2*NE) NET Number of X’s tabulated
LDAT(4+2*NR+2*NE) ..
LDAT(3+2*NR+2*NE+NET)

X(O)
O=1..NET

Tabulated probabilistic function

by multiplying a nuclear temperature based on the incident energy times a randomly

sampled equi-probable binned emission probability. This law has been superceded by the

use of Law 4 distributions. It is not recommended for use for any purpose.

Energy Law 7. Energy Law 7 is a simple Maxwell-fission spectrum as defined

in File 5 of ENDF-6. Its data format is described in Table A-22. It is appropriate for all

fission reactions including photonuclear fission. The sampled emission energy is based

on the function f(E->Eout) = C sqrt(Eout) exp(-Eout / T(E)). The emission energy is

bounded by the range zero to the incident energy minus the restriction energy.

Energy Law 9. Energy Law 9 is an evaporation spectrum as defined in File 5 of

ENDF-6. Its data format is described in Table A-23. It is appropriate for nucleon

230

Table A-22. Law dependent format for Energy Law 7 (Simple Maxwell Fission
Spectrum).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions

(If NR=0, NBT and INT are
omitted and linear-linear
interpolation is assumed)

LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

ENDF defined interpolation
parameter in each region

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

Ein(N)
N=1..NE

List of incident energies

LDAT(3+2*NR+NE) ..
LDAT(2+2*NR+2*NE)

T(N)
N=1..NE

Temperature based on incident
energy

LDAT(3+2*NR+2*NE) U Restriction energy

Table A-23. Law dependent format for Energy Law 9 (Evaporation Spectrum).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions (If

NR=0, NBT and INT are omitted
and linear-linear interpolation is
assumed)

LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

ENDF defined interpolation
parameter in each region

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

Ein(N)
N=1..NE

List of incident energies

LDAT(3+2*NR+NE) ..
LDAT(2+2*NR+2*NE)

T(N)
N=1..NE

Temperature based on incident
energy

LDAT(3+2*NR+2*NE) U Restriction energy

231

emission from a compound nucleus decay. The sampled emission energy is based on the

function f(E->Eout) = C Eout exp(-Eout / T(E)). The emission energy is bounded by the

range zero to the incident energy minus the restriction energy.

Energy Law 11. Energy Law 11 is an energy-dependent Watt-spectrum as

defined in File 5 of ENDF-6. Its data format is described in Table A-24. The sampled

emission energy is based on the function f(E->Eout) = C exp(-Eout / a(E)) sinh(sqrt(-Eout

b(E))). The emission energy is bounded by the range zero to the incident energy minus

the restriction energy.

Energy Law 22. Energy Law 22 is a tabular linear function from UK Law 2 (no

reference currently available). Its data format is described in Table A-25 and Table A-26.

It is not recommended for use in photonuclear tables. It is similar to Law 1 and Law 4 in

that an incident energy is used to sample a tabulated distribution. However, the table is

always chosen as the next distribution under the incident energy and no interpolation is

done. Emission energy is sampled by choosing a random number in the range zero to

one, finding the cumulative bin just below the sample and using the corresponding

constant and temperature in the formula Eout = CM * (Ein – T).

Energy Law 24. Energy Law 24 is a tabular energy multiplier distribution from

UK Law 6 (no reference currently available). Its data format is described in Table A-27.

It is not recommended for use by photonuclear tables. It is similar to Law 1 and Law 4 in

that an incident energy is used to sample a tabulated distribution. However, the table is

always chosen as the next distribution under the incident energy and no interpolation is

done. Emission energy is sampled by choosing a random number in the range zero to

232

Table A-24. Law dependent format for Energy Law 11 (Energy Dependent Watt
Spectrum).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NRa Number of interpolation regions

(If NRa=0, NBTa and INTa are
omitted and linear-linear
interpolation is assumed)

LDAT(2) ..
LDAT(1+NRa)

NBTa(N)
N=1..NRa

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NRa) ..
LDAT(1+2*NRa)

INTa(N)
N=1..NRa

ENDF defined interpolation
parameter in each region

LDAT(2+2*NRa) NEa Number of incident energies
tabulated

LDAT(3+2*NRa) ..
LDAT(2+2*NRa+NEa)

Ea(N)
N=1..NEa

List of incident energies

LDAT(3+2*NRa+NEa) ..
LDAT(2+2*NRa+2*NEa)

a(N)
N=1..NEa

Energy dependent parameter a

LDAT(3+2*NRa+2*NEa)

Let W = 3+2*NRa+2*NEa

NRb Number of interpolation regions
(If NRb=0, NBTb and INTb are
omitted and linear-linear
interpolation is assumed)

LDAT(W+1) ..
LDAT(W+NRb)

NBTb(N)
N=1..NRb

Starting index to which the
corresponding interpolation
parameter applies

LDAT(W+1+NRb) ..
LDAT(W+2*NRb)

INTb(N)
N=1..NRb

ENDF defined interpolation
parameter in each region

LDAT(W+1+2*NRb) NEb Number of incident energies
tabulated

LDAT(W+2+2*NRb) ..
LDAT(W+1+2*NRb+NEb)

Eb(N)
N=1..NEb

List of incident energies

LDAT(W+2+2*NRb+NEb) ..
LDAT(W+1+2*NRb+2*NEb)

b(N)
N=1..NEb

Energy dependent parameter b

LDAT(W+2+2*NRb+2*NEb) U Restriction energy

233

Table A-25. Law dependent format for Energy Law 22 (Tabular Linear Functions).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(1) Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions
LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

Interpolation parameter in each
region (ignored; histogram
assumed)

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

LTB(N)
N=1..NE

Locators for tabular distributions
relative to DLWP(J)

Table A-26. Tabular distribution format for Energy Law 22.

Location in XSS Parameter Description
DLWP(J)+LTB(N)-1 N/A First word of tabular distribution

data for incident energy point N
DLWP(J)+LTB(N) NP Number of points in the distribution
DLWP(J)+LTB(N)+1 ..
DLWP(J)+LTB(N)+NP

P(O)
O=1..NP

Cumulative probability bin
boundaries

DLWP(J)+LTB(N)+1+NP ..
DLWP(J)+LTB(N)+2*NP

T(O)
O=1..NP

Temperature for bin

DLWP(J)+LTB(N)+1+2*NP ..
DLWP(J)+LTB(N)+3*NP

CM(O)
O=1..NP

Constant multiplier for bin

234

Table A-27. Law dependent format for Energy Law 24 (Tabular Energy Multiplier).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions
LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

interpolation parameter in each
region (ignored; assumed
histogram)

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

Ein(N)
N=1..NE

List of incident energies

LDAT(3+2*NR+NE) NET Number of energies listed in each
Eout table

LDAT(4+2*NR+NE) ..
LDAT(3+2*NR+(NET+1)*NE)

T1(N)
N=1..NET
…
TNE(N)
N=1..NET

Multiplier table have NET listings
comprising the boundaries of
(NET-1) equi-probable bins.
Sampling uses a linear-linear
interpolation between bin
boundaries.

one, using linear-linear interpolation within the equi-probable multiplier bin and

computing the emission energy from the formula Eout = T Ein.

Energy Law 66. Energy Law 66 is an N-body phase-space distribution from File

6 Law 6 of ENDF-6. Its data format is described in Table A-28. It is not recommended

for use with photonuclear reactions due to the non-Newtonian nature of photon

interactions. Full details of this sampling scheme are found in Chapter 2 and Appendix F

of the MCNP Users Guide [3].

Energy Law 67. Energy Law 67 is the laboratory system, correlated

angle/energy law from File 6 Law 7 of ENDF-6. Its data format is described in Table A-

29. The angular cosine data and subsequent energy distributions are described in Table

235

A-30 and Table A-31, respectively. This distribution first samples an appropriate cosine

an then uses the tabular energy distribution corresponding to the sampled angle. This law

is not recommended for photonuclear data.

Table A-28. Law dependent format for Energy Law 66 (N-body Phase Space
Distribution).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..2
Primary reference for lawi

dependent data (from law header)
LDAT(1) NPSX Number of bodies in the phase

space
LDAT(2) Ap Total mass ratio for the NPSX

particles

Table A-29. Law dependent format for Energy Law 67 (Tabulated Angle/Energy).

Location in XSS Parameter Description
DLWP(J)+IDATi-1 LDAT(M)

M=1..L
Primary reference for lawi

dependent data (from law header)
LDAT(1) NR Number of interpolation regions

(If NR=0, NBT and INT are
omitted and linear-linear
interpolation is assumed)

LDAT(2) ..
LDAT(1+NR)

NBT(N)
N=1..NR

Starting index to which the
corresponding interpolation
parameter applies

LDAT(2+NR) ..
LDAT(1+2*NR)

INT(N)
N=1..NR

ENDF defined interpolation
parameter in each region
Only histogram and linear-linear
interpolation are allowed

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) ..
LDAT(2+2*NR+NE)

E(N)
N=1..NE

List of incident energies

LDAT(3+2*NR+NE) ..
LDAT(2+2*NR+2*NE)

LTB(N)
N=1..NE

Locators for tabular cosine
distributions relative to DLWP(J)

236

Table A-30. Tabular distribution format for Energy Law 67.

Location in XSS Parameter Description
DLWP(J)+LTB(N)-1 N/A First word of tabular distribution

data for incident energy point N
DLWP(J)+LTB(N)-1 INTMU Interpolation scheme for

distribution
INTMU = 1 -> Histogram
INTMU = 2 -> Linear-linear

DLWP(J)+LTB(N) NMU Number of points in the distribution
DLWP(J)+LTB(N)+1 ..
DLWP(J)+LTB(N)+NMU

XMU(O)
O=1..NMU

Secondary cosines

DLWP(J)+LTB(N)+1+NMU ..
DLWP(J)+LTB(N)+2*NMU

LMU(O)
O=1..NMU

Locators for secondary cosine
energy distribution relative to
DLWP(J)

Table A-31. Tabular energy distribution format for Energy Law 67.

Location in XSS Parameter Description
DLWP(J)+LMU(O)-1 N/A First word of tabular energy

distribution for secondary cosine
point O

DLWP(J)+LMU(O)-1 INTEP Interpolation scheme for
distribution
INTEP = 1 -> Histogram
INTEP = 2 -> Linear-linear

DLWP(J)+LMU(O) NPEP Number of points in the distribution
DLWP(J)+LMU(O)+1 ..
DLWP(J)+LMU(O)+NPEP

EP(P)
P=1..NPEP

Secondary energy grid

DLWP(J)+LMU(O)+1+NPEP ..
DLWP(J)+LMU(O)+2*NPEP

PDF(P)
P=1..NPEP

Probability density function

DLWP(J)+LMU(O)+1+2*NPEP ..
DLWP(J)+LMU(O)+3*NPEP

CDF(P)
P=1..NPEP

Cumulative density function

237

APPENDIX B
MKPNT PROCESSING CODE

Introduction

This appendix contains the source code for the MKPNT data processing code.

It’s functionality is discussed in depth in Chapter 4. In order to build the executable

code, you must have an ANSI C compiler and the Unix make utility. The appropriate

Makefile is included here such that the code is built with the command “make mkpnt”. It

has only been tested on a Sun system using the standard sun compiler package. The files

are listed with the filename as the heading followed directly by the source code for that

file.

mkpnt.c

#include "endf6.h"
#include "acepnData.h"

void acepnFromENDF(endfMaterialInformation *mi, aceTable *table);
void acePrintNTable(char *filename, aceTable *table);

/***
** mkpnt
**
** Make Photonuclear Table
** Main Program
**
** Reads in an endf photonuclear file
**
** Creates an MCNP ace format photonuclear table (acepn)
**
*/
int main(int argc, char **argv)
{
 endfMaterialInformation *mi
 = (endfMaterialInformation*)malloc(sizeof(endfMaterialInformation));

 aceTable *table
 = (aceTable*)malloc(sizeof(aceTable));

 /*

238

 ** check command line arguments
 */
 if(argc != 3) {
 printf("mkpnt: USAGE\n");
 printf(" @prompt> mkpnt endfFilenameIn aceFilenameOut\n");
 printf(" expects valid endf photonuclear file in filename in\n");
 printf(" will take the first material encountered in endf file\n");
 printf(" creates (or appends to) the ace library file filename out\n");
 exit(-1);
 }

 /*
 ** read the whole endf file into memory
 */
 endfReadMaterialFromFile(argv[1], mi);

 /*
 ** create a new photonuclear table
 ** fill the information from the endf information
 */
 afeMakeNTable(mi, table);

 /*
 ** print the new acepn table
 */
 acePrintNTable(argv[2], table);

 /*
 ** if no exit errors, print success
 */
 printf("successfully processed \"%s\" into \"%s\"\n", argv[1], argv[2]);

}

acepnData.h

#ifndef acepnData_h
#define acepnData_h

#include <stdio.h>
#include <stdlib.h>

#define NUMBER_IXS_ENTRIES 12

/*
** Structure: aceLaw4Distribution
*/
typedef struct acelaw4distribution {
 int Offset;
 double IncidentEnergy;
 int InterpolationScheme;
 int NumberOfDiscreteEmissions;
 int NumberOfPoints;
 double *EmissionEnergy;
 double *Probability;
 double *CumulativeProbability;
} aceLaw4Distribution;

/*
** Structure: aceLaw4
*/
typedef struct acelaw4 {
 int NumberOfRegions;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfIncidentEnergies;
 aceLaw4Distribution *Distribution;

239

} aceLaw4;

/*
** Structure: aceLaw7
*/
typedef struct acelaw7 {
 int NumberOfRegions;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfIncidentEnergies;
 double *IncidentEnergy;
 double *Temperature;
 double RestrictionEnergy;
} aceLaw7;

/*
** Structure: aceLaw9
*/
typedef struct acelaw9 {
 int NumberOfRegions;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfIncidentEnergies;
 double *IncidentEnergy;
 double *Temperature;
 double RestrictionEnergy;
} aceLaw9;

/*
** Structure: aceLaw44Distribution
*/
typedef struct acelaw44distribution {
 int Offset;
 double IncidentEnergy;
 int InterpolationScheme;
 int NumberOfDiscreteEmissions;
 int NumberOfPoints;
 double *EmissionEnergy;
 double *Probability;
 double *CumulativeProbability;
 double *PrecompoundFraction;
 double *AngularDistributionSlope;
} aceLaw44Distribution;

/*
** Structure: aceLaw44
*/
typedef struct acelaw44 {
 int NumberOfRegions;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfIncidentEnergies;
 aceLaw44Distribution *Distribution;
} aceLaw44;

/*
** Structure: aceLawInformation
*/
typedef struct acelawinformation {
 int LocationOfNextLaw;
 int OffsetToLawData;
 int Number;
 char *Name;
 int NumberOfRegions;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfEnergies;
 double *Energy;
 double *Probability;
 void *LawData;
} aceLawInformation;

240

/*
** Structure: aceEmissionData
*/
typedef struct aceemissiondata {
 int Offset;
 int CoordinateSystem;
 int AngularInformationType;
 void *AngularInformation;
 int NumberOfEnergyLaws;
 aceLawInformation *LawInformation;
} aceEmissionData;

/*
** Structure: aceMTInformation
*/
typedef struct acemtinformation {
 int Number;
 char Name[100];
 char Reaction[100];
 int NumberOfProducts;
 int *ProductZA;
 int *YieldOfProduct;
 int *NumberOfEnergies; /* the energy terms are pointers to the */
 double *Energy; /* data located at the acepnData level */
 int StartingIndex;
 int NumberOfEntries;
 double *CrossSection;
 double Q;
} aceMTInformation;

/*
** Structure: aceYieldInformation
*/
typedef struct aceyieldinformation {
 int NumberOfRegions;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfYields;
 double *Energy;
 double *Yield;
} aceYieldInformation;

/*
** Structure: aceMTReference
*/
typedef struct acemtreference {
 int Type;
 int Offset;
 aceMTInformation *MT;
 aceYieldInformation *Yield;
 aceEmissionData *Emit;
} aceMTReference;

/*
** Structure: aceProduct
*/
typedef struct aceproduct {
 int ZA;
 int IPT;
 char *Name;
 char *Symbol;
 int IXS[NUMBER_IXS_ENTRIES];
 int StartingIndex;
 int NumberOfEntries;
 double *ProductionCrossSection;
 double *PartialHeatingNumber;
 int NumberOfReactions;
 aceMTReference **MTReference;
} aceProduct;

241

/*
** Structure: acepnData
*/
typedef struct acepndata {
 int NumberOfEnergies;
 double *Energy;
 aceMTInformation *TotalCrossSection;
 aceMTInformation *NonelasticCrossSection;
 aceMTInformation *ElasticCrossSection;
 double *TotalHeatingNumber;
 int NumberOfMTs;
 int *MTLocator;
 aceMTInformation **MT;
 int NumberOfProducts;
 aceProduct **Product;
} acepnData;

/*
** Structure: aceTable
*/
typedef struct acetable {
 char TableIdentifier[11]; /* XSDIR Entry 1, XSLIB Entry 1 */
 int ZA;
 int Z;
 int A;
 char ThermalTableName[7];
 int LibraryNumber;
 char TableType;
 char *IncidentParticleName;
 double AtomicWeightRatio; /* XSDIR Entry 2, XSLIB Entry 2 */
 char LibraryFileName[9]; /* XSDIR Entry 3 */
 char LibraryAccessRoute[71]; /* XSDIR Entry 4 */
 int LibraryFileType; /* XSDIR Entry 5 */
 int AddressInLibrary; /* XSDIR Entry 6 */
 int *LengthXSS; /* XSDIR Entry 7, Pointer To NXS[0] */
 int BinaryRecordLength; /* XSDIR Entry 8 */
 int EntriesPerBinaryRecord; /* XSDIR Entry 9 */
 double NeutronProcessingTemperature; /* XSDIR Entry 10, XSLIB Entry 3 */
 char ProcessDate[11]; /* XSLIB Entry 4 */
 char Comment[71]; /* XSLIB Entry 5 */
 char MaterialIdentifier[11]; /* XSLIB Entry 6 */
 int MaterialNumber;
 int ZAs[16]; /* XSLIB Entries 7 - 37, odd */
 double AtomicWeightRatios[16]; /* XSLIB Entries 8 - 38, even */
 int NXS[16]; /* XSLIB Entries 39 - 54 */
 int JXS[32]; /* XSLIB Entries 55 - 86 */
 fpos_t StartData;
 void *Data; /* XSLIB Entries 87 - (87 + LengthXSS) */
} aceTable;

#endif

acepnIO.c

#include "acepnData.h"

void acePrintNTable(char *filename, aceTable *table);
void acePrintXSS(FILE *fACE, char ft, char dt,

 int number, void *data, int *count);

/***
** acePrintNTable
*/
void acePrintNTable(char *filename, aceTable *table)
{
 int i, j, k, l;
 int count = 1;
 int tempi;
 int zeroi = 0;

242

 double tempd;
 double zerod = 0.0;

 FILE *fACE;

 acepnData *ndata;
 aceProduct *prod;
 aceMTReference *mtref;
 aceEmissionData *edata;
 aceLawInformation *lawinfo;
 aceLaw4 *law4;
 aceLaw7 *law7;
 aceLaw9 *law9;
 aceLaw44 *law44;

 /*
 ** open the ace library for writing
 */
 fACE = fopen(filename, "a");
 if(!fACE) {
 printf("ERROR: acePrintNTable:\n");
 printf(" cannot open file \"%s\" for writing\n",

 filename);
 exit(-1);
 }

 /*
 ** print the header information
 */
 fprintf(fACE, "%10s", table->TableIdentifier);
 fprintf(fACE, "%12lf", table->AtomicWeightRatio);
 fprintf(fACE, "%12lf", table->NeutronProcessingTemperature);
 fprintf(fACE, "%10s\n", table->ProcessDate);

 fprintf(fACE, "%-70s", table->Comment);
 fprintf(fACE, "%10s\n", table->MaterialIdentifier);

 /*
 ** print the atomic weight section as all zeros
 ** (this section is no longer used)
 */
 for(i = 1; i <= 16; i++) {
 fprintf(fACE, "%7d%11lf", zeroi, zerod);
 if(i % 4 == 0)
 fprintf(fACE, "\n");
 }

 /*
 ** print the nxs array
 */
 for(i = 1; i <= 16; i++) {
 fprintf(fACE, "%9d", table->NXS[i-1]);
 if(i % 8 == 0)
 fprintf(fACE, "\n");
 }

 /*
 ** print the jxs array
 */
 for(i = 1; i <= 32; i++) {
 fprintf(fACE, "%9d", table->JXS[i-1]);
 if(i % 8 == 0)
 fprintf(fACE, "\n");
 }

 ndata = (acepnData*)table->Data;

 /*

243

 ** *** ESZ JXS(1) ***
 ** print the main energy listing
 */
 acePrintXSS(fACE, 'a', 'd', ndata->NumberOfEnergies,

 ndata->Energy, &count);

 /*
 ** *** TOT JXS(2) ***
 ** print the total cross section table
 */
 if(ndata->TotalCrossSection == NULL) {
 printf("ERROR: did not find MT 1 (total cross section)");
 exit(-1);
 }
 acePrintXSS(fACE, 'a', 'd', ndata->NumberOfEnergies,

 ndata->TotalCrossSection->CrossSection, &count);

 /*
 ** *** NON JXS(3) ***
 ** if different from total, print the total non-elastic
 ** cross section table
 */
 if(table->JXS[2] != 0 && table->JXS[2] != table->JXS[1]) {
 if(ndata->NonelasticCrossSection == NULL) {
 printf("ERROR: did not find MT 3 (non-elastic cross section)");
 exit(-1);
 }
 acePrintXSS(fACE, 'a', 'd', ndata->NumberOfEnergies,

 ndata->NonelasticCrossSection->CrossSection, &count);
 }

 /*
 ** *** ELS JXS(4) ***
 ** if exists, print the elastic cross section table
 */
 if(table->JXS[3] != 0) {
 if(ndata->ElasticCrossSection == NULL) {
 printf("ERROR: did not find MT 2 (elastic cross section)");
 exit(-1);
 }
 acePrintXSS(fACE, 'a', 'd', ndata->NumberOfEnergies,

 ndata->ElasticCrossSection->CrossSection, &count);
 }

 /*
 ** *** HNT JXS(5) ***
 ** if exists, print the total heating number table
 */
 if(table->JXS[4] != 0) {
 if(ndata->TotalHeatingNumber == NULL) {
 printf("ERROR: did not find total heating number");
 exit(-1);
 }
 acePrintXSS(fACE, 'a', 'd', ndata->NumberOfEnergies,

 ndata->TotalHeatingNumber, &count);
 }

 /*
 ** *** MTR JXS(6) ***
 ** print the MT numbers
 */
 for(i = 0; i < ndata->NumberOfMTs; i++)
 acePrintXSS(fACE, 'a', 'i', 1,

&(ndata->MT[i]->Number), &count);

 /*
 ** *** LQR JXS(7) ***
 ** print the Q value table
 */
 for(i = 0; i < ndata->NumberOfMTs; i++)
 acePrintXSS(fACE, 'a', 'd', 1, &(ndata->MT[i]->Q), &count);

244

 /*
 ** *** LSIG JXS(8) ***
 ** *** SIG JXS(9) ***
 ** print the cross section offset entries and data
 */
 acePrintXSS(fACE, 'a', 'i', ndata->NumberOfMTs,

 ndata->MTLocator, &count);

 for(i = 0; i < ndata->NumberOfMTs; i++) {
 acePrintXSS(fACE, 'a', 'i', 1,

 &(ndata->MT[i]->StartingIndex), &count);
 acePrintXSS(fACE, 'a', 'i', 1,

 &(ndata->MT[i]->NumberOfEntries), &count);
 acePrintXSS(fACE, 'a', 'd', ndata->MT[i]->NumberOfEntries,

 &(ndata->MT[i]->CrossSection[ndata->MT[i]->StartingIndex-1]),
 &count);

 }

 /*
 ** *** IXSA JXS(10) ***
 ** print the IXS array
 */
 for(i = 0; i < ndata->NumberOfProducts; i++)
 acePrintXSS(fACE, 'a', 'i', NUMBER_IXS_ENTRIES,

 &(ndata->Product[i]->IXS[0]), &count);

 /*
 ** *** IXS JXS(11) ***
 ** print the IXS data block
 */
 for(i = 0; i < ndata->NumberOfProducts; i++) {

 prod = (aceProduct*)ndata->Product[i];

 /*
 ** Don't print any entries for IXS value entries
 **
 ** *** IPT IXS(1) ***
 ** particle ipt number
 **
 ** *** NTRP IXS(2) ***
 ** number of reactions producing this particle
 */

 /*
 ** *** PXS IXS(3) ***
 ** print the production cross section table
 */
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->StartingIndex), &count);
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->NumberOfEntries), &count);
 acePrintXSS(fACE, 'a', 'd', prod->NumberOfEntries,

 &(prod->ProductionCrossSection[prod->StartingIndex-1]),
 &count);

 /*
 ** *** PHN IXS(4) ***
 ** if exists, print the partial heating number table
 */
 if(prod->IXS[3] != 0 && table->JXS[4] != 0) {
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->StartingIndex), &count);
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->NumberOfEntries), &count);
 acePrintXSS(fACE, 'a', 'd', prod->NumberOfEntries,

 &(prod->PartialHeatingNumber[prod->StartingIndex-1]),
 &count);

 }

245

 /*
 ** *** MTRP IXS(5) ***
 ** print the mt reference listing
 */
 for(j = 0; j < prod->NumberOfReactions; j++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->MTReference[j]->MT->Number), &count);

 /*
 ** *** TYRP IXS(6) ***
 ** print the coordinate system listing
 */
 for(j = 0; j < prod->NumberOfReactions; j++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->MTReference[j]->Emit->CoordinateSystem),
 &count);

 /*
 ** *** LSIGP IXS(7) ***
 ** *** SIGP IXS(8) ***
 ** print the cross section or yield data offsets
 ** for each reaction and its data values
 */
 for(j = 0; j < prod->NumberOfReactions; j++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->MTReference[j]->Offset), &count);

 for(j = 0; j < prod->NumberOfReactions; j++) {

 mtref = prod->MTReference[j];

 acePrintXSS(fACE, 'a', 'i', 1,
 &(mtref->Type), &count);

 switch(mtref->Type) {

 case 5:
 case 12:
 case 16:

acePrintXSS(fACE, 'a', 'i', 1,
 &(mtref->MT->Number), &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(mtref->Yield->NumberOfRegions), &count);

acePrintXSS(fACE, 'a', 'i', mtref->Yield->NumberOfRegions,
 mtref->Yield->NumberOfPointsInRegion, &count);

acePrintXSS(fACE, 'a', 'i', mtref->Yield->NumberOfRegions,
 mtref->Yield->InterpolationSchemeInRegion, &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(mtref->Yield->NumberOfYields), &count);

acePrintXSS(fACE, 'a', 'd', mtref->Yield->NumberOfYields,
 mtref->Yield->Energy, &count);

acePrintXSS(fACE, 'a', 'd', mtref->Yield->NumberOfYields,
 mtref->Yield->Yield, &count);

break;

 case 13:
acePrintXSS(fACE, 'a', 'i', 1,

 &(mtref->MT->StartingIndex), &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(mtref->MT->NumberOfEntries), &count);

acePrintXSS(fACE, 'a', 'd', mtref->MT->NumberOfEntries,
 &(mtref->MT->CrossSection[mtref->MT->StartingIndex-1]),

246

 &count);

break;

 default:
printf("WARNING: trying to print LSIG type %d\n", mtref->Type);

 } /* end switch MTReference type */

 } /* end print cross section or yield info */

 /*
 ** *** LANDP IXS(9) ***
 ** *** ANDP IXS(10) ***
 ** print the angular distribution locators and information
 ** currently the LANDP block indicates isotropy by a zero (0)
 ** entry or information contained in the energy data
 ** by a negative one (-1) entry
 ** currently there is no separate angular information,
 ** therefore the ANDP block never exists
 */
 for(j = 0; j < prod->NumberOfReactions; j++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->MTReference[j]->Emit->AngularInformationType),
 &count);

 /*
 ** *** LDLWP IXS(11) ***
 ** *** LDLW IXS(12) ***
 ** print the energy distribution offsets and data values
 */

 for(j = 0; j < prod->NumberOfReactions; j++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(prod->MTReference[j]->Emit->Offset), &count);

 for(j = 0; j < prod->NumberOfReactions; j++) {

 edata = prod->MTReference[j]->Emit;

 for(k = 0; k < edata->NumberOfEnergyLaws; k++) {

lawinfo = &(edata->LawInformation[k]);

acePrintXSS(fACE, 'a', 'i', 1,
 &(lawinfo->LocationOfNextLaw), &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(lawinfo->Number), &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(lawinfo->OffsetToLawData), &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(lawinfo->NumberOfRegions), &count);

acePrintXSS(fACE, 'a', 'i', lawinfo->NumberOfRegions,
 lawinfo->NumberOfPointsInRegion, &count);

acePrintXSS(fACE, 'a', 'i', lawinfo->NumberOfRegions,
 lawinfo->InterpolationSchemeInRegion, &count);

acePrintXSS(fACE, 'a', 'i', 1,
 &(lawinfo->NumberOfEnergies), &count);

acePrintXSS(fACE, 'a', 'd', lawinfo->NumberOfEnergies,
 lawinfo->Energy, &count);

acePrintXSS(fACE, 'a', 'd', lawinfo->NumberOfEnergies,
 lawinfo->Probability, &count);

247

switch(lawinfo->Number) {
case 4:

 law4 = (aceLaw4*)(lawinfo->LawData);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law4->NumberOfRegions), &count);

 acePrintXSS(fACE, 'a', 'i', law4->NumberOfRegions,
 law4->NumberOfPointsInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', law4->NumberOfRegions,
 law4->InterpolationSchemeInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law4->NumberOfIncidentEnergies), &count);

 for(l = 0; l < law4->NumberOfIncidentEnergies; l++)
 acePrintXSS(fACE, 'a', 'd', 1,

 &(law4->Distribution[l].IncidentEnergy),
 &count);

 for(l = 0; l < law4->NumberOfIncidentEnergies; l++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(law4->Distribution[l].Offset),
 &count);

 for(l = 0; l < law4->NumberOfIncidentEnergies; l++) {

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law4->Distribution[l].InterpolationScheme),
 &count);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law4->Distribution[l].NumberOfPoints),
 &count);

 acePrintXSS(fACE, 'a', 'd', law4->Distribution[l].NumberOfPoints,
 law4->Distribution[l].EmissionEnergy, &count);

 acePrintXSS(fACE, 'a', 'd', law4->Distribution[l].NumberOfPoints,
 law4->Distribution[l].Probability, &count);

 acePrintXSS(fACE, 'a', 'd', law4->Distribution[l].NumberOfPoints,
 law4->Distribution[l].CumulativeProbability, &count);

 }

 break;

case 7:

 law7 = (aceLaw7*)(lawinfo->LawData);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law7->NumberOfRegions), &count);

 acePrintXSS(fACE, 'a', 'i', law7->NumberOfRegions,
 law7->NumberOfPointsInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', law7->NumberOfRegions,
 law7->InterpolationSchemeInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law7->NumberOfIncidentEnergies), &count);

 acePrintXSS(fACE, 'a', 'd', law7->NumberOfIncidentEnergies,
 law7->IncidentEnergy, &count);

 acePrintXSS(fACE, 'a', 'd', law7->NumberOfIncidentEnergies,
 law7->Temperature, &count);

248

 acePrintXSS(fACE, 'a', 'd', 1,
 &(law7->RestrictionEnergy), &count);

 break;

case 9:

 law9 = (aceLaw9*)(lawinfo->LawData);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law9->NumberOfRegions), &count);

 acePrintXSS(fACE, 'a', 'i', law9->NumberOfRegions,
 law9->NumberOfPointsInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', law9->NumberOfRegions,
 law9->InterpolationSchemeInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law9->NumberOfIncidentEnergies), &count);

 acePrintXSS(fACE, 'a', 'd', law9->NumberOfIncidentEnergies,
 law9->IncidentEnergy, &count);

 acePrintXSS(fACE, 'a', 'd', law9->NumberOfIncidentEnergies,
 law9->Temperature, &count);

 acePrintXSS(fACE, 'a', 'd', 1,
 &(law9->RestrictionEnergy), &count);

 break;

case 44:

 law44 = (aceLaw44*)(lawinfo->LawData);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law44->NumberOfRegions), &count);

 acePrintXSS(fACE, 'a', 'i', law44->NumberOfRegions,
 law44->NumberOfPointsInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', law44->NumberOfRegions,
 law44->InterpolationSchemeInRegion, &count);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law44->NumberOfIncidentEnergies), &count);

 for(l = 0; l < law44->NumberOfIncidentEnergies; l++)
 acePrintXSS(fACE, 'a', 'd', 1,

 &(law44->Distribution[l].IncidentEnergy),
 &count);

 for(l = 0; l < law44->NumberOfIncidentEnergies; l++)
 acePrintXSS(fACE, 'a', 'i', 1,

 &(law44->Distribution[l].Offset),
 &count);

 for(l = 0; l < law44->NumberOfIncidentEnergies; l++) {

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law44->Distribution[l].InterpolationScheme),
 &count);

 acePrintXSS(fACE, 'a', 'i', 1,
 &(law44->Distribution[l].NumberOfPoints),
 &count);

 acePrintXSS(fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
 law44->Distribution[l].EmissionEnergy, &count);

249

 acePrintXSS(fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
 law44->Distribution[l].Probability, &count);

 acePrintXSS(fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
 law44->Distribution[l].CumulativeProbability, &count);

 acePrintXSS(fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
 law44->Distribution[l].PrecompoundFraction, &count);

 acePrintXSS(fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
 law44->Distribution[l].AngularDistributionSlope, &count);

 }

 break;

default:
 printf("ERROR: don't know energy law number %d\n", lawinfo->Number);
 break;
}

 }
 }
 }

 fprintf(fACE, "\n");
 fclose(fACE);

}

/***
** acePrintXSS
*/
void acePrintXSS(FILE *fACE, char ft, char dt,

 int number, void *data, int *count)
{
 int i;
 int *idata;
 double *ddata;

 if(number == 0)
 return;

 switch(ft) {

 case 'a':

 switch(dt) {

 case 'i':
 idata = (int*)data;
 for(i = 0; i < number; i++) {

fprintf(fACE, "%20d", idata[i]);
if(*count % 4 == 0)
 fprintf(fACE, "\n");
(*count)++;

 }
 break;

 case 'd':
 ddata = (double*)data;
 for(i = 0; i < number; i++) {

fprintf(fACE, "%20.11E", ddata[i]);
if(*count % 4 == 0)
 fprintf(fACE, "\n");
(*count)++;

 }
 break;

250

 }

 }

}

afeCollectEnergies.c

#include "endf6.h"
#include "acepnData.h"

void afeCollectEnergies(endfMaterialInformation *mi,
 int *count, double **energy);

void afeAddEnergyToGrid(double *add, int sizeadd,
 double *grid, int *sizegrid, int *maxsize);

/***
** afeCollectEnergies
**
** Create a superset union of all relevant energy grids
**
** Collect all energy values from any MF3 section,
*/
void afeCollectEnergies(endfMaterialInformation *mi,

 int *count, double **energy)
{
 int i, j;
 int maxsize;

 double dvp[2];
 double *e;
 double mega = 1.0e6;

 endfMF3 *mf3data;
 endfMF6 *mf6data;

 (*count) = 0;
 for(i = 0; i < mi->NumberOfRecords; i++) {

 /*
 ** count cross section energy grids
 */
 if(mi->Records[i]->MF == 3) {

 mf3data = (endfMF3*)mi->Records[i]->MFMT;

 (*count) += mf3data->NumberOfPoints;

 /*
 ** add an extra point for possible double value point start
 */
 (*count) += 2;
 }

 /*
 ** count yield points and add to possible grid points
 */
 if(mi->Records[i]->MF == 6) {

 mf6data = (endfMF6*)mi->Records[i]->MFMT;

 for(j = 0; j < mf6data->NumberOfSubsections; j++)
(*count) += mf6data->Secondaries[j].NumberOfYieldPoints;

 }

 } /* end loop for max size of energy grid */

251

 /*
 ** allocate array at max possible size
 */
 maxsize = (*count);
 e = (double*)calloc(maxsize, sizeof(double));

 /*
 ** now count actual entries added to the union grid
 */
 (*count) = 0;
 for(i = 0; i < mi->NumberOfRecords; i++) {

 /*
 ** collect cross section energy grids
 */
 if(mi->Records[i]->MF == 3) {

 mf3data = (endfMF3*)mi->Records[i]->MFMT;

 afeAddEnergyToGrid(mf3data->Energy, mf3data->NumberOfPoints,
 e, count, &maxsize);

 if(mf3data->CrossSection[0] != 0) {
dvp[0] = dvp[1] = mf3data->Energy[0];
afeAddEnergyToGrid(dvp, 2, e, count, &maxsize);

 }

 if(mf3data->Energy[mf3data->NumberOfPoints-1] < e[(*count)-1]) {
dvp[0] = dvp[1] = mf3data->Energy[mf3data->NumberOfPoints-1];
afeAddEnergyToGrid(dvp, 2, e, count, &maxsize);

 }

 }

 /*
 ** collect mf6 yield energy grids
 */
 if(mi->Records[i]->MF == 6) {

 mf6data = (endfMF6*)mi->Records[i]->MFMT;

 for(j = 0; j < mf6data->NumberOfSubsections; j++)
afeAddEnergyToGrid(mf6data->Secondaries[j].YieldEnergy,

 mf6data->Secondaries[j].NumberOfYieldPoints,
 e, count, &maxsize);

 }

 } /* end for i records */

 e = realloc(e, (*count) * sizeof(double));

 for(i = 0; i < *count; i++)
 e[i] = e[i] / mega;

 *energy = e;

}

/***
** afeAddEnergyToGrid
**
** mesh two energy grids together
**
** expects the grid to be in numerical order (least to greatest)
** if two consequtive points are coincident, add both
**

252

*/
void afeAddEnergyToGrid(double *add, int sizeadd,

 double *grid, int *sizegrid, int *maxsize)
{
 int i;
 int threshold;
 int curpos;

 /*
 ** if no entries in union grid, add all remaining and exit function
 */
 if(*sizegrid == 0) {
 for(i = 0; i < sizeadd; i++) {
 if(*sizegrid > *maxsize) {

*maxsize = *sizegrid;
grid = (double*)realloc(grid, *maxsize);

 }
 grid[i] = add[i];
 (*sizegrid)++;
 }
 return;
 }

 /*
 ** else if previous entries exist, mesh new entries in order
 */
 for(i = 0, curpos = 0; i < sizeadd; i++) {

 /*
 ** skip matching entries
 */
 if(add[i] == grid[curpos]) {

 /*
 ** unless add contains two equal consecutive entries,
 ** then add both to grid unless they are already there
 */
 if(add[i] == add[i-1] && i > 0

 && grid[curpos] != grid[curpos+1]
 && curpos < *sizegrid) {
if((*sizegrid)+1 > (*maxsize))
 grid = (double*)realloc(grid, ++(*maxsize));
memmove(&grid[curpos+1], &grid[curpos],

 (*sizegrid - curpos) * sizeof(double));
grid[curpos] = add[i];
(*sizegrid)++;

 }

 /*
 ** else drop duplicate and move to next entry
 */
 }

 /*
 ** add new energy, shuffling union grid
 */
 else if(add[i] < grid[curpos]) {
 if((*sizegrid)+1 > (*maxsize))

grid = (double*)realloc(grid, ++(*maxsize));
 memmove(&grid[curpos+1], &grid[curpos],

 (*sizegrid - curpos) * sizeof(double));
 grid[curpos] = add[i];
 (*sizegrid)++;
 }

 /*
 ** move to next grid position
 */
 else if(add[i] > grid[curpos]) {
 curpos++;

253

 /*
 ** if at end of union grid, add all remaining and exit loop
 */
 if(curpos == *sizegrid) {

for(; i < sizeadd; i++) {
 if((*sizegrid)+1 > (*maxsize))
 grid = (double*)realloc(grid, ++(*maxsize));
 grid[curpos] = add[i];
 curpos++;
 (*sizegrid)++;
}

 }
 /*
 ** else reset i to check against next grid entry
 */
 else

i--;

 } /* end else if */

 } /* end for i add entries */

}

afeCreateNTableHeader.c

#include "endf6.h"
#include "acepnData.h"

#include <time.h>

void afeCreateNTableHeader(endfMaterialInformation *mi, aceTable *table);

/***
** afeCreateNTableHeader
*/
void afeCreateNTableHeader(endfMaterialInformation *mi, aceTable *table)
{
 double eps = 0.000001;

 time_t now;

 table->ZA = (int)(mi->TargetZA + eps);

 table->Z = table->ZA / 1000;
 table->A = table->ZA % 1000;

 table->LibraryNumber = 0;
 table->TableType = 'n';

 sprintf(table->TableIdentifier, "%6d.%02d%c",
 table->ZA, table->LibraryNumber, table->TableType);

 table->IncidentParticleName = (char*)calloc(7, sizeof(char));
 strcpy(table->IncidentParticleName, "photon");

 table->AtomicWeightRatio = mi->TargetAWR;

 time(&now);
 strftime(table->ProcessDate, 11, " %m/%d/%y", localtime(&now));

 table->MaterialNumber = mi->MaterialNumber;
 sprintf(table->MaterialIdentifier, "mat%d", table->MaterialNumber);

 sprintf(table->Comment, "%d-%s-%d from %s distributed on %s",
 table->Z, mi->TargetSymbol, table->A,

254

 mi->EvaluationLaboratory, mi->EvaluationDistributionDate);

}

afeGetMTInformation.c

#include "endf6.h"
#include "acepnData.h"

void afeGetMTInformation(endfMaterialInformation *mi, acepnData *data);
void afeFillCrossSection(endfMF3 *mf3data, aceMTInformation *mt);
int aceFindMT(int number, int numberofmts, aceMTInformation **mt);

void afeGetMTNames(aceMTInformation *mt);

/***
** afeGetMTInformation
**
*/
void afeGetMTInformation(endfMaterialInformation *mi, acepnData *data)
{
 int i, j;
 int mtn;

 double *xs;

 endfMF3 *mf3data;

 aceMTInformation *mt;

 /*
 ** determine the number of mf3 records and allocate an MTInformation
 ** entry for each mf3
 */
 data->TotalCrossSection == NULL;
 data->ElasticCrossSection == NULL;
 data->NonelasticCrossSection == NULL;
 for(i = 0; i < mi->NumberOfRecords; i++)
 if(mi->Records[i]->MF == 3

&& mi->Records[i]->MT != 1
&& mi->Records[i]->MT != 2
&& mi->Records[i]->MT != 3)

 data->NumberOfMTs++;

 data->MT = (aceMTInformation**)calloc(data->NumberOfMTs,
 sizeof(aceMTInformation*));

 for(i = 0; i < data->NumberOfMTs; i++)
 data->MT[i] = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));

 /*
 ** fill in the MTInfomation
 */
 for(i = 0, j = 0; i < mi->NumberOfRecords; i++) {

 if(mi->Records[i]->MF == 3) {

 mf3data = (endfMF3*)mi->Records[i]->MFMT;

 if(mi->Records[i]->MT == 1) {
data->TotalCrossSection =
 (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
mt = data->TotalCrossSection;

 }
 else if(mi->Records[i]->MT == 2) {

data->ElasticCrossSection =
 (aceMTInformation*)calloc(1, sizeof(aceMTInformation));

255

mt = data->ElasticCrossSection;
 }
 else if(mi->Records[i]->MT == 3) {

data->NonelasticCrossSection =
 (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
mt = data->NonelasticCrossSection;

 }
 else {

mt = data->MT[j];
j++;

 }

 mt->Number = mi->Records[i]->MT;

 afeGetMTNames(mt);

 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,
 sizeof(double));

 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 afeFillCrossSection(mf3data, mt);

 mt->Q = mf3data->ReactionQM;
 }

 }

 /*
 ** check the single neutron exit channel mts
 ** summation in mt 4
 ** xs in mt 50 - 91
 */
 if((mtn = aceFindMT(4, data->NumberOfMTs, data->MT)) >= 0) {
 if(aceFindMT(91, data->NumberOfMTs, data->MT) < 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 91;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < *mt->NumberOfEnergies; i++)

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
 mt->StartingIndex = data->MT[mtn]->StartingIndex;
 mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
 mt->Q = data->MT[mtn]->Q;
 data->MT[mtn]->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 50 && data->MT[i]->Number <= 91)
 for(j = 0; j < data->NumberOfEnergies; j++)
 xs[j] += data->MT[i]->CrossSection[j];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(xs[i] != data->MT[mtn]->CrossSection[i])
 break;

256

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT4 Summation set to sum of partials\n");
free(data->MT[mtn]->CrossSection);
data->MT[mtn]->CrossSection = xs;

 }
 }
 }
 else {
 if(aceFindMT(91, data->NumberOfMTs, data->MT) >= 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 4;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 50 && data->MT[i]->Number <= 91)
 for(j = 0; j < data->NumberOfEnergies; j++)
 mt->CrossSection[j] += data->MT[i]->CrossSection[j];

 mt->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 }

 /*
 ** check the single proton exit channel mts
 ** summation in mt 103
 ** xs in mt 600-649
 */
 if((mtn = aceFindMT(103, data->NumberOfMTs, data->MT)) >= 0) {
 if(aceFindMT(649, data->NumberOfMTs, data->MT) < 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 649;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < *mt->NumberOfEnergies; i++)

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
 mt->StartingIndex = data->MT[mtn]->StartingIndex;
 mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
 mt->Q = data->MT[mtn]->Q;
 data->MT[mtn]->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

257

 }
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 600 && data->MT[i]->Number <= 649)
 for(j = 0; j < data->NumberOfEnergies; j++)
 xs[j] += data->MT[i]->CrossSection[j];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(xs[i] != data->MT[mtn]->CrossSection[i])
 break;

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT103 Summation set to sum of partials\n");
free(data->MT[mtn]->CrossSection);
data->MT[mtn]->CrossSection = xs;

 }
 }
 }
 else {
 if(aceFindMT(649, data->NumberOfMTs, data->MT) >= 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 103;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 600 && data->MT[i]->Number <= 649)
 for(j = 0; j < data->NumberOfEnergies; j++)
 mt->CrossSection[j] += data->MT[i]->CrossSection[j];

 mt->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 }

 /*
 ** check the single deuteron exit channel mts
 ** summation in mt 104
 ** xs in mt 650 - 699
 */
 if((mtn = aceFindMT(104, data->NumberOfMTs, data->MT)) >= 0) {
 if(aceFindMT(699, data->NumberOfMTs, data->MT) < 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 699;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < *mt->NumberOfEnergies; i++)

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
 mt->StartingIndex = data->MT[mtn]->StartingIndex;
 mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
 mt->Q = data->MT[mtn]->Q;
 data->MT[mtn]->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

258

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 650 && data->MT[i]->Number <= 699)
 for(j = 0; j < data->NumberOfEnergies; j++)
 xs[j] += data->MT[i]->CrossSection[j];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(xs[i] != data->MT[mtn]->CrossSection[i])
 break;

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT104 Summation set to sum of partials\n");
free(data->MT[mtn]->CrossSection);
data->MT[mtn]->CrossSection = xs;

 }
 }
 }
 else {
 if(aceFindMT(699, data->NumberOfMTs, data->MT) >= 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 104;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 650 && data->MT[i]->Number <= 699)
 for(j = 0; j < data->NumberOfEnergies; j++)
 mt->CrossSection[j] += data->MT[i]->CrossSection[j];

 mt->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 }

 /*
 ** check the single triton exit channel mts
 ** summation in mt 105
 ** xs in mt 700 - 749
 */
 if((mtn = aceFindMT(105, data->NumberOfMTs, data->MT)) >= 0) {
 if(aceFindMT(749, data->NumberOfMTs, data->MT) < 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 749;
 afeGetMTNames(mt);

259

 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,
 sizeof(double));

 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < *mt->NumberOfEnergies; i++)

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
 mt->StartingIndex = data->MT[mtn]->StartingIndex;
 mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
 mt->Q = data->MT[mtn]->Q;
 data->MT[mtn]->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 700 && data->MT[i]->Number <= 749)
 for(j = 0; j < data->NumberOfEnergies; j++)
 xs[j] += data->MT[i]->CrossSection[j];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(xs[i] != data->MT[mtn]->CrossSection[i])
 break;

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT105 Summation set to sum of partials\n");
free(data->MT[mtn]->CrossSection);
data->MT[mtn]->CrossSection = xs;

 }
 }
 }
 else {
 if(aceFindMT(749, data->NumberOfMTs, data->MT) >= 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 105;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 700 && data->MT[i]->Number <= 749)
 for(j = 0; j < data->NumberOfEnergies; j++)
 mt->CrossSection[j] += data->MT[i]->CrossSection[j];

 mt->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 }

260

 /*
 ** check the single helium-3 exit channel mts
 ** summation in mt 106
 ** xs in mt 750 - 799
 */
 if((mtn = aceFindMT(106, data->NumberOfMTs, data->MT)) >= 0) {
 if(aceFindMT(799, data->NumberOfMTs, data->MT) < 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 799;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < *mt->NumberOfEnergies; i++)

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
 mt->StartingIndex = data->MT[mtn]->StartingIndex;
 mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
 mt->Q = data->MT[mtn]->Q;
 data->MT[mtn]->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 750 && data->MT[i]->Number <= 799)
 for(j = 0; j < data->NumberOfEnergies; j++)
 xs[j] += data->MT[i]->CrossSection[j];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(xs[i] != data->MT[mtn]->CrossSection[i])
 break;

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT106 Summation set to sum of partials\n");
free(data->MT[mtn]->CrossSection);
data->MT[mtn]->CrossSection = xs;

 }
 }
 }
 else {
 if(aceFindMT(799, data->NumberOfMTs, data->MT) >= 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 106;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 750 && data->MT[i]->Number <= 799)
 for(j = 0; j < data->NumberOfEnergies; j++)
 mt->CrossSection[j] += data->MT[i]->CrossSection[j];

 mt->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;

261

 data->MT = (aceMTInformation**)realloc(data->MT,
 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 }

 /*
 ** check the single alpha exit channel mts
 ** summation in mt 107
 ** xs in mt 800 - 849
 */
 if((mtn = aceFindMT(107, data->NumberOfMTs, data->MT)) >= 0) {
 if(aceFindMT(849, data->NumberOfMTs, data->MT) < 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 849;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < *mt->NumberOfEnergies; i++)

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
 mt->StartingIndex = data->MT[mtn]->StartingIndex;
 mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
 mt->Q = data->MT[mtn]->Q;
 data->MT[mtn]->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 800 && data->MT[i]->Number <= 849)
 for(j = 0; j < data->NumberOfEnergies; j++)
 xs[j] += data->MT[i]->CrossSection[j];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(xs[i] != data->MT[mtn]->CrossSection[i])
 break;

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT107 Summation set to sum of partials\n");
free(data->MT[mtn]->CrossSection);
data->MT[mtn]->CrossSection = xs;

 }
 }
 }
 else {
 if(aceFindMT(849, data->NumberOfMTs, data->MT) >= 0) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 107;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));

262

 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfMTs; i++)

if(data->MT[i]->Number >= 800 && data->MT[i]->Number <= 849)
 for(j = 0; j < data->NumberOfEnergies; j++)
 mt->CrossSection[j] += data->MT[i]->CrossSection[j];

 mt->Q = 0;
 for(i = 0; i < data->NumberOfMTs; i++)

if(mt->Number < data->MT[i]->Number)
 break;

 data->NumberOfMTs++;
 data->MT = (aceMTInformation**)realloc(data->MT,

 data->NumberOfMTs *
 sizeof(aceMTInformation*));

 if(i == data->NumberOfMTs - 1)
data->MT[i] = mt;

 else {
memmove(&(data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i));
data->MT[i] = mt;

 }
 }
 }

 /*
 ** check total and nonelastic cross sections
 */
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfMTs; i++) {
 switch(data->MT[i]->Number) {
 /* skip all summation cross sections and the elastic */
 case 1: case 2: case 3: /*these should never be here anyway */
 case 4: case 103: case 104: case 105: case 106: case 107:
 case 201: case 202: case 203: case 204: case 205: case 206: case 207:
 break;
 default:
 if(data->MT[i]->Number > 1000)

break;
 for(j = 0; j < data->NumberOfEnergies; j++)

xs[j] += data->MT[i]->CrossSection[j];
 }
 }
 if(data->NonelasticCrossSection == NULL) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 2;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 mt->CrossSection = xs;
 mt->StartingIndex = 1;
 mt->NumberOfEntries = data->NumberOfEnergies;
 mt->Q = 0;
 data->NonelasticCrossSection = mt;
 }
 else {
 for(i = 0; i < data->NumberOfEnergies; i++)
 if(data->NonelasticCrossSection->CrossSection[i] != xs[i])

break;
 if(i == data->NumberOfEnergies)
 free(xs);
 else {
 printf("WARNING: MT3 Summation set to sum of partials\n");
 free(data->NonelasticCrossSection->CrossSection);
 data->NonelasticCrossSection->CrossSection = xs;
 }
 }

 if(data->ElasticCrossSection != NULL) {
 if(data->TotalCrossSection == NULL) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));

263

 mt->Number = 1;
 afeGetMTNames(mt);
 mt->CrossSection = (double*)calloc(data->NumberOfEnergies,

 sizeof(double));
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 for(i = 0; i < data->NumberOfEnergies; i++)

mt->CrossSection[i] = data->ElasticCrossSection->CrossSection[i]
 + data->NonelasticCrossSection->CrossSection[i];

 mt->StartingIndex = 1;
 mt->NumberOfEntries = data->NumberOfEnergies;
 mt->Q = 0;
 data->TotalCrossSection = mt;
 }
 else {
 xs = (double*)calloc(data->NumberOfEnergies, sizeof(double));
 for(i = 0; i < data->NumberOfEnergies; i++)

xs[i] = data->NonelasticCrossSection->CrossSection[i]
+ data->ElasticCrossSection->CrossSection[i];

 for(i = 0; i < data->NumberOfEnergies; i++)
if(data->TotalCrossSection->CrossSection[i] != xs[i])
 break;

 if(i == data->NumberOfEnergies)
free(xs);

 else {
printf("WARNING: MT1 Summation set to sum of partials\n");
free(data->TotalCrossSection->CrossSection);
data->TotalCrossSection->CrossSection = xs;

 }
 }
 }
 else {
 if(data->TotalCrossSection == NULL) {
 mt = (aceMTInformation*)calloc(1, sizeof(aceMTInformation));
 mt->Number = 1;
 afeGetMTNames(mt);
 mt->NumberOfEnergies = &(data->NumberOfEnergies);
 mt->Energy = data->Energy;
 mt->CrossSection = data->NonelasticCrossSection->CrossSection;
 mt->StartingIndex = 1;
 mt->NumberOfEntries = data->NumberOfEnergies;
 mt->Q = 0;
 data->TotalCrossSection = mt;
 free(data->NonelasticCrossSection);
 data->NonelasticCrossSection = NULL;
 }
 else {
 for(i = 0; i < data->NumberOfEnergies; i++)

if(data->TotalCrossSection->CrossSection[i]
 != data->NonelasticCrossSection->CrossSection[i])
 break;

 if(i == data->NumberOfEnergies)
free(data->NonelasticCrossSection->CrossSection);

 else {
printf("WARNING: MT1 Summation set to sum of partials\n");
free(data->TotalCrossSection->CrossSection);
data->TotalCrossSection->CrossSection
 = data->NonelasticCrossSection->CrossSection;

 }
 free(data->NonelasticCrossSection);
 data->NonelasticCrossSection = NULL;
 }
 }

}

/***
** aceFindMT
**
** Find the MT with number n in list of pointers to MTs

264

** return the positive number (including zero) if found
** return a negative number if not found
*/
int aceFindMT(int number, int numberofmts, aceMTInformation **mt)
{
 int i;

 for(i = 0; i < numberofmts; i++)
 if(mt[i]->Number == number)
 break;

 if(i < numberofmts)
 return i;
 else
 return -1;

}

/***
** afeFillCrossSection
**
** Fill the cross section values from existing ENDF data
*/
void afeFillCrossSection(endfMF3 *mf3data, aceMTInformation *mt)
{
 int i, j;
 int start, end;

 double *xs = mt->CrossSection;
 double mega = 1.0e6;

 /*
 ** initialize starting index
 */
 mt->StartingIndex = 1;

 /*
 ** find first point on grid
 */
 for(start = 0;
 mt->Energy[start] * mega < mf3data->Energy[0];
 start++)
 mt->StartingIndex++;

 /*
 ** find last point on grid
 */
 for(end = *mt->NumberOfEnergies - 1;
 mt->Energy[end] * mega > mf3data->Energy[mf3data->NumberOfPoints - 1];
 end--)
 ;
 mt->NumberOfEntries = end - start + 1;

 /*
 ** fill all point in between by interpolation
 */
 for(i = start, j = 0; i <= end; i++) {

 if(i == start
&& mt->Energy[i] == mt->Energy[i+1]
&& mf3data->Energy[j] != mf3data->Energy[j+1]) {

 xs[i] = 0.0;
 i++;
 }

 if(mt->Energy[i] * mega == mf3data->Energy[j])
 xs[i] = mf3data->CrossSection[j];

 else if(mt->Energy[i] * mega < mf3data->Energy[j]) {

265

 /* interp value assuming all endf data has been linearlized*/

 xs[i] = (mt->Energy[i] * mega - mf3data->Energy[j-1]) *
 (mf3data->CrossSection[j] - mf3data->CrossSection[j-1]) /
 (mf3data->Energy[j] - mf3data->Energy[j-1])
 + mf3data->CrossSection[j-1];

 }

 else { /* if(mt->Energy[i] * mega > mf3data->Energy[j]) */
 j++;
 i--;
 }

 }

 /*
 ** remove interpolated zero values from start of xs
 */
 for(i = start; i < end; i++) {
 if(xs[i] == 0.0 && xs[i+1] == 0.0) {
 (mt->StartingIndex)++;
 (mt->NumberOfEntries)--;
 }
 else
 i = end;
 }

}

afeGetMTNames.c

#include "acepnData.h"

void afeGetMTNames(aceMTInformation *mt);

/***
** afeGetMTNames
**
*/
void afeGetMTNames(aceMTInformation *mt)
{
 /*
 ** Name is specified from ENDF 102 format manual appendix B
 ** along with reaction and products.
 **
 ** Products are ZA, e.g. proton is 1001, neutron 1, gamma 0,
 ** etc...
 **
 ** Number of products uses -1 for explicit file 6 information
 ** -2 indicates fission cross section, yield from nu data
 ** -9 indicates summation cross section
 */

 switch(mt->Number) {

 /*
 ** Summation cross sections
 */
 case 1:
 strcpy(mt->Name, "total");
 strcpy(mt->Reaction, "(sum of elastic & non-elastic)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 3:

266

 strcpy(mt->Name, "non-elastic");
 strcpy(mt->Reaction, "(sum of all non-elastic)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 /*
 ** Reaction cross sections
 */
 case 2:
 strcpy(mt->Name, "elastic");
 strcpy(mt->Reaction, "(gamma, gamma)");
 mt->NumberOfProducts = 1;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 0;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 break;

 case 5:
 strcpy(mt->Name, "catch all");
 strcpy(mt->Reaction, "(gamma, any)");
 mt->NumberOfProducts = -1;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 11:
 strcpy(mt->Name, "2 neutron + deuterium");
 strcpy(mt->Reaction, "(gamma, 2n d)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1002;
 mt->ProductZA[2] = -1004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 16:
 strcpy(mt->Name, "2 neutron");
 strcpy(mt->Reaction, "(gamma, 2n)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -2;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 1;
 break;

 case 17:
 strcpy(mt->Name, "3 neutron");
 strcpy(mt->Reaction, "(gamma, 3n)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -3;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 3;
 mt->YieldOfProduct[1] = 1;
 break;

 case 18:
 strcpy(mt->Name, "fission");
 strcpy(mt->Reaction, "(gamma, fission)");
 mt->NumberOfProducts = -1;
 mt->ProductZA = NULL;

267

 mt->YieldOfProduct = NULL;
 break;

 case 22:
 strcpy(mt->Name, "neutron + alpha");
 strcpy(mt->Reaction, "(gamma, n alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -2005;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 24:
 strcpy(mt->Name, "2 neutron + alpha");
 strcpy(mt->Reaction, "(gamma, 2n alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -2006;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 25:
 strcpy(mt->Name, "3 neutron + alpha");
 strcpy(mt->Reaction, "(gamma, 3n alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -2007;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 3;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 28:
 strcpy(mt->Name, "neutron + proton");
 strcpy(mt->Reaction, "(gamma, n p)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1001;
 mt->ProductZA[2] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 29:
 strcpy(mt->Name, "neutron + 2 alpha");
 strcpy(mt->Reaction, "(gamma, n 2alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -4009;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 2;
 mt->YieldOfProduct[2] = 1;

268

 break;

 case 30:
 strcpy(mt->Name, "2 neutron + 2 alpha");
 strcpy(mt->Reaction, "(gamma, 2n 2alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -4010;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 2;
 mt->YieldOfProduct[2] = 1;
 break;

 case 32:
 strcpy(mt->Name, "neutron + deuterium");
 strcpy(mt->Reaction, "(gamma, n d)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1002;
 mt->ProductZA[2] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 33:
 strcpy(mt->Name, "neutron + triton");
 strcpy(mt->Reaction, "(gamma, n t)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1003;
 mt->ProductZA[2] = -1004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 34:
 strcpy(mt->Name, "neutron + helium-3");
 strcpy(mt->Reaction, "(gamma, n he-3)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 2003;
 mt->ProductZA[2] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 35:
 strcpy(mt->Name, "neutron + deuteron + 2 alpha");
 strcpy(mt->Reaction, "(gamma, n d 2alpha)");
 mt->NumberOfProducts = 4;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1002;
 mt->ProductZA[2] = 2004;
 mt->ProductZA[3] = -5011;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 2;

269

 mt->YieldOfProduct[3] = 1;
 break;

 case 36:
 strcpy(mt->Name, "neutron + triton + 2 alpha");
 strcpy(mt->Reaction, "(gamma, n t 2alpha)");
 mt->NumberOfProducts = 4;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1003;
 mt->ProductZA[2] = 2004;
 mt->ProductZA[3] = -5012;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 2;
 mt->YieldOfProduct[3] = 1;
 break;

 case 37:
 strcpy(mt->Name, "4 neutron");
 strcpy(mt->Reaction, "(gamma, 4n)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -4;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 4;
 mt->YieldOfProduct[1] = 1;
 break;

 case 41:
 strcpy(mt->Name, "2 neutron + proton");
 strcpy(mt->Reaction, "(gamma, 2n p)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1001;
 mt->ProductZA[2] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 42:
 strcpy(mt->Name, "3 neutron + proton");
 strcpy(mt->Reaction, "(gamma, 3n p)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1001;
 mt->ProductZA[2] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 3;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 44:
 strcpy(mt->Name, "neutron + 2 proton");
 strcpy(mt->Reaction, "(gamma, n 2p)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1001;
 mt->ProductZA[2] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 2;
 mt->YieldOfProduct[2] = 1;

270

 break;

 case 45:
 strcpy(mt->Name, "neutron + proton + alpha");
 strcpy(mt->Reaction, "(gamma, n p alpha)");
 mt->NumberOfProducts = 4;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = 1001;
 mt->ProductZA[2] = 2004;
 mt->ProductZA[3] = -3006;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 mt->YieldOfProduct[3] = 1;
 break;

 case 102:
 strcpy(mt->Name, "radiative capture");
 strcpy(mt->Reaction, "(gamma, Xgamma)");
 mt->NumberOfProducts = -2;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 108:
 strcpy(mt->Name, "2 alpha");
 strcpy(mt->Reaction, "(gamma, 2alpha)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -4008;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 1;
 break;

 case 109:
 strcpy(mt->Name, "3 alpha");
 strcpy(mt->Reaction, "(gamma, 3alpha)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -6012;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 3;
 mt->YieldOfProduct[1] = 1;
 break;

 case 111:
 strcpy(mt->Name, "2 proton");
 strcpy(mt->Reaction, "(gamma, 2proton)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -2002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 2;
 mt->YieldOfProduct[1] = 1;
 break;

 case 112:
 strcpy(mt->Name, "proton + alpha");
 strcpy(mt->Reaction, "(gamma, p alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -3005;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));

271

 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 113:
 strcpy(mt->Name, "triton + 2 alpha");
 strcpy(mt->Reaction, "(gamma, t 2alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -5011;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 2;
 mt->YieldOfProduct[2] = 1;
 break;

 case 114:
 strcpy(mt->Name, "deuteron + 2 alpha");
 strcpy(mt->Reaction, "(gamma, d 2alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -5010;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 2;
 mt->YieldOfProduct[2] = 1;
 break;

 case 115:
 strcpy(mt->Name, "proton + deuteron");
 strcpy(mt->Reaction, "(gamma, p d)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = 1002;
 mt->ProductZA[2] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 116:
 strcpy(mt->Name, "proton + triton");
 strcpy(mt->Reaction, "(gamma, p t)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = 1003;
 mt->ProductZA[2] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 case 117:
 strcpy(mt->Name, "deuteron + alpha");
 strcpy(mt->Reaction, "(gamma, d alpha)");
 mt->NumberOfProducts = 3;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = 2004;
 mt->ProductZA[2] = -3006;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;

272

 mt->YieldOfProduct[1] = 1;
 mt->YieldOfProduct[2] = 1;
 break;

 /*
 ** Production cross sections
 */
 case 201:
 strcpy(mt->Name, "neutron production");
 strcpy(mt->Reaction, "(gamma, Xn)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 202:
 strcpy(mt->Name, "gamma production");
 strcpy(mt->Reaction, "(gamma, Xgamma)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 203:
 strcpy(mt->Name, "proton production");
 strcpy(mt->Reaction, "(gamma, Xp)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 204:
 strcpy(mt->Name, "deuteron production");
 strcpy(mt->Reaction, "(gamma, Xd)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 205:
 strcpy(mt->Name, "triton production");
 strcpy(mt->Reaction, "(gamma, Xt)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 206:
 strcpy(mt->Name, "helium-3 production");
 strcpy(mt->Reaction, "(gamma, XHe-3)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 207:
 strcpy(mt->Name, "alpha production");
 strcpy(mt->Reaction, "(gamma, Xalpha)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 /*
 ** one neutron exit channel with excited residual
 */
 case 4:
 strcpy(mt->Name, "single neutron channel sum");
 strcpy(mt->Reaction, "(gamma, n)");
 mt->NumberOfProducts = -9;

273

 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 50:
 strcpy(mt->Name, "neutron + ground state residual");
 strcpy(mt->Reaction, "(gamma, n0)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 51:
 strcpy(mt->Name, "neutron + 1st excited state residual");
 strcpy(mt->Reaction, "(gamma, n1)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 52:
 strcpy(mt->Name, "neutron + 2nd excited state residual");
 strcpy(mt->Reaction, "(gamma, n2)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 53:
 strcpy(mt->Name, "neutron + 3rd excited state residual");
 strcpy(mt->Reaction, "(gamma, n3)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 54:
 strcpy(mt->Name, "neutron + 4th excited state residual");
 strcpy(mt->Reaction, "(gamma, n4)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 55:
 strcpy(mt->Name, "neutron + 5th excited state residual");
 strcpy(mt->Reaction, "(gamma, n5)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;

274

 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 56:
 strcpy(mt->Name, "neutron + 6th excited state residual");
 strcpy(mt->Reaction, "(gamma, n6)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 57:
 strcpy(mt->Name, "neutron + 7th excited state residual");
 strcpy(mt->Reaction, "(gamma, n7)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 58:
 strcpy(mt->Name, "neutron + 8th excited state residual");
 strcpy(mt->Reaction, "(gamma, n8)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 59:
 strcpy(mt->Name, "neutron + 9th excited state residual");
 strcpy(mt->Reaction, "(gamma, n9)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 60:
 strcpy(mt->Name, "neutron + 10th excited state residual");
 strcpy(mt->Reaction, "(gamma, n10)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 61:
 strcpy(mt->Name, "neutron + 11th excited state residual");
 strcpy(mt->Reaction, "(gamma, n11)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;

275

 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 62:
 strcpy(mt->Name, "neutron + 12th excited state residual");
 strcpy(mt->Reaction, "(gamma, n12)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 63:
 strcpy(mt->Name, "neutron + 13th excited state residual");
 strcpy(mt->Reaction, "(gamma, n13)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 64:
 strcpy(mt->Name, "neutron + 14th excited state residual");
 strcpy(mt->Reaction, "(gamma, n14)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 65:
 strcpy(mt->Name, "neutron + 15th excited state residual");
 strcpy(mt->Reaction, "(gamma, n15)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 66:
 strcpy(mt->Name, "neutron + 16th excited state residual");
 strcpy(mt->Reaction, "(gamma, n16)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 67:
 strcpy(mt->Name, "neutron + 17th excited state residual");
 strcpy(mt->Reaction, "(gamma, n17)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));

276

 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 68:
 strcpy(mt->Name, "neutron + 18th excited state residual");
 strcpy(mt->Reaction, "(gamma, n18)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 69:
 strcpy(mt->Name, "neutron + 19th excited state residual");
 strcpy(mt->Reaction, "(gamma, n19)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 70:
 strcpy(mt->Name, "neutron + 20th excited state residual");
 strcpy(mt->Reaction, "(gamma, n20)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 71:
 strcpy(mt->Name, "neutron + 21st excited state residual");
 strcpy(mt->Reaction, "(gamma, n21)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 72:
 strcpy(mt->Name, "neutron + 22nd excited state residual");
 strcpy(mt->Reaction, "(gamma, n22)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 73:
 strcpy(mt->Name, "neutron + 23rd excited state residual");
 strcpy(mt->Reaction, "(gamma, n23)");
 mt->NumberOfProducts = 2;

277

 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 74:
 strcpy(mt->Name, "neutron + 24th excited state residual");
 strcpy(mt->Reaction, "(gamma, n24)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 75:
 strcpy(mt->Name, "neutron + 25th excited state residual");
 strcpy(mt->Reaction, "(gamma, n25)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 76:
 strcpy(mt->Name, "neutron + 26th excited state residual");
 strcpy(mt->Reaction, "(gamma, n26)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 77:
 strcpy(mt->Name, "neutron + 27th excited state residual");
 strcpy(mt->Reaction, "(gamma, n27)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 78:
 strcpy(mt->Name, "neutron + 28th excited state residual");
 strcpy(mt->Reaction, "(gamma, n28)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 79:
 strcpy(mt->Name, "neutron + 29th excited state residual");
 strcpy(mt->Reaction, "(gamma, n29)");

278

 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 80:
 strcpy(mt->Name, "neutron + 30th excited state residual");
 strcpy(mt->Reaction, "(gamma, n30)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 81:
 strcpy(mt->Name, "neutron + 31st excited state residual");
 strcpy(mt->Reaction, "(gamma, n31)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 82:
 strcpy(mt->Name, "neutron + 32nd excited state residual");
 strcpy(mt->Reaction, "(gamma, n32)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 83:
 strcpy(mt->Name, "neutron + 33rd excited state residual");
 strcpy(mt->Reaction, "(gamma, n33)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 84:
 strcpy(mt->Name, "neutron + 34th excited state residual");
 strcpy(mt->Reaction, "(gamma, n34)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 85:
 strcpy(mt->Name, "neutron + 35th excited state residual");

279

 strcpy(mt->Reaction, "(gamma, n35)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 86:
 strcpy(mt->Name, "neutron + 36th excited state residual");
 strcpy(mt->Reaction, "(gamma, n36)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 87:
 strcpy(mt->Name, "neutron + 37th excited state residual");
 strcpy(mt->Reaction, "(gamma, n37)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 88:
 strcpy(mt->Name, "neutron + 38th excited state residual");
 strcpy(mt->Reaction, "(gamma, n38)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 89:
 strcpy(mt->Name, "neutron + 39th excited state residual");
 strcpy(mt->Reaction, "(gamma, n39)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 90:
 strcpy(mt->Name, "neutron + 40th excited state residual");
 strcpy(mt->Reaction, "(gamma, n40)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 91:

280

 strcpy(mt->Name, "neutron + continuum state residual");
 strcpy(mt->Reaction, "(gamma, nz)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1;
 mt->ProductZA[1] = -1;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 /*
 ** one proton exit channel with excited residual
 */
 case 103:
 strcpy(mt->Name, "single proton channel sum");
 strcpy(mt->Reaction, "(gamma, proton)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 600:
 strcpy(mt->Name, "proton + ground state residual");
 strcpy(mt->Reaction, "(gamma, p0)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 601:
 strcpy(mt->Name, "proton + 1st excited state residual");
 strcpy(mt->Reaction, "(gamma, p1)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 602:
 strcpy(mt->Name, "proton + 2nd excited state residual");
 strcpy(mt->Reaction, "(gamma, p2)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 603:
 strcpy(mt->Name, "proton + 3rd excited state residual");
 strcpy(mt->Reaction, "(gamma, p3)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

281

 case 604:
 strcpy(mt->Name, "proton + 4th excited state residual");
 strcpy(mt->Reaction, "(gamma, p4)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 605:
 strcpy(mt->Name, "proton + 5th excited state residual");
 strcpy(mt->Reaction, "(gamma, p5)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 606:
 strcpy(mt->Name, "proton + 6th excited state residual");
 strcpy(mt->Reaction, "(gamma, p6)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 607:
 strcpy(mt->Name, "proton + 7th excited state residual");
 strcpy(mt->Reaction, "(gamma, pth)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 608:
 strcpy(mt->Name, "proton + 8th excited state residual");
 strcpy(mt->Reaction, "(gamma, p8)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 609:
 strcpy(mt->Name, "proton + 9th excited state residual");
 strcpy(mt->Reaction, "(gamma, p9)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

282

 case 610:
 strcpy(mt->Name, "proton + 10th excited state residual");
 strcpy(mt->Reaction, "(gamma, p10)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 611:
 strcpy(mt->Name, "proton + 11th excited state residual");
 strcpy(mt->Reaction, "(gamma, p11)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 612:
 strcpy(mt->Name, "proton + 12th excited state residual");
 strcpy(mt->Reaction, "(gamma, p12)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 613:
 strcpy(mt->Name, "proton + 13th excited state residual");
 strcpy(mt->Reaction, "(gamma, p13)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 614:
 strcpy(mt->Name, "proton + 14th excited state residual");
 strcpy(mt->Reaction, "(gamma, p14)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 615:
 strcpy(mt->Name, "proton + 15th excited state residual");
 strcpy(mt->Reaction, "(gamma, p15)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;

283

 break;

 case 616:
 strcpy(mt->Name, "proton + 16th excited state residual");
 strcpy(mt->Reaction, "(gamma, p16)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 617:
 strcpy(mt->Name, "proton + 17th excited state residual");
 strcpy(mt->Reaction, "(gamma, p17)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 618:
 strcpy(mt->Name, "proton + 18th excited state residual");
 strcpy(mt->Reaction, "(gamma, p18)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 619:
 strcpy(mt->Name, "proton + 19th excited state residual");
 strcpy(mt->Reaction, "(gamma, p19)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 620:
 strcpy(mt->Name, "proton + 20th excited state residual");
 strcpy(mt->Reaction, "(gamma, p20)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 621:
 strcpy(mt->Name, "proton + 21st excited state residual");
 strcpy(mt->Reaction, "(gamma, p21)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;

284

 mt->YieldOfProduct[1] = 1;
 break;

 case 622:
 strcpy(mt->Name, "proton + 22nd excited state residual");
 strcpy(mt->Reaction, "(gamma, p22)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 623:
 strcpy(mt->Name, "proton + 23rd excited state residual");
 strcpy(mt->Reaction, "(gamma, p23)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 624:
 strcpy(mt->Name, "proton + 24th excited state residual");
 strcpy(mt->Reaction, "(gamma, p24)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 625:
 strcpy(mt->Name, "proton + 25th excited state residual");
 strcpy(mt->Reaction, "(gamma, p25)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 626:
 strcpy(mt->Name, "proton + 26th excited state residual");
 strcpy(mt->Reaction, "(gamma, p26)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 627:
 strcpy(mt->Name, "proton + 27th excited state residual");
 strcpy(mt->Reaction, "(gamma, p27)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));

285

 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 628:
 strcpy(mt->Name, "proton + 28th excited state residual");
 strcpy(mt->Reaction, "(gamma, p28)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 629:
 strcpy(mt->Name, "proton + 29th excited state residual");
 strcpy(mt->Reaction, "(gamma, p29)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 630:
 strcpy(mt->Name, "proton + 30th excited state residual");
 strcpy(mt->Reaction, "(gamma, p30)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 631:
 strcpy(mt->Name, "proton + 31st excited state residual");
 strcpy(mt->Reaction, "(gamma, p31)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 632:
 strcpy(mt->Name, "proton + 32nd excited state residual");
 strcpy(mt->Reaction, "(gamma, p32)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 633:
 strcpy(mt->Name, "proton + 33rd excited state residual");
 strcpy(mt->Reaction, "(gamma, p33)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;

286

 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 634:
 strcpy(mt->Name, "proton + 34th excited state residual");
 strcpy(mt->Reaction, "(gamma, p34)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 635:
 strcpy(mt->Name, "proton + 35th excited state residual");
 strcpy(mt->Reaction, "(gamma, p35)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 636:
 strcpy(mt->Name, "proton + 36th excited state residual");
 strcpy(mt->Reaction, "(gamma, p36)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 637:
 strcpy(mt->Name, "proton + 37th excited state residual");
 strcpy(mt->Reaction, "(gamma, p37)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 638:
 strcpy(mt->Name, "proton + 38th excited state residual");
 strcpy(mt->Reaction, "(gamma, p38)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 639:
 strcpy(mt->Name, "proton + 39th excited state residual");
 strcpy(mt->Reaction, "(gamma, p39)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;

287

 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 640:
 strcpy(mt->Name, "proton + 40th excited state residual");
 strcpy(mt->Reaction, "(gamma, p40)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 641:
 strcpy(mt->Name, "proton + 41st excited state residual");
 strcpy(mt->Reaction, "(gamma, p41)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 642:
 strcpy(mt->Name, "proton + 42nd excited state residual");
 strcpy(mt->Reaction, "(gamma, p42)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 643:
 strcpy(mt->Name, "proton + 43rd excited state residual");
 strcpy(mt->Reaction, "(gamma, p43)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 644:
 strcpy(mt->Name, "proton + 44th excited state residual");
 strcpy(mt->Reaction, "(gamma, p44)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 645:
 strcpy(mt->Name, "proton + 45th excited state residual");
 strcpy(mt->Reaction, "(gamma, p45)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));

288

 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 646:
 strcpy(mt->Name, "proton + 46th excited state residual");
 strcpy(mt->Reaction, "(gamma, p46)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 647:
 strcpy(mt->Name, "proton + 47th excited state residual");
 strcpy(mt->Reaction, "(gamma, p47)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 648:
 strcpy(mt->Name, "proton + 48th excited state residual");
 strcpy(mt->Reaction, "(gamma, p48)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 649:
 strcpy(mt->Name, "proton + continuum state residual");
 strcpy(mt->Reaction, "(gamma, pz)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1001;
 mt->ProductZA[1] = -1001;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 /*
 ** one deuteron exit channel with excited residual
 */
 case 104:
 strcpy(mt->Name, "single deuteron channel sum");
 strcpy(mt->Reaction, "(gamma, deuteron)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 650:
 strcpy(mt->Name, "deuteron + ground state residual");
 strcpy(mt->Reaction, "(gamma, d0)");
 mt->NumberOfProducts = 2;

289

 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 651:
 strcpy(mt->Name, "deuteron + 1st excited state residual");
 strcpy(mt->Reaction, "(gamma, d1)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 652:
 strcpy(mt->Name, "deuteron + 2nd excited state residual");
 strcpy(mt->Reaction, "(gamma, d2)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 653:
 strcpy(mt->Name, "deuteron + 3rd excited state residual");
 strcpy(mt->Reaction, "(gamma, d3)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 654:
 strcpy(mt->Name, "deuteron + 4th excited state residual");
 strcpy(mt->Reaction, "(gamma, d4)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 655:
 strcpy(mt->Name, "deuteron + 5th excited state residual");
 strcpy(mt->Reaction, "(gamma, d5)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 656:
 strcpy(mt->Name, "deuteron + 6th excited state residual");
 strcpy(mt->Reaction, "(gamma, d6)");

290

 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 657:
 strcpy(mt->Name, "deuteron + 7th excited state residual");
 strcpy(mt->Reaction, "(gamma, d7)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 658:
 strcpy(mt->Name, "deuteron + 8th excited state residual");
 strcpy(mt->Reaction, "(gamma, d8)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 659:
 strcpy(mt->Name, "deuteron + 9th excited state residual");
 strcpy(mt->Reaction, "(gamma, d9)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 660:
 strcpy(mt->Name, "deuteron + 10th excited state residual");
 strcpy(mt->Reaction, "(gamma, d10)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 661:
 strcpy(mt->Name, "deuteron + 11th excited state residual");
 strcpy(mt->Reaction, "(gamma, d11)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 662:
 strcpy(mt->Name, "deuteron + 12th excited state residual");

291

 strcpy(mt->Reaction, "(gamma, d12)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 663:
 strcpy(mt->Name, "deuteron + 13th excited state residual");
 strcpy(mt->Reaction, "(gamma, d13)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 664:
 strcpy(mt->Name, "deuteron + 14th excited state residual");
 strcpy(mt->Reaction, "(gamma, d14)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 665:
 strcpy(mt->Name, "deuteron + 15th excited state residual");
 strcpy(mt->Reaction, "(gamma, d15)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 666:
 strcpy(mt->Name, "deuteron + 16th excited state residual");
 strcpy(mt->Reaction, "(gamma, d16)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 667:
 strcpy(mt->Name, "deuteron + 17th excited state residual");
 strcpy(mt->Reaction, "(gamma, d17)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 668:

292

 strcpy(mt->Name, "deuteron + 18th excited state residual");
 strcpy(mt->Reaction, "(gamma, d18)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 669:
 strcpy(mt->Name, "deuteron + 19th excited state residual");
 strcpy(mt->Reaction, "(gamma, d19)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 670:
 strcpy(mt->Name, "deuteron + 20th excited state residual");
 strcpy(mt->Reaction, "(gamma, d20)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 671:
 strcpy(mt->Name, "deuteron + 21st excited state residual");
 strcpy(mt->Reaction, "(gamma, d21)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 672:
 strcpy(mt->Name, "deuteron + 22nd excited state residual");
 strcpy(mt->Reaction, "(gamma, d22)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 673:
 strcpy(mt->Name, "deuteron + 23rd excited state residual");
 strcpy(mt->Reaction, "(gamma, d23)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

293

 case 674:
 strcpy(mt->Name, "deuteron + 24th excited state residual");
 strcpy(mt->Reaction, "(gamma, d24)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 675:
 strcpy(mt->Name, "deuteron + 25th excited state residual");
 strcpy(mt->Reaction, "(gamma, d25)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 676:
 strcpy(mt->Name, "deuteron + 26th excited state residual");
 strcpy(mt->Reaction, "(gamma, d26)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 677:
 strcpy(mt->Name, "deuteron + 27th excited state residual");
 strcpy(mt->Reaction, "(gamma, d27)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 678:
 strcpy(mt->Name, "deuteron + 28th excited state residual");
 strcpy(mt->Reaction, "(gamma, d28)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 679:
 strcpy(mt->Name, "deuteron + 29th excited state residual");
 strcpy(mt->Reaction, "(gamma, d29)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

294

 case 680:
 strcpy(mt->Name, "deuteron + 30th excited state residual");
 strcpy(mt->Reaction, "(gamma, d30)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 681:
 strcpy(mt->Name, "deuteron + 31st excited state residual");
 strcpy(mt->Reaction, "(gamma, d31)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 682:
 strcpy(mt->Name, "deuteron + 32nd excited state residual");
 strcpy(mt->Reaction, "(gamma, d32)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 683:
 strcpy(mt->Name, "deuteron + 33rd excited state residual");
 strcpy(mt->Reaction, "(gamma, d33)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 684:
 strcpy(mt->Name, "deuteron + 34th excited state residual");
 strcpy(mt->Reaction, "(gamma, d34)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 685:
 strcpy(mt->Name, "deuteron + 35th excited state residual");
 strcpy(mt->Reaction, "(gamma, d35)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;

295

 break;

 case 686:
 strcpy(mt->Name, "deuteron + 36th excited state residual");
 strcpy(mt->Reaction, "(gamma, d36)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 687:
 strcpy(mt->Name, "deuteron + 37th excited state residual");
 strcpy(mt->Reaction, "(gamma, d37)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 688:
 strcpy(mt->Name, "deuteron + 38th excited state residual");
 strcpy(mt->Reaction, "(gamma, d38)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 689:
 strcpy(mt->Name, "deuteron + 39th excited state residual");
 strcpy(mt->Reaction, "(gamma, d39)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 690:
 strcpy(mt->Name, "deuteron + 40th excited state residual");
 strcpy(mt->Reaction, "(gamma, d40)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 691:
 strcpy(mt->Name, "deuteron + 41st excited state residual");
 strcpy(mt->Reaction, "(gamma, d41)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;

296

 mt->YieldOfProduct[1] = 1;
 break;

 case 692:
 strcpy(mt->Name, "deuteron + 42nd excited state residual");
 strcpy(mt->Reaction, "(gamma, d42)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 693:
 strcpy(mt->Name, "deuteron + 43rd excited state residual");
 strcpy(mt->Reaction, "(gamma, d43)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 694:
 strcpy(mt->Name, "deuteron + 44th excited state residual");
 strcpy(mt->Reaction, "(gamma, d44)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 695:
 strcpy(mt->Name, "deuteron + 45th excited state residual");
 strcpy(mt->Reaction, "(gamma, d45)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 696:
 strcpy(mt->Name, "deuteron + 46th excited state residual");
 strcpy(mt->Reaction, "(gamma, d46)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 697:
 strcpy(mt->Name, "deuteron + 47th excited state residual");
 strcpy(mt->Reaction, "(gamma, d47)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));

297

 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 698:
 strcpy(mt->Name, "deuteron + 48th excited state residual");
 strcpy(mt->Reaction, "(gamma, d48)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 699:
 strcpy(mt->Name, "deuteron + continuum state residual");
 strcpy(mt->Reaction, "(gamma, dz)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1002;
 mt->ProductZA[1] = -1002;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 /*
 ** one triton exit channel with excited residual
 */
 case 105:
 strcpy(mt->Name, "single triton channel sum");
 strcpy(mt->Reaction, "(gamma, triton)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 700:
 strcpy(mt->Name, "triton + ground state residual");
 strcpy(mt->Reaction, "(gamma, t0)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 701:
 strcpy(mt->Name, "triton + 1st excited state residual");
 strcpy(mt->Reaction, "(gamma, t1)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 702:
 strcpy(mt->Name, "triton + 2nd excited state residual");
 strcpy(mt->Reaction, "(gamma, t2)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;

298

 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 703:
 strcpy(mt->Name, "triton + 3rd excited state residual");
 strcpy(mt->Reaction, "(gamma, t3)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 704:
 strcpy(mt->Name, "triton + 4th excited state residual");
 strcpy(mt->Reaction, "(gamma, t4)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 705:
 strcpy(mt->Name, "triton + 5th excited state residual");
 strcpy(mt->Reaction, "(gamma, t5)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 706:
 strcpy(mt->Name, "triton + 6th excited state residual");
 strcpy(mt->Reaction, "(gamma, t6)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 707:
 strcpy(mt->Name, "triton + 7th excited state residual");
 strcpy(mt->Reaction, "(gamma, t7)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 708:
 strcpy(mt->Name, "triton + 8th excited state residual");
 strcpy(mt->Reaction, "(gamma, t8)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;

299

 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 709:
 strcpy(mt->Name, "triton + 9th excited state residual");
 strcpy(mt->Reaction, "(gamma, t9)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 710:
 strcpy(mt->Name, "triton + 10th excited state residual");
 strcpy(mt->Reaction, "(gamma, t10)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 711:
 strcpy(mt->Name, "triton + 11th excited state residual");
 strcpy(mt->Reaction, "(gamma, t11)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 712:
 strcpy(mt->Name, "triton + 12th excited state residual");
 strcpy(mt->Reaction, "(gamma, t12)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 713:
 strcpy(mt->Name, "triton + 13th excited state residual");
 strcpy(mt->Reaction, "(gamma, t13)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 714:
 strcpy(mt->Name, "triton + 14th excited state residual");
 strcpy(mt->Reaction, "(gamma, t14)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));

300

 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 715:
 strcpy(mt->Name, "triton + 15th excited state residual");
 strcpy(mt->Reaction, "(gamma, t15)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 716:
 strcpy(mt->Name, "triton + 16th excited state residual");
 strcpy(mt->Reaction, "(gamma, t16)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 717:
 strcpy(mt->Name, "triton + 17th excited state residual");
 strcpy(mt->Reaction, "(gamma, t17)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 718:
 strcpy(mt->Name, "triton + 18th excited state residual");
 strcpy(mt->Reaction, "(gamma, t18)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 719:
 strcpy(mt->Name, "triton + 19th excited state residual");
 strcpy(mt->Reaction, "(gamma, t19)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 720:
 strcpy(mt->Name, "triton + 20th excited state residual");
 strcpy(mt->Reaction, "(gamma, t20)");
 mt->NumberOfProducts = 2;

301

 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 721:
 strcpy(mt->Name, "triton + 21st excited state residual");
 strcpy(mt->Reaction, "(gamma, t21)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 722:
 strcpy(mt->Name, "triton + 22nd excited state residual");
 strcpy(mt->Reaction, "(gamma, t22)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 723:
 strcpy(mt->Name, "triton + 23rd excited state residual");
 strcpy(mt->Reaction, "(gamma, t23)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 724:
 strcpy(mt->Name, "triton + 24th excited state residual");
 strcpy(mt->Reaction, "(gamma, t24)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 725:
 strcpy(mt->Name, "triton + 25th excited state residual");
 strcpy(mt->Reaction, "(gamma, t25)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 726:
 strcpy(mt->Name, "triton + 26th excited state residual");
 strcpy(mt->Reaction, "(gamma, t26)");

302

 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 727:
 strcpy(mt->Name, "triton + 27th excited state residual");
 strcpy(mt->Reaction, "(gamma, t27)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 728:
 strcpy(mt->Name, "triton + 28th excited state residual");
 strcpy(mt->Reaction, "(gamma, t28)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 729:
 strcpy(mt->Name, "triton + 29th excited state residual");
 strcpy(mt->Reaction, "(gamma, t29)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 730:
 strcpy(mt->Name, "triton + 30th excited state residual");
 strcpy(mt->Reaction, "(gamma, t30)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 731:
 strcpy(mt->Name, "triton + 31st excited state residual");
 strcpy(mt->Reaction, "(gamma, t31)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 732:
 strcpy(mt->Name, "triton + 32nd excited state residual");

303

 strcpy(mt->Reaction, "(gamma, t32)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 733:
 strcpy(mt->Name, "triton + 33rd excited state residual");
 strcpy(mt->Reaction, "(gamma, t33)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 734:
 strcpy(mt->Name, "triton + 34th excited state residual");
 strcpy(mt->Reaction, "(gamma, t34)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 735:
 strcpy(mt->Name, "triton + 35th excited state residual");
 strcpy(mt->Reaction, "(gamma, t35)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 736:
 strcpy(mt->Name, "triton + 36th excited state residual");
 strcpy(mt->Reaction, "(gamma, t36)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 737:
 strcpy(mt->Name, "triton + 37th excited state residual");
 strcpy(mt->Reaction, "(gamma, t37)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 738:

304

 strcpy(mt->Name, "triton + 38th excited state residual");
 strcpy(mt->Reaction, "(gamma, t38)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 739:
 strcpy(mt->Name, "triton + 39th excited state residual");
 strcpy(mt->Reaction, "(gamma, t39)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 740:
 strcpy(mt->Name, "triton + 40th excited state residual");
 strcpy(mt->Reaction, "(gamma, t40)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 741:
 strcpy(mt->Name, "triton + 41st excited state residual");
 strcpy(mt->Reaction, "(gamma, t41)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 742:
 strcpy(mt->Name, "triton + 42nd excited state residual");
 strcpy(mt->Reaction, "(gamma, t42)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 743:
 strcpy(mt->Name, "triton + 43rd excited state residual");
 strcpy(mt->Reaction, "(gamma, t43)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

305

 case 744:
 strcpy(mt->Name, "triton + 44th excited state residual");
 strcpy(mt->Reaction, "(gamma, t44)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 745:
 strcpy(mt->Name, "triton + 45th excited state residual");
 strcpy(mt->Reaction, "(gamma, t45)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 746:
 strcpy(mt->Name, "triton + 46th excited state residual");
 strcpy(mt->Reaction, "(gamma, t46)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 747:
 strcpy(mt->Name, "triton + 47th excited state residual");
 strcpy(mt->Reaction, "(gamma, t47)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 748:
 strcpy(mt->Name, "triton + 48th excited state residual");
 strcpy(mt->Reaction, "(gamma, t48)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 749:
 strcpy(mt->Name, "triton + continuum state residual");
 strcpy(mt->Reaction, "(gamma, tz)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 1003;
 mt->ProductZA[1] = -1003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

306

 /*
 ** one helium-3 exit channel with excited residual
 */
 case 106:
 strcpy(mt->Name, "single helium-3 channel sum");
 strcpy(mt->Reaction, "(gamma, he3)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 750:
 strcpy(mt->Name, "helium-3 + ground state residual");
 strcpy(mt->Reaction, "(gamma, he3-0)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 751:
 strcpy(mt->Name, "helium-3 + 1st excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-1)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 752:
 strcpy(mt->Name, "helium-3 + 2nd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-2)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 753:
 strcpy(mt->Name, "helium-3 + 3th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-3)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 754:
 strcpy(mt->Name, "helium-3 + 4th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-4)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;

307

 break;

 case 755:
 strcpy(mt->Name, "helium-3 + 5th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-5)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 756:
 strcpy(mt->Name, "helium-3 + 6th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-6)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 757:
 strcpy(mt->Name, "helium-3 + 7th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-7)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 758:
 strcpy(mt->Name, "helium-3 + 8th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-8)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 759:
 strcpy(mt->Name, "helium-3 + 9th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-9)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 760:
 strcpy(mt->Name, "helium-3 + 10th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-10)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;

308

 mt->YieldOfProduct[1] = 1;
 break;

 case 761:
 strcpy(mt->Name, "helium-3 + 11th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-11)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 762:
 strcpy(mt->Name, "helium-3 + 12th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-12)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 763:
 strcpy(mt->Name, "helium-3 + 13th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-13)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 764:
 strcpy(mt->Name, "helium-3 + 14th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-14)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 765:
 strcpy(mt->Name, "helium-3 + 15th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-15)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 766:
 strcpy(mt->Name, "helium-3 + 16th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-16)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));

309

 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 767:
 strcpy(mt->Name, "helium-3 + 17th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-17)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 768:
 strcpy(mt->Name, "helium-3 + 18th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-18)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 769:
 strcpy(mt->Name, "helium-3 + 19th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-19)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 770:
 strcpy(mt->Name, "helium-3 + 20th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-20)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 771:
 strcpy(mt->Name, "helium-3 + 21st excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-21)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 772:
 strcpy(mt->Name, "helium-3 + 22nd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-22)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;

310

 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 773:
 strcpy(mt->Name, "helium-3 + 23rd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-23)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 774:
 strcpy(mt->Name, "helium-3 + 24th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-24)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 775:
 strcpy(mt->Name, "helium-3 + 25th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-25)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 776:
 strcpy(mt->Name, "helium-3 + 26th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-26)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 777:
 strcpy(mt->Name, "helium-3 + 27th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-27)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 778:
 strcpy(mt->Name, "helium-3 + 28th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-28)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;

311

 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 779:
 strcpy(mt->Name, "helium-3 + 29th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-29)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 780:
 strcpy(mt->Name, "helium-3 + 30th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-30)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 781:
 strcpy(mt->Name, "helium-3 + 31st excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-31)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 782:
 strcpy(mt->Name, "helium-3 + 32nd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-32)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 783:
 strcpy(mt->Name, "helium-3 + 33rd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-33)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 784:
 strcpy(mt->Name, "helium-3 + 34th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-34)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));

312

 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 785:
 strcpy(mt->Name, "helium-3 + 35th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-35)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 786:
 strcpy(mt->Name, "helium-3 + 36th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-36)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 787:
 strcpy(mt->Name, "helium-3 + 37th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-37)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 788:
 strcpy(mt->Name, "helium-3 + 38th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-38)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 789:
 strcpy(mt->Name, "helium-3 + 39th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-39)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 790:
 strcpy(mt->Name, "helium-3 + 40th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-40)");
 mt->NumberOfProducts = 2;

313

 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 791:
 strcpy(mt->Name, "helium-3 + 41st excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-41)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 792:
 strcpy(mt->Name, "helium-3 + 42nd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-42)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 793:
 strcpy(mt->Name, "helium-3 + 43rd excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-43)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 794:
 strcpy(mt->Name, "helium-3 + 44th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-44)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 795:
 strcpy(mt->Name, "helium-3 + 45th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-45)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 796:
 strcpy(mt->Name, "helium-3 + 46th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-46)");

314

 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 797:
 strcpy(mt->Name, "helium-3 + 47th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-47)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 798:
 strcpy(mt->Name, "helium-3 + 48th excited state residual");
 strcpy(mt->Reaction, "(gamma, he3-48)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 799:
 strcpy(mt->Name, "helium-3 + continuum state residual");
 strcpy(mt->Reaction, "(gamma, he3z)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2003;
 mt->ProductZA[1] = -2003;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 /*
 ** one alpha exit channel with excited residual
 */
 case 107:
 strcpy(mt->Name, "single alpha channel sum");
 strcpy(mt->Reaction, "(gamma, alpha)");
 mt->NumberOfProducts = -9;
 mt->ProductZA = NULL;
 mt->YieldOfProduct = NULL;
 break;

 case 800:
 strcpy(mt->Name, "alpha + ground state residual");
 strcpy(mt->Reaction, "(gamma, alpha0)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 801:
 strcpy(mt->Name, "alpha + 1st excited state residual");

315

 strcpy(mt->Reaction, "(gamma, alpha1)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 802:
 strcpy(mt->Name, "alpha + 2nd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha2)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 803:
 strcpy(mt->Name, "alpha + 3rd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha3)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 804:
 strcpy(mt->Name, "alpha + 4th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha4)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 805:
 strcpy(mt->Name, "alpha + 5th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha5)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 806:
 strcpy(mt->Name, "alpha + 6th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha6)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 807:

316

 strcpy(mt->Name, "alpha + 7th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha7)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 808:
 strcpy(mt->Name, "alpha + 8th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha8)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 809:
 strcpy(mt->Name, "alpha + 9th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha9)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 810:
 strcpy(mt->Name, "alpha + 10th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha10)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 811:
 strcpy(mt->Name, "alpha + 11th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha11)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 812:
 strcpy(mt->Name, "alpha + 12th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha12)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

317

 case 813:
 strcpy(mt->Name, "alpha + 13th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha13)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 814:
 strcpy(mt->Name, "alpha + 14th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha14)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 815:
 strcpy(mt->Name, "alpha + 15th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha15)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 816:
 strcpy(mt->Name, "alpha + 16th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha16)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 817:
 strcpy(mt->Name, "alpha + 17th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha17)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 818:
 strcpy(mt->Name, "alpha + 18th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha18)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

318

 case 819:
 strcpy(mt->Name, "alpha + 19th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha19)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 820:
 strcpy(mt->Name, "alpha + 20th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha20)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 821:
 strcpy(mt->Name, "alpha + 21st excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha21)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 822:
 strcpy(mt->Name, "alpha + 22nd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha22)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 823:
 strcpy(mt->Name, "alpha + 23rd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha23)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 824:
 strcpy(mt->Name, "alpha + 24th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha24)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;

319

 break;

 case 825:
 strcpy(mt->Name, "alpha + 25th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha25)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 826:
 strcpy(mt->Name, "alpha + 26th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha26)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 827:
 strcpy(mt->Name, "alpha + 27th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha27)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 828:
 strcpy(mt->Name, "alpha + 28th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha28)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 829:
 strcpy(mt->Name, "alpha + 29th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha29)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 830:
 strcpy(mt->Name, "alpha + 30th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha30)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;

320

 mt->YieldOfProduct[1] = 1;
 break;

 case 831:
 strcpy(mt->Name, "alpha + 31st excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha31)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 832:
 strcpy(mt->Name, "alpha + 32nd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha32)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 833:
 strcpy(mt->Name, "alpha + 33rd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha33)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 834:
 strcpy(mt->Name, "alpha + 34th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha34)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 835:
 strcpy(mt->Name, "alpha + 35th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha35)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 836:
 strcpy(mt->Name, "alpha + 36th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha36)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));

321

 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 837:
 strcpy(mt->Name, "alpha + 37th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha37)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 838:
 strcpy(mt->Name, "alpha + 38th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha38)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 839:
 strcpy(mt->Name, "alpha + 39th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha39)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 840:
 strcpy(mt->Name, "alpha + 40th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha40)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 841:
 strcpy(mt->Name, "alpha + 41st excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha41)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 842:
 strcpy(mt->Name, "alpha + 42nd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha42)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;

322

 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 843:
 strcpy(mt->Name, "alpha + 43rd excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha43)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 844:
 strcpy(mt->Name, "alpha + 44th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha44)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 845:
 strcpy(mt->Name, "alpha + 45th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha45)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 846:
 strcpy(mt->Name, "alpha + 46th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha46)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 847:
 strcpy(mt->Name, "alpha + 47th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha47)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 848:
 strcpy(mt->Name, "alpha + 48th excited state residual");
 strcpy(mt->Reaction, "(gamma, alpha48)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;

323

 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 case 849:
 strcpy(mt->Name, "alpha + continuum state residual");
 strcpy(mt->Reaction, "(gamma, alphaz)");
 mt->NumberOfProducts = 2;
 mt->ProductZA = calloc(mt->NumberOfProducts, sizeof(double));
 mt->ProductZA[0] = 2004;
 mt->ProductZA[1] = -2004;
 mt->YieldOfProduct = calloc(mt->NumberOfProducts, sizeof(double));
 mt->YieldOfProduct[0] = 1;
 mt->YieldOfProduct[1] = 1;
 break;

 default:
 printf("ERROR: unexpected case; got mt number %d\n", mt->Number);
 break;

 }

}

afeGetMTProducts.c

#include "endf6.h"
#include "acepnData.h"

void afeGetMTProducts(endfMaterialInformation *mi, aceTable *table);
void afeMF5toLawData(endfMF5Distribution *mf5, aceLawInformation *li);
void afeMF6toLawData(endfSecondary *sec, aceLawInformation *li);
void afeComputeCumulativeProbability(int law, int d, void *lawdata,
 int Interpolation);
void afeComputeKalbachSlopeParameter(endfMaterialInformation *mi,

 aceTable *table, aceLaw44 *law44,
 int pOutZA, double AWRout);

double afeComputeBindingEnergy(int cnZA, int pZA);
int afeIntCompare(const void *v1, const void *v2);
int afeZAtoIPT(int ZA);
double aceComputeYield(double energy, aceYieldInformation *yieldinfo);
double aceInterpretPoint(int interp, double energy, double *egrid, double *vgrid);

int aceFindMT(int number, int numberofmts, aceMTInformation **mt);

/***
** afeGetMTProducts
**
*/
void afeGetMTProducts(endfMaterialInformation *mi, aceTable *table)
{
 int i, j, k, l, m, n;
 int end;
 int count;
 int *mtcount;
 int *zalist;

 double mega = 1.0e6;

 acepnData *data = (acepnData*)table->Data;
 aceProduct *tpProd;
 aceMTReference *mtref;
 aceMTInformation *mt;
 aceYieldInformation *yielddata;
 aceEmissionData *emitdata;

 endfMF1T *tnu;

324

 endfMF1P *pnu;
 endfMF1 *mf1data;
 endfMF4 *mf4data;
 endfMF5 *mf5data;
 endfMF6 *mf6data;

 /*
 ** Count the maximum number of secondaries if every one was different
 */
 for(i = 0, count = 0; i < mi->NumberOfRecords; i++) {
 /* only one product, neutrons, can be specified by mf5 */
 if(mi->Records[i]->MF == 5)
 count++;
 /* explicit number of products from mf6 description */
 else if(mi->Records[i]->MF == 6) {
 mf6data = (endfMF6*)(mi->Records[i]->MFMT);
 count += mf6data->NumberOfSubsections;
 }
 }

 /*
 ** create a list of all secondaries specified
 */
 data->NumberOfProducts = count;
 zalist = (int*)calloc(count, sizeof(int));

 for(i = 0, count = 0; i < mi->NumberOfRecords; i++) {
 if(mi->Records[i]->MF == 5)
 zalist[count++] = 1;
 else if(mi->Records[i]->MF == 6) {
 mf6data = (endfMF6*)(mi->Records[i]->MFMT);
 for(j = 0; j < mf6data->NumberOfSubsections; j++)

zalist[count++] = (int)(mf6data->Secondaries[j].ParticleZA + 0.000001);
 }
 }

 /*
 ** sort list least to greatest
 */
 for(i = 0; i < count; i++)
 for(j = i+1; j < count; j++)
 if(zalist[j] < zalist[i])

qsort((void*)zalist, (size_t)count, sizeof(int), &afeIntCompare);

 /*
 ** remove duplicate entries from list
 */
 for(i = 1; i < count; i++)
 if(zalist[i] == zalist[i-1]) {
 memmove(&zalist[i-1], &zalist[i], (count - i)*sizeof(int));
 count--;
 i--;
 }

 /*
 ** remove all za references greater than alpha (2004) for now
 */
 while(zalist[count - 1] > 2004 && count > 0)
 count--;

 /*
 ** create the product holders
 */
 data->NumberOfProducts = count;
 data->Product = (aceProduct**)calloc(count, sizeof(aceProduct*));
 for(i = 0; i < count; i++) {
 data->Product[i] = (aceProduct*)calloc(1, sizeof(aceProduct));
 data->Product[i]->ZA = zalist[i];
 data->Product[i]->IPT = afeZAtoIPT(zalist[i]);

325

 }

 /*
 ** free the temporary za listing
 */
 free(zalist);

 /*
 ** count the number of reactions involving each product
 */
 for(i = 0; i < mi->NumberOfRecords; i++) {
 if(mi->Records[i]->MF == 5) {
 for(k = 0; k < data->NumberOfProducts; k++)

if(data->Product[k]->ZA == 1)
 (data->Product[k]->NumberOfReactions)++;

 }
 else if(mi->Records[i]->MF == 6) {
 mf6data = (endfMF6*)(mi->Records[i]->MFMT);
 for(j = 0; j < mf6data->NumberOfSubsections; j++) {

for(k = 0; k < data->NumberOfProducts; k++)
 if(data->Product[k]->ZA
 == (int)(mf6data->Secondaries[j].ParticleZA + 0.000001))
 (data->Product[k]->NumberOfReactions)++;

 }
 }
 }

 /*
 ** allocate space for references to said reactions
 */
 for(i = 0; i < data->NumberOfProducts; i++) {
 data->Product[i]->MTReference = (aceMTReference**)
 calloc(data->Product[i]->NumberOfReactions, sizeof(aceMTReference*));
 for(j = 0; j < data->Product[i]->NumberOfReactions; j++)
 data->Product[i]->MTReference[j]

= (aceMTReference*)calloc(1, sizeof(aceMTReference));
 }

 /*
 ** create a temp count for each product to ensure don't exceed count above
 */
 mtcount = (int*)calloc(data->NumberOfProducts, sizeof(int));

 /*
 ** connect the appropriate mt reference and fill in the yield and emission data
 */
 for(i = 0; i < mi->NumberOfRecords; i++) {

 if(mi->Records[i]->MF == 5) {

 mf5data = (endfMF5*)(mi->Records[i]->MFMT);

 for(k = 0; k < data->NumberOfProducts; k++)
if(data->Product[k]->ZA == 1)
 break;

 if(k >= data->NumberOfProducts)
break;

 switch(mi->Records[i]->MT) {
 case 4:

l = aceFindMT(91, data->NumberOfMTs, data->MT);
break;

 case 103:
l = aceFindMT(649, data->NumberOfMTs, data->MT);
break;

 case 104:
l = aceFindMT(699, data->NumberOfMTs, data->MT);
break;

 case 105:
l = aceFindMT(749, data->NumberOfMTs, data->MT);
break;

326

 case 106:
l = aceFindMT(799, data->NumberOfMTs, data->MT);
break;

 case 107:
l = aceFindMT(849, data->NumberOfMTs, data->MT);
break;

 default:
l = aceFindMT(mi->Records[i]->MT, data->NumberOfMTs, data->MT);
break;

 }
 if(l < 0) {

printf("ERROR: mt reference by mf5 mt%d not found in ace table\n",
mi->Records[i]->MT);

exit(-1);
 }

 if(mtcount[k] >= data->Product[k]->NumberOfReactions) {
printf("ERROR: trying to fill more reactions that found\n");
exit(-1);

 }

 data->Product[k]->MTReference[mtcount[k]]->Type = 5;
 data->Product[k]->MTReference[mtcount[k]]->MT = data->MT[l];

 data->Product[k]->MTReference[mtcount[k]]->Yield
= (aceYieldInformation*)calloc(1, sizeof(aceYieldInformation));

 yielddata = data->Product[k]->MTReference[mtcount[k]]->Yield;

 if(data->MT[l]->Number == 18) {
for(m = 0; m < mi->NumberOfRecords; m++)
 if(mi->Records[m]->MF == 1) {
 if(mi->Records[m]->MT == 452) {
 mf1data = (endfMF1*)(mi->Records[m]->MFMT);
 tnu = (endfMF1T*)mf1data->NuParameters;
 break;
 }
 else if(mi->Records[m]->MT == 456) {
 mf1data = (endfMF1*)(mi->Records[m]->MFMT);
 pnu = (endfMF1P*)mf1data->NuParameters;
 break;
 }
 }
if(m == mi->NumberOfRecords) {
 printf("ERROR: fission cross section given without nubar\n");
 exit(-1);
}

if(mi->Records[m]->MT == 452) {

 if(tnu->NumberOfInterpolationRegions == 0) {
 printf("ERROR: total nu with poly coeff. not currently supported\n");
 exit(-1);
 }

 printf("NOTE: fission spectrum will use total nu\n");

 yielddata->NumberOfRegions = tnu->NumberOfInterpolationRegions;
 yielddata->NumberOfPointsInRegion
 = (int*)calloc(tnu->NumberOfInterpolationRegions, sizeof(int));
 yielddata->InterpolationSchemeInRegion
 = (int*)calloc(tnu->NumberOfInterpolationRegions, sizeof(int));
 for(n = 0; n < tnu->NumberOfInterpolationRegions; n++) {
 yielddata->NumberOfPointsInRegion[n]
 = tnu->NumberOfPointsInRegion[n];
 yielddata->InterpolationSchemeInRegion[n]
 = tnu->InterpolationSchemeInRegion[n];
 }

 yielddata->NumberOfYields = tnu->NumberOfPoints;
 yielddata->Energy
 = (double*)calloc(yielddata->NumberOfYields, sizeof(double));

327

 yielddata->Yield
 = (double*)calloc(yielddata->NumberOfYields, sizeof(double));
 for(n = 0; n < yielddata->NumberOfYields; n++) {
 yielddata->Energy[n] = tnu->Energy[n] / mega;
 yielddata->Yield[n] = tnu->Nu[n];
 }
}
else if(mi->Records[m]->MT == 456) {

 printf("NOTE: fission spectrum will use prompt nu\n");

 yielddata->NumberOfRegions = pnu->NumberOfInterpolationRegions;
 yielddata->NumberOfPointsInRegion
 = (int*)calloc(pnu->NumberOfInterpolationRegions, sizeof(int));
 yielddata->InterpolationSchemeInRegion
 = (int*)calloc(pnu->NumberOfInterpolationRegions, sizeof(int));
 for(n = 0; n < pnu->NumberOfInterpolationRegions; n++) {
 yielddata->NumberOfPointsInRegion[n]
 = pnu->NumberOfPointsInRegion[n];
 yielddata->InterpolationSchemeInRegion[n]
 = pnu->InterpolationSchemeInRegion[n];
 }

 yielddata->NumberOfYields = pnu->NumberOfPoints;
 yielddata->Energy
 = (double*)calloc(yielddata->NumberOfYields, sizeof(double));
 yielddata->Yield
 = (double*)calloc(yielddata->NumberOfYields, sizeof(double));
 for(n = 0; n < yielddata->NumberOfYields; n++) {
 yielddata->Energy[n] = pnu->Energy[n] / mega;
 yielddata->Yield[n] = pnu->Nu[n];
 }
}

 } /* end of if fission, set nu as yield */
 else {

yielddata->NumberOfRegions = 1;
yielddata->NumberOfPointsInRegion = (int*)calloc(1, sizeof(int));
yielddata->InterpolationSchemeInRegion = (int*)calloc(1, sizeof(int));
yielddata->NumberOfPointsInRegion[0] = 2;
yielddata->InterpolationSchemeInRegion[0] = 2;

yielddata->NumberOfYields = 2;
yielddata->Energy = (double*)calloc(2, sizeof(double));
yielddata->Yield = (double*)calloc(2, sizeof(double));
yielddata->Energy[0] = data->Energy[0];
yielddata->Energy[1] = data->Energy[data->NumberOfEnergies-1];
for(m = 0; m < data->MT[l]->NumberOfProducts; m++)
 if(data->MT[l]->ProductZA[m] == 1)
 break;
yielddata->Yield[0] = data->MT[l]->YieldOfProduct[m];
yielddata->Yield[1] = data->MT[l]->YieldOfProduct[m];

 }

 data->Product[k]->MTReference[mtcount[k]]->Emit
= (aceEmissionData*)calloc(1, sizeof(aceEmissionData));

 emitdata = data->Product[k]->MTReference[mtcount[k]]->Emit;

 for(m = 0; m < mi->NumberOfRecords; m++)
if(mi->Records[m]->MF == 4
 && mi->Records[m]->MT == mi->Records[i]->MT)
 break;

 if(m >= mi->NumberOfRecords) {
printf("ERROR: no corresponding mf4 data for mf5 mt%d\n",

data->MT[l]->Number);
exit(-1);

 }

 /* set coordinate system -1 for CM or 1 for Lab */
 mf4data = (endfMF4*)mi->Records[m]->MFMT;
 if(mf4data->FrameOfReference == 3) {

if(data->Product[k]->ZA > 2004)

328

 emitdata->CoordinateSystem = 1;
else
 emitdata->CoordinateSystem = -1;

 }
 else if(mf4data->FrameOfReference == 2)

emitdata->CoordinateSystem = -1;
 else

emitdata->CoordinateSystem = 1;

 emitdata->AngularInformationType = 0;
 emitdata->AngularInformation = NULL;

 count = mf5data->NumberOfPartialEnergyDistributions;
 emitdata->NumberOfEnergyLaws = count;
 emitdata->LawInformation

= (aceLawInformation*)calloc(count, sizeof(aceLawInformation));

 for(m = 0; m < count; m++) {

emitdata->LawInformation[m].NumberOfRegions
 = mf5data->Distributions[m].NumberOfEnergyRegions;
emitdata->LawInformation[m].NumberOfPointsInRegion
 = (int*)calloc(emitdata->LawInformation[m].NumberOfRegions,

 sizeof(int));
emitdata->LawInformation[m].InterpolationSchemeInRegion
 = (int*)calloc(emitdata->LawInformation[m].NumberOfRegions,

 sizeof(int));
for(n = 0; n < emitdata->LawInformation[m].NumberOfRegions; n++) {
 emitdata->LawInformation[m].NumberOfPointsInRegion[n]
 = mf5data->Distributions[m].NumberOfEnergyPointsInRegion[n];

 emitdata->LawInformation[m].InterpolationSchemeInRegion[n]
 = mf5data->Distributions[m].InterpolationSchemeInEnergyRegion[n];
}

emitdata->LawInformation[m].NumberOfEnergies
 = mf5data->Distributions[m].NumberOfEnergyPoints;
emitdata->LawInformation[m].Energy
 = (double*)calloc(emitdata->LawInformation[m].NumberOfEnergies,

 sizeof(double));
emitdata->LawInformation[m].Probability
 = (double*)calloc(emitdata->LawInformation[m].NumberOfEnergies,

 sizeof(double));
for(n = 0; n < emitdata->LawInformation[m].NumberOfEnergies; n++) {
 emitdata->LawInformation[m].Energy[n]
 = mf5data->Distributions[m].Energy[n] / mega;
 emitdata->LawInformation[m].Probability[n]
 = mf5data->Distributions[m].EnergyProbability[n] * mega;
}

afeMF5toLawData(&(mf5data->Distributions[m]),
 &(emitdata->LawInformation[m]));

 }

 mtcount[k]++;

 } /* end of if mf5 record */

 else if(mi->Records[i]->MF == 6) {

 mf6data = (endfMF6*)(mi->Records[i]->MFMT);

 for(j = 0; j < mf6data->NumberOfSubsections; j++) {

for(k = 0; k < data->NumberOfProducts; k++)
 if(data->Product[k]->ZA
 == (int)(mf6data->Secondaries[j].ParticleZA + 0.000001))
 break;
if(k >= data->NumberOfProducts)
 continue;

329

switch(mi->Records[i]->MT) {
case 4:
 l = aceFindMT(91, data->NumberOfMTs, data->MT);
 break;
case 103:
 l = aceFindMT(649, data->NumberOfMTs, data->MT);
 break;
case 104:
 l = aceFindMT(699, data->NumberOfMTs, data->MT);
 break;
case 105:
 l = aceFindMT(749, data->NumberOfMTs, data->MT);
 break;
case 106:
 l = aceFindMT(799, data->NumberOfMTs, data->MT);
 break;
case 107:
 l = aceFindMT(849, data->NumberOfMTs, data->MT);
 break;
default:
 l = aceFindMT(mi->Records[i]->MT, data->NumberOfMTs, data->MT);
 break;
}
if(l < 0) {
 printf("ERROR: mt reference by mf6 mt%d not found in ace table\n",

 mi->Records[i]->MT);
 exit(-1);
}

if(mtcount[k] >= data->Product[k]->NumberOfReactions) {
 printf("ERROR: trying to fill more reactions that found\n");
 exit(-1);
}

data->Product[k]->MTReference[mtcount[k]]->Type = 16;
data->Product[k]->MTReference[mtcount[k]]->MT = data->MT[l];

data->Product[k]->MTReference[mtcount[k]]->Yield
= (aceYieldInformation*)calloc(1, sizeof(aceYieldInformation));
yielddata = data->Product[k]->MTReference[mtcount[k]]->Yield;

yielddata->NumberOfRegions = mf6data->Secondaries[j].NumberOfYieldRegions;
yielddata->NumberOfPointsInRegion
 = (int*)calloc(yielddata->NumberOfRegions, sizeof(int));
yielddata->InterpolationSchemeInRegion
 = (int*)calloc(yielddata->NumberOfRegions, sizeof(int));
for(m = 0; m < yielddata->NumberOfRegions; m++) {
 yielddata->NumberOfPointsInRegion[m]
 = mf6data->Secondaries[j].NumberOfYieldPointsInRegion[m];
 yielddata->InterpolationSchemeInRegion[m]
 = mf6data->Secondaries[j].InterpolationSchemeInYieldRegion[m];
}

yielddata->NumberOfYields = mf6data->Secondaries[j].NumberOfYieldPoints;
yielddata->Energy
 = (double*)calloc(yielddata->NumberOfYields, sizeof(double));
yielddata->Yield
 = (double*)calloc(yielddata->NumberOfYields, sizeof(double));
for(m = 0; m < yielddata->NumberOfYields; m++) {
 yielddata->Energy[m] = mf6data->Secondaries[j].YieldEnergy[m] / mega;
 yielddata->Yield[m] = mf6data->Secondaries[j].Yield[m];
}

data->Product[k]->MTReference[mtcount[k]]->Emit
 = (aceEmissionData*)calloc(1, sizeof(aceEmissionData));
emitdata = data->Product[k]->MTReference[mtcount[k]]->Emit;

/* set coordinate system -1 for CM or 1 for Lab */
if(mf6data->FrameOfReference == 3) {
 if(data->Product[k]->ZA > 2004)
 emitdata->CoordinateSystem = 1;

330

 else
 emitdata->CoordinateSystem = -1;
}
else if(mf6data->FrameOfReference == 2)
 emitdata->CoordinateSystem = -1;
else
 emitdata->CoordinateSystem = 1;

emitdata->AngularInformationType = 0;
emitdata->AngularInformation = NULL;

emitdata->NumberOfEnergyLaws = 1;
emitdata->LawInformation
 = (aceLawInformation*)calloc(1, sizeof(aceLawInformation));

emitdata->LawInformation[0].NumberOfRegions = 1;
emitdata->LawInformation[0].NumberOfPointsInRegion
 = (int*)calloc(1, sizeof(int));
emitdata->LawInformation[0].InterpolationSchemeInRegion
 = (int*)calloc(1, sizeof(int));
emitdata->LawInformation[0].NumberOfPointsInRegion[0] = 2;
emitdata->LawInformation[0].InterpolationSchemeInRegion[0] = 2;

emitdata->LawInformation[0].NumberOfEnergies = 2;
emitdata->LawInformation[0].Energy
 = (double*)calloc(2, sizeof(double));
emitdata->LawInformation[0].Probability
 = (double*)calloc(2, sizeof(double));
emitdata->LawInformation[0].Energy[0]
 = data->Energy[0];
emitdata->LawInformation[0].Energy[1]
 = data->Energy[data->NumberOfEnergies-1];
emitdata->LawInformation[0].Probability[0] = 1;
emitdata->LawInformation[0].Probability[1] = 1;

afeMF6toLawData(&(mf6data->Secondaries[j]),
 &(emitdata->LawInformation[0]));

if(emitdata->LawInformation[0].Number == 44) {
 afeComputeKalbachSlopeParameter(mi, table,

 (aceLaw44*)emitdata->LawInformation[0].LawData,
 data->Product[k]->ZA,
 mf6data->Secondaries[j].ParticleAWR);

 emitdata->AngularInformationType = -1;
}

mtcount[k]++;

 } /* end of for j subsections of mf6 data */

 } /* end of else if mf6 record */

 } /* end of for i records in endf material */

 /*
 ** compute the production cross section for each product
 */
 for(i = 0; i < data->NumberOfProducts; i++) {

 data->Product[i]->StartingIndex = 1;
 data->Product[i]->NumberOfEntries = data->NumberOfEnergies;

 data->Product[i]->ProductionCrossSection
 = (double*)calloc(data->NumberOfEnergies, sizeof(double));

 for(j = 0; j < data->Product[i]->NumberOfReactions; j++) {

 mtref = data->Product[i]->MTReference[j];

 for(k = mtref->MT->StartingIndex - 1;
 k < (mtref->MT->StartingIndex - 1 + mtref->MT->NumberOfEntries);

331

 k++)
data->Product[i]->ProductionCrossSection[k]
 += aceComputeYield(mtref->MT->Energy[k], mtref->Yield)
 * mtref->MT->CrossSection[k];

 }

 end = data->Product[i]->NumberOfEntries;
 for(j = 0; j < end; j++) {
 if(data->Product[i]->ProductionCrossSection[j] == 0

 && data->Product[i]->ProductionCrossSection[j+1] == 0) {
(data->Product[i]->StartingIndex)++;
(data->Product[i]->NumberOfEntries)--;

 }
 else

j = end;
 }

 }

 for(i = 0; i < data->NumberOfProducts - 1; i++)
 for(j = i+1; j < data->NumberOfProducts; j++)
 if(data->Product[i]->IPT > data->Product[j]->IPT) {

tpProd = data->Product[j];
data->Product[j] = data->Product[i];
data->Product[i] = tpProd;

 }

}

/***
** aceComputeYield
**
*/
double aceComputeYield(double energy, aceYieldInformation *yieldinfo)
{
 int i, j;
 int points;

 for(i = 0; i < yieldinfo->NumberOfYields; i++)
 if(energy == yieldinfo->Energy[i])
 return yieldinfo->Yield[i];
 else if(energy < yieldinfo->Energy[i])
 break;

 if(i == 0) {
 printf("WARNING: received energy less than first yield energy\n");
 return yieldinfo->Yield[0];
 }
 else if (i == yieldinfo->NumberOfYields) {
 printf("WARNING: received energy greater than last yield energy\n");
 return yieldinfo->Yield[yieldinfo->NumberOfYields-1];
 }
 else {
 points = yieldinfo->NumberOfPointsInRegion[0];
 for(j = 0; i > points && j < yieldinfo->NumberOfRegions; j++)

 points += yieldinfo->NumberOfPointsInRegion[j];

 return aceInterpretPoint(yieldinfo->InterpolationSchemeInRegion[j],
 energy, &(yieldinfo->Energy[i-1]),
 &(yieldinfo->Yield[i-1]));

 }

}

/***
** aceInterpretPoint
**
*/

332

double aceInterpretPoint(int interp, double energy, double *egrid, double *vgrid)
{
 switch(interp) {

 case 1: /* histogram y in x */

 return vgrid[0];

 case 2: /* lin x lin y */

 return ((energy - egrid[0])
 / (egrid[1] - egrid[0])
 * (vgrid[1] - vgrid[0])
 + vgrid[0]
);

 case 3: /* log x log y */

 return (exp(log(energy / egrid[0])
 / log(egrid[1] / egrid[0])
 * log(vgrid[1] / vgrid[0])
 + log(vgrid[0])
)

);

 case 4: /* log x lin y */

 return (log(energy / egrid[0])
 / log(egrid[1] / egrid[0])
 * (vgrid[1] - vgrid[0])
 + (vgrid[0])
);

 case 5: /* lin x log y */

 return (exp((energy - egrid[0])
 / (egrid[1] - egrid[0])
 * log(vgrid[1] / vgrid[0])
 + log(vgrid[0])
)

);
 }
}

/***
** afeMF5toLawData
**
*/
void afeMF5toLawData(endfMF5Distribution *mf5d, aceLawInformation *li)
{
 int i;

 double mega = 1.0e6;

 aceLaw7 *law7;
 aceLaw9 *law9;

 endfMF5LF7 *mf5lf7;
 endfMF5LF9 *mf5lf9;

 switch(mf5d->EnergyDistributionLaw) {

 case 1:
 break;

 case 5:
 break;

 case 7:

333

 li->Number = 7;
 li->Name = (char*)calloc(strlen("simple Maxwell fission spectrum") + 1,

 sizeof(char));
 strcpy(li->Name, "simple Maxwell fission spectrum");
 law7 = (aceLaw7*)calloc(1, sizeof(aceLaw7));
 li->LawData = (void*)law7;
 law7->RestrictionEnergy = mf5d->UpperEnergyDelta / mega;
 mf5lf7 = (endfMF5LF7*)mf5d->Parameters;
 law7->NumberOfRegions = mf5lf7->NumberOfThetaRegions;
 law7->NumberOfPointsInRegion
 = (int*)calloc(law7->NumberOfRegions, sizeof(int));
 law7->InterpolationSchemeInRegion
 = (int*)calloc(law7->NumberOfRegions, sizeof(int));
 for(i = 0; i < law7->NumberOfRegions; i++) {
 law7->NumberOfPointsInRegion[i]

= mf5lf7->NumberOfThetaPointsInRegion[i];
 law7->InterpolationSchemeInRegion[i]

= mf5lf7->InterpolationSchemeInThetaRegion[i];
 }
 law7->NumberOfIncidentEnergies = mf5lf7->NumberOfThetaPoints;
 law7->IncidentEnergy
 = (double*)calloc(law7->NumberOfIncidentEnergies, sizeof(double));
 law7->Temperature
 = (double*)calloc(law7->NumberOfIncidentEnergies, sizeof(double));
 for(i = 0; i < law7->NumberOfIncidentEnergies; i++) {
 law7->IncidentEnergy[i] = mf5lf7->ThetaEnergy[i] / mega;
 law7->Temperature[i] = mf5lf7->Theta[i];
 }
 break;

 case 9:
 li->Number = 9;
 li->Name = (char*)calloc(strlen("evaporation spectrum") + 1,

 sizeof(char));
 strcpy(li->Name, "evaporation spectrum");
 law9 = (aceLaw9*)calloc(1, sizeof(aceLaw9));
 li->LawData = (void*)law9;
 law9->RestrictionEnergy = mf5d->UpperEnergyDelta / mega;
 mf5lf9 = (endfMF5LF9*)mf5d->Parameters;
 law9->NumberOfRegions = mf5lf9->NumberOfThetaRegions;
 law9->NumberOfPointsInRegion
 = (int*)calloc(law9->NumberOfRegions, sizeof(int));
 law9->InterpolationSchemeInRegion
 = (int*)calloc(law9->NumberOfRegions, sizeof(int));
 for(i = 0; i < law9->NumberOfRegions; i++) {
 law9->NumberOfPointsInRegion[i]

= mf5lf9->NumberOfThetaPointsInRegion[i];
 law9->InterpolationSchemeInRegion[i]

= mf5lf9->InterpolationSchemeInThetaRegion[i];
 }
 law9->NumberOfIncidentEnergies = mf5lf9->NumberOfThetaPoints;
 law9->IncidentEnergy
 = (double*)calloc(law9->NumberOfIncidentEnergies, sizeof(double));
 law9->Temperature
 = (double*)calloc(law9->NumberOfIncidentEnergies, sizeof(double));
 for(i = 0; i < law9->NumberOfIncidentEnergies; i++) {
 law9->IncidentEnergy[i] = mf5lf9->ThetaEnergy[i] / mega;
 law9->Temperature[i] = mf5lf9->Theta[i];
 }
 break;

 case 11:
 break;

 case 12:
 break;

 default:
 break;

 }

334

}

/***
** afeMF6toLawData
**
*/
void afeMF6toLawData(endfSecondary *sec, aceLawInformation *li)
{
 int i, j;

 double mega = 1.0e6;

 aceLaw4 *law4;
 aceLaw44 *law44;

 endfLaw1 *elaw1;

 switch(sec->ReactionLaw) {

 case 1:

 elaw1 = (endfLaw1*)sec->LawData;

 switch(elaw1->AngularRepresentation) {
 case 1:
 li->Number = 4;
 li->Name = (char*)calloc(strlen("continuous tabular spectrum")+1,

sizeof(char));
 strcpy(li->Name, "continuous tabular spectrum");
 law4 = (aceLaw4*)calloc(1, sizeof(aceLaw4));
 li->LawData = (void*)law4;
 law4->NumberOfRegions = elaw1->NumberOfSecEnergyRegions;
 law4->NumberOfPointsInRegion

= (int*)calloc(law4->NumberOfRegions, sizeof(int));
 law4->InterpolationSchemeInRegion

= (int*)calloc(law4->NumberOfRegions, sizeof(int));
 for(i = 0; i < law4->NumberOfRegions; i++) {

law4->NumberOfPointsInRegion[i]
 = elaw1->NumberOfSecEnergyPointsInRegion[i];
law4->InterpolationSchemeInRegion[i]
 = elaw1->InterpolationSchemeInSecEnergyRegion[i];

 }
 law4->NumberOfIncidentEnergies = elaw1->NumberOfSecEnergyPoints;
 law4->Distribution = (aceLaw4Distribution*)

calloc(law4->NumberOfIncidentEnergies, sizeof(aceLaw4Distribution));
 for(i = 0; i < law4->NumberOfIncidentEnergies; i++) {

if(elaw1->ES[i].NumberOfAngularParameters != 0) {
 printf("ERROR: MF6 Law 1, Lang 1 and NA not 0\n");
 printf(" Will process, but ignore angular information\n");
}

law4->Distribution[i].IncidentEnergy = elaw1->ES[i].IncidentEnergy / mega;
law4->Distribution[i].NumberOfDiscreteEmissions
 = elaw1->ES[i].NumberOfDiscreteEmissions;
law4->Distribution[i].InterpolationScheme
 = elaw1->InterpolationSchemeForSecEnergy;

law4->Distribution[i].NumberOfPoints
 = elaw1->ES[i].NumberOfEmissionEnergies;
law4->Distribution[i].EmissionEnergy = (double*)
 calloc(law4->Distribution[i].NumberOfPoints, sizeof(double));
law4->Distribution[i].Probability = (double*)
 calloc(law4->Distribution[i].NumberOfPoints, sizeof(double));
law4->Distribution[i].CumulativeProbability = (double*)
 calloc(law4->Distribution[i].NumberOfPoints, sizeof(double));
for(j = 0; j < law4->Distribution[i].NumberOfPoints; j++) {
 law4->Distribution[i].EmissionEnergy[j]

335

 = elaw1->ES[i].EmissionEnergy[j] / mega;
 law4->Distribution[i].Probability[j]
 = elaw1->ES[i].Parameters[j][0] * mega;
}

afeComputeCumulativeProbability(4, i, (void*)law4,
 elaw1->InterpolationSchemeForSecEnergy);
 }
 break;

 case 2:
 li->Number = 44;
 li->Name = (char*)

calloc(strlen("correlated Kalbach energy-angle spectrum")+1,
sizeof(char));

 strcpy(li->Name, "correlated Kalbach energy-angle spectrum");
 law44 = (aceLaw44*)calloc(1, sizeof(aceLaw44));
 li->LawData = (void*)law44;

 law44->NumberOfRegions = elaw1->NumberOfSecEnergyRegions;
 law44->NumberOfPointsInRegion

= (int*)calloc(law44->NumberOfRegions, sizeof(int));
 law44->InterpolationSchemeInRegion

= (int*)calloc(law44->NumberOfRegions, sizeof(int));
 for(i = 0; i < law44->NumberOfRegions; i++) {

law44->NumberOfPointsInRegion[i]
 = elaw1->NumberOfSecEnergyPointsInRegion[i];
law44->InterpolationSchemeInRegion[i]
 = elaw1->InterpolationSchemeInSecEnergyRegion[i];

 }

 law44->NumberOfIncidentEnergies = elaw1->NumberOfSecEnergyPoints;
 law44->Distribution = (aceLaw44Distribution*)

calloc(law44->NumberOfIncidentEnergies, sizeof(aceLaw44Distribution));
 for(i = 0; i < law44->NumberOfIncidentEnergies; i++) {

if(elaw1->ES[i].NumberOfAngularParameters != 1) {
 printf("ERROR: MF6 Law 1, Lang 1 and NA not 1\n");
 printf(" Will process, but ignore angular information\n");
}

law44->Distribution[i].IncidentEnergy = elaw1->ES[i].IncidentEnergy / mega;
law44->Distribution[i].NumberOfDiscreteEmissions
 = elaw1->ES[i].NumberOfDiscreteEmissions;
law44->Distribution[i].InterpolationScheme
 = elaw1->InterpolationSchemeForSecEnergy;

law44->Distribution[i].NumberOfPoints
 = elaw1->ES[i].NumberOfEmissionEnergies;
law44->Distribution[i].EmissionEnergy = (double*)
 calloc(law44->Distribution[i].NumberOfPoints, sizeof(double));
law44->Distribution[i].Probability = (double*)
 calloc(law44->Distribution[i].NumberOfPoints, sizeof(double));
law44->Distribution[i].CumulativeProbability = (double*)
 calloc(law44->Distribution[i].NumberOfPoints, sizeof(double));
law44->Distribution[i].PrecompoundFraction = (double*)
 calloc(law44->Distribution[i].NumberOfPoints, sizeof(double));
law44->Distribution[i].AngularDistributionSlope = (double*)
 calloc(law44->Distribution[i].NumberOfPoints, sizeof(double));

for(j = 0; j < law44->Distribution[i].NumberOfPoints; j++) {
 law44->Distribution[i].EmissionEnergy[j]
 = elaw1->ES[i].EmissionEnergy[j] / mega;
 law44->Distribution[i].Probability[j]
 = elaw1->ES[i].Parameters[j][0] * mega;
 law44->Distribution[i].PrecompoundFraction[j]
 = elaw1->ES[i].Parameters[j][1];
}

afeComputeCumulativeProbability(44, i, (void*)law44,
 elaw1->InterpolationSchemeForSecEnergy);

336

 }
 break;
 case 11:
 case 12:
 case 13:
 case 14:
 case 15:
 default:
 printf("ERROR: don't know case lang %d in law 1 yet\n",

 elaw1->AngularRepresentation);
 }
 break;

 default:
 printf("ERROR: don't know case law %d yet\n", sec->ReactionLaw);
 break;
 }
}

/***
** afeComputeKalbachSlopeParameter
**
*/
void afeComputeKalbachSlopeParameter(endfMaterialInformation *mi,

 aceTable *table, aceLaw44 *law44,
 int pOutZA, double AWRout)

{
 int i, j;
 int pInZA, tnZA, cnZA, photonuclear;

 double Sa, Sb, Ia, Ib, Ea, Eb, EMa, EMb;
 double AWRtn, AWRrn, AWRin;
 double E1, E3;

 /*
 ** if photon incident on nucleus, treat as neutron and modify
 ** in accordance with Chadwick et. al., J. Nuc. Sci. & Tech.,
 ** Vol. 32, No. 11, pp. 1154-1158.
 */
 if(mi->IncidentParticleZA == 0) {
 pInZA = 1;
 AWRin = 1.0;
 photonuclear = 1;
 }
 else {
 pInZA = mi->IncidentParticleZA;
 AWRin = mi->IncidentParticleAWR;
 photonuclear = 0;
 }

 /* the offset is to ensure that ZA is not rounded down */
 tnZA = (int)(mi->TargetZA + 0.000001);

 cnZA = (tnZA / 1000 + pInZA / 1000) * 1000
 + (tnZA % 1000 + pInZA % 1000);

 Sa = afeComputeBindingEnergy(cnZA, pInZA);
 Sb = afeComputeBindingEnergy(cnZA, pOutZA);

 switch(pInZA) {
 case 1:
 case 1001:
 case 1002:
 EMa = 1.0;
 break;
 case 2004:
 EMa = 0.0;
 break;
 default:
 printf("ERROR: can't find EMa for ZA %d\n", pInZA);

337

 exit(-1);
 }

 switch(pOutZA) {
 case 1:
 EMb = 0.5;
 break;
 case 1001:
 case 1002:
 case 1003:
 case 2003:
 EMb = 1.0;
 break;
 case 2004:
 EMb = 2.0;
 break;
 default:
 printf("ERROR: can't find EMa for ZA %d\n", pInZA);
 exit(-1);
 }

 AWRtn = mi->TargetAWR;
 AWRrn = AWRin + AWRtn - AWRout;

 for(i = 0; i < law44->NumberOfIncidentEnergies; i++) {

 Ea = law44->Distribution[i].IncidentEnergy * AWRtn
 / (AWRtn + AWRin) + Sa;

 if(Ea > 130.0)
 E1 = 130.0;
 else
 E1 = Ea;

 if(Ea > 41.0)
 E3 = 41.0;
 else
 E3 = Ea;

 for(j = 0; j < law44->Distribution[i].NumberOfPoints; j++) {

 Eb = law44->Distribution[i].EmissionEnergy[j] * (AWRrn + AWRout)
 / AWRrn + Sb;

 law44->Distribution[i].AngularDistributionSlope[j]
= 0.04 * E1 * Eb / Ea
 + 1.8e-6 * pow(E1 * Eb / Ea, 3.0)
 + 6.7e-7 * EMa * EMb * pow(E3 * Eb / Ea, 4.0);

 }
 }

 if(photonuclear) {
 for(i = 0; i < law44->NumberOfIncidentEnergies; i++) {
 for(j = 0; j < law44->Distribution[i].NumberOfPoints; j++) {

E1 = sqrt(law44->Distribution[i].IncidentEnergy / 1878.0);
E3 = 9.3 / sqrt(law44->Distribution[i].EmissionEnergy[j]);
if(E3 > 4.0) E3 = 4.0;
if(E3 < 1.0) E3 = 1.0;
law44->Distribution[i].AngularDistributionSlope[j] *= E1*E3;

 }
 }
 }

}

/***
** afeComputeBindingEnergy
**
*/
double afeComputeBindingEnergy(int cnZA, int pZA)

338

{

 double AC, ZC, NC, AA, ZA, NA, I;
 double S, S1, S2, S3, S4, S5, S6;

 ZC = cnZA / 1000;
 AC = cnZA % 1000;
 NC = AC - ZC;

 ZA = ZC - pZA / 1000;
 AA = AC - pZA % 1000;
 NA = AA - ZA;

 switch(pZA) {
 case 1:
 case 1001:
 I = 0.0;
 break;
 case 1002:
 I = 2.22;
 break;
 case 1003:
 I = 8.48;
 break;
 case 2003:
 I = 7.72;
 break;
 case 2004:
 I = 28.3;
 break;
 default:
 printf("ERROR: can't find nucleon binding energy I",
 " in separation energy for ZA %d\n", pZA);
 exit(-1);
 }

 S1 = (AC - AA);

 S2 = (NC - ZC) * (NC - ZC) / AC;
 S2 -= (NA - ZA) * (NA - ZA) / AA;

 S3 = pow(AC, (2./3.)) - pow(AA, (2./3.));

 S4 = (NC - ZC) * (NC - ZC) / pow(AC, (4./3.));
 S4 -= (NA - ZA) * (NA - ZA) / pow(AA, (4./3.));

 S5 = ZC * ZC / pow(AC, (1./3.));
 S5 -= ZA * ZA / pow(AA, (1./3.));

 S6 = (ZC * ZC / AC) - (ZA * ZA / AA);

 S = 15.68*S1 - 28.07*S2 - 18.56*S3 + 33.22*S4 -0.717*S5 +1.211*S6 - I;

 return S;

}

/***
** afeComputeCumulativeProbability
**
*/
void afeComputeCumulativeProbability(int law, int d, void *lawdata,
 int Interpolation)
{
 int i;
 int count;

 double temp1, temp2;
 double runtot;

339

 double *energy;
 double *prob;
 double *cumprob;

 aceLaw4 *law4;
 aceLaw44 *law44;

 switch(law) {
 case 4:
 count = ((aceLaw4*)lawdata)->Distribution[d].NumberOfPoints;
 energy = ((aceLaw4*)lawdata)->Distribution[d].EmissionEnergy;
 prob = ((aceLaw4*)lawdata)->Distribution[d].Probability;
 cumprob = ((aceLaw4*)lawdata)->Distribution[d].CumulativeProbability;
 break;
 case 44:
 count = ((aceLaw44*)lawdata)->Distribution[d].NumberOfPoints;
 energy = ((aceLaw44*)lawdata)->Distribution[d].EmissionEnergy;
 prob = ((aceLaw44*)lawdata)->Distribution[d].Probability;
 cumprob = ((aceLaw44*)lawdata)->Distribution[d].CumulativeProbability;
 break;
 default:
 printf("ERROR: can't compute cumulative probability for law %d\n", law);
 exit(-1);
 }

 if(Interpolation != 1) { /* Linear-linear interpolation */
 for(i = 1, runtot = 0; i < count; i++)
 runtot += .5 * (prob[i] + prob[i-1]) * (energy[i] - energy[i-1]);
 }
 else { /* Histogram interpolation */
 for(i = 1, runtot = 0; i < count; i++)
 runtot += prob[i-1] * (energy[i] - energy[i-1]);
 }

 if(abs(runtot - 1.0) > 0.01)
 printf("WARNING: distribution %d not normalized\n", d);

 /* Renormalize all distributions for most accurate machine computation */
 for(i = 0; i < count; i++)
 prob[i] = prob[i] / runtot;

 if(Interpolation != 1) {
 for(i = 1, cumprob[0] = 0.0; i < count; i++)
 cumprob[i] = cumprob[i-1]

+ .5 * (prob[i] + prob[i-1]) * (energy[i] - energy[i-1]);
 }
 else {
 for(i = 1, cumprob[0] = 0.0; i < count; i++)
 cumprob[i] = cumprob[i-1] + prob[i-1] * (energy[i] - energy[i-1]);
 }

}

/***
** afeZAtoIPT
**
*/
int afeZAtoIPT(int ZA)
{
 switch(ZA) {
 case 0:
 return 2;
 case 1:
 return 1;
 case 1000:
 return 3;
 case 1001:
 return 9;

340

 case 1002:
 return 31;
 case 1003:
 return 32;
 case 2003:
 return 33;
 case 2004:
 return 34;
 default:
 printf("ERROR: afeZAtoIPT:can't convert ZA '%d' to an IPT\n", ZA);
 return(-1);
 }

}

/***
** afeIntCompare
**
*/
int afeIntCompare(const void *v1, const void *v2)
{
 if(*((int*)v1) < *((int*)v2))
 return -1;
 else if(*((int*)v1) > *((int*)v2))
 return 1;
 else
 return 0;

}

afeMakeNTable.c

#include "endf6.h"
#include "acepnData.h"

void afeMakeNTable(endfMaterialInformation *mi, aceTable *table);

void afeCollectEnergies(endfMaterialInformation *mi,
 int *count, double **energy);

void afeGetMTInformation(endfMaterialInformation *mi, acepnData *data);
void afeGetMTProducts(endfMaterialInformation *mi, aceTable *table);
void afeCreateNTableHeader(endfMaterialInformation *mi, aceTable *table);
void afeVerifyNTable(aceTable *table);

/***
** afeMakeNTable
**
** Take an existing endf photonuclear data set and create a compact
** evaluation in the photonuclear 'n' format (ACE-PN)
**
*/
void afeMakeNTable(endfMaterialInformation *mi, aceTable *table)
{
 acepnData *data = (acepnData*)calloc(1, sizeof(acepnData));

 table->Data = (void*)data;

 /*
 ** Create the Table header information
 */
 afeCreateNTableHeader(mi, table);

 /*
 ** Create the superset energy grid

341

 */
 afeCollectEnergies(mi, &(data->NumberOfEnergies), &(data->Energy));

 /*
 ** Transfer the mt information to the appropriate fields
 */
 afeGetMTInformation(mi, (acepnData*)(table->Data));

 /*
 ** Create the Product fields
 */
 afeGetMTProducts(mi, table);

 /*
 ** verify any cross checks and fill in all the "pointer" variables
 */
 afeVerifyNTable(table);

}

afeVerifyNTable.c

#include "endf6.h"
#include "acepnData.h"

#include <time.h>

void afeVerifyNTable(aceTable *table);

/***
** afeVerifyNTable
*/
void afeVerifyNTable(aceTable *table)
{
 int i, j, k, l;

 acepnData *ndata = (acepnData*)(table->Data);
 aceProduct *prod;
 aceMTReference *mtref;
 aceLawInformation *lawinfo;
 aceLaw4 *law4;
 aceLaw4Distribution *law4d;
 aceLaw7 *law7;
 aceLaw9 *law9;
 aceLaw44 *law44;
 aceLaw44Distribution *law44d;

 /*
 ** Initialize the NXS & JXS arrays
 */
 for(i = 0; i < 16; i++)
 table->NXS[i] = 0;
 for(i = 0; i < 32; i++)
 table->JXS[i] = 0;

 /*
 ** set the nxs values
 */
 table->NXS[0] = 0; /* no XSS entries yet; set as proceeds */
 table->NXS[1] = table->ZA;
 table->NXS[2] = ndata->NumberOfEnergies;
 table->NXS[3] = ndata->NumberOfMTs;
 table->NXS[4] = ndata->NumberOfProducts;

342

 /*
 ** set the jxs values
 */

 /*
 ** *** ESZ JXS(1) ***
 ** arrange energy grid locator
 */
 table->JXS[0] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[2];

 /*
 ** *** TOT JXS(2) ***
 ** arrange total cross section locator
 */
 table->JXS[1] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[2];

 /*
 ** *** NON JXS(3) ***
 ** if present and unique, arrange non-elastic cross section locator
 */
 if(ndata->NonelasticCrossSection != NULL) {
 table->JXS[2] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[2];
 }
 else
 table->JXS[2] = table->JXS[1];

 /*
 ** *** ELS JXS(4) ***
 ** if present, arrange elastic cross section locator
 */
 if(ndata->ElasticCrossSection != NULL) {
 table->JXS[3] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[2];
 }
 else
 table->JXS[3] = 0;

 /*
 ** *** HTN JXS(5) ***
 ** if present, arrange total heating number locator
 */
 if(ndata->TotalHeatingNumber != NULL) {
 table->JXS[4] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[2];
 }
 else
 table->JXS[4] = 0;

 /*
 ** *** MTR JXS(6) ***
 ** arrange the MT number entries
 */
 table->JXS[5] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[3];

 /*
 ** *** LQR JXS(7) ***
 ** arrange the Q value entries
 */
 table->JXS[6] = table->NXS[0] + 1;
 table->NXS[0] += table->NXS[3];

 /*
 ** *** LSIG JXS(8) ***
 ** arrange the cross section offset entries
 */
 table->JXS[7] = table->NXS[0] + 1;

343

 table->NXS[0] += table->NXS[3];

 /*
 ** *** SIG JXS(9) ***
 ** calculate the first word of the cross section (SIG) table and
 ** for each MT reaction cross setion, calculate offset
 */
 table->JXS[8] = table->NXS[0] + 1;
 ndata->MTLocator = (int*)calloc(ndata->NumberOfMTs, sizeof(int));
 for(i = 0; i < ndata->NumberOfMTs; i++) {
 ndata->MTLocator[i] = table->NXS[0] + 1 - table->JXS[8] + 1;
 table->NXS[0] += (2 + ndata->MT[i]->NumberOfEntries);
 }

 /*
 ** *** IXSA JXS(10) ***
 ** calculate the first word of the IXS array entries
 */
 table->JXS[9] = table->NXS[0] + 1;
 table->NXS[0] += (table->NXS[4] * NUMBER_IXS_ENTRIES);

 /*
 ** *** IXS JXS(11) ***
 ** calculate the first word of the IXS block entries
 */
 table->JXS[10] = table->NXS[0] + 1;

 /*
 ** set the ixs values for each product particle
 */
 for(i = 0; i < ndata->NumberOfProducts; i++) {

 prod = ndata->Product[i];

 /*
 ** *** IPT IXS(1) ***
 ** store the ipt number of this particle
 */
 prod->IXS[0] = prod->IPT;

 /*
 ** *** NTRP IXS(2) ***
 ** store the number of reactions creating this particle
 */
 prod->IXS[1] = prod->NumberOfReactions;

 /*
 ** *** PXS IXS(3) ***
 ** arrange the production cross section entries
 */
 prod->IXS[2] = table->NXS[0] + 1;
 table->NXS[0] += (2 + prod->NumberOfEntries);

 /*
 ** *** PHN IXS(4) ***
 ** if present, arrange the partial heating number entries
 */
 if(table->JXS[4] != 0 && prod->PartialHeatingNumber != NULL) {
 prod->IXS[3] = table->NXS[0] + 1;
 table->NXS[0] += (2 + prod->NumberOfEntries);
 }
 else
 prod->IXS[3] = 0;

 /*
 ** *** MTRP IXS(5) ***
 ** arrange the MT reference entries
 */
 prod->IXS[4] = table->NXS[0] + 1;
 table->NXS[0] += prod->NumberOfReactions;

344

 /*
 ** *** TYRP IXS(6) ***
 ** arrange the Coordinate System entries
 */
 prod->IXS[5] = table->NXS[0] + 1;
 table->NXS[0] += prod->NumberOfReactions;

 /*
 ** *** LSIGP IXS(7) ***
 ** arrange the cross section or yield information offset entries
 */
 prod->IXS[6] = table->NXS[0] + 1;
 table->NXS[0] += prod->NumberOfReactions;

 /*
 ** *** SIGP IXS(8) ***
 ** arrange the cross section or yield information locator
 */
 prod->IXS[7] = table->NXS[0] + 1;

 /*
 ** arrange the cross section offsets for each MT reference
 */
 for(j = 0; j < prod->NumberOfReactions; j++) {

 mtref = prod->MTReference[j];

 switch(mtref->Type) {

 case 5:
 case 12:
 case 16:

mtref->Offset = table->NXS[0] + 1 - prod->IXS[7] + 1;
table->NXS[0] += (4 + 2 * mtref->Yield->NumberOfRegions

 + 2 * mtref->Yield->NumberOfYields);
break;

 case 13:
mtref->Offset = table->NXS[0] + 1 - prod->IXS[7] + 1;
table->NXS[0] += (3 + mtref->MT->NumberOfEntries);
break;

 }
 }

 /*
 ** *** LANDP IXS(9) ***
 ** arrange the angular offset information
 */
 prod->IXS[8] = table->NXS[0] + 1;
 table->NXS[0] += prod->NumberOfReactions;

 /*
 ** *** ANDP IXS(10) ***
 ** currently no angular data is allowed
 */
 prod->IXS[9] = 0;

 /*
 ** *** LDLWP IXS(11) ***
 ** arrange the emission offset information
 */
 prod->IXS[10] = table->NXS[0] + 1;
 table->NXS[0] += prod->NumberOfReactions;

 /*
 ** *** LDLW IXS(12) ***
 ** arrange the emission data locator
 */
 prod->IXS[11] = table->NXS[0] + 1;

345

 /*
 ** arrange the emission offsets for each MT reference
 */
 for(j = 0; j < prod->NumberOfReactions; j++) {

 mtref = prod->MTReference[j];

 mtref->Emit->Offset = table->NXS[0] + 1 - prod->IXS[11] + 1;

 /*
 ** for each law, arrange appropriate offsets
 */
 for(k = 0; k < mtref->Emit->NumberOfEnergyLaws; k++) {

lawinfo = &(mtref->Emit->LawInformation[k]);

table->NXS[0] += (5 + 2 * lawinfo->NumberOfRegions
 + 2 * lawinfo->NumberOfEnergies);

lawinfo->OffsetToLawData = table->NXS[0] + 1 - prod->IXS[11] + 1;

switch(lawinfo->Number) {

case 4:
 law4 = (aceLaw4*)(lawinfo->LawData);

 table->NXS[0] += (2 + 2 * law4->NumberOfRegions
 + 2 * law4->NumberOfIncidentEnergies);

 for(l = 0; l < law4->NumberOfIncidentEnergies; l++) {
 law4d = &(law4->Distribution[l]);

 law4d->Offset = table->NXS[0] + 1 - prod->IXS[11] + 1;
 table->NXS[0] += (2 + 3 * law4d->NumberOfPoints);
 }
 break;

case 7:
 law7 = (aceLaw7*)(lawinfo->LawData);

 table->NXS[0] += (3 + 2 * law7->NumberOfRegions
 + 2 * law7->NumberOfIncidentEnergies);

 break;

case 9:
 law9 = (aceLaw9*)(lawinfo->LawData);

 table->NXS[0] += (3 + 2 * law9->NumberOfRegions
 + 2 * law9->NumberOfIncidentEnergies);

 break;

case 44:
 law44 = (aceLaw44*)(lawinfo->LawData);

 table->NXS[0] += (2 + 2 * law44->NumberOfRegions
 + 2 * law44->NumberOfIncidentEnergies);

 for(l = 0; l < law44->NumberOfIncidentEnergies; l++) {
 law44d = &(law44->Distribution[l]);

 law44d->Offset = table->NXS[0] + 1 - prod->IXS[11] + 1;
 table->NXS[0] += (2 + 5 * law44d->NumberOfPoints);
 }
 break;
}

if(k == mtref->Emit->NumberOfEnergyLaws)
 lawinfo->LocationOfNextLaw = table->NXS[0] + 1;
else
 lawinfo->LocationOfNextLaw = 0;

346

 } /* end of loop on energy laws */

 } /* end of loop on number of reactions for product */

 } /* end of loop on number of products */

}

endf6.h

#ifndef ENDF6_h
#define ENDF6_h

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "endfLine.h"
#include "endfNumber.h"
#include "endfConvert.h"

#include "endfMF1.h"
#include "endfMF2.h"
#include "endfMF3.h"
#include "endfMF4.h"
#include "endfMF5.h"
#include "endfMF6.h"

#include "endfMF1MT451.h"

/*
** Function: endfReadMaterialFromFile
*/
int endfReadMaterialFromFile(char *filename, endfMaterialInformation *mi);

/*
** Function: endfPrintMaterialToFile
*/
int endfPrintMaterialToFile(char *filename, endfMaterialInformation *mi);

#endif

endf6.c

#include "endf6.h"

/***
** endfReadMaterialFromFile
**
** read in an endf6 style file for a single material
**
*/
int endfReadMaterialFromFile(char *filename, endfMaterialInformation *mi)
{
 FILE *fENDF;
 endfLine line;
 endfLine oldline;
 int i, file;

 /*
 ** open the endf file for reading
 */
 fENDF = fopen(filename, "r");
 if(!fENDF) {
 printf("ERROR: endfReadMaterialFromFile:\n");

347

 printf(" cannot open file \"%s\" for reading\n", filename);
 return(-1);
 }

 /*
 ** initialize the line
 */
 line.body[0] = '\0';
 line.material = 0;
 line.mf = 0;
 line.mt = 0;
 line.number = 0;
 line.file = fENDF;
 oldline = line;

 /*
 ** find the start of the material information
 */
 while(line.mf != 1 && line.mt != 451) {
 oldline = line;
 endfReadLine(&line);
 }

 /*
 ** copy the line previous to new material into evaluation title
 ** if no line before, file with null string
 */
 strcpy(mi->EvaluationTitle, oldline.body);

 /*
 ** read the data from the file
 */
 endfReadMF1MT451(&line, mi);
 endfReadRecords(&line, mi);

 /*
 ** close the file
 */
 close(fENDF);

 return(0);

}

/***
** endfPrintMaterialToFile
**
** print out an entire endf6 style file
**
** expects output file pointer is in 'line->body'
**
*/
int endfPrintMaterialToFile(char *filename, endfMaterialInformation *mi)
{
 int intzero = 0;
 double doublezero = 0.0;
 FILE *fENDF;
 endfLine line;

 /*
 ** open the endf file for writing
 */
 fENDF = fopen(filename, "w");
 if(!fENDF) {
 printf("ERROR: endfPrintMaterialToFile:\n");
 printf(" cannot open file \"%s\" for writing\n", filename);
 return(-1);
 }

348

 /*
 ** initialize the line
 */
 line.body[0] = '\0';
 line.material = 0;
 line.mf = 0;
 line.mt = 0;
 line.number = 0;
 line.file = fENDF;

 /*
 ** make sure the material is in endf 6 format
 */
 if(mi->LibraryFormat != 6) {
 printf("ERROR: endfPrintMaterialToFile:\n");
 printf(" ENDF-6 file format not set: mi->LibraryFormat is '%d'\n",
 mi->LibraryFormat);
 return(-2);
 }

 /*
 ** if exists print the evaluation title line
 */
 if(mi->EvaluationTitle[0] != '\0') {
 strcpy(line.body, mi->EvaluationTitle);
 line.material = 7777;
 line.mf = 0;
 line.mt = 0;
 line.number = 0;
 endfPrintLineToFile(line);
 }

 endfPrintMF1MT451(&line, mi);
 endfPrintRecords(&line, mi);

 /*
 ** create zeroes line for end markers
 */
 endfNextLine(&line);
 endfPutNumber(&line, 1, 2, (void*)&doublezero);
 endfPutNumber(&line, 2, 2, (void*)&doublezero);
 endfPutNumber(&line, 3, 1, (void*)&intzero);
 endfPutNumber(&line, 4, 1, (void*)&intzero);
 endfPutNumber(&line, 5, 1, (void*)&intzero);
 endfPutNumber(&line, 6, 1, (void*)&intzero);

 /*
 ** print end of last section marker
 */
 line.mf = 0;
 line.mt = 0;
 endfPrintLineToFile(line);

 /*
 ** print end of material marker
 */
 line.number++;
 line.material = 0;
 endfPrintLineToFile(line);

 /*
 ** print end of file marker
 */
 line.number = 0;
 line.material = -1;
 endfPrintLineToFile(line);

 /*
 ** close file
 */

349

 close(fENDF);

}

endfConvert.h

#ifndef endfConvert_h
#define endfConvert_h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
** Function: endfAtomicName
*/
void endfAtomicName(int z, char *name);

/*
** Function: endfAtomicSymbol
*/
void endfAtomicSymbol(int z, char *symbol);

/*
** Function: endfParticleType
*/
void endfParticleType(int IncidentParticleZA, char *IncidentParticleType);

#endif

endfConvert.c

#include "endfConvert.h"

/***
** endfAtomicName
**
** given an atomic number, return the element name
**
** double check that no names are longer than 16
** limit set in mf1mt451 structure definition
**
*/
void endfAtomicName(int z, char *name)
{
 char *names[110] = { "", "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron",

 "Carbon", "Nitrogen", "Oxygen", "Fluorine", "Neon",
 "Sodium", "Magnesium", "Aluminum", "Silicon", "Phosphorus",
 "Sulfur", "Chlorine", "Argon", "Potassium", "Calcium",
 "Scandium", "Titanium", "Vanadium", "Chromium", "Manganese",
 "Iron", "Cobalt", "Nickel", "Copper", "Zinc",
 "Gallium", "Germanium", "Arsenic", "Selenium", "Bromine",
 "Krypton", "Rubidium", "Strontium", "Yttrium", "Zirconium",
 "Niobium", "Molybdenum", "Technetium", "Ruthenium", "Rhodium",
 "Palladium", "Silver", "Cadmium", "Indium", "Tin",
 "Antimony", "Tellurium", "Iodine", "Xenon", "Cesium",
 "Barium", "Lanthanum", "Cerium", "Praseodymium", "Neodymium",
 "Promethium", "Samarium", "Europium", "Gadolinium", "Terbium",
 "Dysprosium", "Holmium", "Erbium", "Thulium", "Ytterbium",
 "Lutetium", "Hafnium", "Tantalum", "Tungsten", "Rhenium",
 "Osmium", "Iridium", "Platinum", "Gold", "Mercury",
 "Thallium", "Lead", "Bismuth", "Polonium", "Astatine",
 "Radon", "Francium", "Radium", "Actinium", "Thorium",
 "Protactinium", "Uranium", "Neptunium", "Plutonium", "Americium",
 "Curium", "Berkelium", "Californium", "Einsteinium", "Fermium",
 "Mendelevium", "Nobelium", "Lawrencium", "Rutherfordium", "Dubnium",

350

 "Seaborgium", "Bohrium", "Hassium", "Meitnerium" };

 strncpy(name, names[z], strlen(names[z]));
 name[strlen(names[z])] = '\0';

}

/***
** endfAtomicSymbol
**
** given an atomic number, return the elemental symbol
**
*/
void endfAtomicSymbol(int z, char *symbol)
{
 char *symbols[110] = { "", "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne",

 "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca",
 "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn",
 "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr",
 "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn",
 "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd",
 "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb",
 "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg",
 "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th",
 "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm",
 "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt" };

 strncpy(symbol, symbols[z], strlen(symbols[z]));
 symbol[strlen(symbols[z])] = '\0';

}

/***
** endfParticleType
**
** given an incident particle awr, return the particle type
**
*/
void endfParticleType(int IncidentParticleZA, char *IncidentParticleType)
{
 int i;
 const int NumberOfTypes = 8;

 char *type[8] = {
 "photon",

 "neutron",
 "electron",
 "proton",
 "deuteron",
 "triton",
 "helium-3",
 "alpha"

 };

 double za[8] = {
 0.0,

 1.0,
 1000.0,
 1001.0,
 1002.0,
 1003.0,
 2003.0,
 2004.0

 };

 for(i = 0; i < NumberOfTypes; i++)
 if(za[i] == IncidentParticleZA)
 break;

351

 if(i == NumberOfTypes) {
 printf("ERROR: What did you shoot at me?!? a '%f'\n", IncidentParticleZA);
 exit(-1);
 }

 strcpy(IncidentParticleType, type[i]);

}

endfLine.h

#ifndef endfLine_h
#define endfLine_h

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/*
** Structure: endfLine
*/
typedef struct endfline {
 char body[67];
 int material;
 int mf;
 int mt;
 int number;
 FILE *file;
} endfLine;

/*
** Function: endfReadLine
*/
int endfReadLine(endfLine *line);

/*
** Function: endfPrintLine
*/
void endfPrintLine(endfLine line);

/*
** Function: endfPrintLineToFile
*/
void endfPrintLineToFile(endfLine line);

/*
** Function: endfNextLine
*/
void endfNextLine(endfLine *line);

#endif

endfLine.c

#include "endfLine.h"

/***
** endfReadLine
**
** reads a line from an endf style file given in 'line.file'
**
** loads:
** body <- record
** mat <- materal number
** mf <- file number
** mt <- reaction number

352

** number <- line number
**
** These errors are not yet implemented.
** thinking about having a strict/non-std option
** Fatal Error: if line length is not 80 characters
** Fatal Error: if any variable is unreadable
** Fatal Error: if mat, mf, mt, or number doesn't match expected
*/
int endfReadLine(endfLine *line)
{
 char temp[133], t[10];
 int i;
 static int LineNumber = 0;

 LineNumber++;

 fgets(temp, 132, line->file);
 if(temp[80] != '\n') {
 printf("ERROR: did not find proper 80 character line: line %d\n%s\n",

 LineNumber, temp);
 exit(-1);
 }

 strncpy(line->body, &temp[0], 66);
 line->body[66]='\0';

 strncpy(t, &temp[66], 4);
 t[4]='\0';
 if(!sscanf(t, "%d", &line->material)) {
 printf("ERROR: could not read mat number '%s' in line %d\n%s\n",

 t, LineNumber, temp);
 exit(-1);
 }

 strncpy(t, &temp[70], 2);
 t[2]='\0';
 if(!sscanf(t, "%d", &line->mf)) {
 printf("ERROR: could not read mf number '%s' in line %d\n%s\n",

 t, LineNumber, temp);
 exit(-1);
 }

 strncpy(t, &temp[72], 3);
 t[3]='\0';
 if(!sscanf(t, "%d", &line->mt)) {
 printf("ERROR: could not read mt number '%s' in line %d\n%s\n",

 t, LineNumber, temp);
 exit(-1);
 }

 strncpy(t, &temp[75], 5);
 t[5]='\0';
 if(!sscanf(t, "%d", &line->number)) {
 printf("ERROR: could not read line number '%s' in line %d\n%s\n",

 t, LineNumber, temp);
 exit(-1);
 }

 if(line->number == 149) {
 i = 0;
 }

}

/***
** endfPrintLine
**
** print the line in the endf format for use in id with original file
**

353

*/
void endfPrintLine(endfLine line)
{
 printf("%66s%4d%2d%3d%5d\n", line.body, line.material,

 line.mf, line.mt, line.number);

}

/***
** endfPrintLineToFile
**
** print the line in the endf format to the file pointer 'line.file'
**
*/
void endfPrintLineToFile(endfLine line)
{
 fprintf(line.file, "%66s%4d%2d%3d%5d\n", line.body, line.material,

 line.mf, line.mt, line.number);

}

/***
** endfNextLine
**
** blank the 'line->body' and increment the 'line->number' by 1
**
*/
void endfNextLine(endfLine *line)
{

 static char l[] = " ";

 strcpy(line->body, l);
 line->number++;

}

endfMF1MT451.h

#ifndef endfMF1MT451_h
#define endfMF1MT451_h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "endfLine.h"
#include "endfNumber.h"
#include "endfConvert.h"

#include "endfMF1.h"
#include "endfMF2.h"
#include "endfMF3.h"
#include "endfMF4.h"
#include "endfMF5.h"
#include "endfMF6.h"

/*
** Structure: endfRecord
*/
typedef struct endfrecord { /* ENDF Parameter Name */
 int MF; /* MFi */
 int MT; /* MTi */
 int NumberOfLines; /* NCi */
 int ModificationNumber; /* MODi */
 void *MFMT;
} endfRecord;

354

/*
** Structure: endfMaterialInformation
*/
typedef struct endfmaterialinformation { /* ENDF Parameter Name */
 char EvaluationTitle[67]; /* Title line given on MF0 MT0 */
 double TargetZA; /* ZA */
 char TargetName[16];
 char TargetSymbol[3];
 int TargetIsotope;
 int TargetAtomicNumber;
 double TargetAWR; /* AWR */
 int TargetResonancePointer; /* LRP */
 int TargetFissions; /* LFI */
 int LibraryIdentifier; /* NLIB */
 int MaterialModificationNumber; /* NMOD */
 int MaterialNumber; /* MAT */
 double TargetExcitationEnergy; /* ELIS */
 double TargetStability; /* STA */
 int TargetState; /* LIS */
 int TargetIsomer; /* LISO */
 int LibraryFormat; /* NFOR */
 double IncidentParticleAWR; /* AWI */
 char IncidentParticleType[16];
 int SublibraryNumber; /* NSUB */
 int IncidentParticleZA;
 int EvaluationType;
 int LibraryVersion; /* NVER */
 double Temperature; /* TEMP */
 int DerivedLibrary; /* LDRV */
 int NumberOfCommentLines; /* NWD */
 int NumberOfRecords; /* NXC */
 char EvaluationLaboratory[12];
 char EvaluationDate[6];
 char EvaluationAuthors[34];
 char EvaluationReference[23];
 char EvaluationDistributionDate[6];
 char EvaluationRevisionDate[6];
 char EvaluationSource[19];
 char EvaluationRevisionNumber[22];
 char EvaluationMasterDate[6];
 char **Comments;
 endfRecord **Records;
} endfMaterialInformation;

/*
** Function: endfReadMF1MT451
*/
void endfReadMF1MT451(endfLine *line, endfMaterialInformation *mi);

/*
** Function: endfReadRecords
*/
void endfReadRecords(endfLine *line, endfMaterialInformation *mi);

/*
** Function: endfPrintMF1MT451
*/
void endfPrintMF1MT451(endfLine *line, endfMaterialInformation *mi);

/*
** Function: endfPrintRecords
*/
void endfPrintRecords(endfLine *line, endfMaterialInformation *mi);

#endif

355

endfMF1MT451.c

#include "endfMF1MT451.h"

/***
** endfReadMF1MT451
**
** loads the material information from the mf1 mt451 required section
** allocates records for holding the specified record entries
**
** Fatal Error: if 'LibraryFormat' is not 6 (ENDF-6 style)
**
*/
void endfReadMF1MT451(endfLine *line, endfMaterialInformation *mi)
{
 int i;

 mi->MaterialNumber = line->material;

 /* [ZA, AWR, LRP, LFI, NLIB, NMOD] */
 endfGetNumber(*line, 1, 2, &mi->TargetZA);
 endfGetNumber(*line, 2, 2, &mi->TargetAWR);
 endfGetNumber(*line, 3, 1, &mi->TargetResonancePointer);
 endfGetNumber(*line, 4, 1, &mi->TargetFissions);
 endfGetNumber(*line, 5, 1, &mi->LibraryIdentifier);
 endfGetNumber(*line, 6, 1, &mi->MaterialModificationNumber);

 /*
 ** Set some other values based on the ZA number
 ** When converting ZA to an int, add eps to avoid rounding error
 */
 mi->TargetIsotope = (int)(mi->TargetZA + 0.00001) % 1000;
 mi->TargetAtomicNumber = ((int)(mi->TargetZA + 0.00001) - mi->TargetIsotope) / 1000;
 endfAtomicName(mi->TargetAtomicNumber, mi->TargetName);
 endfAtomicSymbol(mi->TargetAtomicNumber, mi->TargetSymbol);

 endfReadLine(line);
 /* [ELIS, STA, LIS, LISO, 0, NFOR] */
 endfGetNumber(*line, 1, 2, &mi->TargetExcitationEnergy);
 endfGetNumber(*line, 2, 2, &mi->TargetStability);
 endfGetNumber(*line, 3, 1, &mi->TargetState);
 endfGetNumber(*line, 4, 1, &mi->TargetIsomer);
 endfGetNumber(*line, 6, 1, &mi->LibraryFormat);

 if(mi->LibraryFormat != 6) {
 printf("ERROR: endfReadMF1MT451:\n");
 printf(" this is not an ENDF-6 file: read library format '%d'\n",
 mi->LibraryFormat);
 endfPrintLine(*line);
 exit(-1);
 }

 endfReadLine(line);
 /* [AWI, 0.0, 0, 0, NSUB, NVER] */
 endfGetNumber(*line, 1, 2, &mi->IncidentParticleAWR);
 endfGetNumber(*line, 5, 1, &mi->SublibraryNumber);
 endfGetNumber(*line, 6, 1, &mi->LibraryVersion);

 mi->IncidentParticleZA = mi->SublibraryNumber / 10;
 mi->EvaluationType = mi->SublibraryNumber % 10;
 endfParticleType(mi->IncidentParticleZA, mi->IncidentParticleType);

 endfReadLine(line);
 /* [TEMP, 0.0, LDRV, 0, NWD, NXC] */
 endfGetNumber(*line, 1, 2, &mi->Temperature);
 endfGetNumber(*line, 3, 1, &mi->DerivedLibrary);
 endfGetNumber(*line, 5, 1, &mi->NumberOfCommentLines);

356

 endfGetNumber(*line, 6, 1, &mi->NumberOfRecords);

 /*
 ** Allocate space and read comment lines
 */
 mi->Comments = (char**)calloc(mi->NumberOfCommentLines, sizeof(char*));
 for(i = 0; i < mi->NumberOfCommentLines; i++) {
 mi->Comments[i] = (char*)calloc(67, sizeof(char));
 endfReadLine(line);
 strncpy(mi->Comments[i], line->body, 66);
 mi->Comments[i][66] = '\0';
 }

 strncpy(mi->EvaluationLaboratory, &mi->Comments[0][11], 11);
 mi->EvaluationLaboratory[11] = '\0';

 strncpy(mi->EvaluationDate, &mi->Comments[0][27], 5);
 mi->EvaluationDate[5] = '\0';

 strncpy(mi->EvaluationAuthors, &mi->Comments[0][33], 33);
 mi->EvaluationAuthors[33] = '\0';

 strncpy(mi->EvaluationReference, &mi->Comments[1][0], 22);
 mi->EvaluationReference[22] = '\0';

 strncpy(mi->EvaluationDistributionDate, &mi->Comments[1][27], 5);
 mi->EvaluationDistributionDate[5] = '\0';

 strncpy(mi->EvaluationRevisionDate, &mi->Comments[1][38], 5);
 mi->EvaluationRevisionDate[5] = '\0';

 strncpy(mi->EvaluationMasterDate, &mi->Comments[1][55], 5);
 mi->EvaluationMasterDate[5] = '\0';

 strncpy(mi->EvaluationRevisionNumber, &mi->Comments[2][44], 22);
 mi->EvaluationRevisionNumber[22] = '\0';

 /*
 ** Allocate space and read record cards
 */
 mi->Records = (endfRecord**)calloc(mi->NumberOfRecords, sizeof(endfRecord*));
 for(i = 0; i < mi->NumberOfRecords; i++) {
 mi->Records[i] = (endfRecord*)calloc(1, sizeof(endfRecord));
 endfReadLine(line);
 endfGetNumber(*line, 3, 1, &mi->Records[i]->MF);
 endfGetNumber(*line, 4, 1, &mi->Records[i]->MT);
 endfGetNumber(*line, 5, 1, &mi->Records[i]->NumberOfLines);
 endfGetNumber(*line, 6, 1, &mi->Records[i]->ModificationNumber);

 switch(mi->Records[i]->MF) {
 case 1:
 mi->Records[i]->MFMT = (endfMF1*)calloc(1, sizeof(endfMF1));
 break;
 case 2:
 mi->Records[i]->MFMT = (endfMF2*)calloc(1, sizeof(endfMF2));
 break;
 case 3:
 mi->Records[i]->MFMT = (endfMF3*)calloc(1, sizeof(endfMF3));
 break;
 case 4:
 mi->Records[i]->MFMT = (endfMF4*)calloc(1, sizeof(endfMF4));
 break;
 case 5:
 mi->Records[i]->MFMT = (endfMF5*)calloc(1, sizeof(endfMF5));
 break;
 case 6:
 mi->Records[i]->MFMT = (endfMF6*)calloc(1, sizeof(endfMF6));
 break;
 default:

357

 printf("ERROR: Record description '%d' on line '%d' says mf '%d'\n",
 line->number, i+1, mi->Records[i]->MF);

 exit(-1);
 }
 } /* end of record information and allocation */

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 1 && line->mt != 0) {
 printf("ERROR: expected end of mf1 mt451 section: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadRecords
**
** loads all material record information into the
** appropriate record section
**
** expects to be handed 'line' with endf file open
** to first line past the end of the mf1 mt451 data
**
*/
void endfReadRecords(endfLine *line, endfMaterialInformation *mi)
{
 int i;
 int file = 1; /* current mf = 1 */

 for(i = 1; i < mi->NumberOfRecords; i++) {
 /*
 ** skip over the end of endf file section marker
 */
 if(mi->Records[i]->MF != file) {
 endfReadLine(line);
 if(line->mf != 0 && line->mt != 0) {

printf("ERROR: end of file %d not properly terminated\n", file);
endfPrintLine(*line);
exit(-1);

 }
 file = mi->Records[i]->MF;
 }

 /*
 ** check for beginning of proper section
 */
 endfReadLine(line);
 if(line->mf != mi->Records[i]->MF && line->mt != mi->Records[i]->MT) {
 printf("ERROR: didn't find next expected record\n");
 printf(" got mf '%2d' and mt '%3d'\n",

 line->mf, line->mt);
 printf(" wanted mf '%2d' and mt '%3d'\n",

 mi->Records[i]->MF, mi->Records[i]->MT);
 endfPrintLine(*line);
 exit(-1);
 }

 /*
 ** hand off section to proper reader
 */
 switch(line->mf) {
 case 1:
 endfReadMF1(line, (endfMF1*)mi->Records[i]->MFMT);

358

 break;
 case 2:
 endfReadMF2(line, (endfMF2*)mi->Records[i]->MFMT);
 break;
 case 3:
 endfReadMF3(line, (endfMF3*)mi->Records[i]->MFMT);
 break;
 case 4:
 endfReadMF4(line, (endfMF4*)mi->Records[i]->MFMT);
 break;
 case 5:
 endfReadMF5(line, (endfMF5*)mi->Records[i]->MFMT);
 break;
 case 6:
 endfReadMF6(line, (endfMF6*)mi->Records[i]->MFMT);
 break;
 default:
 printf("ERROR: how do I load an mf%d file\n", line->mf);
 endfPrintLine(*line);
 exit(-1);
 }

 }

}

/***
** endfPrintMF1MT451
**
** prints the material information in the mf1 mt451 required section
**
** 'line->file' should be a passed writable file pointer
**
*/
void endfPrintMF1MT451(endfLine *line, endfMaterialInformation *mi)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 line->mf = 1;
 line->mt = 451;
 line->material = mi->MaterialNumber;
 line->number = 0;

 endfNextLine(line);
 /* [ZA, AWR, LRP, LFI, NLIB, NMOD] */
 endfPutNumber(line, 1, 2, (void*)&mi->TargetZA);
 endfPutNumber(line, 2, 2, (void*)&mi->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&mi->TargetResonancePointer);
 endfPutNumber(line, 4, 1, (void*)&mi->TargetFissions);
 endfPutNumber(line, 5, 1, (void*)&mi->LibraryIdentifier);
 endfPutNumber(line, 6, 1, (void*)&mi->MaterialModificationNumber);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [ELIS, STA, LIS, LISO, 0, NFOR] */
 endfPutNumber(line, 1, 2, (void*)&mi->TargetExcitationEnergy);
 endfPutNumber(line, 2, 2, (void*)&mi->TargetStability);
 endfPutNumber(line, 3, 1, (void*)&mi->TargetState);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&mi->TargetIsomer);
 endfPutNumber(line, 6, 1, (void*)&mi->LibraryFormat);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [AWI, 0.0, 0, 0, NSUB, NVER] */
 endfPutNumber(line, 1, 2, (void*)&mi->IncidentParticleAWR);
 endfPutNumber(line, 2, 2, (void*)&doublezero);

359

 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&mi->SublibraryNumber);
 endfPutNumber(line, 6, 1, (void*)&mi->LibraryVersion);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [TEMP, 0.0, LDRV, 0, NWD, NXC] */
 endfPutNumber(line, 1, 2, (void*)&mi->Temperature);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&mi->DerivedLibrary);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&mi->NumberOfCommentLines);
 endfPutNumber(line, 6, 1, (void*)&mi->NumberOfRecords);
 endfPrintLineToFile(*line);

 /*
 ** print comment lines
 */
 for(i = 0; i < mi->NumberOfCommentLines; i++) {
 endfNextLine(line);
 strcpy(line->body, mi->Comments[i]);
 endfPrintLineToFile(*line);
 }

 /*
 ** print record cards
 */
 for(i = 0; i < mi->NumberOfRecords; i++) {
 endfNextLine(line);
 endfPutNumber(line, 3, 1, &mi->Records[i]->MF);
 endfPutNumber(line, 4, 1, &mi->Records[i]->MT);
 endfPutNumber(line, 5, 1, &mi->Records[i]->NumberOfLines);
 endfPutNumber(line, 6, 1, &mi->Records[i]->ModificationNumber);
 endfPrintLineToFile(*line);
 }

 /*
 ** print end of mf1 mt451 marker
 */
 endfNextLine(line);
 /* [0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

/***
** endfPrintRecords
**
** prints each of the material record cards
**
** 'line->file' should be a passed writable file pointer
** 'line->mf' should contain the starting endf file section number
**
*/
void endfPrintRecords(endfLine *line, endfMaterialInformation *mi)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

360

 for(i = 1; i < mi->NumberOfRecords; i++) {
 /*
 ** print an end of endf file section marker on mf change
 */
 if(mi->Records[i]->MF != line->mf) {
 endfNextLine(line);
 /* [0, 0.0, 0, 0, 0, 0] */
 line->mf = 0;
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);
 line->mf = mi->Records[i]->MF;
 }

 /*
 ** hand off section to proper printer
 */
 line->mt = mi->Records[i]->MT;
 switch(line->mf) {
 case 1:
 endfPrintMF1(line, mi->Records[i]->MFMT);
 break;
 case 2:
 line->number += mi->Records[i]->NumberOfLines; /* REMOVE WHEN WRITE READER/WRITER
*/
 endfPrintMF2(line, mi->Records[i]->MFMT);
 break;
 case 3:
 endfPrintMF3(line, mi->Records[i]->MFMT);
 break;
 case 4:
 endfPrintMF4(line, mi->Records[i]->MFMT);
 break;
 case 5:
 endfPrintMF5(line, mi->Records[i]->MFMT);
 break;
 case 6:
 endfPrintMF6(line, mi->Records[i]->MFMT);
 break;
 default:
 printf("ERROR: don't know how to print an mf%d file\n", line->mf);
 exit(-1);
 }

 }

}

endfMF1.h

#ifndef endfMF1_h
#define endfMF1_h

#include "endfLine.h"

/*
** Structure: endfMF1T
*/
typedef struct endfmf1t { /* ENDF Parameter Name */
 int NumberOfCoefficients; /* NC */
 double *PolyCoefficients; /* Ci */
 int NumberOfInterpolationRegions; /* NR */

361

 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfPoints; /* NP */
 double *Energy; /* Ei */
 double *Nu; /* Nu(Ei) */
} endfMF1T;

/*
** Structure: endfMF1P
*/
typedef struct endfmf1p { /* ENDF Parameter Name */
 int NumberOfInterpolationRegions; /* NR */
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfPoints; /* NP */
 double *Energy; /* Ei */
 double *Nu; /* Nu(Ei) */
 double SpontaneousNu; /* Nu */
} endfMF1P;

/*
** Structure: endfMF1D
*/
typedef struct endfmf1d { /* ENDF Parameter Name */
 int NumberOfPrecursors; /* NNF */
 double *DecayConstants; /* Lambda_i */
 int NumberOfInterpolationRegions; /* NR */
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 int NumberOfPoints; /* NP */
 double *Energy; /* Ei */
 double *Nu; /* Nu(Ei) */
 double SpontaneousNu; /* Nu */
} endfMF1D;

/*
** Structure: endfMF1E
*/
typedef struct endfmf1e { /* ENDF Parameter Name */
 double TotalEnergy; /* ET */
 double erTotalEnergy;
 double FragmentEnergy; /* EFR */
 double erFragmentEnergy;
 double PromptNeutronEnergy; /* ENP */
 double erPromptNeutronEnergy;
 double DelayedNeutronEnergy; /* END */
 double erDelayedNeutronEnergy;
 double PromptGammaEnergy; /* EGP */
 double erPromptGammaEnergy;
 double DelayedGammaEnergy; /* EGD */
 double erDelayedGammaEnergy;
 double BetaEnergy; /* EB */
 double erBetaEnergy;
 double NeutrinoEnergy; /* ENU */
 double erNeutrinoEnergy;
 double SeenEnergy; /* ER: total - neutrino */
 double erSeenEnergy;
} endfMF1E;

/*
** Structure: endfMF1
*/
typedef struct endfmf1 { /* ENDF Parameter Name */
 double TargetZA; /* ZA */
 double TargetAWR; /* AWR */
 int NuRepresentation; /* LNU */
 int NuType;
 void *NuParameters;
} endfMF1;

/*

362

** Function: endfReadMF1
*/
void endfReadMF1(endfLine *line, endfMF1 *data);

/*
** Function: endfReadMF1E
*/
void endfReadMF1E(endfLine *line, endfMF1 *data);

/*
** Function: endfReadMF1T
*/
void endfReadMF1T(endfLine *line, endfMF1 *data);

/*
** Function: endfReadMF1P
*/
void endfReadMF1P(endfLine *line, endfMF1 *data);

/*
** Function: endfReadMF1D
*/
void endfReadMF1D(endfLine *line, endfMF1 *data);

/*
** Function: endfPrintMF1
*/
void endfPrintMF1(endfLine *line, endfMF1 *data);

/*
** Function: endfPrintMF1E
*/
void endfPrintMF1E(endfLine *line, endfMF1 *data);

/*
** Function: endfPrintMF1T
*/
void endfPrintMF1T(endfLine *line, endfMF1 *data);

/*
** Function: endfPrintMF1P
*/
void endfPrintMF1P(endfLine *line, endfMF1 *data);

/*
** Function: endfPrintMF1D
*/
void endfPrintMF1D(endfLine *line, endfMF1 *data);

#endif

endfMF1.c

#include "endfMF1.h"

/***
** endfReadMF1
**
** read the nubar data
**
** 'NuType' is duplication of mt for ease of use
** -1 is the energy distribution amoung the particles
** 1 is Total
** 2 is Prompt
** 3 is Delayed
**
*/
void endfReadMF1(endfLine *line, endfMF1 *data)
{

363

 if(line->mt == 452)
 data->NuType = 1;
 else if(line->mt == 456)
 data->NuType = 2;
 else if(line->mt == 455)
 data->NuType = 3;
 else if(line->mt == 458)
 data->NuType = -1;
 else {
 printf("ERROR: What the heck is mt '%d'\n", line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

 /* [ZA, AWR, 0, LNU, 0, 0] */
 endfGetNumber(*line, 1, 2, &data->TargetZA);
 endfGetNumber(*line, 2, 2, &data->TargetAWR);
 endfGetNumber(*line, 4, 1, &data->NuRepresentation);

 switch(data->NuType) {
 case -1:
 data->NuParameters = (endfMF1E*)calloc(1, sizeof(endfMF1E));
 endfReadMF1E(line, data);
 break;
 case 1:
 data->NuParameters = (endfMF1T*)calloc(1, sizeof(endfMF1T));
 endfReadMF1T(line, data);
 break;
 case 2:
 data->NuParameters = (endfMF1P*)calloc(1, sizeof(endfMF1P));
 endfReadMF1P(line, data);
 break;
 case 3:
 data->NuParameters = (endfMF1D*)calloc(1, sizeof(endfMF1D));
 endfReadMF1D(line, data);
 break;
 }

}

/***
** endfReadMF1E
**
** read the components of energy release due to fission
**
*/
void endfReadMF1E(endfLine *line, endfMF1 *data)
{
 int i;
 endfMF1E *par = (endfMF1E*)data->NuParameters;

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, 18, 9] */
 endfGetNumber(*line, 5, 1, &i);
 if(i != 18) {
 printf("ERROR: Energy release number of entries expects 18; found '%d'\n", i);
 endfPrintLine(*line);
 exit(-1);
 }
 endfGetNumber(*line, 6, 1, &i);
 if(i != 9) {
 printf("ERROR: Energy release number of subparts expects 9; found '%d'\n", i);
 endfPrintLine(*line);
 exit(-1);
 }

 endfReadLine(line);
 /* [EFR, eEFR, ENP, eENP, END, eEND] */

364

 endfGetNumber(*line, 1, 2, &par->FragmentEnergy);
 endfGetNumber(*line, 2, 2, &par->erFragmentEnergy);
 endfGetNumber(*line, 3, 2, &par->PromptNeutronEnergy);
 endfGetNumber(*line, 4, 2, &par->erPromptNeutronEnergy);
 endfGetNumber(*line, 5, 2, &par->DelayedNeutronEnergy);
 endfGetNumber(*line, 6, 2, &par->erDelayedNeutronEnergy);

 endfReadLine(line);
 /* [EGP, eEGP, EGD, eEGD, EB, eEB] */
 endfGetNumber(*line, 1, 2, &par->PromptGammaEnergy);
 endfGetNumber(*line, 2, 2, &par->erPromptGammaEnergy);
 endfGetNumber(*line, 3, 2, &par->DelayedGammaEnergy);
 endfGetNumber(*line, 4, 2, &par->erDelayedGammaEnergy);
 endfGetNumber(*line, 5, 2, &par->BetaEnergy);
 endfGetNumber(*line, 6, 2, &par->erBetaEnergy);

 endfReadLine(line);
 /* [ENU, eENU, ER, eER, ET, eET] */
 endfGetNumber(*line, 1, 2, &par->NeutrinoEnergy);
 endfGetNumber(*line, 2, 2, &par->erNeutrinoEnergy);
 endfGetNumber(*line, 3, 2, &par->SeenEnergy);
 endfGetNumber(*line, 4, 2, &par->erSeenEnergy);
 endfGetNumber(*line, 5, 2, &par->TotalEnergy);
 endfGetNumber(*line, 6, 2, &par->erTotalEnergy);

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 1 && line->mt != 0) {
 printf("ERROR: expected end of section mf 1 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadMF1T
**
** read the total nubar parameters
**
*/
void endfReadMF1T(endfLine *line, endfMF1 *data)
{
 int i;
 endfMF1T *par = (endfMF1T*)data->NuParameters;

 if(data->NuRepresentation == 1) {
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NC, 0] */
 endfGetNumber(*line, 5, 1, &par->NumberOfCoefficients);

 par->PolyCoefficients = (double*)calloc(par->NumberOfCoefficients,
 sizeof(double));

 for(i = 0; i < par->NumberOfCoefficients; i++) {
 if(i % 6 == 0)

endfReadLine(line);
 endfGetNumber(*line, (i%6)+1, 2, &par->PolyCoefficients[i]);
 }
 }
 else {
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &par->NumberOfInterpolationRegions);
 endfGetNumber(*line, 6, 1, &par->NumberOfPoints);

365

 par->NumberOfPointsInRegion
 = (int*)calloc(par->NumberOfInterpolationRegions, sizeof(int));
 par->InterpolationSchemeInRegion
 = (int*)calloc(par->NumberOfInterpolationRegions, sizeof(int));

 for(i = 0; i < par->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1, &par->NumberOfPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1, &par->InterpolationSchemeInRegion[i]);
 }

 par->Energy
 = (double*)calloc(par->NumberOfPoints, sizeof(double));
 par->Nu
 = (double*)calloc(par->NumberOfPoints, sizeof(double));

 for(i = 0; i < par->NumberOfPoints; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &par->Energy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &par->Nu[i]);
 }
 }

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 1 && line->mt != 0) {
 printf("ERROR: expected end of section mf 1 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadMF1P
**
** read the prompt nubar parameters
**
*/
void endfReadMF1P(endfLine *line, endfMF1 *data)
{
 int i;
 endfMF1P *par = (endfMF1P*)data->NuParameters;

 if(data->NuRepresentation == 1) {

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, 1, 0] */
 endfGetNumber(*line, 5, 1, &i);

 if(i != 1) {
 printf("ERROR: Prompt nubar represetation (LNU=1) expects 1; found '%d'\n", i);
 endfPrintLine(*line);
 exit(-1);
 }

 endfReadLine(line);
 endfGetNumber(*line, 1, 2, &par->SpontaneousNu);
 }
 else {
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */

366

 endfGetNumber(*line, 5, 1, &par->NumberOfInterpolationRegions);
 endfGetNumber(*line, 6, 1, &par->NumberOfPoints);

 par->NumberOfPointsInRegion
 = (int*)calloc(par->NumberOfInterpolationRegions, sizeof(int));
 par->InterpolationSchemeInRegion
 = (int*)calloc(par->NumberOfInterpolationRegions, sizeof(int));

 for(i = 0; i < par->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1, &par->NumberOfPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1, &par->InterpolationSchemeInRegion[i]);
 }

 par->Energy
 = (double*)calloc(par->NumberOfPoints, sizeof(double));
 par->Nu
 = (double*)calloc(par->NumberOfPoints, sizeof(double));

 for(i = 0; i < par->NumberOfPoints; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &par->Energy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &par->Nu[i]);
 }
 }

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 1 && line->mt != 0) {
 printf("ERROR: expected end of section mf 1 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadMF1D
**
** read the delayed nubar parameters
**
*/
void endfReadMF1D(endfLine *line, endfMF1 *data)
{
 int i;
 endfMF1D *par = (endfMF1D*)data->NuParameters;

 if(data->NuRepresentation == 1) {

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NNF, 0] */
 endfGetNumber(*line, 5, 1, &par->NumberOfPrecursors);

 par->DecayConstants = (double*)calloc(par->NumberOfPrecursors, sizeof(double));
 for(i = 0; i < par->NumberOfPrecursors; i++) {
 if(i % 6 == 0)

endfReadLine(line);
 endfGetNumber(*line, (i%6)+1, 2, &par->DecayConstants[i]);
 }

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, 1, 0] */
 endfGetNumber(*line, 5, 1, &i);

367

 if(i != 1) {
 printf("ERROR: Prompt nubar represetation (LNU=1) expects 1; found '%d'\n", i);
 endfPrintLine(*line);
 exit(-1);
 }

 endfReadLine(line);
 endfGetNumber(*line, 1, 2, &par->SpontaneousNu);
 }
 else {
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NNF, 0] */
 endfGetNumber(*line, 5, 1, &par->NumberOfPrecursors);

 par->DecayConstants = (double*)calloc(par->NumberOfPrecursors, sizeof(double));
 for(i = 0; i < par->NumberOfPrecursors; i++) {
 if(i % 6 == 0)

endfReadLine(line);
 endfGetNumber(*line, (i%6)+1, 2, &par->DecayConstants[i]);
 }

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &par->NumberOfInterpolationRegions);
 endfGetNumber(*line, 6, 1, &par->NumberOfPoints);

 par->NumberOfPointsInRegion
 = (int*)calloc(par->NumberOfInterpolationRegions, sizeof(int));
 par->InterpolationSchemeInRegion
 = (int*)calloc(par->NumberOfInterpolationRegions, sizeof(int));

 for(i = 0; i < par->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1, &par->NumberOfPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1, &par->InterpolationSchemeInRegion[i]);
 }

 par->Energy
 = (double*)calloc(par->NumberOfPoints, sizeof(double));
 par->Nu
 = (double*)calloc(par->NumberOfPoints, sizeof(double));

 for(i = 0; i < par->NumberOfPoints; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &par->Energy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &par->Nu[i]);
 }
 }

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 1 && line->mt != 0) {
 printf("ERROR: expected end of section mf 1 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfPrintMF1
**
** print the nubar data

368

**
*/
void endfPrintMF1(endfLine *line, endfMF1 *data)
{
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [ZA, AWR, 0, LNU, 0, 0] */
 endfPutNumber(line, 1, 2, (void*)&data->TargetZA);
 endfPutNumber(line, 2, 2, (void*)&data->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&data->NuRepresentation);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 switch(data->NuType) {
 case -1:
 endfPrintMF1E(line, data);
 break;
 case 1:
 endfPrintMF1T(line, data);
 break;
 case 2:
 endfPrintMF1P(line, data);
 break;
 case 3:
 endfPrintMF1D(line, data);
 break;
 default:
 printf("ERROR: how did I get here? in PrintMF1 with weird NuType '%d'\n",

 data->NuType);
 exit(-1);
 }

 /*
 ** print end of record marker
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF1E
**
** print the components of energy release due to fission
**
*/
void endfPrintMF1E(endfLine *line, endfMF1 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;
 endfMF1E *par = (endfMF1E*)data->NuParameters;

 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 18, 9] */

369

 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 i = 18;
 endfPutNumber(line, 5, 1, (void*)&i);
 i = 9;
 endfPutNumber(line, 6, 1, (void*)&i);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [EFR, eEFR, ENP, eENP, END, eEND] */
 endfPutNumber(line, 1, 2, (void*)&par->FragmentEnergy);
 endfPutNumber(line, 2, 2, (void*)&par->erFragmentEnergy);
 endfPutNumber(line, 3, 2, (void*)&par->PromptNeutronEnergy);
 endfPutNumber(line, 4, 2, (void*)&par->erPromptNeutronEnergy);
 endfPutNumber(line, 5, 2, (void*)&par->DelayedNeutronEnergy);
 endfPutNumber(line, 6, 2, (void*)&par->erDelayedNeutronEnergy);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [EGP, eEGP, EGD, eEGD, EB, eEB] */
 endfPutNumber(line, 1, 2, (void*)&par->PromptGammaEnergy);
 endfPutNumber(line, 2, 2, (void*)&par->erPromptGammaEnergy);
 endfPutNumber(line, 3, 2, (void*)&par->DelayedGammaEnergy);
 endfPutNumber(line, 4, 2, (void*)&par->erDelayedGammaEnergy);
 endfPutNumber(line, 5, 2, (void*)&par->BetaEnergy);
 endfPutNumber(line, 6, 2, (void*)&par->erBetaEnergy);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [ENU, eENU, ER, eER, ET, eET] */
 endfPutNumber(line, 1, 2, (void*)&par->NeutrinoEnergy);
 endfPutNumber(line, 2, 2, (void*)&par->erNeutrinoEnergy);
 endfPutNumber(line, 3, 2, (void*)&par->SeenEnergy);
 endfPutNumber(line, 4, 2, (void*)&par->erSeenEnergy);
 endfPutNumber(line, 5, 2, (void*)&par->TotalEnergy);
 endfPutNumber(line, 6, 2, (void*)&par->erTotalEnergy);
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF1T
**
** print the total nubar parameters
**
*/
void endfPrintMF1T(endfLine *line, endfMF1 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;
 endfMF1T *par = (endfMF1T*)data->NuParameters;

 if(data->NuRepresentation == 1) {
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NC, 0] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&par->NumberOfCoefficients);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfCoefficients; i++) {
 if(i % 6 == 0)

370

endfNextLine(line);
 endfPutNumber(line, (i%6)+1, 2, (void*)&par->PolyCoefficients[i]);
 if(i % 6 == 5)

endfPrintLineToFile(*line);
 }
 if(i % 6 != 0)
 endfPrintLineToFile(*line);
 }
 else if(data->NuRepresentation == 2) {
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&par->NumberOfInterpolationRegions);
 endfPutNumber(line, 6, 1, (void*)&par->NumberOfPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1, (void*)&par->NumberOfPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1, (void*)&par->InterpolationSchemeInRegion[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfPoints; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&par->Energy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&par->Nu[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);
 }
 else {
 printf("ERROR: Nu representation '%d' was not recognized\n",

 data->NuRepresentation);
 exit(-1);
 }

}

/***
** endfPrintMF1P
**
** print the prompt nubar parameters
**
*/
void endfPrintMF1P(endfLine *line, endfMF1 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;
 endfMF1P *par = (endfMF1P*)data->NuParameters;

 if(data->NuRepresentation == 1) {
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 1, 0] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);

371

 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 i = 1;
 endfPutNumber(line, 5, 1, (void*)&i);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 endfPutNumber(line, 1, 2, (void*)&par->SpontaneousNu);
 endfPrintLineToFile(*line);
 }
 else if(data->NuRepresentation == 2) {
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&par->NumberOfInterpolationRegions);
 endfPutNumber(line, 6, 1, (void*)&par->NumberOfPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1, (void*)&par->NumberOfPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1, (void*)&par->InterpolationSchemeInRegion[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfPoints; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&par->Energy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&par->Nu[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);
 }
 else {
 printf("ERROR: Nu representation '%d' was not recognized\n",

 data->NuRepresentation);
 exit(-1);
 }

}

/***
** endfPrintMF1D
**
** print the delayed nubar parameters
**
*/
void endfPrintMF1D(endfLine *line, endfMF1 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;
 endfMF1D *par = (endfMF1D*)data->NuParameters;

 if(data->NuRepresentation == 1) {

372

 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NNF, 0] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&par->NumberOfPrecursors);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfPrecursors; i++) {
 if(i % 6 == 0)

endfNextLine(line);
 endfPutNumber(line, (i%6)+1, 2, (void*)&par->DecayConstants[i]);
 if(i % 6 == 5)

endfPrintLineToFile(*line);
 }
 if(i % 6 != 0)
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 1, 0] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 i = 1;
 endfPutNumber(line, 5, 1, (void*)&i);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 endfPutNumber(line, 1, 2, (void*)&par->SpontaneousNu);
 endfPrintLineToFile(*line);
 }
 else if(data->NuRepresentation == 2) {
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NNF, 0] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&par->NumberOfPrecursors);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfPrecursors; i++) {
 if(i % 6 == 0)

endfNextLine(line);
 endfPutNumber(line, (i%6)+1, 2, (void*)&par->DecayConstants[i]);
 if(i % 6 == 5)

endfPrintLineToFile(*line);
 }
 if(i % 6 != 0)
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&par->NumberOfInterpolationRegions);
 endfPutNumber(line, 6, 1, (void*)&par->NumberOfPoints);
 endfPrintLineToFile(*line);

373

 for(i = 0; i < par->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1, (void*)&par->NumberOfPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1, (void*)&par->InterpolationSchemeInRegion[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < par->NumberOfPoints; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&par->Energy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&par->Nu[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);
 }
 else {
 printf("ERROR: Nu representation '%d' was not recognized\n",

 data->NuRepresentation);
 exit(-1);
 }

}

endfMF2.h

#ifndef endfMF2_h
#define endfMF2_h

#include "endfLine.h"

/*
** Structure: endfMF2
*/
typedef struct endfmf2 {
 int hello;
} endfMF2;

/*
** Function: endfReadMF2
*/
void endfReadMF2(endfLine *line, endfMF2 *data);

/*
** Function: endfPrintMF2
*/
void endfPrintMF2(endfLine *line, endfMF2 *data);

#endif

endfMF2.c

#include "endfMF2.h"

/***
** endfReadMF2
**
** What to do with the file 2???? blahh
**
*/

374

void endfReadMF2(endfLine *line, endfMF2 *data)
{
 int i=1;

 while(i) {
 endfReadLine(line);
 if(line->mt == 0)
 i = 0;
 }

 printf("write the mf2 reader sections\n");
}

/***
** endfPrintMF2
**
** Still need to write the mf2 printer too
**
*/
void endfPrintMF2(endfLine *line, endfMF2 *data)
{
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

endfMF3.h

#ifndef endfMF3_h
#define endfMF3_h

#include <stdio.h>
#include <stdlib.h>

#include "endfLine.h"
#include "endfNumber.h"

/*
** Structure: endfMF3
*/
typedef struct endfmf3 {
 double TargetZA;
 double TargetAWR;
 double ReactionQM;
 double ReactionQI;
 int BreakupFlag;
 int NumberOfInterpolationRegions;
 int NumberOfPoints;
 int *NumberOfPointsInRegion;
 int *InterpolationSchemeInRegion;
 double *Energy;
 double *CrossSection;
} endfMF3;

/*
** Function: endfReadMF3

375

*/
void endfReadMF3(endfLine *line, endfMF3 *data);

/*
** Function: endfPrintMF3
*/
void endfPrintMF3(endfLine *line, endfMF3 *data);

#endif

endfMF3.c

#include "endfMF3.h"

/***
** endfReadMF3
**
** passed first line of mf3 section, load the remaining data
**
*/
void endfReadMF3(endfLine *line, endfMF3 *data)
{
 int i;

 /* [ZA, AWR, 0, 0, 0, 0] */
 endfGetNumber(*line, 1, 2, &data->TargetZA);
 endfGetNumber(*line, 2, 2, &data->TargetAWR);

 endfReadLine(line);
 /* [QM, QI, 0, LR, NR, NP] */
 endfGetNumber(*line, 1, 2, &data->ReactionQM);
 endfGetNumber(*line, 2, 2, &data->ReactionQI);
 endfGetNumber(*line, 4, 1, &data->BreakupFlag);
 endfGetNumber(*line, 5, 1, &data->NumberOfInterpolationRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfPoints);

 data->NumberOfPointsInRegion
 = (int*)calloc(data->NumberOfInterpolationRegions, sizeof(int));
 data->InterpolationSchemeInRegion
 = (int*)calloc(data->NumberOfInterpolationRegions, sizeof(int));

 for(i = 0; i < data->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1, &data->NumberOfPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1, &data->InterpolationSchemeInRegion[i]);
 }

 data->Energy
 = (double*)calloc(data->NumberOfPoints, sizeof(double));
 data->CrossSection
 = (double*)calloc(data->NumberOfPoints, sizeof(double));

 for(i = 0; i < data->NumberOfPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->Energy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->CrossSection[i]);
 }

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 3 && line->mt != 0) {
 printf("ERROR: expected end of section mf 3 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);

376

 exit(-1);
 }

}

/***
** endfPrintMF3
**
** print a mf3 section
**
** expects 'line->body' to point to a writable file pointer
** expects 'line->mf' to be set to mf3
** expects 'line->mt' to be set to current mt
**
*/
void endfPrintMF3(endfLine *line, endfMF3 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [ZA, AWR, 0, 0, 0, 0] */
 endfPutNumber(line, 1, 2, (void*)&data->TargetZA);
 endfPutNumber(line, 2, 2, (void*)&data->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [QM, QI, 0, LR, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&data->ReactionQM);
 endfPutNumber(line, 2, 2, (void*)&data->ReactionQI);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&data->BreakupFlag);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfInterpolationRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfInterpolationRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1, (void*)&data->NumberOfPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1, (void*)&data->InterpolationSchemeInRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->Energy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->CrossSection[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 /*
 ** print end of record marker

377

 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

endfMF4.h

#ifndef endfMF4_h
#define endfMF4_h

#include <stdio.h>
#include <stdlib.h>

#include "endfLine.h"
#include "endfNumber.h"

/*
** Structure: endfMF4
*/
typedef struct endfmf4 {
 double TargetZA;
 double TargetAWR;
 int TransformationMatrix;
 int AngularRepresentation;
 int AllIsotropic;
 int FrameOfReference;
} endfMF4;

/*
** Function: endfReadMF4
*/
void endfReadMF4(endfLine *line, endfMF4 *data);

/*
** Function: endfPrintMF4
*/
void endfPrintMF4(endfLine *line, endfMF4 *data);

#endif

endfMF4.c

#include "endfMF4.h"

/***
** endfReadMF4
**
** passed first line of mf4 section, load the remaining data
**
*/
void endfReadMF4(endfLine *line, endfMF4 *data)
{
 double temp;

 /* [ZA, AWR, LVT, LTT, 0, 0] */
 endfGetNumber(*line, 1, 2, &data->TargetZA);
 endfGetNumber(*line, 2, 2, &data->TargetAWR);

378

 endfGetNumber(*line, 3, 1, &data->TransformationMatrix);
 endfGetNumber(*line, 4, 1, &data->AngularRepresentation);

 endfReadLine(line);
 /* [0.0, AWR, LI, LCT, 0, 0] */
 endfGetNumber(*line, 2, 2, &temp);
 endfGetNumber(*line, 3, 1, &data->AllIsotropic);
 endfGetNumber(*line, 4, 1, &data->FrameOfReference);

 if(data->AllIsotropic != 1) {
 printf("ERROR: File 4 is not all isotropic: HELP!! (%d)\n", data->AllIsotropic);
 endfPrintLine(*line);
 exit(-1);
 }

 if(temp != data->TargetAWR) {
 printf("ERROR: File 4 AWR's don't match; 1'%d' 2'%d'\n", temp, data->TargetAWR);
 endfPrintLine(*line);
 exit(-1);
 }

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 4 && line->mt != 0) {
 printf("ERROR: expected end of section mf 4 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfPrintMF4
**
** print an mf4 section record
**
** expects 'line->body' to point to a writable file pointer
** expects 'line->mf' to be set to mf4
** expects 'line->mt' to be set to current mt
**
*/
void endfPrintMF4(endfLine *line, endfMF4 *data)
{
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [ZA, AWR, LVT, LTT, 0, 0] */
 endfPutNumber(line, 1, 2, (void*)&data->TargetZA);
 endfPutNumber(line, 2, 2, (void*)&data->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&data->TransformationMatrix);
 endfPutNumber(line, 4, 1, (void*)&data->AngularRepresentation);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 endfNextLine(line);
 /* [0.0, AWR, LI, LCT, 0, 0] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&data->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&data->AllIsotropic);
 endfPutNumber(line, 4, 1, (void*)&data->FrameOfReference);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

379

 /*
 ** print end of record marker
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

endfMF5.h

#ifndef endfMF5_h
#define endfMF5_h

#include <stdio.h>
#include <stdlib.h>

#include "endfLine.h"
#include "endfNumber.h"

/*
** Structure: endfMF5LF1
*/
typedef struct endfmf5lf1 {
 int NumberOfThetaRegions;
 int NumberOfThetaPoints;
 int *NumberOfThetaPointsInRegion;
 int *InterpolationSchemeInThetaRegion;
 double *ThetaEnergy;
 double *Theta;
} endfMF5LF1;

/*
** Structure: endfMF5LF5
*/
typedef struct endfmf5lf5 {
 int NumberOfThetaRegions;
 int NumberOfThetaPoints;
 int *NumberOfThetaPointsInRegion;
 int *InterpolationSchemeInThetaRegion;
 double *ThetaEnergy;
 double *Theta;
 int NumberOfGRegions;
 int NumberOfGPoints;
 int *NumberOfGPointsInRegion;
 int *InterpolationSchemeInGRegion;
 double *GEnergy;
 double *G;
} endfMF5LF5;

/*
** Structure: endfMF5LF7
*/
typedef struct endfmf5lf7 {
 int NumberOfThetaRegions;
 int NumberOfThetaPoints;
 int *NumberOfThetaPointsInRegion;
 int *InterpolationSchemeInThetaRegion;
 double *ThetaEnergy;
 double *Theta;
} endfMF5LF7;

380

/*
** Structure: endfMF5LF9
*/
typedef struct endfmf5lf9 {
 int NumberOfThetaRegions;
 int NumberOfThetaPoints;
 int *NumberOfThetaPointsInRegion;
 int *InterpolationSchemeInThetaRegion;
 double *ThetaEnergy;
 double *Theta;
} endfMF5LF9;

/*
** Structure: endfMF5LF11
*/
typedef struct endfmf5lf11 {
 int NumberOfARegions;
 int NumberOfAPoints;
 int *NumberOfAPointsInRegion;
 int *InterpolationSchemeInARegion;
 double *AEnergy;
 double *A;
 int NumberOfBRegions;
 int NumberOfBPoints;
 int *NumberOfBPointsInRegion;
 int *InterpolationSchemeInBRegion;
 double *BEnergy;
 double *B;
} endfMF5LF11;

/*
** Structure: endfMF5LF12
*/
typedef struct endfmf5lf12 {
 int NumberOfMTRegions;
 int NumberOfMTPoints;
 int *NumberOfMTPointsInRegion;
 int *InterpolationSchemeInMTRegion;
 double *MTEnergy;
 double *MaximumTemperature;
} endfMF5LF12;

/*
** Structure: endfMF5Distribution
*/
typedef struct endfmf5distribution {
 double UpperEnergyDelta;
 int EnergyDistributionLaw;
 int NumberOfEnergyRegions;
 int NumberOfEnergyPoints;
 int *NumberOfEnergyPointsInRegion;
 int *InterpolationSchemeInEnergyRegion;
 double *Energy;
 double *EnergyProbability;
 void *Parameters;
} endfMF5Distribution;

/*
** Structure: endfMF5
*/
typedef struct endfmf5 {
 double TargetZA;
 double TargetAWR;
 int NumberOfPartialEnergyDistributions;
 endfMF5Distribution *Distributions;
} endfMF5;

/*
** Function: endfReadMF5

381

*/
void endfReadMF5(endfLine *line, endfMF5 *data);

/*
** Function: endfReadMF5LF1
*/
void endfReadMF5LF1(endfLine *line, endfMF5LF1 *data);

/*
** Function: endfReadMF5LF5
*/
void endfReadMF5LF5(endfLine *line, endfMF5LF5 *data);

/*
** Function: endfReadMF5LF7
*/
void endfReadMF5LF7(endfLine *line, endfMF5LF7 *data);

/*
** Function: endfReadMF5LF9
*/
void endfReadMF5LF9(endfLine *line, endfMF5LF9 *data);

/*
** Function: endfReadMF5LF11
*/
void endfReadMF5LF11(endfLine *line, endfMF5LF11 *data);

/*
** Function: endfReadMF5LF12
*/
void endfReadMF5LF12(endfLine *line, endfMF5LF12 *data);

/*
** Function: endfPrintMF5
*/
void endfPrintMF5(endfLine *line, endfMF5 *data);

/*
** Function: endfPrintMF5LF1
*/
void endfPrintMF5LF1(endfLine *line, endfMF5LF1 *data);

/*
** Function: endfPrintMF5LF5
*/
void endfPrintMF5LF5(endfLine *line, endfMF5LF5 *data);

/*
** Function: endfPrintMF5LF7
*/
void endfPrintMF5LF7(endfLine *line, endfMF5LF7 *data);

/*
** Function: endfPrintMF5LF9
*/
void endfPrintMF5LF9(endfLine *line, endfMF5LF9 *data);

/*
** Function: endfPrintMF5LF11
*/
void endfPrintMF5LF11(endfLine *line, endfMF5LF11 *data);

/*
** Function: endfPrintMF5LF12
*/
void endfPrintMF5LF12(endfLine *line, endfMF5LF12 *data);

#endif

382

endfMF5.c

#include "endfMF5.h"

/***
** endfReadMF5
**
** passed first line of mf5 section, load the remaining data
**
*/
void endfReadMF5(endfLine *line, endfMF5 *data)
{
 int i,j;

 /* [ZA, AWR, 0, 0, NK, 0] */
 endfGetNumber(*line, 1, 2, &data->TargetZA);
 endfGetNumber(*line, 2, 2, &data->TargetAWR);
 endfGetNumber(*line, 5, 1, &data->NumberOfPartialEnergyDistributions);

 data->Distributions = (endfMF5Distribution*)
 calloc(data->NumberOfPartialEnergyDistributions, sizeof(endfMF5Distribution));

 for(j = 0; j < data->NumberOfPartialEnergyDistributions; j++) {
 endfReadLine(line);
 /* [U, 0,0, 0, LF, NR, NP] */
 endfGetNumber(*line, 1, 2, &data->Distributions[j].UpperEnergyDelta);
 endfGetNumber(*line, 4, 1, &data->Distributions[j].EnergyDistributionLaw);
 endfGetNumber(*line, 5, 1, &data->Distributions[j].NumberOfEnergyRegions);
 endfGetNumber(*line, 6, 1, &data->Distributions[j].NumberOfEnergyPoints);

 data->Distributions[j].NumberOfEnergyPointsInRegion
 = (int*)calloc(data->Distributions[j].NumberOfEnergyRegions,

 sizeof(int));
 data->Distributions[j].InterpolationSchemeInEnergyRegion
 = (int*)calloc(data->Distributions[j].NumberOfEnergyRegions,

 sizeof(int));

 for(i = 0; i < data->Distributions[j].NumberOfEnergyRegions; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->Distributions[j].NumberOfEnergyPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->Distributions[j].InterpolationSchemeInEnergyRegion[i]);
 }

 data->Distributions[j].Energy
 = (double*)calloc(data->Distributions[j].NumberOfEnergyPoints,

 sizeof(double));
 data->Distributions[j].EnergyProbability
 = (double*)calloc(data->Distributions[j].NumberOfEnergyPoints,

 sizeof(double));

 for(i = 0; i < data->Distributions[j].NumberOfEnergyPoints; i++) {
 if(i % 3 == 0)

endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2,

 &data->Distributions[j].Energy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2,

 &data->Distributions[j].EnergyProbability[i]);
 }

 switch(data->Distributions[j].EnergyDistributionLaw) {
 case 1:
 data->Distributions[j].Parameters = calloc(1, sizeof(endfMF5LF1));
 endfReadMF5LF1(line, (endfMF5LF1*)data->Distributions[j].Parameters);
 break;
 case 5:
 data->Distributions[j].Parameters = calloc(1, sizeof(endfMF5LF5));
 endfReadMF5LF1(line, (endfMF5LF1*)data->Distributions[j].Parameters);

383

 break;
 case 7:
 data->Distributions[j].Parameters = calloc(1, sizeof(endfMF5LF7));
 endfReadMF5LF7(line, (endfMF5LF7*)data->Distributions[j].Parameters);
 break;
 case 9:
 data->Distributions[j].Parameters = calloc(1, sizeof(endfMF5LF9));
 endfReadMF5LF9(line, (endfMF5LF9*)data->Distributions[j].Parameters);
 break;
 case 11:
 data->Distributions[j].Parameters = calloc(1, sizeof(endfMF5LF11));
 endfReadMF5LF11(line, (endfMF5LF11*)data->Distributions[j].Parameters);
 break;
 case 12:
 data->Distributions[j].Parameters = calloc(1, sizeof(endfMF5LF12));
 endfReadMF5LF12(line, (endfMF5LF12*)data->Distributions[j].Parameters);
 break;
 default:
 printf("ERROR: Loading MF5 data and got case '%d'; HELP!!\n",

 data->Distributions[j].EnergyDistributionLaw);
 exit(-1);
 }

 } /* end of for j number of partial energy distributions */

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 5 && line->mt != 0) {
 printf("ERROR: expected end of section mf 5 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadMF5LF1
**
** load the LF 1 theta spectral information
**
*/
void endfReadMF5LF1(endfLine *line, endfMF5LF1 *data)
{
 printf("ERROR: haven't written the MF5 LF1 reader yet\n");
 exit(-1);
}

/***
** endfReadMF5LF5
**
** load the LF 5 theta spectral information
**
*/
void endfReadMF5LF5(endfLine *line, endfMF5LF5 *data)
{
 int i;

 /*
 ** Read the Energy / Theta pairs
 */
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfThetaRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfThetaPoints);

 data->NumberOfThetaPointsInRegion

384

 = (int*)calloc(data->NumberOfThetaRegions, sizeof(int));
 data->InterpolationSchemeInThetaRegion
 = (int*)calloc(data->NumberOfThetaRegions, sizeof(int));

 for(i = 0; i < data->NumberOfThetaRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfThetaPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInThetaRegion[i]);
 }

 data->ThetaEnergy
 = (double*)calloc(data->NumberOfThetaPoints, sizeof(double));
 data->Theta
 = (double*)calloc(data->NumberOfThetaPoints, sizeof(double));

 for(i = 0; i < data->NumberOfThetaPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->ThetaEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->Theta[i]);
 }

 /*
 ** Read the Energy / G pairs
 */
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfGRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfGPoints);

 data->NumberOfGPointsInRegion
 = (int*)calloc(data->NumberOfGRegions, sizeof(int));
 data->InterpolationSchemeInGRegion
 = (int*)calloc(data->NumberOfGRegions, sizeof(int));

 for(i = 0; i < data->NumberOfGRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfGPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInGRegion[i]);
 }

 data->GEnergy
 = (double*)calloc(data->NumberOfGPoints, sizeof(double));
 data->G
 = (double*)calloc(data->NumberOfGPoints, sizeof(double));

 for(i = 0; i < data->NumberOfGPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->GEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->G[i]);
 }

}

/***
** endfReadMF5LF7
**
** load the LF 7 theta spectral information
**
*/
void endfReadMF5LF7(endfLine *line, endfMF5LF7 *data)
{

385

 int i;

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfThetaRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfThetaPoints);

 data->NumberOfThetaPointsInRegion
 = (int*)calloc(data->NumberOfThetaRegions, sizeof(int));
 data->InterpolationSchemeInThetaRegion
 = (int*)calloc(data->NumberOfThetaRegions, sizeof(int));

 for(i = 0; i < data->NumberOfThetaRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfThetaPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInThetaRegion[i]);
 }

 data->ThetaEnergy
 = (double*)calloc(data->NumberOfThetaPoints, sizeof(double));
 data->Theta
 = (double*)calloc(data->NumberOfThetaPoints, sizeof(double));

 for(i = 0; i < data->NumberOfThetaPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->ThetaEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->Theta[i]);
 }

}

/***
** endfReadMF5LF9
**
** load the LF 9 theta spectral information
**
*/
void endfReadMF5LF9(endfLine *line, endfMF5LF9 *data)
{
 int i;

 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfThetaRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfThetaPoints);

 data->NumberOfThetaPointsInRegion
 = (int*)calloc(data->NumberOfThetaRegions, sizeof(int));
 data->InterpolationSchemeInThetaRegion
 = (int*)calloc(data->NumberOfThetaRegions, sizeof(int));

 for(i = 0; i < data->NumberOfThetaRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfThetaPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInThetaRegion[i]);
 }

 data->ThetaEnergy
 = (double*)calloc(data->NumberOfThetaPoints, sizeof(double));
 data->Theta
 = (double*)calloc(data->NumberOfThetaPoints, sizeof(double));

 for(i = 0; i < data->NumberOfThetaPoints; i++) {

386

 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->ThetaEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->Theta[i]);
 }

}

/***
** endfReadMF5LF11
**
** load the LF 11 theta spectral information
**
*/
void endfReadMF5LF11(endfLine *line, endfMF5LF11 *data)
{
 int i;

 /*
 ** Read the Energy / A pairs
 */
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfARegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfAPoints);

 data->NumberOfAPointsInRegion
 = (int*)calloc(data->NumberOfARegions, sizeof(int));
 data->InterpolationSchemeInARegion
 = (int*)calloc(data->NumberOfARegions, sizeof(int));

 for(i = 0; i < data->NumberOfARegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfAPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInARegion[i]);
 }

 data->AEnergy
 = (double*)calloc(data->NumberOfAPoints, sizeof(double));
 data->A
 = (double*)calloc(data->NumberOfAPoints, sizeof(double));

 for(i = 0; i < data->NumberOfAPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->AEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->A[i]);
 }

 /*
 ** Read the Energy / B pairs
 */
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfBRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfBPoints);

 data->NumberOfBPointsInRegion
 = (int*)calloc(data->NumberOfBRegions, sizeof(int));
 data->InterpolationSchemeInBRegion
 = (int*)calloc(data->NumberOfBRegions, sizeof(int));

 for(i = 0; i < data->NumberOfBRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

387

 &data->NumberOfBPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInBRegion[i]);
 }

 data->BEnergy
 = (double*)calloc(data->NumberOfBPoints, sizeof(double));
 data->B
 = (double*)calloc(data->NumberOfBPoints, sizeof(double));

 for(i = 0; i < data->NumberOfBPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->BEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->B[i]);
 }

}

/***
** endfReadMF5LF12
**
** load the LF 12 theta spectral information
**
*/
void endfReadMF5LF12(endfLine *line, endfMF5LF12 *data)
{
 int i;

 /*
 ** Read the Energy / Maximum Temperature pairs
 */
 endfReadLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfGetNumber(*line, 5, 1, &data->NumberOfMTRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfMTPoints);

 data->NumberOfMTPointsInRegion
 = (int*)calloc(data->NumberOfMTRegions, sizeof(int));
 data->InterpolationSchemeInMTRegion
 = (int*)calloc(data->NumberOfMTRegions, sizeof(int));

 for(i = 0; i < data->NumberOfMTRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfMTPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInMTRegion[i]);
 }

 data->MTEnergy
 = (double*)calloc(data->NumberOfMTPoints, sizeof(double));
 data->MaximumTemperature
 = (double*)calloc(data->NumberOfMTPoints, sizeof(double));

 for(i = 0; i < data->NumberOfMTPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->MTEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->MaximumTemperature[i]);
 }

}

/***
** endfPrintMF5
**

388

** print an mf5 section record
**
** expects 'line->body' to point to a writable file pointer
** expects 'line->mf' to be set to mf5
** expects 'line->mt' to be set to current mt
**
*/
void endfPrintMF5(endfLine *line, endfMF5 *data)
{
 int i, j;
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [ZA, AWR, 0, 0, NK, 0] */
 endfPutNumber(line, 1, 2, (void*)&data->TargetZA);
 endfPutNumber(line, 2, 2, (void*)&data->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfPartialEnergyDistributions);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 for(j = 0; j < data->NumberOfPartialEnergyDistributions; j++) {

 endfNextLine(line);
 /* [U, 0,0, 0, LF, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&data->Distributions[j].UpperEnergyDelta);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&data->Distributions[j].EnergyDistributionLaw);
 endfPutNumber(line, 5, 1, (void*)&data->Distributions[j].NumberOfEnergyRegions);
 endfPutNumber(line, 6, 1, (void*)&data->Distributions[j].NumberOfEnergyPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->Distributions[j].NumberOfEnergyRegions; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->Distributions[j].NumberOfEnergyPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->Distributions[j].InterpolationSchemeInEnergyRegion[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->Distributions[j].NumberOfEnergyPoints; i++) {
 if(i % 3 == 0)

endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2,

 (void*)&data->Distributions[j].Energy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2,

 (void*)&data->Distributions[j].EnergyProbability[i]);
 if(i % 3 == 2)

endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 switch(data->Distributions[j].EnergyDistributionLaw) {
 case 1:
 endfPrintMF5LF1(line, (endfMF5LF1*)data->Distributions[j].Parameters);
 break;
 case 5:

389

 endfPrintMF5LF5(line, (endfMF5LF5*)data->Distributions[j].Parameters);
 break;
 case 7:
 endfPrintMF5LF7(line, (endfMF5LF7*)data->Distributions[j].Parameters);
 break;
 case 9:
 endfPrintMF5LF9(line, (endfMF5LF9*)data->Distributions[j].Parameters);
 break;
 case 11:
 endfPrintMF5LF11(line, (endfMF5LF11*)data->Distributions[j].Parameters);
 break;
 case 12:
 endfPrintMF5LF12(line, (endfMF5LF12*)data->Distributions[j].Parameters);
 break;
 default:
 printf("ERROR: Printing MF5 data and got case '%d'; HELP!!\n",

 data->Distributions[j].EnergyDistributionLaw);
 }

 } /* end of for j number of partial energy distributions */

 /*
 ** print end of record marker
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF5LF1
**
** print the LF 1 theta spectral information
**
*/
void endfPrintMF5LF1(endfLine *line, endfMF5LF1 *data)
{
 printf("ERROR: haven't written the MF5 LF1 writer yet\n");
 exit(-1);
}

/***
** endfPrintMF5LF5
**
** print the LF 5 theta spectral information
**
*/
void endfPrintMF5LF5(endfLine *line, endfMF5LF5 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 /*
 ** Print the Energy / Theta pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);

390

 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfThetaRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfThetaPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfThetaRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfThetaPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInThetaRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfThetaPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->ThetaEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->Theta[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 /*
 ** Print the Energy / G pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfGRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfGPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfGRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfGPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInGRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfGPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->GEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->G[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

391

}

/***
** endfPrintMF5LF7
**
** print the LF 7 theta spectral information
**
*/
void endfPrintMF5LF7(endfLine *line, endfMF5LF7 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 /*
 ** Print the Energy / Theta pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfThetaRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfThetaPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfThetaRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfThetaPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInThetaRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfThetaPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->ThetaEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->Theta[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF5LF9
**
** print the LF 9 theta spectral information
**
*/
void endfPrintMF5LF9(endfLine *line, endfMF5LF9 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

392

 /*
 ** Print the Energy / Theta pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfThetaRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfThetaPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfThetaRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfThetaPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInThetaRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfThetaPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->ThetaEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->Theta[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF5LF11
**
** print the LF 11 theta spectral information
**
*/
void endfPrintMF5LF11(endfLine *line, endfMF5LF11 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 /*
 ** Print the Energy / A pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfARegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfAPoints);
 endfPrintLineToFile(*line);

393

 for(i = 0; i < data->NumberOfARegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfAPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInARegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfAPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->AEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->A[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 /*
 ** Print the Energy / B pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfBRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfBPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfBRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfBPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInBRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfBPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->BEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->B[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF5LF12
**

394

** print the LF 12 theta spectral information
**
*/
void endfPrintMF5LF12(endfLine *line, endfMF5LF12 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 /*
 ** Print the Energy / Maximum Temperature pairs
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfMTRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfMTPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfMTRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfMTPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInMTRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfMTPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->MTEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->MaximumTemperature[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

}

endfMF6.h

#ifndef endfMF6_h
#define endfMF6_h

#include <stdio.h>
#include <stdlib.h>

#include "endfLine.h"
#include "endfNumber.h"

/*
** Structure: endfEmissionSpectrum
*/
typedef struct endfemissionspectrum { /* ENDF Parameter Name */
 double IncidentEnergy; /* E */
 int NumberOfDiscreteEmissions; /* ND */
 int NumberOfAngularParameters; /* NA */
 int NumberOfEntries; /* NW */

395

 int NumberOfEmissionEnergies; /* NEP */
 double *EmissionEnergy;
 double **Parameters;
} endfEmissionSpectrum;

/*
** Structure: endfLaw1
*/
typedef struct endflaw1 { /* ENDF Parameter Name */
 int AngularRepresentation; /* LANG */
 int InterpolationSchemeForSecEnergy; /* LEP */
 int NumberOfSecEnergyRegions; /* NR */
 int NumberOfSecEnergyPoints; /* NE */
 int *NumberOfSecEnergyPointsInRegion;
 int *InterpolationSchemeInSecEnergyRegion;
 endfEmissionSpectrum *ES;
} endfLaw1;

/*
** Structure: endfSecondary
*/
typedef struct endfsecondary { /* ENDF Parameter Name */
 double ParticleZA; /* ZAP */
 double ParticleAWR; /* AWP */
 int ProductModifier; /* LIP */
 int ReactionLaw; /* LAW */
 int NumberOfYieldRegions; /* NR */
 int NumberOfYieldPoints; /* NP */
 int *NumberOfYieldPointsInRegion;
 int *InterpolationSchemeInYieldRegion;
 double *YieldEnergy;
 double *Yield;
 void *LawData;
} endfSecondary;

/*
** Structure: endfMF6
*/
typedef struct endfmf6 { /* ENDF Parameter Name */
 double TargetZA; /* ZA */
 double TargetAWR; /* AWR */
 int FrameOfReference; /* LCT */
 int NumberOfSubsections; /* NK */
 endfSecondary *Secondaries;
} endfMF6;

/*
** Function: endfReadMF6
*/
void endfReadMF6(endfLine *line, endfMF6 *data);

/*
** Function: endfReadMF6Secondary
*/
void endfReadMF6Secondary(endfLine *line, endfSecondary *data);

/*
** Function: endfReadMF6Law1
*/
void endfReadMF6Law1(endfLine *line, endfLaw1 *data);

/*
** Function: endfReadMF6EmissionSpectrum
*/
void endfReadMF6EmissionSpectrum(endfLine *line, endfEmissionSpectrum *data);

/*
** Function: endfPrintMF6
*/
void endfPrintMF6(endfLine *line, endfMF6 *data);

396

/*
** Function: endfPrintMF6Secondary
*/
void endfPrintMF6Secondary(endfLine *line, endfSecondary *data);

/*
** Function: endfPrintMF6Law1
*/
void endfPrintMF6Law1(endfLine *line, endfLaw1 *data);

/*
** Function: endfPrintMF6EmissionSpectrum
*/
void endfPrintMF6EmissionSpectrum(endfLine *line, endfEmissionSpectrum *data);

#endif

endfMF6.c

#include "endfMF6.h"

/***
** endfReadMF6
**
** load the file 6 general information
**
*/
void endfReadMF6(endfLine *line, endfMF6 *data)
{
 int i;

 /* [ZA, AWR, 0, LCT, NK, 0] */
 endfGetNumber(*line, 1, 2, &data->TargetZA);
 endfGetNumber(*line, 2, 2, &data->TargetAWR);
 endfGetNumber(*line, 4, 1, &data->FrameOfReference);
 endfGetNumber(*line, 5, 1, &data->NumberOfSubsections);

 data->Secondaries
 = (endfSecondary*)calloc(data->NumberOfSubsections, sizeof(endfSecondary));

 /*
 ** read the secondary subsections
 */
 for(i = 0; i < data->NumberOfSubsections; i++)
 endfReadMF6Secondary(line, &data->Secondaries[i]);

 /*
 ** error check on end of section
 */
 endfReadLine(line);
 if(line->mf != 6 && line->mt != 0) {
 printf("ERROR: expected end of section mf 6 mt 0: got mf '%d' mt '%d'\n",

 line->mf, line->mt);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadMF6Secondary
**
** load the MF 6 secondary information
**
*/

397

void endfReadMF6Secondary(endfLine *line, endfSecondary *data)
{
 int i;

 endfReadLine(line);
 /* [ZAP, AWP, LIP, LAW, NR, NP] */
 endfGetNumber(*line, 1, 2, &data->ParticleZA);
 endfGetNumber(*line, 2, 2, &data->ParticleAWR);
 endfGetNumber(*line, 3, 1, &data->ProductModifier);
 endfGetNumber(*line, 4, 1, &data->ReactionLaw);
 endfGetNumber(*line, 5, 1, &data->NumberOfYieldRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfYieldPoints);

 data->NumberOfYieldPointsInRegion
 = (int*)calloc(data->NumberOfYieldRegions, sizeof(int));
 data->InterpolationSchemeInYieldRegion
 = (int*)calloc(data->NumberOfYieldRegions, sizeof(int));

 for(i = 0; i < data->NumberOfYieldRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfYieldPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInYieldRegion[i]);
 }

 data->YieldEnergy
 = (double*)calloc(data->NumberOfYieldPoints, sizeof(double));
 data->Yield
 = (double*)calloc(data->NumberOfYieldPoints, sizeof(double));

 for(i = 0; i < data->NumberOfYieldPoints; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 2, &data->YieldEnergy[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 2, &data->Yield[i]);
 }

 switch(data->ReactionLaw) {
 case 1:
 data->LawData = (endfLaw1*)calloc(1, sizeof(endfLaw1));
 endfReadMF6Law1(line, (endfLaw1*)data->LawData);
 break;
 default:
 printf("ERROR: don't know reaction law '%d'\n", data->ReactionLaw);
 endfPrintLine(*line);
 exit(-1);
 }

}

/***
** endfReadMF6Law1
**
** load the MF 6 secondary law information
**
*/
void endfReadMF6Law1(endfLine *line, endfLaw1 *data)
{
 int i;

 endfReadLine(line);
 /* [0.0, 0.0, LANG, LEP, NR, NE] */
 endfGetNumber(*line, 3, 1, &data->AngularRepresentation);
 endfGetNumber(*line, 4, 1, &data->InterpolationSchemeForSecEnergy);
 endfGetNumber(*line, 5, 1, &data->NumberOfSecEnergyRegions);
 endfGetNumber(*line, 6, 1, &data->NumberOfSecEnergyPoints);

398

 data->NumberOfSecEnergyPointsInRegion
 = (int*)calloc(data->NumberOfSecEnergyRegions, sizeof(int));
 data->InterpolationSchemeInSecEnergyRegion
 = (int*)calloc(data->NumberOfSecEnergyRegions, sizeof(int));

 for(i = 0; i < data->NumberOfSecEnergyRegions; i++) {
 if(i % 3 == 0)
 endfReadLine(line);
 endfGetNumber(*line, (1+2*i)%6, 1,

 &data->NumberOfSecEnergyPointsInRegion[i]);
 endfGetNumber(*line, (1+2*i)%6+1, 1,

 &data->InterpolationSchemeInSecEnergyRegion[i]);
 }

 data->ES = (endfEmissionSpectrum*)calloc(data->NumberOfSecEnergyPoints,
 sizeof(endfEmissionSpectrum));

 for(i = 0; i < data->NumberOfSecEnergyPoints; i++)
 endfReadMF6EmissionSpectrum(line, &data->ES[i]);

}

/***
** endfReadMF6EmissionSpectrum
**
** load the MF 6 secondary emission spectrum information
**
*/
void endfReadMF6EmissionSpectrum(endfLine *line, endfEmissionSpectrum *data)
{
 int i;
 int e; /* emission energy index */
 int epe; /* entries per emission energy */

 endfReadLine(line);
 /* [0.0, E, ND, NA, NW, NEP] */
 endfGetNumber(*line, 2, 2, &data->IncidentEnergy);
 endfGetNumber(*line, 3, 1, &data->NumberOfDiscreteEmissions);
 endfGetNumber(*line, 4, 1, &data->NumberOfAngularParameters);
 endfGetNumber(*line, 5, 1, &data->NumberOfEntries);
 endfGetNumber(*line, 6, 1, &data->NumberOfEmissionEnergies);

 data->EmissionEnergy = (double*)calloc(data->NumberOfEmissionEnergies,
 sizeof(double));

 data->Parameters = (double**)calloc(data->NumberOfEmissionEnergies,
 sizeof(double*));

 for(i = 0; i < data->NumberOfEmissionEnergies; i++)
 data->Parameters[i] = (double*)calloc(data->NumberOfAngularParameters + 1,

 sizeof(double));

 e = -1; /* index get incremented to 0 on first pass before use */
 epe = data->NumberOfAngularParameters + 2;
 for(i = 0; i < data->NumberOfEntries; i++) {
 if(i % 6 == 0)
 endfReadLine(line);
 if(i % epe == 0)
 endfGetNumber(*line, (i%6)+1, 2, &data->EmissionEnergy[++e]);
 else
 endfGetNumber(*line, (i%6)+1, 2, &data->Parameters[e][(i%epe)-1]);
 }

}

/***

** endfPrintMF6
**
** load the file 6 general information

399

**
*/
void endfPrintMF6(endfLine *line, endfMF6 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [ZA, AWR, 0, LCT, NK, 0] */
 endfPutNumber(line, 1, 2, (void*)&data->TargetZA);
 endfPutNumber(line, 2, 2, (void*)&data->TargetAWR);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&data->FrameOfReference);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfSubsections);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

 /*
 ** print the secondary subsections
 */
 for(i = 0; i < data->NumberOfSubsections; i++)
 endfPrintMF6Secondary(line, &data->Secondaries[i]);

 /*
 ** print end of record marker
 */
 endfNextLine(line);
 /* [0.0, 0.0, 0, 0, 0, 0] */
 line->mt = 0;
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&intzero);
 endfPutNumber(line, 4, 1, (void*)&intzero);
 endfPutNumber(line, 5, 1, (void*)&intzero);
 endfPutNumber(line, 6, 1, (void*)&intzero);
 endfPrintLineToFile(*line);

}

/***
** endfPrintMF6Secondary
**
** load the MF 6 secondary information
**
*/
void endfPrintMF6Secondary(endfLine *line, endfSecondary *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [ZAP, AWP, LIP, LAW, NR, NP] */
 endfPutNumber(line, 1, 2, (void*)&data->ParticleZA);
 endfPutNumber(line, 2, 2, (void*)&data->ParticleAWR);
 endfPutNumber(line, 3, 1, (void*)&data->ProductModifier);
 endfPutNumber(line, 4, 1, (void*)&data->ReactionLaw);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfYieldRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfYieldPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfYieldRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

400

 (void*)&data->NumberOfYieldPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInYieldRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfYieldPoints; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 2, (void*)&data->YieldEnergy[i]);
 endfPutNumber(line, (1+2*i)%6+1, 2, (void*)&data->Yield[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

 switch(data->ReactionLaw) {
 case 1:
 endfPrintMF6Law1(line, (endfLaw1*)data->LawData);
 break;
 default:
 printf("ERROR: don't know reaction law '%d'\n", data->ReactionLaw);
 exit(-1);
 }

}

/***
** endfPrintMF6Law1
**
** load the MF 6 secondary law information
**
*/
void endfPrintMF6Law1(endfLine *line, endfLaw1 *data)
{
 int i;
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [0.0, 0.0, LANG, LEP, NR, NE] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&doublezero);
 endfPutNumber(line, 3, 1, (void*)&data->AngularRepresentation);
 endfPutNumber(line, 4, 1, (void*)&data->InterpolationSchemeForSecEnergy);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfSecEnergyRegions);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfSecEnergyPoints);
 endfPrintLineToFile(*line);

 for(i = 0; i < data->NumberOfSecEnergyRegions; i++) {
 if(i % 3 == 0)
 endfNextLine(line);
 endfPutNumber(line, (1+2*i)%6, 1,

 (void*)&data->NumberOfSecEnergyPointsInRegion[i]);
 endfPutNumber(line, (1+2*i)%6+1, 1,

 (void*)&data->InterpolationSchemeInSecEnergyRegion[i]);
 if(i % 3 == 2)
 endfPrintLineToFile(*line);
 }
 if(i % 3 != 0)
 endfPrintLineToFile(*line);

401

 for(i = 0; i < data->NumberOfSecEnergyPoints; i++)
 endfPrintMF6EmissionSpectrum(line, &data->ES[i]);

}

/***
** endfPrintMF6EmissionSpectrum
**
** load the MF 6 secondary emission spectrum information
**
*/
void endfPrintMF6EmissionSpectrum(endfLine *line, endfEmissionSpectrum *data)
{
 int i;
 int e; /* emission energy index */
 int epe; /* entries per emission energy */
 int intzero = 0;
 double doublezero = 0.0;

 endfNextLine(line);
 /* [0.0, E, ND, NA, NW, NEP] */
 endfPutNumber(line, 1, 2, (void*)&doublezero);
 endfPutNumber(line, 2, 2, (void*)&data->IncidentEnergy);
 endfPutNumber(line, 3, 1, (void*)&data->NumberOfDiscreteEmissions);
 endfPutNumber(line, 4, 1, (void*)&data->NumberOfAngularParameters);
 endfPutNumber(line, 5, 1, (void*)&data->NumberOfEntries);
 endfPutNumber(line, 6, 1, (void*)&data->NumberOfEmissionEnergies);
 endfPrintLineToFile(*line);

 e = -1; /* index get incremented to 0 on first pass before use */
 epe = data->NumberOfAngularParameters + 2;
 for(i = 0; i < data->NumberOfEntries; i++) {
 if(i % 6 == 0)
 endfNextLine(line);
 if(i % epe == 0)
 endfPutNumber(line, (i%6)+1, 2, (void*)&data->EmissionEnergy[++e]);
 else
 endfPutNumber(line, (i%6)+1, 2, (void*)&data->Parameters[e][(i%epe)-1]);
 if(i % 6 == 5)
 endfPrintLineToFile(*line);
 }
 if(i % 6 != 0)
 endfPrintLineToFile(*line);

}

Makefile

CC=/opt/SUNWspro/bin/cc

CFLAGS = # -g -xsb

LIBS = -lm

SRCS = mkpnt.c \
\
acepnIO.c \
\
afeCreateNTableHeader.c \
afeCollectEnergies.c \
afeGetMTInformation.c \
afeGetMTNames.c \
afeGetMTProducts.c \
afeMakeNTable.c \

402

afeVerifyNTable.c

ENDF_SRCS = endf6.c \
endfLine.c \
endfNumber.c \
endfConvert.c \
endfMF1.c \
endfMF1MT451.c \
endfMF2.c \
endfMF3.c \
endfMF4.c \
endfMF5.c \
endfMF6.c

OBJS = ${SRCS:.c=.o}
ENDF_OBJS = ${ENDF_SRCS:.c=.o}

mkpnt: ${OBJS} ${ENDF_OBJS}
${CC} -o mkpnt ${CFLAGS} ${INCLUDE} ${OBJS} ${ENDF_OBJS} ${LIBS}

endf: ${ENDF_OBJS}

deps:
${CC} -xM1 ${SRCS} ${ENDF_SRCS}

test: test.o
${CC} -o test ${CFLAGS} test.o ${ENDF_OBJS} ${LIBS}

tar:
tar cvf mkpnt.tar *.c *.h mkpnt.wst Makefile
gzip mkpnt.tar

clean:
rm -f ${OBJS} mkpnt.o test.o mkpnt test

rmold:
rm -f *~

clobber: clean rmold

403

APPENDIX C
PHOTONUCLEAR PATCH FILE

The following text is the photonuclear patch to the MCNP code. As per the

MCNP user manual on how to modify the code base, it is in the form of a PRPR patch

file. Instructions on how to build the modified version of the code are contained in the

first section of the file itself.

*/
*/ **
*/ Photonuclear patch to MCNP4B2
*/ **
*/ The following set of changes is the frozen version of the
*/ photonuclear patch to MCNP used for this dissertation work.
*/
*/ To build this version of the code, it is necessary to obtain the
*/ CCC660 MCNP4B code package from the RSICC computer code center.
*/ (http://www-rsicc.ornl.gov/rsic.html)
*/ Once this has been done, follow the normal installation procedures
*/ with the following exceptions:
*/
*/ (1) Copy this patch file into the directory where the executable
*/ will be built, and
*/ (2) stop the installation before execution of the makemcnp script
*/ and add the lines labeled "New Line":
*/
*/ --- from makemcnp: lines removed ---
*/ Old Line: cp mcnpf.id codef
*/ Old Line: cp patchf patch
*/ Old Line: prpr
*/ New Line: rm patch compile
*/ New Line: mv newid codef
*/ New Line: head -1 patchf > patch
*/ New Line: cat patchf.pn >> patch
*/ New Line: prpr
*/ Old Line: fsplit compile > clog
*/ Old Line: rm -f compile codef patch newid clog
*/ --- from makemcnp: lines removed ---
*/
*/ This convolution is necessary as the photonuclear patch was built on
*/ MCNP4B release 2 and the author did not want to reconcile the changes
*/ in the install.fix file with the new patchf file.
*/
*/
*/ **
*/ Changes to zc
*ident zcPN
*/ **
*/
*d,zc4b.1
 parameter (kod='mcnp',ver='PN')
*i,zc4b.5
 1 maxsec=8,mixs=12,
*/
*/ **

404

*/ Changes to vv
*ident vvPN
*/ **
*/
*d,vv4a.3
 2 jrwb(17,mipt),jsf(mjsf),mfiss(22),nvs(maxv),itty,jtty
*i,vv4a.5
 3 htn*9,
*i,vv4a.10
 2 htn,
*/
*/ **
*/ Changes to cm
*ident cmPN
*/ **
*/
*d,cm4b.3
 1 lfixcm=3*mxdt+mink+11*mipt+2*maxv+2*maxf+286)
*d,cm4b.4
 parameter (nvarcm=108*mipt+144,lvarcm=mipt*(1+8*mxdx)+mcpu+329)
*i,cm.36
 4 ispn,
*i,cm4b.19
 7 lixs,lizn,llmn,lpnt,
*d,cm.63
 1 osum2(3,3),pax(6,17,mipt),prn,rani,ranj,rdum(50),rijk,rkk,
*i,cm.69
 8 npum,
*d,cm4b.49
 1 colltc(mipt),deb,dti(mlgc),eacctc(2),eg0,ergace,paxtc(6,17,mipt),
*i,cm.175
 2 totpn,
*i,cm.184
 7 ntyr,
*d,cm4b.63,cm4b.64
 parameter (ntskcm=108*mipt+40*(mxlv+1)+3*maxf+mlgc+105,
 1 ltskcm=mipt*(2+8*mxdx)+5*(mxlv+1)+2*mlgc+maxf+48,ltskpt=39)
*i,cm4b.75
 7 pnt(1),
*i,cm4b.80
 3 izn(1),lmn(1),ixs(mixs,maxsec,1),
*d,cm4b.87
*if -def,pointer,11
*i,cm4b.91
 4 pnt,
*i,cm4b.93
 2 izn,lmn,ixs,
*d,cm4b.97
*if def,pointer,23
*i,cm4b.104
 7 (kdy,pnt),
*i,cm4b.110
 2 (kdy,izn),(kdy,lmn),(kdy,ixs),
*d,cm4b.120
 2 pac(mipt,10,1),pan(3,8,1),pcc(3,1),pwb(mipt,21,1),rkpl(19,1),
*i,cm4a.97
 3 lxn(1),
*d,cor4-2.16
*if -def,pointer,4
*i,cm4a.98
 3 lxn,
*d,cor4-2.17
*if def,pointer,6
*i,cm4a.99
 3 (kdy,lxn),
*/
*/ **
*/ Changes to blkdat
*ident bdPN
*/ **
*/

405

*d,bd.37,bd.38
 data jrwb/
 1 0, 3, 4, 6, 7, 8, 9, 10, 11, 12,
 1 0, 15, 16, 17, 0, 0, 0,
 2 0, 3, 4, 6, 7, 8, 9, 10, 11, 12,
 2 0, 18, 19, 0, 0, 0, 20,
 3 0, 3, 4, 6, 7, 8, 9, 10, 11, 12,
 3 0, 0, 0, 0, 0, 0, 0/
*i,bd.82
 2 htn/'cdytpmgue'/,
*d,bd4b.3
 3 hsd/'sequential','direct'/,ibin/'fdusmcet'/,loddat/'01/14/00'/,
*/
*/ **
*/ Changes to jc
*ident jcPN
*/ **
*/
*d,jc4b.1
 parameter (nkcd=89,ntalmx=100,mopts=6)
*i,jc4a.5
 2 llxn,
*/
*/ **
*/ Changes to ibldat
*ident ibPN
*/ **
*/
*i,ib4b.6
 data cnm(89),(krq(i,89),i=1,7)/'mpn ',0,0, 0,0, 2, 0,0/
*d,ib4a.10
 data hmopt/'gas','estep','nlib','plib','elib','pnlib'/
*/
*/ **
*/ Changes to imcn
*ident imPN
*/ **
*/
*d,im.26
 if(ispn.ne.0.and.kpt(2).eq.0)then
 ispn=0
 call erprnt(2,2,0,0,0,0,0,0,
 1 '50hphotonuclear turned off. photons not on mode card.')
 endif
 if(ispn.ne.0)n=n+1
 mxe1=mix*max(1,n)
 mxe1=mxe1+indt
*i,im4a.18
 m4=ichar(' ')+256*(ichar(' ')+256*ichar('u'))
*d,im4a.22
 lxd(llxd+3,i)=m3
 lxn(llxn+i)=m4
 195 pnt(lpnt+i)=huge
*/
*/ **
*/ Changes to newcd1
*ident nfPN
*/ **
*/
*d,nf.70
 2 9910,9920,9930, 110)ica-55
*d,nf4b.5
*d,nf4b.6
*/
*/ **
*/ Changes to nexit1
*ident nxPN
*/ **
*/
*d,nx4b.2
 go to(10, 10, 10,250, 10, 10, 10, 10,255, 10,258, 10,259,260, 10,

406

*d,nx.14
 2 9910,9920,9930, 10)ica-55
*d,nx4a.127,nx4b.42
c want to count the number of zaids and atom fractions
c while ignoring material options.
c nwc is number of zaids plus atom fractions read so far
c (nwc is incremented automatically in routine items)
c m1c > 0 indicates already processing material option
c
c if already found zaid, count next atom fraction
 170 if (mod(nwc,2).eq.0) return
c
c if processing material option, don't count "=" or option
 if (m1c.ne.0) then
 nwc=nwc-1
 if(hitm.eq.'=')return
 m1c=0
 return
 endif
c
c count zaids while ignoring material options
 do 175 i=1,mopts
 if (hitm.eq.hmopt(i)) then
 m1c=i
 nwc=nwc-1
 return
 endif
 175 continue
 return
*i,nx.121
c
c turn on photonuclear physics(+ natural coll / - biased coll)
 if(nqp(2).ne.0.and.iitm.ne.0.and.nwc.eq.4)ispn=iitm
*d,nx.123,nx.145
*/
*/ **
*/ Changes to oldcd1
*ident olPN
*/ **
*/
*d,ol.16
 2 9910,9920,9930, 10)ica-55
*d,ol4b.2,ol4b.19
c
c for each cell containing material, make space for nuclide summary
 240 n=0
 do 250 i=1,mxa
 if(mat(lmat+i).eq.icn)n=n+1
 250 continue
 npn=npn+n*nwc/2
c
c increment the total number of isotopes seen so far
 mix=mix+nwc/2
c
c update the maximum number of nuclides seen for any material
 mnnm=max(mnnm,nwc/2)
 return
*/
*/ **
*/ Changes to setdas
*ident sdPN
*/ **
*/
*d,sd.67
 lpnt=lpmg+max(0,mcal-1)*igm*npn
 lpru=lpnt+nmat1
*d,sd.96,sd.97
 lixs=lixl+3*mxe1
 liza=lixs+mixs*maxsec*mxe1
 lizn=liza+mix
 ljar=lizn+mix

407

*d,sd.118
 llmn=llme+mipt*mix
 llmt=llmn+mix
*d,sd.147
 lpcc=lpan+3*8*npn
*d,sd.149
 lrkp=lpwb+mipt*21*(mxa+1)
*d,sd4b.45,sd4b.46
 2 18*mxa*mgww(mipt+1)+mipt*10*mxa+3*8*npn+3*mxa*kpt(2)+
 3 mipt*21*mxa+mxxs/2)*mt)*ndp2
*d,sd4a.20
 llxn=llxd+mipt*nmat1
 lmfm=llxn+nmat1
*/
*/ **
*/ Changes to newcrd
*ident nePN
*/ **
*/
*d,ne.94
 2 9910,9920,9930, 660)ica-55
*i,ne4b.30
c
c >>>>> photonuclear isotope override mpn
c if mpn has a corresonding m card, return and process card items
c m1c is set to the material number, ie when was it seen sequentially
c m2c is set to jmd(ljmd+mat), ie the index of the first entry in iza
c m3c is set to npq(lnpq+mat), ie the number of entries for mat in iza
c (note the implicit dependence that mX card comes before mpnX card)
c
 660 continue
c
c mpn override card only legal if photonuclear physics is on
c
 if(ispn.eq.0) then
 call erprnt(2,2,0,0,0,0,0,0,
 1 '50hmpn card ignored while photonuclear physics is off')
 return
 endif
c
c find the corresponding material card
 do 670 i=1,nmat
 if(icn.eq.nmt(lnmt+i)) m1c=i
 670 continue
c
c if corresponding material card exists, set pointers
 if(m1c.ne.0) then
 m2c=jmd(ljmd+m1c)
 m3c=npq(lnpq+m1c)
c
c if mpn card has no corresponding m card (or m card is after mpn)
c print warning to user to indicate card ignored
 else
 call erprnt(2,1,1,icn,0,0,0,0,
 1 '13hmpn override ,i4,'//
 2 '56h (has no/is before) corresponding m card and is ignored.')
 endif
 return
*/
*/ **
*/ Changes to chekit
*ident cePN
*/ **
*/
*d,ce4b.1
 2 1180,9910,9920,9930,1240)ica-55
*d,ce4a.153
c m1c > 0, already processing material option.
*d,ce4a.160,ce4a.163
 if(m1c.eq.3.and.index(' cdym',hitm(i+3:i+3)).eq.0)
 1 call erprnt(2,1,0,0,0,0,0,1,

408

 2 '49hdefault nuetron table set to wrong particle type.')
 if(m1c.eq.4.and.index(' pg',hitm(i+3:i+3)).eq.0)
 1 call erprnt(2,1,0,0,0,0,0,1,
 2 '53hdefault photoatomic table set to wrong particle type.')
 if(m1c.eq.5.and.index(' e',hitm(i+3:i+3)).eq.0)
 1 call erprnt(2,1,0,0,0,0,0,1,
 2 '50hdefault electron table set to wrong particle type.')
 if(m1c.eq.6.and.index(' u',hitm(i+3:i+3)).eq.0)
 1 call erprnt(2,1,0,0,0,0,0,1,
 2 '54hdefault photonuclear table set to wrong particle type.')
*d,ce4a.172
 if(kpt(2).eq.0.and.index('pgu',hitm(i+3:i+3)).ne.0)
*i,ce4a.177
c
c check to ensure that cells do not contain none transort tables
*d,ce.383,ce.384
 if(index(htn,ht(10:10)).eq.0)call erprnt(2,1,0,0,0,0,0,1,
 1 '49hzaid must end in table class id (see Appendix F)')
*i,ce4b.27
c
c >>>>> photonuclear isotope override card mpn
c
c entries have already been checked to ensure integer type
c (from krq(5,mpn) set to 2 in ibldat and check above)
c
c all entries must be positive integers or zero
c valid za's are range 1 to 999999
 1240 if(iitm.lt.0.or.iitm.gt.999999)
 1 call erprnt(2,1,1,iitm,0,0,0,0,
 2 '52hisotope override must be valid (non-negative) za not,i7')
 return
*/
*/ **
*/ Changes to nextit
*ident nyPN
*/ **
*/
*d,ny4b.1
 2 1480,1490,1510,1620,9910,9920,9930,1660)ica-55
*d,ny4a.24,ny.389
c m1c > 0, already processing material option.
 710 if (m1c.ne.0) then
 nwc=nwc-1
 if(hitm.eq.'=')return
c
c process material option
 if(m1c.eq.1.and.nee.gt.0)emi(lemi+nmat)=ritm
 if(m1c.eq.2.and.nee.gt.0)nsb(lnsb+nmat)=iitm
c
c processing identifier value for default library.
 if (m1c.ge.3.and.m1c.le.6) then
 i=index(hitm,'.')
 ht=hitm(i+1:i+3)
 if(ht(1:1).eq.' ')ht(1:1)='0'
 if(ht(2:2).eq.' ')ht(2:2)='0'
c
c content-free entry does not change system default.
 if(ht(1:3).eq.'00 '.or.ht(1:3).eq.'000')return
c
c set the appropriate default library
 if (m1c.eq.3) then
 if (ht(3:3).eq.' ') ht(3:3)='c'
 lxd(llxd+1,nmat)=ichar(ht(1:1))+256*(ichar(ht(2:2))+
 1 256*ichar(ht(3:3)))
 elseif (m1c.eq.4) then
 if (ht(3:3).eq.' ') ht(3:3)='p'
 lxd(llxd+2,nmat)=ichar(ht(1:1))+256*(ichar(ht(2:2))+
 1 256*ichar(ht(3:3)))
 elseif (m1c.eq.5) then
 if (ht(3:3).eq.' ') ht(3:3)='e'
 lxd(llxd+3,nmat)=ichar(ht(1:1))+256*(ichar(ht(2:2))+

409

 1 256*ichar(ht(3:3)))
 elseif (m1c.eq.6) then
 if (ht(3:3).eq.' ') ht(3:3)='u'
 lxn(llxn+nmat)=ichar(ht(1:1))+256*(ichar(ht(2:2))
 1 +256*ichar(ht(3:3)))
 endif
 endif
 m1c=0
 return
 endif
c
c else check for material option
 do 715 i=1,mopts
 if (hitm.eq.hmopt(i)) then
 m1c=i
 nwc=nwc-1
 return
 endif
 715 continue
c
c else process zaid entry or fraction entry.
 if (mod(nwc,2).ne.0) then
 mix=mix+1
 ht=' '
 if(index(hitm,'.').eq.0)hitm(nitm+1:nitm+1)='.'
 ht(8-index(hitm,'.'):10)=hitm
 if(ht(8:8).ne.' '.and.ht(9:9).eq.' ')ht(9:9)='0'
 if(ht(8:10).eq.'00 '.or.ht(8:10).eq.'000')ht(8:10)=' '
 read(ht(1:6),'(i6)')iza(liza+mix)
 izn(lizn+mix)=iza(liza+mix)
 kmm(lkmm+mix)=ichar(ht(8:8))+256*(ichar(ht(9:9))+
 1 256*ichar(ht(10:10)))
 else
 fme(lfme+mix)=ritm
 if(ritm.eq.0.)mix=mix-1
 endif
 return
*i,ny4b.20
c
c >>>>> photonuclear isotope override mpn
c
c if mpn does not correspond to an m card, ignore all entries
c
 1660 if(m1c.eq.0) return
c
c otherwise save entries in photonuclear isotope list izn
c m1c is the material index
c m2c is the first isotope index for the material
c m3c is the number of isotope entries for the material
c only save entries in this material space (ie check index)
c
 if(nwc.le.m3c) izn(lizn+m2c+nwc-1)=iitm
 return
*/
*/ **
*/ Changes to oldcrd
*ident ocPN
*/ **
*/
*d,oc.16
 2 9910,9920,9930, 780)ica-55
*d,oc4a.14,oc4a.15
 do 395 m=jmd(ljmd+nmat),jmd(ljmd+nmat+1)-2
 do 395 i=m+1,jmd(ljmd+nmat+1)-1
*i,oc4b.37
c
c >>>>> photonuclear isotope override mpn
c
c if m1c is 0, there was no previously found corresponding m card
c and a warning was printed from routine newcrd
c

410

 780 if(m1c.eq.0) return
c
c if the number of mpn entries (nwc) was not equal to the number
c of m entries (m3c), reset the photonuclear isotopes (izn) to
c the corresonding material isotopes (iza) and print a warning
c
 if(nwc.ne.m3c)then
 do 790 i=m2c,m2c+m3c-1
 izn(lizn+i)=iza(liza+i)
 790 continue
 call erprnt(2,1,3,icn,m3c,nwc,0,0,
 1 '30hwrong number of entries on mpn,i4,8h wanted ,i3,'//
 2 '7h found ,i3')
c
c otherwise print warnings about the isotope overrides
c
 else
 do 800 i=m2c,m2c+m3c-1
 if(izn(lizn+i).ne.iza(liza+i))
 1 call erprnt(1,2,3,icn,izn(lizn+i),iza(liza+i),0,0,
 2 '1hm, i5,28h:photonuclear event sees ZA=, i6,'//
 3 '16h in place of ZA=, i6')
 800 continue
 endif
 return
*/
*/ **
*/ Changes to iwtwnd
*ident iwPN
*/ **
*/
*d,iw4b.16
 15 b=b+abs(wwf(lwwf+i+mxa*(j-1+mww(ip))))
*/
*/ **
*/ Changes to stuff
*ident stPN
*/ **
*/
*d,st.49,st.109
c
c **
c set up the list of cross-section tables needed by the problem.
c
c ***
c first add the tables by particle type
c
 mn=1
 do 240 km=1,mix
 if (km.ge.jmd(ljmd+mn+1)) mn=mn+1
 do 230 m=1,mipt
c
c ***
c this section determines if the tabular data is needed
c (it should eventually be rewritten as a sequence
c of boolean function calls, e.g. needElectronTbl())
c
c if not transporting this particle, do not load its tables
c special case: electron tables are needed if photon
c thick-target bremsstrahlung production is on
 if (kpt(m).eq.0.and.
 1 (m.ne.3.or.ides.ne.0.or.kpt(2).eq.0)) go to 230
c
c make sure that this material and table are really needed
 do 120 i=1,mxa
 if(mat(lmat+i).eq.mn.and.(fim(lfim+m,i).ne.0..or.m.eq.3
 1 .and.kpt(3).eq.0.and.fim(lfim+2,i).ne.0))go to 150
 120 continue
 do 140 i=1,nmfm,2
 if(mfm(lmfm+i).ne.nmt(lnmt+mn))go to 140
 do 130 j=1,ntal

411

 if(jptal(ljpt+1,j).eq.mfm(lmfm+i+1).and.
 1 ktp(lktp+m,j).ne.0)go to 150
 130 continue
 do 135 j=1,npert
 k=mod(iptb(lipb+2,j)/2**(m-1),2)
 if(iptb(lipb+1,j).eq.-mfm(lmfm+i+1)
 1 .and.k.ne.0)go to 150
 135 continue
 140 continue
c ignore table if not needed
 go to 230
c
c **
c if tabular data is requested, request a reasonable table
c tabular data only exist for some particle types
c currently only load tables for neutrons, photons,
c electrons & protons
c
c ****************************
c identify the requested table
 150 l=kmm(lkmm+km)
 write(ht(1:7),'(i6,1h.)')iza(liza+km)
 ht(8:10)=char(mod(l,256))//char(mod(l/256,256))
 1 //char(l/65536)
c
c *******************
c check neutron table
 if (m.eq.1) then
c
 if (.not.(ht(8:10).ne.' '.and.
 1 index(' cdym',ht(10:10)).ne.0)) then
c if not explicitly a neutron table, use the default.
 l=lxd(llxd+1,mn)
 ht(8:10)=char(mod(l,256))//char(mod(l/256,256))
 1 //char(l/65536)
 endif
c
 if (mcal.ne.0) then
c currently only allow type 'm' multigroup tables
 ht(10:10)='m'
 else
c
 if (ht(10:10).eq.'y') then
c ignore during this check sequence
c routine chekit prevents 'y' table use in a cell
 continue
c
 else
c reset invalid tables to default
 if (index('cd',ht(10:10)).eq.0) ht(10:10)='c'
c
c process requests for discrete tables
 if (kdr(lkdr+1).lt.0) then
 ht(10:10)='d'
 else
 do 170 i=1,mxe1
 if(kdr(lkdr+i).eq.iza(liza+km))ht(10:10)='d'
 170 continue
 endif
 endif
 endif
c end of check neutron table
c ***********************
c check photoatomic table
 elseif (m.eq.2) then
 ht(4:6)='000'
c
 if (index('pg',ht(10:10)).eq.0) then
c if not explicitly a photoatomic table, use a default.
 l=lxd(llxd+2,mn)
 ht(8:10)=char(mod(l,256))//char(mod(l/256,256))

412

 1 //char(l/65536)
 endif
c
c force correct table type for the problem type
c should add a warning to user if override request
 if (mcal.ne.0) then
 ht(10:10)='g'
 else
 ht(10:10)='p'
 endif
c end of check photoatomic table
c ********************
c check electron table
 elseif (m.eq.3) then
 ht(4:6)='000'
c
 if(index('e',ht(10:10)).eq.0) then
c if not explicitly an electron table, use a default.
 l=lxd(llxd+3,mn)
 ht(8:10)=char(mod(l,256))//char(mod(l/256,256))
 1 //char(l/65536)
 endif
c
c force correct table type for the problem type
c should add a warning to user if override request
c NOTE: electron multigroup problems masquerade as neutron
c problems using mode n and type 'm' tables; therefore
c expire if multigroup problem reqeusts electron table
 if (mcal.ne.0) then
 call expire (0,'stuff',
 1 'multigroup electron problems must be run as '//
 2 'neutron problem (see Manual)')
 else
 ht(10:10)='e'
 endif
c end of check electron table
c ***
 else
 go to 230
 endif
c
c **
c add the table to the list if it is not already there
 do 210 i=1,mxe
 call zaid(2,hs,ixl(lixl+1,i))
 if (hs.eq.ht) then
 lme(llme+m,km)=i
c use fortran90 do-exit construct when available
 endif
 210 continue
c
 if (lme(llme+m,km).eq.0) then
 mxe=mxe+1
 if(mxe.gt.mxe1)call erprnt(1,1,0,0,0,0,0,0,
 1 '33hmaterial (mxe) overflow in stuff.')
 call zaid(1,ht,ixl(lixl+1,mxe))
 lme(llme+m,km)=mxe
 endif
c
c *******************************
c end of loop over particle types
 230 continue
c end of loop over material entries
 240 continue
c
c ***********************************
c now add the supplemental tables
c
c ***
c add the photonuclear table names to the master list
c note that photon transport is only photoatomic if ispn.eq.0

413

 if (ispn.ne.0) then
 mn=1
 do 247 km=1,mix
 if (km.ge.jmd(ljmd+mn+1)) mn=mn+1
c
 if (izn(lizn+km).ne.0) then
 write(ht(1:7),'(i6,1h.)')izn(lizn+km)
 l=kmm(lkmm+km)
 ht(8:10)=char(mod(l,256))//char(mod(l/256,256))
 1 //char(l/65536)
c
 if (index('u',ht(10:10)).eq.0) then
c if not explicitly a photonuclear table, use a default.
 l=lxn(llxn+mn)
 ht(8:10)=char(mod(l,256))//char(mod(l/256,256))
 1 //char(l/65536)
 endif
c
 do 244 i=1,mxe
 call zaid(2,hs,ixl(lixl+1,i))
 if (hs.eq.ht) then
 lmn(llmn+km)=i
c use fortran90 do-exit construct when available and
 endif
 244 continue
c
 if (lmn(llmn+km).eq.0) then
 mxe=mxe+1
 if(mxe.gt.mxe1)call erprnt(1,1,0,0,0,0,0,0,
 1 '33hmaterial (mxe) overflow in stuff.')
 call zaid(1,ht,ixl(lixl+1,i))
 lmn(llmn+km)=mxe
 endif
c
 endif
 247 continue
 endif
c
c ***
c add the thermal s(a,b) table names to the master list
 if (indt.ne.0) then
 if (mcal.ne.0) then
 call expire (0,'stuff',
 1 'cannot use thermal tables in a multigroup problem')
 else
 do 260 km=1,indt
 call zaid(2,ht,kmt(lkmt+1,km))
c
c force correct table type for thermal table
c should add a warning to user if override request
 ht(10:10)='t'
c
 m=0
 do 250 i=1,mxe
 call zaid(2,hs,ixl(lixl+1,i))
 if (hs.eq.ht) then
 m=i
c use fortran90 do-exit construct when available
 endif
 250 continue
c
c add the table to the master list if it is new
 if (m.eq.0) then
 mxe=mxe+1
 if (mxe.gt.mxe1) call erprnt(1,1,0,0,0,0,0,0,
 1 '33hmaterial (mxe) overflow in stuff.')
 call zaid(1,ht,ixl(lixl+1,mxe))
 endif
 260 continue
 endif
 endif

414

c
c **
*d,st.118
 mt=index(htn,hs(10:10))
*d,st.120
 nt=index(htn,ht(10:10))
*i,st.132
 if(ispn.eq.0)go to 300
 do 295 i=1,mix
 l=lmn(llmn+i)
 if(l.eq.ie)lmn(llmn+i)=je
 295 if(l.eq.je)lmn(llmn+i)=ie
*/
*/ **
*/ Changes to ixsdir
*ident ixPN
*/ **
*/
*d,ix.20
 nt=index(htn,ha)
*d,cor4-2.130
 call expire(0,'ixsdir',
 1 'cannot continue without valid xsdir file')
*d,ix4b.53
 290 nty(lnty+je)=index(htn,ha)
*i,ix4b.95
 do 435 m=1,mix
 if(lmn(llmn+m).eq.je)lmn(llmn+m)=ie
 435 if(lmn(llmn+m).gt.je)lmn(llmn+m)=lmn(llmn+m)-1
*i,ix.205
 call expire(0,'ixsdir',
 1 'cannot continue with missing cross-section table(s).')
*/
*/ **
*/ Changes to xact
*ident xaPN
*/ **
*/
*d,xa.11
 10 if(nty(lnty+i).eq.9)nt=nt+1
*/
*/ **
*/ Changes to getxst
*ident gtPN
*/ **
*/
*d,gt.102
 go to(140,140,140,200,290,310,310,301,360)nty(lnty+iex)
*d,gt.106
 140 if(nty(lnty+iex).ne.3)go to 145
c
c if secondary particle information exists, set up ixs
 if(nxs(lnxs+7,iex).eq.0)go to 145
c
c if nxs(7).gt.maxsec, exit to avoid memory error
 if(nxs(lnxs+7,iex).gt.maxsec)call expire(0,'getxst',
 1 'nxs(7) greater than maxsec for table '//ht(1:10)//'.')
c
c load ixs array.
 do 142 i=1,10
 do 142 j=1,nxs(lnxs+7,iex)
 142 ixs(lixs+i,j,iex)=nint(xss(jxs(ljxs+32,iex)+i+10*(j-1)-1))
c
c change locators by lp.
 do 143 i=1,10
 do 143 j=1,nxs(lnxs+7,iex)
 143 if(ixs(lixs+i,j,iex).ne.0)
 1 ixs(lixs+i,j,iex)=ixs(lixs+i,j,iex)+lp
c
c find parameter for dosimetry table
 145 em=max(em,zero+xss(jxs(ljxs+1,iex)))

415

c
c remove unneeded data from table
*d,gt.145
 200 esa(lesa+iex)=xss(jxs(ljxs+1,iex)+nint(xss(jxs(ljxs+1,iex))))
*d,gt.147
 1 min(zero+xss(jxs(ljxs+4,iex)+nint(xss(jxs(ljxs+4,iex)))),
*i,gt.185
c
c >>>>> photonuclear table.
c
c if secondary particle information exists, set up ixs
 301 if(nxs(lnxs+5,iex).eq.0)go to 306
c
c if nxs(5).gt.maxsec, exit to avoid memory error
 if(nxs(lnxs+5,iex).gt.maxsec)call expire(0,'getxst',
 1 'nxs(5) greater than maxsec for table '//ht(1:10)//'.')
c
c load ixs array.
 do 303 i=1,mixs
 do 303 j=1,nxs(lnxs+5,iex)
 303 ixs(lixs+i,j,iex)=nint(xss(jxs(ljxs+10,iex)+i+mixs*(j-1)-1))
c
c change locators by lp.
 do 304 i=3,mixs
 do 304 j=1,nxs(lnxs+5,iex)
 304 if(ixs(lixs+i,j,iex).ne.0)
 1 ixs(lixs+i,j,iex)=ixs(lixs+i,j,iex)+lp
c
c find minimum energy for each material
 306 do 307 i=1,nmat
 do 307 j=jmd(ljmd+i),jmd(ljmd+i+1)-1
 307 if(iex.eq.lmn(llmn+j))
 1 pnt(lpnt+i)=min(pnt(lpnt+i),xss(jxs(ljxs+1,iex)))
c
c remove unneeded data from table
 call expgpn
c
c print table information
 write(iuo,309)ht,nxs(lnxs+1,iex),hk,hm,hd
 309 format(1x,a10,i8,2x,a70,4x,a10,4x,a10)
 go to 380
*i,gt.218
c
 if(nty(lnty+iex).eq.1.or.nty(lnty+iex).eq.2)then
 ms=1
 me=10
 ns=nxs(lnxs+7,iex)
 else if(nty(lnty+iex).eq.8)then
 ms=3
 me=12
 ns=nxs(lnxs+5,iex)
 else
 ns=0
 endif
 do 395 j=1,ns
 do 395 i=ms,me
 395 if(ixs(lixs+i,j,iex).ne.0)ixs(lixs+i,j,iex)=ixs(lixs+i,j,iex)+lxs
*/
*/ **
*/ Changes to sread
*ident srPN
*/ **
*/
*d,sr.33,sr.34
 if(nty(lnty+iex).ne.9)read(iux,70,err=200)(xss(lp+i),i=1,ly(3))
 if(nty(lnty+iex).eq.9)read(iux,70,err=200)(exs(lp+i),i=1,ly(3))
*d,sr.47,sr.48
 if(k.ne.9)read(iux,rec=ly(2)+i,err=200)(xss(j),j=j1,j2)
 90 if(k.eq.9)read(iux,rec=ly(2)+i,err=200)(exs(j),j=j1,j2)
*/
*/ **

416

*/ Changes to utask
*ident utPN
*/ **
*/
*d,ut.40,ut.43
 kpan=kpac+mk*mipt*10*mxa+ktask*3*8*npn
 kpcc=kpan+mk*3*8*npn+ktask*3*mxa*kpt(2)
 kpwb=kpcc+mk*3*mxa*kpt(2)+ktask*mipt*21*mxa
 kwns=kpwb+mk*mipt*21*mxa+ktask*(mxxs/2)
*/
*/ **
*/ Changes to vtask
*ident vtPN
*/ **
*/
*d,vt.13
 do 30 j=1,17
*d,vt.81,vt.82
 do 210 j=1,8
 do 210 k=1,3
*d,vt.90
 do 230 j=1,21
*/
*/ **
*/ Changes to msgcon
*ident mePN
*/ **
*/
*d,me4a.2
*i,me4a.4
*if def,multp
*i,me4b.526
*endif
*d,me4a.584
*/
*/ **
*/ Changes to hstory
*ident hsPN
*/ **
*/
*i,hs.223
 if(nter.eq.17)tmavtc(2,2)=tmavtc(2,2)+tme*wgt
*/
*/ **
*/ Changes to dxtran
*ident dxPN
*/ **
*/
*d,dx4a.2,dx.25
 go to(130, 50, 80,130,130,130,130,130,
 1 130,130,130, 80, 80, 80,130) ipsc-2
 go to(130,130, 90, 80,100,130) ipsc-100
 call expirx(1,'dxtran','illegal value for ipsc.')
 return
*i,dx4a.4
c ipsc=16 -- neutron from law 61 (tabulated energies / angles)and
*i,dx.73
c ***
*d,dx.124
 vel=slite*sqrt(erg*(erg+2.*gpt(ipt)))/(erg+gpt(ipt))
*/
*/ **
*/ Changes to acegam
*ident agPN
*/ **
*/
*d,ag.113
 200 if(ixre.eq.nint(xss(jxs(ljxs+32,iex)+2*ik-2)))go to 210
*d,ag.116,ag.117
 220 l=jxs(ljxs+15,iex)+nint(xss(jxs(ljxs+14,iex)+ixre-1))+1
 if(nint(xss(l-2)).eq.13)go to 250

417

*d,ag.123
 ix=nint(xss(l-1))
*d,ag.129,ag4b.12
 if(ix.gt.0)is=jxs(ljxs+7,iex)+nint(xss(jxs(ljxs+6,iex)+ix-1))
 ic=min(ktc(kktc+1,iex)-nint(xss(is-1))+1,nint(xss(is)))
*d,ag.132
 ic=min(ic+1,nint(xss(is)))
*d,ag4b.14
 250 ic=ktc(kktc+1,iex)-nint(xss(l-1))+1
*d,ag.141
 if(ic.gt.nint(xss(l)))go to 290
*d,ag.144
 260 if(ic.ge.nint(xss(l)))go to 290
*d,ag.166
 310 ixre=nint(xss(jxs(ljxs+32,iex)+ik*2-2))
*d,ag.186
 mtp=nint(xss(jxs(ljxs+13,iex)+ixre-1))
 ia=jxs(ljxs+17,iex)
 if(jxs(ljxs+16,iex).ne.0)then
 ka=nint(xss(jxs(ljxs+16,iex)+ixre-1))
 else
 ka=0
 endif
 id=jxs(ljxs+19,iex)
 kd=nint(xss(jxs(ljxs+18,iex)+ixre-1))
 call acecas(1,1,zero,ia,ka,id,kd)
*d,ag.188
 if(ixcos.ne.0)ipsc=8
c
c if photon energy below cell cutoff, ignore it.
 if(colout(1,1).lt.elc(2))go to 450
*d,ag.191,ag.192
 if(nint(xss(jxs(ljxs+13,iex)+ixre-1)).lt.18000)go to 390
 if(nint(xss(jxs(ljxs+13,iex)+ixre-1)).gt.19999)go to 390
*d,ag.221,ag.223
 pan(kpan+1,6,kp)=pan(kpan+1,6,kp)+1.
 pan(kpan+1,7,kp)=pan(kpan+1,7,kp)+wgt
 pan(kpan+1,8,kp)=pan(kpan+1,8,kp)+wgt*erg
*/
*/ **
*/ Changes to acecol
*ident acPN
*/ **
*/
*d,ac.25
 j=l+2+ktc(kktc+2,iex)-nint(xss(l))
*d,ac.46,ac.47
 c=acecos(ixcos,jxs(ljxs+9,iex),nint(xss(jxs(ljxs+8,iex))))
*d,ac.65
 j=l+2+ktc(kktc+2,iex)-nint(xss(l))
*d,ac4b.2
 if(jq.ne.2.eqv.nint(xss(jxs(ljxs+5,iex)+ixre-1)).eq.19)go to 120
*d,ac.75,ac.77
 110 is=jxs(ljxs+7,iex)+nint(xss(jxs(ljxs+6,iex)+ixre-1))
 ic=ktc(kktc+2,iex)+1-nint(xss(is-1))
 if(ic.lt.1.or.ic.gt.nint(xss(is)).or.ic.eq.nint(xss(is)).and.
*d,ac.105
 150 ntyn=nint(xss(jxs(ljxs+5,iex)+ixre-1))
*i,ac4b.4
 q=xss(jxs(ljxs+4,iex)+ixre-1)
 ia=jxs(ljxs+9,iex)
 ka=nint(xss(jxs(ljxs+8,iex)+ixre))
 id=jxs(ljxs+11,iex)
 kd=nint(xss(jxs(ljxs+10,iex)+ixre-1))
*d,ac.109,ac.111
 l=jxs(ljxs+11,iex)+2+nint(xss(jxs(ljxs+10,iex)+ixre-1))
 ie=2*nint(xss(l))+l
 if(erg.le.xss(ie+2).or.erg.ge.xss(ie+1+nint(xss(ie+1))))go to 180
*d,ac.119
 call acecas(i,1,q,ia,ka,id,kd)
*d,ac4a.15

418

 call acecas(i,1,q,ia,ka,id,kd)
*d,ac4a.59
 call acecas(1,1,q,ia,ka,id,kd)
*/
*/ **
*/ Changes to acecas
*ident asPN
*/ **
*/
*d,as.2,as.5
 subroutine acecas(ls,ip,q,ia,ka,id,kd)
c sample the emission parameters from the appropriate law data.
c
c the subroutine takes in all the information necessary to
c sample (or debug inability to sample) the emission
c energy and scattering angle in the laboratory coordinate
c system.
c
c Preconditions:
c
c explicitly passed in variables:
c ls - the current particle index in the colout array
c ip - the ipt particle type for the incident particle
c q - the q value for the reaction being sampled
c ia - the first word of the relevant AND block in the xss array
c ka - the offset to the first word of the table in AND block
c id - the first word of the relevant DLW block in the xss array
c kd - the offset to the first word of the table in DLW block
c
c implicitly uses variables:
c awn(lawn+iex) - the awr of the current target isotope
c colout(1,ls) - the sampled emission energy
c colout(2,ls) - the sampled emission scattering angle
c erg - the incident particle energy in the lab system
c gpt - array of particle awr's
c iex - the table index of the current target isotope
c ipsc - index to indicate what kind of law was sampled
c ipt - the ipt particle type of the emitted particle
c ixl - the ZAID storage array
c ixre - the current reaction index being sampled
c kdb - fatal error flag
c mtp - the reaction mt number being sampled
c ntyn - the coordinate system of the sampled parameters
c tpd(1,2) - storage for correlated energy/angle parameters
c wgt - the weight of the emitted particle
c xss - data array containing sampling distributions etc.
c
c read only input variables:
c ls, ip, q, ia, ka, id, kd, awn, erg, gpt, iex, ipt, ixl,
c ixre, mtp, ntyn and all xss(i)
c
c Postconditions:
c
c returns the sample emission parameters in the lab system:
c colout(1,ls) - the emission energy
c colout(2,ls) - the emission scattering angle
c
c Law 4/44/61 makes use of a biased distribution which affects
c the outgoing particle weight
c
c kdb is set on fatal error (inability to sample reasonable
c emission parameters) during call to expirx
c
c modified variables: colout(1,ls), colout(2,ls), ipsc, kdb,
c tpd and wgt
c
*i,as.6
 parameter (ep=0.000001)
*d,as4a.1,as4a.3
*i,as.8
c***

419

*d,as.12,as.15
 n=id+kd
 go to 25
 20 n=id+nint(xss(n-1))
 25 if(nint(xss(n-1)).eq.0)go to 30
 t1=t1-acefcn(n+2,erg,ln)
*d,as.18
c***
c use the selected law to sample the energy [and possibly angle].
c if law samples without error, go to sample angle or
c coordinate transform as appropriate
*d,as.20,as4a.9
 lw=nint(xss(n))
 iw=id-1+nint(xss(n+1))
 if(lw.eq.1) go to 40
 if(lw.eq.2) go to 60
 if(lw.eq.3) go to 70
 if(lw.eq.4) go to 80
 if(lw.eq.5) go to 160
 if(lw.eq.7) go to 170
 if(lw.eq.9) go to 190
 if(lw.eq.11)go to 210
 if(lw.eq.22)go to 230
 if(lw.eq.24)go to 242
 if(lw.eq.33)go to 70
 if(lw.eq.44)go to 80
 if(lw.eq.61)go to 80
 if(lw.eq.66)go to 245
 if(lw.eq.67)go to 255
 go to 300
*d,as.28,as.31
c >>>>> law 1 (From ENDF Law 1) -- tabular equi-probable energy bins.
 40 call acetbl(iw,ic,r,ln)
 nt=nint(xss(iw+ln))
 iw=iw+ln+nt*(ic-1)
 k=int(rang()*(nt-1)+1)
*d,as.46,as.48
c this law applies to photon production only and should
c not be used by any other emission particle type
 60 if(ipt.ne.2)go to 300
 colout(1,ls)=xss(iw+1)
 if(nint(xss(iw)).eq.2)colout(1,ls)=colout(1,ls)+
 1 erg*awn(lawn+iex)/(awn(lawn+iex)+1.)
 go to 260
*d,as.50
c >>>>> law 3 & 33 (From ENDF Law 3) -- level scattering.
*d,as.54,as4a.11
c >>>>> law 4 (From ENDF Law 1) -- continuous erg tabular distribution
c >>>>> law 44 (From ENDF Law 1) -- Kalbach-87 correlated formalism
c >>>>> law 61 (From ENDF Law 1) -- correlated tab energy-angle dist
 80 call acetbl(iw,ic,r,ln)
 nr=nint(xss(iw))
 lb=iw-1+ln+ic
 lc=id+nint(xss(lb))
*d,as4a.14
c
c xss(lc,ld,lf) is an overloaded variable. it contains the
c number of points in the emission distribution and if part
c of the continuum has been expunged, it contains 0.5 times
c the cumulative probability of the portion expunged.
 np=int(xss(lc)+ep)
*d,as4a.16
 jj=nint(xss(lc-1))
*d,as4a.19
*d,as4a.21,as4a.22
 ld=id+nint(xss(lb+1))
 mp=int(xss(ld)+ep)
*d,as4a.28
 jj=nint(xss(ld-1))
*d,as4a.53
 97 np=int(xss(lf)+ep)

420

*d,as4a.58
 ns=nint(xss(lf-1))-jj*10000
*d,as.80,as.89
 call bnsrch(r1,ic,ib,ig)
 ln=ic-2*np
 fa=xss(ln+np)
 ea=xss(ln)
*d,as.93
 bb=(xss(ln+np+1)-fa)/(xss(ln+1)-ea)
*d,as4a.64,as4a.65
 if(lw.ne.44)go to 150
 fb=(t-xss(ln))/(xss(ln+1)-xss(ln))
*d,as4a.68
 if(lw.ne.44)go to 150
*d,as4a.72,as4a.74
*d,as4a.75,as4a.78
c
c don't scale for photons?? why not?!? this should be removed
c but is left in here in order to track the test suite
c it only affects test problem 11 (mcw 1/7/99)
 150 if(r.ne.0..and.ipt.ne.2)t=t1+(t-xss(lf+nd+1))*(t2-t1)
 1 /(xss(lf+np)-xss(lf+nd+1))
 152 colout(1,ls)=t
 if(lw.eq.4)go to 260
 if(lw.eq.44)go to 153
 if(lw.eq.61)go to 156
 go to 295
*d,as4a.80
c sample law 44 -- kalbach-87 angular systematics
*d,as4a.82
 153 if(ka.ne.-1.or.ntyn.ge.0)go to 295
*i,as4a.91
c
c sample law 61 -- tabulated angular distribution
 156 ipsc=16
c
c if jj=1 (i.e., histogram on e-primes) always use "ic."
c if jj=2 (lin-lin on e-primes), use the distribution for
c the e-prime closest to "r1" (in cdf space).
 lb=ic+np
 if(jj.ne.1.and.(xss(ib)-r1.lt.r1-xss(ic)))lb=lb+1
c
c sample from appropriate distribution
c unlike the AND block, in law 61 only isotropic or tabular
c angular information is passed
 if(nint(xss(lb)).gt.0)go to 157
 ixcos=0
 call angiso(colout(2,ls))
 go to 280
 157 ixcos=id-1+nint(xss(lb))
 call anglw2(ixcos,colout(2,ls))
 ixcos=-ixcos
 go to 280
*d,as.112,as.113
c >>>>> law 5 (From ENDF Law 5) -- general evaporation spectrum.
 160 t1=acefcn(iw,erg,ln)
 i=iw+ln+1+int(rang()*(nint(xss(iw+ln))-1))
*d,as.117,as.118
c >>>>> law 7 (From ENDF Law 7) -- simple Maxwell fission spectrum.
 170 t1=acefcn(iw,erg,ln)
 t3=erg-xss(iw+ln)
*d,as.129,as.130
c >>>>> law 9 (From ENDF Law 9) -- evaporation spectrum.
 190 t1=acefcn(iw,erg,ln)
 t2=erg-xss(iw+ln)
*i,as.133
c reject if outside range 0 ... e-u
*d,as.137,as.139
c >>>>> law 11 (From ENDF Law 11) -- energy dependent Watt spectrum.
 210 t1=acefcn(iw,erg,ln)
 t2=acefcn(iw+ln,erg,lb)

421

 if(erg.le.xss(iw+ln+lb))go to 260
*d,as.146,as4a.93
c >>>>> law 22 (From UK Law 2) -- tabular linear functions.
 230 call acetbl(iw,ic,r,ln)
 ie=id-1+nint(xss(iw+ln+ic-1))
 nf=nint(xss(ie))
*d,as.156,as4a.97
c >>>>> law 24 (From UK Law 6) -- tabular energy multipliers.
 242 call acetbl(iw,ic,r,ln)
 i=iw+ln+1+nint(xss(iw+ln))*(ic-1)+int(rang()*(nint(xss(iw+ln))-1))
*d,as4a.100,as4a.101
c >>>>> law 66 (From ENDF Law 6) -- n-body phase space distribution.
 245 nb=nint(xss(iw))
*i,as4a.102
 if(ipt.gt.2)ap=ap*gpt(1)/gpt(ipt)
*d,as4a.117,as4a.118
 colout(1,ls)=t*((ap-1.)/ap)*(erg*aw/(aw+1.)+q)
*d,as4a.126,as4a.127
 255 call acetbl(iw,ic,r,ln)
 cs=acecos(ixcos,ia,ka)
*d,as4a.130
 colout(1,ls)=acecs6(0,id,iw,ic,r,cs)
*d,as4b.3,as.180
c***
c if not correlated energy-angle, calculate the cosine.
 260 colout(2,ls)=acecos(ixcos,ia,ka)
*i,as.181
c***
*d,as.185,as.189
c Formulas below are from p. 2 of X-6:RES-93-68.
c These formulas assume two-body kinematics.
c Seamon's formulas specify atomic weight ratios (to neutron)
c For incident particle (a), AWR=GPT(IPT_INCIDENT)/GPT(1)
c For exiting particle (b), AWR=GPT(IPT)/GPT(1)
c For target (A), AWR=AWN(LAWN+IEX)
 a1=gpt(ip)/gpt(1)
 a2=gpt(ipt)/gpt(1)
 a3=awn(lawn+iex)
 t1=colout(1,ls)
 t2=erg*a1*a2/(a3+a1)**2
 t3=2.*sqrt(a2*a1*erg*colout(1,ls))*colout(2,ls)/(a3+a1)
 t4=t1+t2+t3
 s1=colout(2,ls)*sqrt(colout(1,ls)/t4)
 s2=sqrt(a1*a2*erg/t4)/(a3+a1)
 colout(1,ls)=t4
 colout(2,ls)=s1+s2
*i,as4a.137
c***
*d,as4a.139
 290 if(colout(1,ls).le.emx(ipt))return
*d,as4a.142
 1 'energy of particle from inelastic collision > emx')
*i,as.191
c***
*d,as4a.145
 295 colout(1,ls)=huge
*d,as.195,as.196
 write(iuo,310)ht,erg,ixre,mtp,ntyn,lw,colout(1,ls)
*d,as.203
 1 'emission energy was negative.')
 if(colout(1,ls).eq.huge)call expirx(1,'acecas',
 1 'faulty cross-section data.')
*d,as.205
 1 'emission energy exceeds incident energy.')
*d,as.207,as.216
*/
*/ **
*/ Changes to acefcn
*ident aiPN
*/ **
*/

422

*d,ai.2,ai.54
 function acefcn(it,eg,ln)
c interpolate value in table at xss(it) for energy eg
c
c Preconditions:
c xss(it) is the first word of an appropriate table
c table data are in the format:
c nr - number of regions
c nbt(i=1..nr) - number of points in int. region i
c int(i=1..nr) - interpolation scheme for region i
c (nbt and int don't exist if nr is zero and a
c linear-linear int. scheme is used across all points)
c nf - number of energy points
c e(j=1..nf) - energy values
c f(j=1..nf) - function values on which to interpolate
c the interpolation values are picked using energy value eg
c
c it, eg and all xss(i) are read only variables
c
c Postconditions:
c returns value f(eg) appropriately interpolated
c return value ln is the length of the table,
c i.e. xss(it+ln-1) = f(ne)
c
c if eg is not within the bounds of the table e(i)
c i.e. bnsrch returns with a non-zero value of ig
c the extreme edge boundary value is returned
c e.g. erg < e(1) -> acefcn = f(1)
c
c ln and acefcn are modified return values
c
*call cm
c
c get key parameter values for table
 nr=nint(xss(it))
 ie=it+2*nr+1
 nf=nint(xss(ie))
 ln=2*(nr+nf+1)
c
c binary search for the location of eg in the table.
 il=ie+1
 ih=ie+nf
 call bnsrch(eg,il,ih,ig)
c
c set up the parameters for interpolation
 ea=xss(il)
 eb=xss(ih)
 fa=xss(il+nf)
 fb=xss(ih+nf)
c
c if outside bounds of table, use extreme edge value
 if(ig.ne.0)go to 30
c
c find out which kind of interpolation should be used.
 if(nr.eq.0)go to 40
 do 10 n=1,nr
 10 if(ih-ie.le.nint(xss(it+n)))go to 20
 n=nr
c
c interpolate between table entries.
 20 go to(30,40,50,60,70)nint(xss(it+nr+n))
c
c histogram interpolation
 30 acefcn=fa
 go to 80
c
c linear-linear interpolation
 40 acefcn=fa+(fb-fa)*(eg-ea)/(eb-ea)
 go to 80
c
c log-linear interpolation

423

 50 acefcn=fa+(fb-fa)*log(eg/ea)/log(eb/ea)
 go to 80
c
c linear-log interpolation
 60 acefcn=fa*(fb/fa)**((eg-ea)/(eb-ea))
 go to 80
c
c log-log interpolation
 70 acefcn=fa*(fb/fa)**(log(eg/ea)/log(eb/ea))
 go to 80
c
 80 return
*/
*/ **
*/ Changes to acetbl
*ident abPN
*/ **
*/
*d,ab.2,ab.42
 subroutine acetbl(it,il,r,ln)
c returns the interpolation parameters and table length
c
c Preconditions:
c xss(it) is the first word of an appropriate interpolated
c energy region with data in the format:
c nr - number of regions
c nbt(i=1..nr) - number of points in int. region i
c int(i=1..nr) - interpolation scheme for region i
c (nbt and int don't exist if nr is zero and a
c linear-linear int. scheme is used across all points)
c nf - number of energy points
c e(j=1..nf) - energy values
c the interpolation values are picked using erg
c
c it, erg and all xss(i) are read only variables
c
c Postconditions:
c return value il is the lower indice on which to interpolate
c return value r is the interpolation factor such that
c e(il) + r * (e(ih) - e(il)) = erg
c acetbl ignores interpolation schemes other than
c linear-linear or histogram
c return value ln is the length of the table,
c i.e. xss(it+ln-1) = e(ne)
c
c if erg is not within the bounds of the table e(i)
c i.e. bnsrch returns with a non-zero value of ig
c the extreme edge boundary is returned in il
c and the interpolation factor is returned as zero
c e.g. erg < e(1) -> ii = 1 and r = 0.0
c
c il, r and ln are modified return values
c
*call cm
c
 nr=nint(xss(it))
 ie=it+2*nr+1
 nf=nint(xss(ie))
 ln=2*(nr+1)+nf
 r=0.
c
c binary search for the location of the energy in the table.
 il=ie+1
 ih=ie+nf
 call bnsrch(erg,il,ih,ig)
 if(ig.ne.0)go to 40
c
c calculate interpolation fraction r
c use histogram interpolation if int(i) = 1
c use linear-linear interpolation for all else
 if(nr.eq.0)go to 30

424

 do 10 n=1,nr
 10 if(ih-ie.le.nint(xss(it+n)))go to 20
 n=nr
 20 if(nint(xss(it+nr+n)).eq.1)go to 40
 30 if(erg-xss(il).lt.1.e-6*(xss(ih)-xss(il)))go to 40
 r=(erg-xss(il))/(xss(ih)-xss(il))
c
 40 il=il-ie
 return
*/
*/ **
*/ Changes to acecos
*ident aoPN
*/ **
*/
*d,ao.2,ao.39
 function acecos(it,ia,ka)
c returns the scattering angle mu from a set of angular dist.
c
c Preconditions:
c xss(ia) is the first word of the appropriate AND block
c if no AND block exists, ka must be set to zero
c ka is the offset such that:
c ka = 0 indicates an isotropic distribution OR
c xss(ia+ka-1) is the first word of the appropriate dist.
c the distribution always contains the following data:
c nm, e(i=1..nm), lmu(i=1..nm), [mu data for non-zero lmu]
c the table is picked using erg, the incident particle energy,
c off the energy list e corresponding to the table offset lmu
c lmu = 0 indicates isotropic distribution
c lmu > 0 indicates Angular Law 1 binned data at xss(ia-1+lmu)
c lmu < 0 indicates Angular Law 2 tabular data at xss(ia-1-lmu)
c
c ia, ka, erg and all xss(i) are read only input variables
c
c Postconditions:
c return value acecos is scattering angle mu in radians
c mu value should be between -1.0 and 1.0 but isn't checked
c it is the offset to the first word of the table sampled
c it = 0 indicates an isotropic distribution sampled
c it > 0 indicates a binned distribution sampled
c it < 0 indicates a tabular distribution sampled
c non-isotropic distribution are found at xss(abs(it))
c
c it and acecos are modified return values
c
*call cm
c
c handle case of no table data
 if(ka.eq.0)go to 10
c
c find the cosine table by binary search on the energy table.
 nm=nint(xss(ia+ka-1))
 il=ia+ka
 ih=il+nm-1
 call bnsrch(erg,il,ih,ig)
c
c sample between adjoining tables by interpolation fraction.
 if(rang()*(xss(ih)-xss(il)).lt.erg-xss(il))il=ih
c
c select appropriate sampling distribution
 lm=nint(xss(il+nm))
c
c >>>>> Isotropic Angular Distribution
 if(lm.ne.0)go to 20
 10 call angiso(t)
 it=0
 go to 40
c
c >>>>> Law 1 Equiprobable Binned Angular Distribution
 20 if(lm.lt.0)go to 30

425

 it=ia-1+lm
 call anglw1(it,t)
 go to 40
c
c >>>>> Law 2 Tabular Probability Angular Distribution
 30 it=ia-1-lm
 call anglw2(it,t)
 it=-it
c
 40 acecos=t
 return
*/
*/ **
*/ Changes to acecs6
*ident aePN
*/ **
*/
*d,ae4a.2
 function acecs6(ii,id,iw,jc,r,cs)
*d,ae4a.10
 save id0,iw0,ic0,rr0,rnb
*i,ae4a.11
 id0=id
*d,ae4a.17,ae4a.19
 10 jw=iw0+2*nint(xss(iw0))+1
 ne=nint(xss(jw))
 lx(1)=id0+nint(xss(jw+ne+ic0))-1
*d,ae4a.24
 lx(2)=id0+nint(xss(jw+ne+ic0+1))-1
*d,ae4a.31,ae4a.32
 mu=nint(xss(le))
 nm=nint(xss(le+1))
*d,ae4a.44,ae4a.46
 50 lb=id0+nint(xss(le+nm+iq+1))
 jj=nint(xss(lb-1))
 np=nint(xss(lb))
*d,ae4a.54,ae4a.60
 call bnsrch(rnb(ir),ic,ib,ig)
*/
*/ **
*/ Changes to photot
*ident ptPN
*/ **
*/
*i,pt.9
c
c if photonuclear physics is on, calculate photonuclear xs
 if (ispn.ne.0) call pnctot(mk)
*/
*/ **
*/ Changes to colidp
*ident cpPN
*/ **
*/
*d,cp.10,cp.11
*i,cp.12
c
c********************** photonuclear events **************************
c
c if photonuclear physics is on and the photon is above the pn.
c energy threshold for this material, totpn is non-zero
c and photonuclear secondary particles are sampled first
 if (totpn.gt.zero) then
 call coldpn
 if (nter.ne.0.or.kdb.ne.0) return
 endif
c
c********************** photoatomic events ***************************
c
c reset default parameters
 ntyn=0

426

 jsu=0
*/
*/ **
*/ Changes to mgcoln
*ident gnPN
*/ **
*/
*d,gn4a.2,gn4a.3
 pan(kpan+1,6,mpan)=pan(kpan+1,6,mpan)+n
 pan(kpan+1,7,mpan)=pan(kpan+1,7,mpan)+wgt*n
*d,gn4a.6
 pan(kpan+1,8,mpan)=pan(kpan+1,8,mpan)+wgt*erg
*/
*/ **
*/ Changes to mgcolp
*ident gpPN
*/ **
*/
*d,gp4a.7
 pan(kpan+1,7,mpan)=pan(kpan+1,7,mpan)+wgt*(n-1)
*/
*/ **
*/ Changes to tallyd
*ident tdPN
*/ **
*/
*d,td4a.2,td4a.3
 go to(110, 40, 70,110,110,110,110, 80,
 1 110,110,110, 70, 70, 70,110) ipsc-2
 go to(110,110,90,70,100,110) ipsc-100
 call expirx(1,'tallyd','illegal value for ipsc.')
 return
*i,td4a.5
c ipsc=16 -- neutron from law 61 (tabulated energies/angles) and
*i,td.100
c **
*/
*/ **
*/ Changes to calcps
*ident ctPN
*/ **
*/
*d,ct4a.1
 go to(10, 20, 30,120,150,200,260,400,
 1 540,580,590,800, 25, 26,900) ipsc-2
 call expirx(1,'calcps','illegal value for ipsc.')
 return
*d,ct.18
 if(t3.le.0..and.tpd(1)**2.lt.abs(tpd(3)))go to 1000
*d,ct.20
 if(t1.lt.0.)go to 1000
*d,ct4a.5
 erg=acecs6(1,0,0,0,zero,cs)
*i,ct4a.7
c
c >>>>> ipsc=16 -- neutron from law 61 (tabulated energies / angles)
c
c if isotropic and lab system, can return (psc=0.5).
 26 if(ixcos.eq.0.and.ntyn.ge.0) return
c
c cs is laboratory cosine to next event estimator.
 cs=uold(1)*uuu+uold(2)*vvv+uold(3)*www
c
c if lab system, but anisotropic, go to table lookup for psc.
c since we're in the lab system, erg for next-event direction
c is no different than erg in actual as-sampled direction.
 if(ntyn.ge.0) goto 60
 a1=1.+awn(lawn+iex)
c
c scattering distributions are in the cm system.
c

427

c if pass the following test, then all lab cosines are possible.
c if fail, then must check on allowed lab cosines.
c check is from cases 2,3 on pp. 68,69 of carter and cashwell.
c ergace is previously-sampled cm energy. eg0 is incident energy.
 if(ergace.gt.eg0/(a1**2)) goto 27
c
c to find valid lab cosines, start with eq. in case 3 of p. 69
c from carter and cashwell. substitute in for q based on
c their eq. 5.8. then wind up with following condition,
c which is identical to that used by hendricks later in
c this routine for ipsc=14. if t3 > cs**2, cannot scatter
c toward next-event position.
 t3=1.-ergace*a1**2/eg0
 if(t3.gt.cs**2) goto 1000
c
c scattering is valid. calculate lab energy (erg) via following
c equation, from hendricks' ipsc=14 code. this equation is
c equivalent to eq. 5.14 of carter and cashwell.
 27 t1=1./a1
 erg=eg0*(t1*(cs+sqrt(cs**2-t3)))**2
c
c return if this energy is below particle's energy cutoff.
 if(erg.lt.elc(ipt)) return
c
c now, we need to calculate the d-cm cosine by d-lab cosine
c and apply this factor to the psc. start with eq. 5.13 of
c carter and cashwell, which reduces to the following for
c psc (the extra 0.5 is a starting assumption of isotropy).
c formalism is identical to ipsc=14 and ipsc=5.
 t2=sqrt(erg/ergace)
 t4=t1*sqrt(eg0/erg)
 psc=0.5*t2/(1.-cs*t4)
c
c if isotropic in cm, return.
 if(ixcos.eq.0) return
c
c otherwise, determine cm cosine (overwrite cs with it). start
c with eq. 5.10 of cashwell and carter. formalism is same as
c for ipsc=5 and ipsc=14.
 cs=t2*(cs-t4)
c
c now (finally) go to table lookup to actually determine psc
c for scattering toward the next-event estimator.
 goto 60
*d,ct.40
 if(t3.gt.0.)go to 1000
*d,ct.54
 if(cs.lt.0.)go to 1000
*i,ct.67
c
c updates to allow sampling of tabular angular distributions
c updates are for mcnpx_2.1.4
c written by rcl (june, 1998)
c changes to subroutine calcps:
c in two sections of calcps we have allowed for the
c possibility of calculating the psc by looking up the
c value in a tabulated cosine distribution. this is
c an alternative to the "normal" manner of calculating
c the psc from a table of 32 equally-likely cosine bins.
c changes are made immediately below for neutron-induced
c neutrons and in the ipsc=8 section for neutron-induced
c photons. new capability is flagged via ixcos<0.
c factor of 2 in psc calculation below is to account for fact
c that psc is initialized to 0.5 before calling calcps.
c similar calculation for ipsc=8 does not need multiplier
c because it does not have form of psc=psc*value.
c
c also added a section for ipsc=16, which is for law=61
c correlated tabular-energy, tabular cosine distributions.
c
 60 if(ixcos.gt.0) then

428

*d,ct.70,ct.79
 ic=ixcos
 ib=ixcos+32
 70 if(ib-ic.eq.1)go to 90
 ih=(ic+ib)/2
 if(cs.lt.xss(ih))go to 80
 ic=ih
 go to 70
 80 ib=ih
 go to 70
 90 psc=.0625*psc/(xss(ib)-xss(ic))
c
c calculate psc from tabulated cosine distribution
 else
 ic=-ixcos
 jj=nint(xss(ic))
 np=nint(xss(ic+1))
 if(xss(ic+2).gt.cs.or.xss(ic+1+np).lt.cs) go to 1000
 ic=ic+3
 92 if(xss(ic).gt.cs) go to 94
 ic=ic+1
 go to 92
 94 if(jj.eq.1) then
 psc=2.*psc*xss(ic+np-1)
 else
 psc=2.*psc*(xss(ic+np-1)+(cs-xss(ic-1))*
 1 (xss(ic+np)-xss(ic+np-1))/(xss(ic)-xss(ic-1)))
 endif
 endif
*d,ct.85
 l=nint(xss(jxs(ljxs+1,iex)+nint(xss(jxs(ljxs+16,iex)))+ixcos-2))
*d,ct.87,ct.88
 j=jxs(ljxs+1,iex)+nint(xss(jxs(ljxs+17,iex)))+l-2
 if(cs.ge.xss(j+nxs(lnxs+3,iex)-1).or.cs.lt.xss(j))go to 1000
*d,ct4a.9
 if(t3.ge.vco(mcoh))go to 1000
*d,ct.128,ct.137
 if(ixcos.gt.0) then
 ic=ixcos
 ib=ic+32
 210 if(ib-ic.eq.1)go to 230
 ih=(ic+ib)/2
 if(cs.lt.xss(ih))go to 220
 ic=ih
 go to 210
 220 ib=ih
 go to 210
 230 psc=.03125/(xss(ib)-xss(ic))
 else
 ic=-ixcos
 np=nint(xss(ic))
 jj=nint(xss(ic+1))
 if(xss(ic+2).gt.cs.or.xss(ic+1+np).lt.cs) go to 1000
 ic=ic+3
 192 if(xss(ic).gt.cs) go to 194
 ic=ic+1
 go to 192
 194 if(jj.eq.1) then
 psc=xss(ic+np-1)
 else
 psc=xss(ic+np-1)+(cs-xss(ic-1))*
 1 (xss(ic+np)-xss(ic+np-1))/(xss(ic)-xss(ic-1))
 endif
 endif
*d,ct.141
 240 n=nint(xss(jxs(ljxs+15,iex)))
*d,ct.143
 l=nint(xss(jxs(ljxs+1,iex)+nint(xss(jxs(ljxs+16,iex)+1))+ixcos-2))
*d,ct.145,ct.146
 j=jxs(ljxs+1,iex)+nint(xss(jxs(ljxs+17,iex)+1))+l-2
 if(cs.ge.xss(j+n-1).or.cs.lt.xss(j))go to 1000

429

*d,ct.156
 if(ixcos.eq.0)go to 1000
*d,ct.160
 if(cs.lt.xss(-ixcos).or.cs.gt.xss(ll-ixcos))go to 1000
*d,ct.200
 350 nc=nint(xss(jxs(ljxs+4,iet)))
*d,ct.223
 if(cs*erg.lt.b0-db)go to 1000
*d,ct.243
 if(am.lt.q(6).or.am.gt.q(7))go to 1000
*d,ct.252
 go to 1000
*d,ct.303
 if(b.lt.0.)go to 1000
*d,ct.311
 if(r.gt.q(7)**2.or.r.lt.q(6)**2)go to 1000
*d,ct.322
 if(j.ne.0)go to 1000
*d,ct.336
 go to 1000
*d,ct4a.20
 1 go to 1000
*d,ct4b.32
 800 cs=uold(1)*uuu+uold(2)*vvv+uold(3)*www
*d,ct4a.31
 if(t3.ge.cs**2)go to 1000
*d,ct4a.41
 if(t5.le.0.)go to 1000
*i,ct4a.45
c
c >>>>> ipsc=17 -- photonuclear kalbach-87 endf/b-vi coupled energy-
c angle collision (law 44).
c kalbach-87 psc=(.5*a/sinh(a))*(cosh(a*cs)+r*sinh(a*cs))
c tpd(1)=r, tpd(2)=a
 900 cs=uold(1)*uuu+uold(2)*vvv+uold(3)*www
 psc=.5*tpd(2)/sinh(tpd(2))
 1 *(cosh(tpd(2)*cs)+tpd(1)*sinh(tpd(2)*cs))
 return
*d,ct.351
 1000 psc=0.
*/
*/ **
*/ Changes to eventp
*ident PN
*/ **
*/
*d,et4b.1,et4a.2
 character ha*10,he(8)*9,hf(3)*15,hg*48,hl*20,hp(0:5)*3,hs(27)*9,
 1 ht(17)*16,hz*10
*d,et.11
 3 'dead fiss. or pp',3*' ','photoabsorption'/
*d,et4b.2
 4 '(n,xf) mg','(n,xn) mg','(g,xg) mg','adj split','wwt split',
 5 2*' ','(gamma,x)'/
*/
*/ **
*/ Changes to kcalc
*ident kcPN
*/ **
*/
*d,kc4b.145
 do 260 j=1,17
*d,kc4b.150
 do 280 i=1,8
*d,kc4b.153
 do 290 i=1,21
*/
*/ **
*/ Changes to sumary
*ident eqPN
*/ **

430

*/
*d,eq4a.1
 character ha(2)*26,hg*16,hp(2,7,mipt)*17,ht(4)*14,hw(2,10)*17,
*d,eq.6,eq.19
c
c common summary headers
 data hw/
 1 'source', 'escape',
 2 ' ', 'energy cutoff',
 3 ' ', 'time cutoff',
 4 'weight window', 'weight window',
 5 'cell importance', 'cell importance',
 6 'weight cutoff', 'weight cutoff',
 7 'energy importance', 'energy importance',
 8 'dxtran', 'dxtran',
 9 'forced collisions', 'forced collisions',
 1 'exp. transform', 'exp. transform'/
c
c neutron summary headers
 data ((hp(i,j,1),i=1,2),j=1,7)/
 1 'upscattering', 'downscattering',
 2 ' ', 'capture',
 3 '(n,xn)', 'loss to (n,xn)',
 4 'fission', 'loss to fission',
 5 ' ', ' ',
 6 ' ', ' ',
 7 '(gamma,xn)', ' '/
c
c photon summary headers
 data ((hp(i,j,2),i=1,2),j=1,7)/
 1 'from neutrons', 'compton scatter',
 2 'bremsstrahlung', 'capture',
 3 'p-annihilation', 'pair production',
 4 'electron x-rays', ' ',
 5 '1st fluorescence', ' ',
 6 '2nd fluorescence', ' ',
 7 '(gamma,xgamma)', 'loss to pn. abs.'/
c
c electron summary headers
 data ((hp(i,j,3),i=1,2),j=1,7)/
 1 'pair production', 'scattering',
 2 'compton recoil', 'bremsstrahlung',
 3 'photo-electric', ' ',
 4 'photon auger', ' ',
 5 'electron auger', ' ',
 6 'knock-on', ' ',
 7 ' ', ' '/
*d,eq.66
 do 110 j=1,17
*d,eq.69
*i,eq4a.22
 if(ha(1)(1:1).eq.' '.and.ha(2)(1:1).eq.' ')go to 110
*d,eq.97,eq.103
 if(pax(5,1,ip).gt.zero)tpp(1)=tmav(ip,1)/pax(5,1,ip)
 if((pax(5,12,ip)+pax(5,17,ip)).gt.zero)
 1 tpp(2)=tmav(ip,2)/(pax(5,12,ip)+pax(5,17,ip))
 if((pax(5,1,ip)+pax(5,12,ip)+pax(5,17,ip)).gt.zero)
 1 tpp(3)=(tmav(ip,1)+tmav(ip,2))
 2 /(pax(5,1,ip)+pax(5,12,ip)+pax(5,17,ip))
 do 150 i=1,17
*d,eq.185,eq.186
 if(npum.ne.0)write(iuo,365)npum
 365 format(/48h photonuclear production reaction mt loop failed,
 1 i4,7h times.)
 if(nppm.ne.0)write(iuo,370)nppm
 370 format(/49h neutron-induced photon production mt loop failed,
 1 i4,7h times.)
*/
*/ **
*/ Changes to action
*ident azPN

431

*/ **
*/
*d,az.5
*d,az.7
*i,az4a.9
c
c print the repeated structure/lattice table.
*d,az.43,az.95
 if(ink(130).ne.0)call tbl130
*d,az.98,az.211
 if(ink(140).ne.0.and.mxe.gt.0)call tbl140
*/
*/ **
*/ Changes to disbug
*ident dbPN
*/ **
*/
*d,db.2
*i,db.6
*if def,disspla
*i,db.40
*endif
*d,db.43
*/
*/ **
*/ Changes to ratspl
*ident rlPN
*/ **
*/
*d,rl.2,rl.3
*i,rl.5
*if def,mcplot
*if def,disspla
*i,rl.20
*endif
*d,rl.23
*/
*/ **
*/ Changes to plot3d
*ident pyPN
*/ **
*/
*d,py.2,py.3
*i,py.5
*if def,mcplot
*if def,disspla
*i,py.64
*endif
*d,py.67
*/
*/ **
*/ Changes to x3dmat
*ident xyPN
*/ **
*/
*d,xy.2,xy.3
*i,xy.6
*if def,mcplot
*if def,disspla
*i,xy.16
*endif
*d,xy.19
*/
*/ **
*/ Changes to cgsdci
*ident gcPN
*/ **
*/
*d,gc.2
*i,gc.6
*if def,cgs.or.disscgs

432

*i,gc.38
*endif
*d,gc.41
*/
*/ **
*/ Changes to menrl
*ident mfPN
*/ **
*/
*d,mf4a.2
*i,mf4a.4
*if def,multp
*i,mf4a.176
*endif
*d,mf4a.179
*/
*/ **
*/ Changes to getjdt
*ident gjPN
*/ **
*/
*d,gj.2
*i,gj.4
*if def,aix
*i,gj.6
*endif
*d,gj.9
*/
*/ **
*/ Add new routines after deck za
*/ **
*/
*addfile, za
*/
*/ **
*/ Add function acepxs
*/ **
*/
*deck fx
 function acepxs(it,kx,r,nt,lb)
c interpolate value at index kx in table at xss(it)
c
c Preconditions:
c
c xss(it) is the first word of an appropriate table
c
c kx is the current index in the table
c r is the linear interpolation factor, 0.0 to 1.0,
c between values at index kx and kx+1
c
c table data are in the format:
c xss(it) = ie - index of first value
c xss(it+1) = nv - number of values given
c ie+nv-1 = il - index of last value
c xss(it+2..it+2+nv-1) = values(ie..il)
c values are interpolated lin-lin from the current table
c
c nt is interpolation scheme for an index out of bounds:
c (index out of bounds is kx < ie or kx > il)
c nt = 0 - return zero for no value out of energy bounds
c nt = 1 - return end point value for energy out of bounds
c nt = -1 - return zero below and end point above bounds
c
c it, kx, r, nt and all xss(i) are read only variables
c
c
c Postconditions:
c
c returns value acepxs(kx) appropriately interpolated
c
c returns lb for index error checking:

433

c lb = 0 - value interpolated within table bounds
c lb = 1 - value above table index bound
c lb = -1 - value below table index bound
c
c acepxs and lb are modified return values
c
*call cm
c
c default return value is zero
 acepxs=0
c
c find table bounds and check incoming index
 ie=nint(xss(it))
 nv=nint(xss(it+1))
 il=ie+nv-1
c
c if index below table, return appropriate value
 if (kx.lt.ie) then
 if (nt.eq.1) then
 acepxs=xss(it+2)
 endif
 lb=-1
 return
 endif
c
c if index above table, return appropriate value
 if (kx.gt.il .or. (kx.eq.il .and. r.gt.0)) then
 if (nt.eq.1 .or. nt.eq.-1) then
 acepxs=xss(it+2+nv-1)
 endif
 lb=1
 return
 endif
c
c else interpolate the appropriate value from the table
 if (r.eq.0.) then
 acepxs=xss(it+2+kx-ie)
 else
 acepxs=xss(it+2+kx-ie)+r*(xss(it+2+kx-ie+1)-xss(it+2+kx-ie))
 endif
 lb=0
 return
 end
*/
*/ **
*/ Add subroutine angiso
*/ **
*/
*deck a0
 subroutine angiso(sa)
c returns the scattering angle from an isotropic dist.
c
c Preconditions:
c None.
c
c Postconditions:
c return value sa is scattering angle mu in radians
c mu value is always between -1.0 and 1.0
c
c sa is a modified return value
c
*call cm
c
c >>>>> sample from isotropic cosine scattering angular distribution
 sa=2.*rang()-1.
 return
 end
*/
*/ **
*/ Add subroutine anglw1
*/ **

434

*/
*deck a1
 subroutine anglw1(ld,sa)
c returns the scattering angle from an equiprobable binned dist.
c
c Preconditions:
c xss(ld) is the first word of the appropriate distribution
c 32 bin equiprobable cosine scattering angle data in format:
c mu(j=1..33) with mu(1)=-1.0 and mu(33)=1.0 and appropriately
c spaced values in between to give equiprobability to each bin
c
c ld and all xss(i) are read only variables
c
c Postconditions:
c return value sa is scattering angle mu in radians
c mu value should be between -1.0 and 1.0 but isn't checked
c
c sa is a modified return value
c
*call cm
c
c >>>>> sample from table of 32 equiprobable binned cosine scat. angles
 rb=rang()*32.
 kb=int(rb)
 sa=xss(ld+kb)+(rb-kb)*(xss(ld+kb+1)-xss(ld+kb))
 return
 end
*/
*/ **
*/ Add subroutine anglw2
*/ **
*/
*deck a2
 subroutine anglw2(ld,sa)
c returns the scattering angle from a tabular binned dist.
c
c Preconditions:
c xss(ld) is the first word of the appropriate distribution
c tabulated angular probability distribution data in format:
c mu(j=1..2+3*np) contains
c jj - interpolation flag for cosine distribution
c jj = 1 is for histogram interpolation
c jj = 2 is for linear-linear interpolation
c np - number of cosine points in distribution
c cosine(k=1..np), pdf(k=1..np), cfd(k=1..np)
c
c ld and all xss(i) are read only variables
c
c Postconditions:
c return value sa is scattering angle mu in radians
c mu value should be between -1.0 and 1.0 but isn't checked
c
c sa is a modified return value
c
*call cm
c
c >>>>> sample from tabular cosine scattering angular distribution
 jj=nint(xss(ld))
 np=nint(xss(ld+1))
 kl=ld+2+2*np
 kh=kl+np-1
 rn=rang()
 call bnsrch(rn,kl,kh,ig)
 fa=xss(kl-np)
 ca=xss(kl-2*np)
 if(jj.eq.1) go to 10
 bb=(xss(kl-np+1)-fa)/(xss(kl-2*np+1)-ca)
 if(bb.eq.0) go to 10
 sa=ca+(sqrt(max(zero,fa**2+2.*bb*(rn-xss(kl))))-fa)/bb
 go to 20
 10 sa=ca+(rn-xss(kl))/fa

435

 20 return
 end
*/
*/ **
*/ Add subroutine bnsrch
*/ **
*/
*deck bn
 subroutine bnsrch(tv,il,ih,ig)
c find the value tv in the array slice xss(il..ih)
c
c Preconditions:
c tv is a real value within the array
c xss(il..ih) is an numerically ascending ordered array list
c il is the first word of the list (index low)
c ih is the last word of the list (index high)
c
c tv and all xss(i) are read only variables
c
c Postconditions:
c il/ih bracket the test value tv such that ih-il.eq.1 and
c xss(il) < tv < xss(ih)
c
c Occasionally a value outside the array will be called for
c and a reasonable value, the extreme edge of the array,
c will be returned along with an non-zero error flag ig
c ig = 0 is normal state - value found in array slice
c ig = -1 is warning state - value below first array value
c ig = 1 is warning state - value above last array value
c ig = 2 is warning state - incoming indices equal tv=xss(il)
c ig = -3 is warning state - incoming indices equal tv<xss(il)
c ig = 3 is warning state - incoming indices equal tv>xss(il)
c also il = ih = edge value for exit warning condition
c
c il, ih and ig are modified return values
c
*call cm
c
c warning state - value below table
 if(tv.lt.xss(il))then
 ig=-1
 ih=il
c
c warning state - value above table
 else if(tv.gt.xss(ih))then
 ig=1
 il=ih
c
c warning state - incoming indices are equal
 else if(il.eq.ih)then
 if(tv.eq.xss(il))then
 ig=2
 else if(tv.lt.xss(il))then
 ig=-3
 else
 ig=3
 endif
c
c else handle normal value within table
 else
 ig=0
 10 if(ih-il.eq.1)return
 im=(il+ih)/2
 if(tv.lt.xss(im))go to 20
 il=im
 go to 10
 20 ih=im
 go to 10
c
c end of cases
 endif

436

 return
 end
*/
*/ **
*/ Add subroutine coldpn
*/ **
*/
*deck dn
 subroutine coldpn
c generate and bank particles from a photonuclear collision
c
*call cm
c
c local character variable for printing warning about table fault
 character ht*10
c
c
c **
c sample photonuclear event
c **
c
c ****************
c biased collision
 if (ispn.lt.0) then
c
c compute photon weight lost to absorption
 wg=totpn/totm*wgt
c
c save photoatomic portion of particle for further transport
 wgt=wgt-wg
 totm=totm-totpn
 call savept
 nt=0
c
c account for forced photoabsorption in summaries
 tmavtc(2,2)=tmavtc(2,2)+tme*wg
 tmavtc(2,3)=tmavtc(2,3)+tme*wg
 paxtc(5,17,2)=paxtc(5,17,2)+wg
 paxtc(6,17,2)=paxtc(6,17,2)+erg*wg
 pwb(kpwb+2,20,icl)=pwb(kpwb+2,20,icl)-wg
c
c *****************
c natural collision
 else
c
c determine if collision is photonuclear
 if (rang()*totm.lt.totpn) then
c
c and set parameters to indicate photoabsorption
c (summaries are updated all the way back in hstory)
 call savept
 nt=17
 wg=wgt
 else
c
c or account for non-sampled photonuclear event
c and return to colidp to sample photoatomic event
 totm=totm-totpn
 return
 endif
c
 endif
c
c **
c sample cumulative pn x-section to find the collision nuclide
c
 im=mat(lmat+icl)
 if (npq(lnpq+im).eq.1) then
 nn=jmd(ljmd+im)
 iex=lmn(llmn+nn)
 else

437

 mc=0
 10 rt=rang()*totpn
 do 20 nn=jmd(ljmd+im),jmd(ljmd+im+1)-1
 iex=lmn(llmn+nn)
 if (iex.eq.0) go to 20
 rt=rt-rtc(krtc+2,iex)*fme(lfme+nn)
 if (rt.lt.zero) then
c nuclide nn is chosen for collision
 go to 30
 endif
 20 continue
c
c if problem sampling nuclide, print warning
 call errprn(0,mc,2,zero+nps,zero+nmt(lnmt+im),'NPS','MAT',
 1 'problem sampling collision nuclide. resampling.')
c
 if (mc.lt.100) go to 10
c if isotope still not found, exit complaining about data
 call expirx(1,'coldpn',
 1 'contact nucldata@lanl.gov for assitance')
 return
 endif
c
 30 continue
c
c ************************************
c update the nuclide collision summary
 mpan=ipan(lipa+icl)+nn-jmd(ljmd+im)
 pan(kpan+3,1,mpan)=pan(kpan+3,1,mpan)+1.0
 pan(kpan+3,2,mpan)=pan(kpan+3,2,mpan)+wg
c
c ***
c reset default parameters for new particle
 ncp=0
 jsu=0
c
c *******************************
c save needed incident parameters
 ei=erg
c uold(1:3)=uuu,vvv,www of incident photon; set in colidp
c
c **
c sample from each species of emitted particle
c --
 do 120 jp=1,nxs(lnxs+5,iex)
c
c ---
c get particle type and check for transport
 ipt=ixs(lixs+1,jp,iex)
 if (kpt(ipt).eq.0.or.fiml(ipt).eq.zero.or.ipt.gt.3)
 1 go to 120
c
c --
c determine the total production cross-section for this particle
 lb=0
 tp=acepxs(ixs(lixs+3,jp,iex),ktc(kktc+1,iex),
 1 rtc(krtc+1,iex),0,lb)
c
c --
c if outside valid range, try next particle type
 if (lb.ne.0) go to 120
c
c ---
c determine the average number of particles emitted
 fp=tp/rtc(krtc+2,iex)
 np=int(rang()+fp)
c
c ---
c if no particles are sampled, try next particle type
 if (np.eq.0) go to 120
c

438

c --
c check to see if new particle is inside a dxtran sphere
 idx=0
 do 40 nd=1,ndx(ipt)
 ds= (xxx-dxx(ipt,1,nd))**2+
 1 (yyy-dxx(ipt,2,nd))**2+
 2 (zzz-dxx(ipt,3,nd))**2
 if (ds.lt.dxx(ipt,5,nd)) idx=nd
 40 continue
c
c ------------------------
c reset the default weight
 wgt=wg
c
c ---
c use weight windows to control weight of emitted particles
c works here only if there is a single weight-window
c energy-group for the secondary particle
c (otherwise, i.e. for multiple energy-groups,
c check after sampling)
 if (idx.eq.0 .and. nww(ipt).eq.1 .and.
 1 (abs(wwp(ipt,4)).eq.one.or.wwp(ipt,5).lt.zero)) then
 ww=wwval(ipt,icl,1,1)
 if (ww.lt.zero) then
c negative weight window kills particle
 paxtc(1,4,ipt)=paxtc(1,4,ipt)+1.0
 paxtc(2,4,ipt)=paxtc(2,4,ipt)+wgt
 paxtc(4,4,ipt)=paxtc(4,4,ipt)+1.0
 paxtc(5,4,ipt)=paxtc(5,4,ipt)+wgt
 go to 120
 elseif (ww.eq.zero) then
c zero weight window does nothing
 continue
 elseif (wgt.lt.ww) then
c russian roulette particles below the weight window
 ws=min(wgt*wwp(ipt,3),ww*wwp(ipt,2))
 mr=0
 do 50 ir=1,np
 if (rang()*ws.gt.wgt) mr=mr+1
 50 continue
 np=np-mr
 wgt=ws
 elseif (wgt.gt.wwp(ipt,1)*ww) then
c split particles above the weight window
 nw=nint(min(wwp(ipt,3),wgt/(ww*wwp(ipt,2))))
 wgt=wgt/nw
 np=np*nw
 endif
c
 endif
 if (np.eq.0) go to 120
c
c --
c sample emission parameters for each particle
c ==
 do 110 ii=1,np
c
c ==
c determine from which reaction to sample the particle
 nr=ixs(lixs+2,jp,iex)
 if (nr.eq.1) then
 ixre=1
 else
c generate a random production xs to sample too
 mp=0
 is=ixs(lixs+8,jp,iex)
 60 rx=tp*rang()
c
c ==
c loop over the available reactions until xs fulfilled
c ~~

439

 do 90 ixre=1,nr
c
c retrieve the next yield block offset locator
 ks=nint(xss(ixs(lixs+7,jp,iex)+ixre-1))
c
c ~~
c handle the different reaction yield blocks by MFTYPE
c
 if (nint(xss(is+ks-1)).eq.6 .or.
 1 nint(xss(is+ks-1)).eq.12 .or.
 2 nint(xss(is+ks-1)).eq.16) then
c MFTYPE 6, 12 or 16 - erg. dependent MT multiplier
c data is in format:
c xss(is+ks-1) = MFTYPE - reaction type indicator
c xss(is+ks) = MTMULT - MT reaction applied to
c xss(is+ks+...) std. energy/data table entries
c NR, [NBT(i:i=1..NR), INT(i:i=1..NR),]
c NV, E(i:i=1..NV), Y(i:i=1..NV)
c
c get yield value for incident photon energy
 yd=acefcn(is+ks+1,ei,ln)
c
c look up pointer to MT reaction xs data
 do 70 im=1,nxs(lnxs+4,iex)
 if (nint(xss(is+ks)) .eq.
 1 nint(xss(jxs(ljxs+6,iex)+im-1))) then
 go to 80
 endif
 70 continue
c
c if fell through loop, exit complaining about data
 im=0
 call zaid(2,ht,ixl(lixl+1,iex))
 call errprn(1,im,2,zero+ixre,xss(is+ks),
 1 'IXR','MT','cound not find mt for yield'
 2 //' multiplier. zaid = '//ht)
 call expirx(1,'coldpn',
 1 'contact nucldata@lanl.gov for assitance')
 return
c
c look up reaction XS using MT index im found above
 80 continue
 ix=jxs(ljxs+9,iex)
 kx=nint(xss(jxs(ljxs+8,iex)+im-1))
 xs=acepxs(ix+kx-1,ktc(kktc+1,iex),
 1 rtc(krtc+1,iex),0,lb)
c
c compute partial prod xs from yield and reaction xs
 px=yd*xs
c
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 elseif (xss(is+ks).eq.13) then
c MFTYPE 13 - Partial production cross section data
c data is in format:
c xss(is+ks) = MFTYPE - reaction type indicator
c xss(is+ks+1) = ie - index of first value
c xss(is+ks+2) = nv - number of values listed
c xss(is+ks+3..is+ks+2+nv-1) = pxs(ie..ie+nv-1)
c
c find the partial production xs for this reaction
 px=acepxs(is+ks+1,ktc(kktc+1,iex),
 1 rtc(krtc+1,iex),0,lb)
c
c ~~
c handle an undefined reaction type MFTYPE
 else
 im=0
 call zaid(2,ht,ixl(lixl+1,iex))
 call errprn(1,im,2,zero+ixre,xss(is+ks-1),
 1 'IXR','MFT','cound not find MFTYPE.'
 2 //' zaid = '//ht)

440

 call expirx(1,'coldpn',
 1 'contact nucldata@lanl.gov for assitance')
 return
 endif
c
c ~~~
c if the partial XS has been fulfilled, use this rx
 rx=rx-px
 if (rx.lt.0.) go to 100
c
c ~~~
c if problem sampling reaction, print a warning
 if (ixre.ne.ixs(lixs+2,jp,iex)) go to 90
 call zaid(2,ht,ixl(lixl+1,iex))
 call errprn(1,mp,4,erg,zero,'ERG',' ',
 1 ' reaction mt not found. collision resampled.'
 2 //' zaid = '//ht//'.')
 npum=npum+1
 if (mp.lt.100) go to 60
c
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
c if reaction still not found,
c exit complaining about data
 call expirx(1,'coldpn',
 1 'contact nucldata@lanl.gov for assitance')
 return
c
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
c end of loop over partial reactions
c ==================================
 90 continue
 endif
c
c ====================================
c ixre now set to the sampled reaction
 100 continue
c
c ==================================
c set up pointers for call to acecas
 erg=ei
 ipsc=0
 npa=1
 mtp=nint(xss(ixs(lixs+5,jp,iex)+ixre-1))
 ntyn=nint(xss(ixs(lixs+6,jp,iex)+ixre-1))
 ia=ixs(lixs+10,jp,iex)
 ka=nint(xss(ixs(lixs+9,jp,iex)+ixre-1))
 id=ixs(lixs+12,jp,iex)
 kd=nint(xss(ixs(lixs+11,jp,iex)+ixre-1))
c
c =====================
c sample a new particle
 call acecas(1,2,zero,ia,ka,id,kd)
 erg=colout(1,1)
 vel=slite*sqrt(erg*(erg+2.*gpt(ipt)))/(erg+gpt(ipt))
 call rotas(colout(2,1),uold,uuu,lev,irt)
 if (kdb.ne.0) return
c
c =================================
c update the various summary tables
c
c update summary for particle creation
 paxtc(1,17,ipt)=paxtc(1,17,ipt)+1.0
 paxtc(2,17,ipt)=paxtc(2,17,ipt)+wgt
 paxtc(3,17,ipt)=paxtc(3,17,ipt)+wgt*erg
c
c update the particle creation weight balance for this cell
 pwb(kpwb+ipt,21,icl)=pwb(kpwb+ipt,21,icl)+wgt
c
c update the nuclide activity summaries
 if (ipt.eq.1) then
c update photoneutron production summary

441

 pan(kpan+3,6,mpan)=pan(kpan+3,6,mpan)+1.0
 pan(kpan+3,7,mpan)=pan(kpan+3,7,mpan)+wgt
 pan(kpan+3,8,mpan)=pan(kpan+3,8,mpan)+wgt*erg
 else if (ipt.eq.2) then
c update photophoton production summary
 pan(kpan+3,3,mpan)=pan(kpan+3,3,mpan)+1.0
 pan(kpan+3,4,mpan)=pan(kpan+3,4,mpan)+wgt
 pan(kpan+3,5,mpan)=pan(kpan+3,5,mpan)+wgt*erg
 endif
c
c =======================
c check for energy cutoff
 if (erg.lt.elc(ipt)) then
 paxtc(4,2,ipt)=paxtc(4,2,ipt)+1.0
 paxtc(5,2,ipt)=paxtc(5,2,ipt)+wgt
 paxtc(6,2,ipt)=paxtc(6,2,ipt)+wgt*erg
 pwb(kpwb+ipt,4,icl)=pwb(kpwb+ipt,4,icl)-wgt
 go to 110
 endif
c
c ==
c force kalbach-chadwick or isotropic for calcps
c as called in dxtran or tallyd
c ipsc=999 will fatal error any other reaction
 if (ipsc.eq.14) then
 ipsc=17
 elseif (ixcos.eq.0) then
 ipsc=106
 else
 ipsc=999
 endif
c
c ==
c check for contribution to dxtran spheres
 if (ndx(ipt).ne.0) then
c only if not in the sphere or more than one exists
 if (ndx(ipt).gt.1.or.idx.eq.0) call dxtran
 if (kdb.ne.0) return
 endif
c
c ==
c check for contribution to detector tallies
 if (ndet(ipt).ne.0) then
 call tallyd
 if (kdb.ne.0) return
 endif
c
c ==
c use weight-windows to control weight of banked particles
c only do this is there are multiple energy-groups for
c this secondary particle type
 if (idx.eq.0 .and. nww(ipt).gt.1 .and.
 1 (abs(wwp(ipt,4)).eq.one.or.wwp(ipt,5).lt.zero)) then
 ic=0
 iw=nww(ipt)
 1000 if (iw-ic.ne.1) then
 ih=(ic+iw)/2
 if (erg.lt.wwe(lwwe+ih+mww(ipt))) then
 iw=ih
 else
 ic=ih
 endif
 go to 1000
 endif
 ww=wwval(ipt,icl,iw,1)
 if (ww.lt.zero) then
c negative weight window kills particle
c update summaries to indicate weight window activity
 paxtc(4,4,ipt)=paxtc(4,4,ipt)+1.0
 paxtc(5,4,ipt)=paxtc(5,4,ipt)+wgt
 paxtc(6,4,ipt)=paxtc(6,4,ipt)+wgt*erg

442

 pwb(kpwb+ipt,6,icl)=pwb(kpwb+ipt,6,icl)-wgt
 go to 110
 elseif (ww.eq.zero) then
c zero weight window does nothing
 continue
 elseif (wgt.lt.ww) then
c russian roulette particles below the weight window
 ws=min(wgt*wwp(ipt,3),ww*wwp(ipt,2))
 rr=rang()
 if (rr*ws.lt.wgt) then
 paxtc(2,4,ipt)=paxtc(2,4,ipt)+(ws-wgt)
 paxtc(3,4,ipt)=paxtc(3,4,ipt)+(ws-wgt)*erg
 pwb(kpwb+ipt,6,icl)=pwb(kpwb+ipt,6,icl)+(ws-wgt)
 wgt=ws
 else
 paxtc(4,4,ipt)=paxtc(4,4,ipt)+1.0
 paxtc(5,4,ipt)=paxtc(5,4,ipt)+wgt
 paxtc(6,4,ipt)=paxtc(6,4,ipt)+wgt*erg
 pwb(kpwb+ipt,6,icl)=pwb(kpwb+ipt,6,icl)-wgt
 go to 110
 endif
 elseif (wgt.gt.wwp(ipt,1)*ww) then
c split particles above the weight window
 npa=nint(min(wwp(ipt,3),wgt/(ww*wwp(ipt,2))))
 paxtc(4,4,ipt)=paxtc(4,4,ipt)+(npa-1.0)
 wgt=wgt/npa
 endif
c
 endif
c
c ===================================
c bank the new particle for transport
 call bankit(27)
c
c ===
c end of loop generate np particles of type ipt
c ---
 110 continue
c
c
c ---------------------------------------
c end of loop over all particle emissions
c ***************************************
 120 continue
c
c **
c retrieve incident photon and continue
c **
 call retrpt
 nter=nt
 return
 end
*/
*/ **
*/ Add subroutine expgpn
*/ **
*/
*deck xu
 subroutine expgpn
c remove unneeded data from table type u
c still to be written
*call cm
c
 return
 end
*/
*/ **
*/ Add subroutine pnctot
*/ **
*/
*deck nt

443

 subroutine pnctot(mk)
c calculate the photonuclear cross section in material mk
c
c local variables: ii - isotope index, it - table index,
c ih - upper energy index, il - lower energy index,
c
c global variables:
c jmd - material isotope indices
c lmn - photonuclear isotope table indices
c erg - current photon energy
c pnt(mk) - the lowest photonuclear threshold in material mk
c ktc(1,table) - table index above current energy
c ktc(2,table) - flag to warn about energy out of table bounds
c rtc(1,table) - current linear table interpolation factor
c rtc(2,table) - current total cross section
c rtc(6,table) - current energy being interpolated
c
*call cm
c
 totpn=zero
c
c if below photonuclear threshold for material, return
 if (erg.le.pnt(lpnt+mk)) return
c
c calculate/accumulate the cross sections by nuclide in material
 do 20 ii=jmd(ljmd+mk),jmd(ljmd+mk+1)-1
 it=lmn(llmn+ii)
 if(it.eq.0)go to 20
 if(erg.eq.rtc(krtc+6,it))go to 10
 rtc(krtc+6,it)=erg
c
c find index of current energy
 il=jxs(ljxs+1,it)
 ih=il+nxs(lnxs+3,it)-1
 call bnsrch(erg,il,ih,ktc(kktc+2,it))
c
c if in the table range, store the values normally
 if(ktc(kktc+2,it).eq.0)then
 ktc(kktc+1,it)=ih-jxs(ljxs+1,it)
 rtc(krtc+1,it)=(erg-xss(il))/(xss(ih)-xss(il))
 k=ktc(kktc+1,it)+jxs(ljxs+2,it)
 rtc(krtc+2,it)=(xss(k)-xss(k-1))*rtc(krtc+1,it)+xss(k-1)
c
c if above last energy value, use boundary values
 else if(ktc(kktc+2,it).gt.0)then
 ktc(kktc+1,it)=il-jxs(ljxs+1,it)
 rtc(krtc+1,it)=0.0
 rtc(krtc+2,it)=xss(jxs(ljxs+2,it)+ktc(kktc+1,it))
c
c if below photonuclear threshold, use zero values
 else
 ktc(kktc+1,it)=0
 rtc(krtc+1,it)=0.
 rtc(krtc+2,it)=0.
 endif
c
c accumulate the photonuclear microscopic xs for the material
 10 continue
 totpn=totpn+rtc(krtc+2,it)*fme(lfme+ii)
 20 continue
c
c add totpn to totm for distance to collision calculations
 totm=totm+totpn
 return
 end
*/
*/ **
*/ Add subroutine retrpt
*/ **
*/
*deck qr

444

 subroutine retrpt
c retrieve the current particle parameters from the particle bank
c
*call cm
c
c retrieve the integer variable parameters
 do 10 i=1,lpblcm
 jpblcm(i)=jpb9cm(npb,i)
 10 continue
c
c retrieve the real variable parameters
 do 20 i=1,npblcm
 gpblcm(i)=gpb9cm(npb,i)
 20 continue
c
c decrement the stack counter
 npb=npb-1
c
 return
 end
*/
*/ **
*/ Add subroutine savept
*/ **
*/
*deck qs
 subroutine savept
c save the current particle parameters to the particle bank
c
*call cm
c
c increment the stack counter
 npb=npb+1
c
c save the real variable parameters
 do 10 i=1,npblcm
 gpb9cm(npb,i)=gpblcm(i)
 10 continue
c
c save the integer variable parameters
 do 20 i=1,lpblcm
 jpb9cm(npb,i)=jpblcm(i)
 20 continue
c
 return
 end
*/
*/ **
*/ Add subroutine tbl130
*/ **
*/
*deck t3
 subroutine tbl130
c print weight balance for each particle in each cell
*call cm
c
c **
c print table 130 is the weight balance for each particle type
c in each cell such that one table exists for each particle
c
c the table consists of a set of header information, an external
c events section, a variance reduction event section, a
c physical events section and footer information for each cell
c print table 130 currently consists of:
c lh = 3 lines of header information
c le = 9 lines of external event information
c lv = 11 lines of variance reduction event information
c physical events are particle specific
 dimension lp(mipt)
c lp(1) = 10 lines of neutron physical event information
c lp(2) = 13 lines of photon physical event information

445

c lp(3) = 10 lines of electron physical event information
c lf = 4 lines of footer information
c max 40 total lines in the print matrix
 data nr/40/
c
c cells are printed across the page left to right with a total
c over all cells being printed last; only x number of cell
c columns can be printed per page and therefore multiple prints
c of the table may be necessary to print all cells
c standard row width is 132 char. columns
c the row header is 16 characters (1 space and 15 chars.)
c that leaves room for 9 12 char. data values to be written
c this sets the max number of data column values, nc, to 9
 data nc/9/
c
c there are 3 subtotals and 1 total computed for each
c column; these values are stored only per matrix print
c *** make sure the 9 below matches nc above
 dimension st(4,9)
c
c the partial tables are constructed in a character variable
c matrix containing the maximum number of cells; the partial
c table is then dumped to output as needed when it is full
c thus the total storage for the maximum entire matrix is
c 40 rows (check against nr above)
c 9 data columns (check against nc above)
c row headers are printed into character variable hb
c data values are printed into character variable ha
 character ha(40,9)*12,hb(40)*15
c
c **
c
c loop over each particle type
 do 110 ip=1,mipt
c
c skip particle type if not being transported
 if(kpt(ip).eq.0)go to 110
c
c write the appropriate print table header
 write(iuo,10)hnp(ip)
 10 format(1h1,a8,28h weight balance in each cell,80x,
 1 15hprint table 130)
c
c compute the total weight balance over all cells
 do 20 j=1,21
 pwb(lpwb+ip,j,mxa+1)=zero
 20 continue
 do 30 j=1,21
 do 30 k=1,mxa
c the next line is needed to prevent partial weights (e.g.
c weight entering zero importance cell) from being added
c to the totals
 if(fim(lfim+ip,k).eq.zero)go to 30
 pwb(lpwb+ip,j,mxa+1)=pwb(lpwb+ip,j,mxa+1)+pwb(lpwb+ip,j,k)
 30 continue
c
c initialize the print matrix, sub/totals and column counter
 do 40 i=1,nr
 do 40 j=1,nc
 ha(i,j)=' '
 hb(i)=' '
 40 continue
 do 50 i=1,4
 do 50 j=1,nc
 st(i,j)=zero
 50 continue
 kc=0
c
c loop over all cells (and the total), printing the
c matrix as it fills
 do 100 ic=1,mxa+1

446

c
c skip any cells with a zero importance
 if(fim(lfim+ip,ic).eq.zero.and.ic.ne.mxa+1)go to 100
 kc=kc+1
c
c ***********************************
c write the table header information
c ls is the start line for this table section
 ls=0
 if(kc.eq.1)then
c lh is the number of table header lines
 lh=3
c leave hb(ls+1) blank
 write(hb(ls+2),'(a15)')' cell index'
 write(hb(ls+3),'(a15)')' cell number'
 endif
c the header is the index/name or total
 if(ic.lt.mxa+1)then
c leave ha(ls+1,kc) blank
 write(ha(ls+2,kc),'(4x,i5,3x)')ic
 write(ha(ls+3,kc),'(4x,i5,3x)')ncl(lncl+ic)
 else
c leave ha(ls+1,kc) blank
c leave ha(ls+2,kc) blank
 write(ha(ls+3,kc),'(4x,a5,3x)')'total'
 endif
c
c **
c write the external event headers and data
 ls=ls+lh
 if(kc.eq.1)then
c le is the number of external event lines
 le=9
c leave hb(ls+1) blank
 write(hb(ls+2),'(a15)')'external events'
 write(hb(ls+3),'(a15)')' entering'
 write(hb(ls+4),'(a15)')' source'
 write(hb(ls+5),'(a15)')' energy cutoff'
 write(hb(ls+6),'(a15)')' time cutoff'
 write(hb(ls+7),'(a15)')' exiting'
 write(hb(ls+8),'(a15)')' '
 write(hb(ls+9),'(a15)')' subtotal '
 endif
c leave ha(ls+1,kc) blank
c leave ha(ls+2,kc) blank
 write(ha(ls+3,kc),'(1pe12.4)')pwb(lpwb+ip,1,ic)*fpi
 write(ha(ls+4,kc),'(1pe12.4)')pwb(lpwb+ip,2,ic)*fpi
 write(ha(ls+5,kc),'(1pe12.4)')pwb(lpwb+ip,3,ic)*fpi
 write(ha(ls+6,kc),'(1pe12.4)')pwb(lpwb+ip,4,ic)*fpi
 write(ha(ls+7,kc),'(1pe12.4)')pwb(lpwb+ip,5,ic)*fpi
 write(ha(ls+8,kc),'(1a12)')' ----------'
 st(1,kc)=fpi*(
 1 pwb(lpwb+ip,1,ic)+
 2 pwb(lpwb+ip,2,ic)+
 3 pwb(lpwb+ip,3,ic)+
 4 pwb(lpwb+ip,4,ic)+
 5 pwb(lpwb+ip,5,ic))
 write(ha(ls+9,kc),'(1pe12.4)')st(1,kc)
c
c **
c write the variance reduction headers and data
 ls=ls+le
 if(kc.eq.1)then
c lv is the number of variance reduction event lines
 lv=11
c leave hb(ls+1) blank
 write(hb(ls+2),'(a15)')'var.red. events'
 write(hb(ls+3),'(a15)')' weight window'
 write(hb(ls+4),'(a15)')' cell imp.'
 write(hb(ls+5),'(a15)')' weight cutoff'
 write(hb(ls+6),'(a15)')' energy imp.'

447

 write(hb(ls+7),'(a15)')' dxtran'
 write(hb(ls+8),'(a15)')' forced coll.'
 write(hb(ls+9),'(a15)')' exp. trans.'
c leave hb(ls+10) blank
 write(hb(ls+11),'(a15)')' subtotal '
 endif
c leave ha(ls+1,kc) blank
c leave ha(ls+2,kc) blank
 write(ha(ls+3,kc),'(1pe12.4)')pwb(lpwb+ip,6,ic)*fpi
 write(ha(ls+4,kc),'(1pe12.4)')pwb(lpwb+ip,7,ic)*fpi
 write(ha(ls+5,kc),'(1pe12.4)')pwb(lpwb+ip,8,ic)*fpi
 write(ha(ls+6,kc),'(1pe12.4)')pwb(lpwb+ip,9,ic)*fpi
 write(ha(ls+7,kc),'(1pe12.4)')pwb(lpwb+ip,10,ic)*fpi
 write(ha(ls+8,kc),'(1pe12.4)')pwb(lpwb+ip,11,ic)*fpi
 write(ha(ls+9,kc),'(1pe12.4)')pwb(lpwb+ip,12,ic)*fpi
 write(ha(ls+10,kc),'(a12)')' ----------'
 st(2,kc)=fpi*(
 1 pwb(lpwb+ip,6,ic)+
 2 pwb(lpwb+ip,7,ic)+
 3 pwb(lpwb+ip,8,ic)+
 4 pwb(lpwb+ip,9,ic)+
 5 pwb(lpwb+ip,10,ic)+
 6 pwb(lpwb+ip,11,ic)+
 7 pwb(lpwb+ip,12,ic))
 write(ha(ls+11,kc),'(1pe12.4)')st(2,kc)
c
c **
c write the physical event section by particle type
c
c write the neutron physical event header and data
 if(ip.eq.1)then
 ls=ls+lv
 if(kc.eq.1)then
c lp(1) is the number of neutron physical event lines
 lp(1)=10
c leave hb(ls+1) blank
 write(hb(ls+2),'(a15)')'physical events'
 write(hb(ls+3),'(a15)')' (n,xn)'
 write(hb(ls+4),'(a15)')' fission'
 write(hb(ls+5),'(a15)')' capture'
 write(hb(ls+6),'(a15)')' loss to (n,xn)'
 write(hb(ls+7),'(a15)')'loss to fission'
 write(hb(ls+8),'(a15)')' (gamma,xn)'
c leave hb(ls+9) blank
 write(hb(ls+10),'(a15)')' subtotal '
 endif
c leave ha(ls+1,kc) blank
c leave ha(ls+2,kc) blank
 write(ha(ls+3,kc),'(1pe12.4)')pwb(lpwb+ip,13,ic)*fpi
 write(ha(ls+4,kc),'(1pe12.4)')pwb(lpwb+ip,14,ic)*fpi
 write(ha(ls+5,kc),'(1pe12.4)')pwb(lpwb+ip,15,ic)*fpi
 write(ha(ls+6,kc),'(1pe12.4)')pwb(lpwb+ip,16,ic)*fpi
 write(ha(ls+7,kc),'(1pe12.4)')pwb(lpwb+ip,17,ic)*fpi
 write(ha(ls+8,kc),'(1pe12.4)')pwb(lpwb+ip,21,ic)*fpi
 write(ha(ls+9,kc),'(a12)')' ----------'
 st(3,kc)=fpi*(
 1 pwb(lpwb+ip,13,ic)+
 2 pwb(lpwb+ip,14,ic)+
 3 pwb(lpwb+ip,15,ic)+
 4 pwb(lpwb+ip,16,ic)+
 5 pwb(lpwb+ip,17,ic)+
 6 pwb(lpwb+ip,21,ic))
 write(ha(ls+10,kc),'(1pe12.4)')st(3,kc)
c
c write the photon physical event header and data
 else if(ip.eq.2)then
 ls=ls+lv
 if(kc.eq.1)then
c lp(2) is the number of photon physical event lines
 lp(2)=13
c leave hb(ls+1) blank

448

 write(hb(ls+2), '(a15)')'physical events'
 write(hb(ls+3), '(a15)')' from neutrons'
 write(hb(ls+4), '(a15)')' bremsstrahlung'
 write(hb(ls+5), '(a15)')' p-annihilation'
 write(hb(ls+6), '(a15)')'electron x-rays'
 write(hb(ls+7), '(a15)')' flourescence'
 write(hb(ls+8), '(a15)')' pe. capture'
 write(hb(ls+9), '(a15)')'pair production'
 write(hb(ls+10),'(a15)')' pn. absorbtion'
 write(hb(ls+11),'(a15)')' (gamma,xgamma)'
c leave hb(ls+12) blank
 write(hb(ls+13),'(a15)')' subtotal '
 endif
c leave ha(ls+1,kc) blank
c leave ha(ls+2,kc) blank
 write(ha(ls+3,kc), '(1pe12.4)')pwb(lpwb+ip,13,ic)*fpi
 write(ha(ls+4,kc), '(1pe12.4)')pwb(lpwb+ip,14,ic)*fpi
 write(ha(ls+5,kc), '(1pe12.4)')pwb(lpwb+ip,15,ic)*fpi
 write(ha(ls+6,kc), '(1pe12.4)')pwb(lpwb+ip,16,ic)*fpi
 write(ha(ls+7,kc), '(1pe12.4)')pwb(lpwb+ip,17,ic)*fpi
 write(ha(ls+8,kc), '(1pe12.4)')pwb(lpwb+ip,18,ic)*fpi
 write(ha(ls+9,kc), '(1pe12.4)')pwb(lpwb+ip,19,ic)*fpi
 write(ha(ls+10,kc),'(1pe12.4)')pwb(lpwb+ip,20,ic)*fpi
 write(ha(ls+11,kc),'(1pe12.4)')pwb(lpwb+ip,21,ic)*fpi
 write(ha(ls+12,kc),'(a12)')' ----------'
 st(3,kc)=fpi*(
 1 pwb(lpwb+ip,13,ic)+
 2 pwb(lpwb+ip,14,ic)+
 3 pwb(lpwb+ip,15,ic)+
 4 pwb(lpwb+ip,16,ic)+
 5 pwb(lpwb+ip,17,ic)+
 6 pwb(lpwb+ip,18,ic)+
 7 pwb(lpwb+ip,19,ic)+
 8 pwb(lpwb+ip,20,ic)+
 9 pwb(lpwb+ip,21,ic))
 write(ha(ls+13,kc),'(1pe12.4)')st(3,kc)
c
c write the electron physical event header and data
 else if(ip.eq.3)then
 ls=ls+lv
 if(kc.eq.1)then
c lp(3) is the number of photon physical event lines
 lp(3)=10
c leave hb(ls+1) blank
 write(hb(ls+2), '(a15)')'physical events'
 write(hb(ls+3), '(a15)')'pair production'
 write(hb(ls+4), '(a15)')' compton recoil'
 write(hb(ls+5), '(a15)')' photo-electric'
 write(hb(ls+6), '(a15)')' photon auger'
 write(hb(ls+7), '(a15)')' electron auger'
 write(hb(ls+8), '(a15)')' knock-on'
c leave hb(ls+9) blank
 write(hb(ls+10),'(a15)')' subtotal '
 endif
c leave ha(ls+1,kc) blank
c leave ha(ls+2,kc) blank
 write(ha(ls+3,kc),'(1pe12.4)')pwb(lpwb+ip,13,ic)*fpi
 write(ha(ls+4,kc),'(1pe12.4)')pwb(lpwb+ip,14,ic)*fpi
 write(ha(ls+5,kc),'(1pe12.4)')pwb(lpwb+ip,15,ic)*fpi
 write(ha(ls+6,kc),'(1pe12.4)')pwb(lpwb+ip,16,ic)*fpi
 write(ha(ls+7,kc),'(1pe12.4)')pwb(lpwb+ip,17,ic)*fpi
 write(ha(ls+8,kc),'(1pe12.4)')pwb(lpwb+ip,18,ic)*fpi
 write(ha(ls+9,kc),'(a12)')' ----------'
 st(3,kc)=fpi*(
 1 pwb(lpwb+ip,13,ic)+
 2 pwb(lpwb+ip,14,ic)+
 3 pwb(lpwb+ip,15,ic)+
 4 pwb(lpwb+ip,16,ic)+
 5 pwb(lpwb+ip,17,ic)+
 6 pwb(lpwb+ip,18,ic))
 write(ha(ls+10,kc),'(1pe12.4)')st(3,kc)

449

 endif
c
c ***********************************
c write the table footer information
 ls=ls+lp(ip)
 if(kc.eq.1)then
c lf is the number of table footer lines
 lf=4
c leave hb(ls+1) blank
c leave hb(ls+2) blank
 write(hb(ls+3),'(a15)')' total '
c leave hb(ls+4) blank
 endif
c leave ha(ls+1,kc) blank
 write(ha(ls+2,kc),'(a12)')' ----------'
 st(4,kc)=st(1,kc)+st(2,kc)+st(3,kc)
 if(abs(st(4,kc)).lt.1e-10)st(4,kc)=zero
 write(ha(ls+3,kc),'(1pe12.4)')st(4,kc)
c leave ha(ls+4,kc) blank
c
c ***
c if print matrix full or last cell reached, write the
c print matrix to the output file and reinitialize
 if(kc.eq.9.or.ic.eq.mxa+1)then
 do 70 il=1,lh+le+lv+lp(ip)+lf
 write(iuo,60)hb(il),(ha(il,i),i=1,9)
 60 format(1x,a15,9a12)
 70 continue
 do 80 i=1,nr
 do 80 j=1,nc
 ha(i,j)=' '
 80 continue
 do 90 i=1,4
 do 90 j=1,nc
 st(i,j)=zero
 90 continue
 kc=0
 endif
c
c ***********************
c end of loop over cells
 100 continue
c
c ***************************
c end of loop over particles
 110 continue
 return
 end
*/
*/ **
*/ Add subroutine tbl140
*/ **
*/
*deck t4
 subroutine tbl140
c print neutron/photon activity of each nuclide in each cell
*call cm
c
c **
c print table 140 is the activity of each nuclide in each cell
c for neutron and/or photon collision statistics
c current nuclide table types are:
c type 'c', 'd' & 'm' for neutron events
c type 'p' & 'g' for photoatomic events
c type 'u' for photonuclear events
c
c **
c local variable declarations
c
c array for holding sum totals
 parameter (kt=9)

450

 dimension t(9)
c
c character storage for cell headers
 character hh(2)*6
c
c character storage for current table name
 character hn*10
c
c character storage of common header labels
 parameter (ka=4)
 character ha(2,4)*12
 data ha/
 1 ' cell', ' index',
 2 ' cell', ' name',
 3 ' nuclides', ' ',
 4 ' atom', ' fraction'/
c
c character storage for neutron table header labels
 parameter (kb=8)
 character hb(2,8)*12
 data hb/
 1 ' total', ' collisions',
 2 ' collisions', ' * weight',
 3 ' wgt. lost', ' to capture',
 4 ' wgt. gain', ' by fission',
 5 ' wgt. gain', ' by (n,xn)',
 6 ' tot p', ' produced',
 7 ' wgt. of', ' p produced',
 8 ' avg p', ' energy'/
c
c character storage for photoatomic table header labels
 parameter (kc=3)
 character hc(2,3)*12
 data hc/
 1 ' total', ' collisions',
 2 ' collisions', ' * weight',
 3 ' wgt. lost', ' to capture'/
c
c character storage for photonuclear table header labels
 parameter (kd=8)
 character hd(2,8)*12
 data hd/
 1 ' total', ' collisions',
 2 ' collisions', ' * weight',
 3 ' tot p', ' produced',
 4 ' wgt. of', ' p produced',
 5 ' avg p', ' energy',
 6 ' tot n', ' produced',
 7 ' wgt. of', ' n produced',
 8 ' avg n', ' energy'/
c
c **
c if there are no table nuclides in problem, don't print
 if(mxe.eq.0)return
c
c **
c if neutrons are transported, print the neutron nuclide info
 if(kpt(1).ne.0)then
c
c ***
c neutron nuclide table header for print by cell
 write(iuo,'(1h1,a47,a19,50x,a15/)')
 1 'neutron activity of each nuclide in each cell, ',
 2 'per source particle',
 3 'print table 140'
 write(iuo,'(1x,2a6,a11,a9,8a12)')
 1 (ha(1,i),i=1,ka),(hb(1,i),i=1,kb)
 write(iuo,'(1x,2a6,a11,a9,8a12)')
 1 (ha(2,i),i=1,ka),(hb(2,i),i=1,kb)
c
c initialize the sum totals

451

 do 10 i=1,kt
 t(i)=zero
 10 continue
c
c loop over all cells
 do 20 ix=1,mxa
 im=mat(lmat+ix)
c
c if void material or zero importance cell, go to next cell
 if(im.eq.0.or.fim(lfim+1,ix).eq.0)go to 20
c
c set up for next cell print
 write(iuo,'(1x)')
 write(hh(1),'(i6)')ix
 write(hh(2),'(i6)')ncl(lncl+ix)
 ip=ipan(lipa+ix)
c
c loop over all nuclides
 do 30 ii=jmd(ljmd+im),jmd(ljmd+im+1)-1
 it=lme(llme+1,ii)
c
c if nuclide has no table, go to next nuclide
 if(it.eq.0)go to 30
 call zaid(2,hn,ixl(lixl+1,it))
c
c print each nuclide in the cell with associated data
 if(pan(lpan+1,7,ip).ne.zero)then
 e1=pan(lpan+1,8,ip)/pan(lpan+1,7,ip)
 else
 e1=zero
 endif
 write(iuo,'(1x,2a6,1x,a10,1pe9.2,i12,1p4e12.4,
 1 i12,1p2e12.4)')hh(1),hh(2),hn,fme(lfme+ii),
 2 nint(pan(lpan+1,1,ip)),
 3 fpi*pan(lpan+1,2,ip),
 4 fpi*pan(lpan+1,3,ip),
 5 fpi*pan(lpan+1,4,ip),
 6 fpi*pan(lpan+1,5,ip),
 7 nint(pan(lpan+1,6,ip)),
 8 fpi*pan(lpan+1,7,ip),
 9 e1
c
c add components to sum total over all cells & nuclides
 do 40 i=1,kb
 t(i)=t(i)+pan(lpan+1,i,ip)
 40 continue
c
c don't print cell info for remaining nuclides
 hh(1)=' '
 hh(2)=' '
 ip=ip+1
c
c end loop over current nuclide
 30 continue
c
c end loop over cells printing info by nuclide
 20 continue
c
c print the total over all nuclides and all cells
 if(t(7).ne.zero)then
 e1=t(8)/t(7)
 else
 e1=zero
 endif
 write(iuo,'(/8x,5htotal,20x,i12,1p4e12.4,i12,2e12.4)')
 1 nint(t(1)),(fpi*t(i),i=2,5),nint(t(6)),
 2 fpi*t(7),e1
c
c **
c compute and print the sum over all cells by nuclide
c

452

c header for totals by nuclide
 write(iuo,'(//1x,a32,8a12)')
 1 'total over all cells by nuclide',
 2 (hb(1,i),i=1,kb)
 write(iuo,'(33x,8a12/)')
 1 (hb(2,i),i=1,kb)
c
c loop over each nuclide printing totals
 do 50 in=1,mxe
 call zaid(2,hn,ixl(lixl+1,in))
c
c if not a neutron nuclide, go to next table
 if(hn(10:10).ne.'c'.and.
 1 hn(10:10).ne.'d'.and.
 2 hn(10:10).ne.'m')go to 50
c
c reinitialize the sum totals
 do 60 i=1,kt
 t(i)=zero
 60 continue
c
c loop over all cells, summing this nuclide
 do 70 ix=1,mxa
 im=mat(lmat+ix)
 ip=ipan(lipa+ix)
c
c if void material or zero importance cell, go to next cell
 if(im.eq.0.or.fim(lfim+1,ix).eq.0)go to 70
c
c loop over all nuclides
 do 80 ii=jmd(ljmd+im),jmd(ljmd+im+1)-1
 it=lme(llme+1,ii)
c
c if not current nuclide, go to next nuclide
 if(it.ne.in)go to 80
c
c add current cell total to nuclide sum
 do 90 i=1,kb
 t(i)=t(i)+pan(lpan+1,i,ip+ii-jmd(ljmd+im))
 90 continue
c
c end of loop over nuclides in cell
 80 continue
c
c end of loop over cells
 70 continue
c
c print the nuclide information summed over all cells
 if(t(7).ne.zero)then
 e1=t(8)/t(7)
 else
 e1=zero
 endif
 write(iuo,'(14x,a10,9x,i12,1p4e12.4,i12,2e12.4)')hn,
 1 nint(t(1)),(fpi*t(i),i=2,5),nint(t(6)),
 2 fpi*t(7),e1
c
c end summation and print by nuclide over all cells
 50 continue
 endif
c
c **
c if photons are transported, print the photoatomic nuclide info
 if(kpt(2).ne.0)then
c
c ***
c photoatomic nuclide table header for print by cell
 write(iuo,'(1h1,a51,a19,46x,a15/)')
 1 'photoatomic activity of each nuclide in each cell, ',
 2 'per source particle',
 3 'print table 140'

453

 write(iuo,'(1x,2a6,a11,a9,3a12)')
 1 (ha(1,i),i=1,ka),(hc(1,i),i=1,kc)
 write(iuo,'(1x,2a6,a11,a9,3a12)')
 1 (ha(2,i),i=1,ka),(hc(2,i),i=1,kc)
c
c initialize the sum totals
 do 110 i=1,kt
 t(i)=zero
 110 continue
c
c loop over all cells
 do 120 ix=1,mxa
 im=mat(lmat+ix)
c
c if void material or zero importance cell, go to next cell
 if(im.eq.0.or.fim(lfim+2,ix).eq.0)go to 120
c
c set up for next cell print
 write(iuo,'(1x)')
 write(hh(1),'(i6)')ix
 write(hh(2),'(i6)')ncl(lncl+ix)
 ip=ipan(lipa+ix)
c
c loop over all nuclides
 do 130 ii=jmd(ljmd+im),jmd(ljmd+im+1)-1
 it=lme(llme+2,ii)
c
c if nuclide has no table, go to next nuclide
 if(it.eq.0)go to 130
 call zaid(2,hn,ixl(lixl+1,it))
c
c print each nuclide in the cell with associated data
 write(iuo,'(1x,2a6,1x,a10,1pe9.2,i12,1p3e12.4)')
 1 hh(1),hh(2),hn,fme(lfme+ii),
 2 nint(pan(lpan+2,1,ip)),
 3 fpi*pan(lpan+2,2,ip),
 4 fpi*pan(lpan+2,3,ip)
c
c add components to sum total over all cells & nuclides
 do 140 i=1,kc
 t(i)=t(i)+pan(lpan+2,i,ip)
 140 continue
c
c don't print cell info for remaining nuclides
 hh(1)=' '
 hh(2)=' '
 ip=ip+1
c
c end loop over current nuclide
 130 continue
c
c end loop over cells printing info by nuclide
 120 continue
c
c print the total over all nuclides and all cells
 write(iuo,'(/8x,5htotal,20x,i12,1p2e12.4)')
 1 nint(t(1)),(fpi*t(i),i=2,3)
c
c **
c compute and print the sum over all cells by nuclide
c
c header for totals by nuclide
 write(iuo,'(//1x,a32,3a12)')
 1 'total over all cells by nuclide',
 2 (hc(1,i),i=1,kc)
 write(iuo,'(33x,3a12/)')
 1 (hc(2,i),i=1,kc)
c
c loop over each nuclide printing totals
 do 150 in=1,mxe
 call zaid(2,hn,ixl(lixl+1,in))

454

c
c if not a photoatomic nuclide, go to next table
 if(hn(10:10).ne.'p'.and.
 1 hn(10:10).ne.'g')go to 150
c
c reinitialize the sum totals
 do 160 i=1,kt
 t(i)=zero
 160 continue
c
c loop over all cells, summing this nuclide
 do 170 ix=1,mxa
 im=mat(lmat+ix)
 ip=ipan(lipa+ix)
c
c if void material or zero importance cell, go to next cell
 if(im.eq.0.or.fim(lfim+2,ix).eq.0)go to 170
c
c loop over all nuclides
 do 180 ii=jmd(ljmd+im),jmd(ljmd+im+1)-1
 it=lme(llme+2,ii)
c
c if not current nuclide, go to next nuclide
 if(it.ne.in)go to 180
c
c add current cell total to nuclide sum
 do 190 i=1,kc
 t(i)=t(i)+pan(lpan+2,i,ip+ii-jmd(ljmd+im))
 190 continue
c
c end of loop over nuclides in cell
 180 continue
c
c end of loop over cells
 170 continue
c
c print the nuclide information summed over all cells
 write(iuo,'(14x,a10,9x,i12,1p2e12.4)')hn,
 1 nint(t(1)),(fpi*t(i),i=2,3)
c
c end summation and print by nuclide over all cells
 150 continue
 endif
c
c **
c if photons are transported and photonuclear physics is on,
c print the photonuclear nuclide info
 if(kpt(2).ne.0.and.ispn.ne.0)then
c
c **
c photonuclear nuclide table header for print by cell
 write(iuo,'(1h1,a52,a19,45x,a15/)')
 1 'photonuclear activity of each nuclide in each cell, ',
 2 'per source particle',
 3 'print table 140'
 write(iuo,'(1x,2a6,a11,a9,8a12)')
 1 (ha(1,i),i=1,ka),(hd(1,i),i=1,kd)
 write(iuo,'(1x,2a6,a11,a9,8a12)')
 1 (ha(2,i),i=1,ka),(hd(2,i),i=1,kd)
c
c initialize the sum totals
 do 210 i=1,kt
 t(i)=zero
 210 continue
c
c loop over all cells
 do 220 ix=1,mxa
 im=mat(lmat+ix)
c
c if void material or zero importance cell, go to next cell
 if(im.eq.0.or.fim(lfim+2,ix).eq.0)go to 220

455

c
c set up for next cell print
 nl=1
 write(hh(1),'(i6)')ix
 write(hh(2),'(i6)')ncl(lncl+ix)
 ip=ipan(lipa+ix)
c
c loop over all nuclides
 do 230 ii=jmd(ljmd+im),jmd(ljmd+im+1)-1
 it=lmn(llmn+ii)
c
c if nuclide has no table, go to next nuclide
 if(it.eq.0)go to 230
 call zaid(2,hn,ixl(lixl+1,it))
c
c print each nuclide in the cell with associated data
 if(pan(lpan+3,4,ip).ne.zero)then
 e1=pan(lpan+3,5,ip)/pan(lpan+3,4,ip)
 else
 e1=zero
 endif
 if(pan(lpan+3,7,ip).ne.zero)then
 e2=pan(lpan+3,8,ip)/pan(lpan+3,7,ip)
 else
 e2=zero
 endif
 if (nl.ne.0) then
 write(iuo,'(1x)')
 nl=0
 endif
 write(iuo,'(1x,2a6,1x,a10,1pe9.2,i12,
 1 e12.4,2(i12,2e12.4))')
 2 hh(1),hh(2),hn,fme(lfme+ii),
 3 nint(pan(lpan+3,1,ip)),
 4 fpi*pan(lpan+3,2,ip),
 5 nint(pan(lpan+3,3,ip)),
 6 fpi*pan(lpan+3,4,ip),
 7 e1,
 8 nint(pan(lpan+3,6,ip)),
 9 fpi*pan(lpan+3,7,ip),
 1 e2
c
c add components to sum total over all cells & nuclides
 do 240 i=1,kd
 t(i)=t(i)+pan(lpan+3,i,ip)
 240 continue
c
c don't print cell info for remaining nuclides
 if (nl.eq.0) then
 hh(1)=' '
 hh(2)=' '
 endif
 ip=ip+1
c
c end loop over current nuclide
 230 continue
c
c end loop over cells printing info by nuclide
 220 continue
c
c print the total over all nuclides and all cells
 if(t(4).ne.zero)then
 e1=t(5)/t(4)
 else
 e1=zero
 endif
 if(t(7).ne.zero)then
 e2=t(8)/t(7)
 else
 e2=zero
 endif

456

 write(iuo,'(/8x,5htotal,20x,i12,1pe12.4,2(i12,2e12.4))')
 1 nint(t(1)),fpi*t(2),
 2 nint(t(3)),fpi*t(4),e1,
 3 nint(t(6)),fpi*t(7),e2
c
c **
c compute and print the sum over all cells by nuclide
c
c header for totals by nuclide
 write(iuo,'(//1x,a32,8a12)')
 1 'total over all cells by nuclide',
 2 (hd(1,i),i=1,kd)
 write(iuo,'(33x,8a12/)')
 1 (hd(2,i),i=1,kd)
c
c loop over each nuclide printing totals
 do 250 in=1,mxe
 call zaid(2,hn,ixl(lixl+1,in))
c
c if not a photonuclear nuclide, go to next table
 if(hn(10:10).ne.'u')go to 250
c
c reinitialize the sum totals
 do 260 i=1,kt
 t(i)=zero
 260 continue
c
c loop over all cells, summing this nuclide
 do 270 ix=1,mxa
 im=mat(lmat+ix)
 ip=ipan(lipa+ix)
c
c if void material or zero importance cell, go to next cell
 if(im.eq.0.or.fim(lfim+2,ix).eq.0)go to 270
c
c loop over all nuclides
 do 280 ii=jmd(ljmd+im),jmd(ljmd+im+1)-1
 it=lmn(llmn+ii)
c
c if not current nuclide, go to next nuclide
 if(it.ne.in)go to 280
c
c add current cell total to nuclide sum
 do 290 i=1,kd
 t(i)=t(i)+pan(lpan+3,i,ip+ii-jmd(ljmd+im))
 290 continue
c
c end of loop over nuclides in cell
 280 continue
c
c end of loop over cells
 270 continue
c
c print the nuclide information summed over all cells
 if(t(4).ne.zero)then
 e1=t(5)/t(4)
 else
 e1=zero
 endif
 if(t(7).ne.zero)then
 e2=t(8)/t(7)
 else
 e2=zero
 endif
 write(iuo,'(14x,a10,9x,i12,1pe12.4,2(i12,2e12.4))')hn,
 1 nint(t(1)),fpi*t(2),
 2 nint(t(3)),fpi*t(4),e1,
 3 nint(t(6)),fpi*t(7),e2
c
c end summation and print by nuclide over all cells
 250 continue

457

 endif
 return
 end

458

APPENDIX D
MISCELLANEOUS DATA FROM VALIDATION STUDIES

Introduction

This appendix contains the MCNP input decks and tabular listings of the

numerical data contained in Chapter 4. They are presented in the same order as the

figures in the text with one deck and table corresponding to each graph. The input deck

for each graph is shown at a particular incident electron energy corresponding to a single

point. The input decks for the remaining points are identical except for the value of the

source energy. The table lists the energy, reported value and calculated value for each

point on the corresponding graph.

The reported values come from the two reports discussed in Chapter 4. Swanson

reported his neutron yields per kilowatt second in tabular form. These numbers have

been converted to neutrons per electron. The reported values are listed as (value ±

estimated error) with a 20 percent estimated error as given by Swanson. The Barber and

George results were reported as neutrons per electron but only graphically. Their figures

were digitized and the best estimate of energy-yield pairs is presented in the table.

Reported values are listed as above except the estimated error is 15 percent as given by

Barber and George. The calculations were performed using the prototype code version

MCNP4BPN as described in the text. The calculated values are listed as (value ± one

sigma absolute error). Note that the calculated uncertainty is a measure of the precision

459

of the Monte Carlo simulation. It does not include an estimate of the uncertainty in the

data or the model.

The last three input decks and tables contain the information used to study the

effects of variations in actual versus reported parameters for the Barber and George

study. The baseline case is the Ta-I target at the 28.3 MeV incident beam energy.

Incident beam energy, target thickness and beam radius were all varied over the range

±10 percent. For variations in beam radius and target thickness, change the appropriate

parameter to create the variations of the input deck.

460

“Semi-infinite” Aluminum Target (Al-XX)

Neutron emissions per electron incident on an Al target.
1 1 -2.699 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 177.9
11 py -177.9
12 py 177.9
21 pz -177.9
22 pz 177.9

mode e p n
m1 13027 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=20 $ <-- Incident erg.
c
c
fcl:p 1 0
phys:p 3j -1
phys:n j 150
cut:p j 8.2721
cut:e j 8.2721
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 200
print

Table D-1. Reported and calculated yields for a “semi-infinite” aluminum target.

Energy
(MeV)

Reported Yield
(n / kW / s)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calc. Yield /
Rept. Yield

15a 4.59⋅107 (1.10±0.22)⋅10-7 (5.3509±0.0701)⋅10-7 4.85
20 8.52⋅109 (2.73±0.55)⋅10-5 (3.7381±0.0478)⋅10-5 1.37
25 5.07⋅1010 (2.03±0.41)⋅10-4 (2.1565±0.0151)⋅10-4 1.06
34 1.61⋅1011 (8.77±1.75)⋅10-4 (8.9338±0.0313)⋅10-4 1.02
50 3.13⋅1011 (2.51±0.50)⋅10-3 (2.5247±0.0048)⋅10-3 1.01
100 5.14⋅1011 (8.24±1.65)⋅10-3 (8.2647±0.0083)⋅10-3 1.00
a In order to achieve acceptable statistics, it was necessary to run the 15 MeV case for
40,000,000 particles.

461

“Semi-infinite” Iron Target (Fe-XX)

Neutron emissions per electron incident on an Fe target.
1 1 -7.875 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 35.15
11 py -35.15
12 py 35.15
21 pz -35.15
22 pz 35.15

mode e p n
m1 26056 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=15 $ <-- Incident erg.
c
c
fcl:p 1 0
phys:p 3j -1
phys:n j 150
cut:p j 7.6142
cut:e j 7.6142
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 200
print

Table D-2. Reported and calculated yields for a “semi-infinite” iron target.

Energy
(MeV)

Reported Yield
(n / kW / s)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calc. Yield /
Rept. Yield

15 1.13⋅1010 (2.72±0.54)⋅10-5 (4.1825±0.0339)⋅10-5 1.54
20 9.65⋅1010 (3.09±0.62)⋅10-4 (4.3125±0.0160)⋅10-4 1.39
25 2.42⋅1011 (9.69±1.94)⋅10-4 (1.2558±0.0030)⋅10-3 1.30
34 4.31⋅1011 (2.35±0.47)⋅10-3 (3.1284±0.0044)⋅10-3 1.33
50 6.02⋅1011 (4.82±0.96)⋅10-3 (6.4964±0.0058)⋅10-3 1.35
100 7.62⋅1011 (1.22±0.24)⋅10-2 (1.6392±0.0010)⋅10-2 1.34

462

“Semi-infinite” Copper Target (Cu-XX)

Neutron emissions per electron incident on a Cu target.
1 1 -8.96 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 28.7
11 py -28.7
12 py 28.7
21 pz -28.7
22 pz 28.7

mode e p n
m1 29063 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=15 $ <-- Incident erg.
c
c
fcl:p 1 0
phys:p 3j -1
phys:n j 150
cut:p j 5.7775
cut:e j 5.7775
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 200
print

Table D-3. Reported and calculated yields for a “semi-infinite” copper target.

Energy
(MeV)

Reported Yield
(n / kW / s)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calc. Yield /
Rept. Yield

15 2.00⋅1010 (4.81±0.96)⋅10-5 (4.5743±0.0389)⋅10-5 0.95
20 1.56⋅1011 (5.00±1.00)⋅10-4 (4.7199±0.0179)⋅10-4 0.94
25 3.54⋅1011 (1.42±0.28)⋅10-3 (1.3070±0.0031)⋅10-3 0.92
34 6.35⋅1011 (3.46±0.69)⋅10-3 (3.1881±0.0045)⋅10-3 0.92
50 8.76⋅1011 (7.02±1.40)⋅10-3 (6.4424±0.0064)⋅10-3 0.92
100 1.09⋅1012 (1.75±0.35)⋅10-2 (1.5892±0.0010)⋅10-2 0.91

463

“Semi-infinite” Tantalum Target (Ta-XX)

Neutron emissions per electron incident on a Ta target.
1 1 -16.6 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 8.217
11 py -8.217
12 py 8.217
21 pz -8.217
22 pz 8.217

mode e p n
m1 73181 1 elib=01e plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=10 $ <-- Incident erg.
c
c
fcl:p 1 0
phys:p 3j -1
phys:n j 150
cut:p j 7.5
cut:e j 7.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 200
print

Table D-4. Reported and calculated yields for a “semi-infinite” tantalum target.

Energy
(MeV)

Reported Yield
(n / kW / s)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calc. Yield /
Rept. Yield

10 1.06⋅1010 (1.70±0.34)⋅10-5 (1.8431±0.0162)⋅10-5 1.09
15 3.07⋅1011 (7.38±1.48)⋅10-4 (6.5321±0.0202)⋅10-4 0.89
20 8.80⋅1011 (2.82±0.56)⋅10-3 (2.6127±0.0047)⋅10-3 0.93
25 1.32⋅1012 (5.29±1.06)⋅10-3 (4.9969±0.0060)⋅10-3 0.95
34 1.68⋅1012 (9.15±1.83)⋅10-3 (9.1243±0.0073)⋅10-3 1.00
50 1.90⋅1012 (1.52±0.30)⋅10-2 (1.5752±0.0009)⋅10-2 1.03
100 2.04⋅1012 (3.27±0.65)⋅10-2 (3.4548±0.0014)⋅10-2 1.06

464

“Semi-infinite” Tungsten Target (W-XX)

Neutron emissions per electron incident on a W target.
1 1 -19.3 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 7.005
11 py -7.005
12 py 7.005
21 pz -7.005
22 pz 7.005

mode e p n
m1 74184 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=10 $ <-- Incident erg.
c
c
fcl:p 1 0
phys:p 3j -1
phys:n j 150
cut:p j 7.5
cut:e j 7.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 200
print

Table D-5. Reported and calculated yields for a “semi-infinite” tungsten target.

Energy
(MeV)

Reported Yield
(n / kW / s)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calc. Yield /
Rept. Yield

10 3.12⋅1010 (5.00±1.00)⋅10-5 (1.9389±0.0147)⋅10-5 0.39
15 3.61⋅1011 (8.68±1.74)⋅10-4 (6.5626±0.0203)⋅10-4 0.76
20 1.00⋅1012 (3.20±0.64)⋅10-3 (2.7477±0.0049)⋅10-3 0.86
25 1.50⋅1012 (6.01±1.20)⋅10-3 (5.2763±0.0063)⋅10-3 0.88
34 1.92⋅1012 (1.05±0.21)⋅10-2 (9.5910±0.0077)⋅10-3 0.92
50 2.17⋅1012 (1.74±0.35)⋅10-2 (1.6518±0.0010)⋅10-2 0.95
100 2.33⋅1012 (3.73±0.75)⋅10-2 (3.6195±0.0014)⋅10-2 0.97

465

“Semi-infinite” Lead Target (Pb-XX)

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 11.22
11 py -11.22
12 py 11.22
21 pz -11.22
22 pz 11.22

mode e p n
m1 82206 24.1 82207 22.1 82208 52.4
 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=10 $ <-- Incident erg.
c
c
fcl:p 1 0
phys:p 3j -1
phys:n j 150
cut:p j 6.5
cut:e j 6.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 200
print

Table D-6. Reported and calculated yields for a “semi-infinite” lead target.

Energy
(MeV)

Reported Yield
(n / kW / s)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calc. Yield /
Rept. Yield

10 2.01⋅1010 (3.22±0.64)⋅10-5 (2.8299±0.0175)⋅10-5 0.88
15 4.09⋅1011 (9.83±1.97)⋅10-4 (7.4992±0.0217)⋅10-4 0.76
20 1.02⋅1012 (3.27±0.65)⋅10-3 (2.7242±0.0044)⋅10-3 0.83
25 1.43⋅1012 (5.73±1.15)⋅10-3 (4.8769±0.0054)⋅10-3 0.85
34 1.77⋅1012 (9.64±1.93)⋅10-3 (8.5571±0.0068)⋅10-3 0.89
50 1.97⋅1012 (1.58±0.32)⋅10-2 (1.4505±0.0009)⋅10-2 0.92
100 2.10⋅1012 (3.36±0.67)⋅10-2 (3.1491±0.0013)⋅10-2 0.94

466

One Radiation-Length Thick Aluminum Target (Al-I)

Neutron emissions per electron incident on a Al target.
1 1 -2.699 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 8.96
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 13027 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=22.2 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 8.2721
cut:e j 8.2721
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-7. Reported and calculated yields for an approximately one radiation-length
thick aluminum target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

22.2 (4.60±0.69)⋅10-5 (3.80366±0.03537)⋅10-5 0.83
28.3 (2.10±0.32)⋅10-4 (1.64582±0.00823)⋅10-4 0.78
34.3 (4.30±0.65)⋅10-4 (3.40027±0.01122)⋅10-4 0.79

467

One Radiation-Length Thick Copper Target (Cu-I)

Neutron emissions per electron incident on a Cu target.
1 1 -8.96 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 1.48
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 29063 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=16.1 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 5.7775
cut:e j 5.7775
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-8. Reported and calculated yields for an approximately one radiation-length
thick copper target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

16.1 (3.00±0.45)⋅10-5 (3.20974±0.02118)⋅10-5 1.07
21.2 (2.60±0.39)⋅10-4 (2.18209±0.00698)⋅10-4 0.84
28.3 (8.20±1.23)⋅10-4 (6.26824±0.01128)⋅10-4 0.76
34.3 (1.29±0.19)⋅10-3 (9.63159±0.01348)⋅10-4 0.75
35.5 (1.39±0.21)⋅10-3 (1.01545±0.00132)⋅10-3 0.73

468

Two Radiation-Length Thick Copper Target (Cu-II)

Neutron emissions per electron incident on a Cu target.
1 1 -8.96 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 2.96
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 29063 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=16.1 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 5.7775
cut:e j 5.7775
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-9. Reported and calculated yields for an approximately two radiation-length
thick copper target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

16.1 (5.00±0.75)⋅10-5 (5.37943±0.03550)⋅10-5 1.08
21.2 (4.30±0.65)⋅10-4 (3.73710±0.01196)⋅10-4 0.87
28.3 (1.39±0.21)⋅10-3 (1.12271±0.00202)⋅10-3 0.81
34.3 (2.37±0.36)⋅10-3 (1.80496±0.00253)⋅10-3 0.76

469

Three Radiation-Length Thick Copper Target (Cu-III)

Neutron emissions per electron incident on a Cu target.
1 1 -8.96 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 4.45
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 29063 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=16.1 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 5.7775
cut:e j 5.7775
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-10. Reported and calculated yields for an approximately three radiation-length
thick copper target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

16.1 (7.00±1.05)⋅10-5 (6.76092±0.04462)⋅10-5 0.97
21.2 (5.30±0.80)⋅10-4 (4.71127±0.01508)⋅10-4 0.89
28.3 (1.80±0.27)⋅10-3 (1.43027±0.00257)⋅10-3 0.79
34.3 (2.93±0.44)⋅10-3 (2.32709±0.00326)⋅10-3 0.79

470

Four Radiation-Length Thick Copper Target (Cu-IV)

Neutron emissions per electron incident on a Cu target.
1 1 -8.96 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 5.93
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 29063 1 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=16.1 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 5.7775
cut:e j 5.7775
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-11. Reported and calculated yields for an approximately four radiation-length
thick copper target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

16.1 (1.00±0.15)⋅10-5 (7.62722±0.05034)⋅10-5 0.76
21.2 (6.00±0.90)⋅10-4 (5.31440±0.01701)⋅10-4 0.89
28.3 (2.13±0.32)⋅10-3 (1.61939±0.00291)⋅10-3 0.76
34.3 (3.35±0.50)⋅10-3 (2.64744±0.00371)⋅10-3 0.79

471

One Radiation-Length Thick Tantalum Target (Ta-I)

Neutron emissions per electron incident on a Ta target.
1 1 -16.6 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 0.374
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 73181 1 elib=01e plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=10.3 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 7.5
cut:e j 7.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-12. Reported and calculated yields for an approximately one radiation-length
thick tantalum target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

10.3 (8.00±1.20)⋅10-5 (6.88482±0.05095)⋅10-6 0.09
18.7 (5.20±0.78)⋅10-4 (5.20541±0.01041)⋅10-4 1.00
28.3 (1.38±0.21)⋅10-3 (1.39451±0.00153)⋅10-3 1.01
34.3 (1.81±0.27)⋅10-3 (1.70717±0.00171)⋅10-3 0.94

472

One Radiation-Length Thick Lead Target (Pb-I)

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 0.518
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 82206 24.1 82207 22.1 82208 52.4
 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 6.5
cut:e j 6.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-13. Reported and calculated yields for an approximately one radiation-length
thick lead target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

18.7 (7.30±1.10)⋅10-4 (5.62755±0.01126)⋅10-4 0.77
28.3 (1.69±0.25)⋅10-3 (1.33409±0.00160)⋅10-3 0.79
34.5 (2.12±0.32)⋅10-3 (1.60021±0.00160)⋅10-3 0.75

473

Two Radiation-Length Thick Lead Target (Pb-II)

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 1.01
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 82206 24.1 82207 22.1 82208 52.4
 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 6.5
cut:e j 6.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-14. Reported and calculated yields for an approximately two radiation-length
thick lead target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

18.7 (1.32±0.20)⋅10-3 (1.02040±0.00194)⋅10-3 0.77
28.3 (3.45±0.52)⋅10-3 (2.78846±0.00279)⋅10-3 0.81
34.5 (4.72±0.71)⋅10-3 (3.66458±0.00293)⋅10-3 0.78

474

Three Radiation-Length Thick Lead Target (Pb-III)

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 1.52
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 82206 24.1 82207 22.1 82208 52.4
 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 6.5
cut:e j 6.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-15. Reported and calculated yields for an approximately three radiation-length
thick lead target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

18.7 (1.77±0.27)⋅10-3 (1.34637±0.00256)⋅10-3 0.76
28.3 (4.69±0.70)⋅10-3 (3.81410±0.00381)⋅10-3 0.81
34.5 (6.46±0.97)⋅10-3 (5.14784±0.00412)⋅10-3 0.80

475

Four Radiation-Length Thick Lead Target (Pb-IV)

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 2.02
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 82206 24.1 82207 22.1 82208 52.4
 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 6.5
cut:e j 6.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-16. Reported and calculated yields for an approximately four radiation-length
thick lead target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

18.7 (2.10±0.32)⋅10-3 (1.56998±0.00283)⋅10-3 0.75
28.3 (5.37±0.81)⋅10-3 (4.51358±0.00451)⋅10-3 0.84
34.5 (7.77±1.17)⋅10-3 (6.16382±0.00493)⋅10-3 0.79

476

Six Radiation-Length Thick Lead Target (Pb-VI)

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 3.03
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 82206 24.1 82207 22.1 82208 52.4
 elib=01e plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 6.5
cut:e j 6.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 90
print

Table D-17. Reported and calculated yields for an approximately six radiation-length
thick lead target.

Energy
(MeV)

Reported Yield
(n / e)

Calculated Yield
(n / e)

Calculated Yield /
Reported Yield

18.7 (2.50±0.38)⋅10-3 (1.84432±0.00332)⋅10-3 0.74
28.3 (6.67±1.00)⋅10-3 (5.36690±0.00537)⋅10-3 0.80
34.5 (9.00±1.35)⋅10-3 (7.40813±0.00593)⋅10-3 0.82

477

Variation of Beam Energy

Neutron emissions per electron incident on a Ta target.
1 1 -16.6 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 0.374
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 73181 1 elib=01e plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=28.3 $ <-- Incident erg.
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 7.5
cut:e j 7.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 50
print

Table D-18. Effect of changes in beam energy over a ten percent variation.

Energy
(MeV)

Energy Percent
Variation

Calculated Yield
(n / e)

Calculate Yield /
Baseline Yield

31.13 -10% (1.55991±0.00203)⋅10-3 1.11861
30.281 -7% (1.51520±0.00182)⋅10-3 1.08655
29.715 -5% (1.48466±0.00178)⋅10-3 1.06465
29.149 -3% (1.44717±0.00174)⋅10-3 1.03776
28.866 -2% (1.43089±0.00172)⋅10-3 1.02609
28.583 -1% (1.41444±0.00170)⋅10-3 1.01429
28.3 Baseline (1.39451±0.00153)⋅10-3 ---------
28.017 +1% (1.37554±0.00151)⋅10-3 0.98640
27.734 +2% (1.36208±0.00150)⋅10-3 0.97674
27.451 +3% (1.34194±0.00148)⋅10-3 0.96230
26.885 +5% (1.29716±0.00143)⋅10-3 0.93019
26.319 +7% (1.25727±0.00138)⋅10-3 0.90159
25.47 +10% (1.19254±0.00131)⋅10-3 0.85517

478

Variation of Target Thickness

Neutron emissions per electron incident on a Ta target.
1 1 -16.6 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 0.374 $ <-- Target thickness
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 73181 1 elib=01e plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=28.3
si1 0.635
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 7.5
cut:e j 7.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 50
print

Table D-19. Effect of changes in target thickness over a ten percent variation.

Target Thickness
(cm)

Thickness Percent
Variation

Calculated Yield
(n / e)

Calculate Yield /
Baseline Yield

0.4114 -10% (1.57986±0.00190)⋅10-3 1.13291
0.40018 -7% (1.52489±0.00183)⋅10-3 1.09350
0.3927 -5% (1.48796±0.00179)⋅10-3 1.06701
0.38522 -3% (1.45059±0.00174)⋅10-3 1.04021
0.38148 -2% (1.43197±0.00172)⋅10-3 1.02686
0.37774 -1% (1.41321±0.00155)⋅10-3 1.01341
0.374 Baseline (1.39451±0.00153)⋅10-3 ---------
0.37026 +1% (1.37553±0.00151)⋅10-3 0.98639
0.36652 +2% (1.35660±0.00149)⋅10-3 0.97281
0.36278 +3% (1.33756±0.00147)⋅10-3 0.95916
0.3553 +5% (1.29953±0.00143)⋅10-3 0.93189
0.34782 +7% (1.26117±0.00139)⋅10-3 0.90438
0.3366 +10% (1.20330±0.00132)⋅10-3 0.86288

479

Variation of Beam Radius

Neutron emissions per electron incident on a Ta target.
1 1 -16.6 1 -2 11 -12 21 -22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0

1 px 0
2 px 0.374
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
m1 73181 1 elib=01e plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 rad=d1 vec=1 0 0 dir=1 par=3 erg=28.3
si1 0.635 $ <-- Beam radius
c
c
fcl:p 1 0
phys:p 3j -1
cut:n 2j 0 0
cut:p j 7.5
cut:e j 7.5
c
c
f1:n 1 2 11 12 21 22 (1 2 11 12 21 22)
tf1 7
c
c
nps 2500000
ctme 50
print

Table D-20. Effect of changes in beam radius over a ten percent variation.

Beam Radius
(cm)

Radius Percent
Variation

Calculated Yield
(n / e)

Calculate Yield /
Baseline Yield

0.6985 -10% (1.39450±0.00153)⋅10-3 0.99999
0.67945 -7% (1.39450±0.00153)⋅10-3 0.99999
0.66675 -5% (1.39450±0.00153)⋅10-3 0.99999
0.65405 -3% (1.39450±0.00153)⋅10-3 0.99999
0.6477 -2% (1.39450±0.00153)⋅10-3 0.99999
0.64135 -1% (1.39450±0.00153)⋅10-3 0.99999
0.635 Baseline (1.39451±0.00153)⋅10-3 ---------
0.62865 +1% (1.39451±0.00153)⋅10-3 1.00000
0.6223 +2% (1.39451±0.00153)⋅10-3 1.00000
0.61595 +3% (1.39451±0.00153)⋅10-3 1.00000
0.60325 +5% (1.39451±0.00153)⋅10-3 1.00000
0.59055 +7% (1.39450±0.00153)⋅10-3 0.99999
0.5715 +10% (1.39450±0.00153)⋅10-3 0.99999

480

APPENDIX E
MISCELLANEOUS DATA FROM APPLICATION STUDIES

Introduction

This chapter contains descriptions from the MCNP input decks used to perform

the applications studies. They are labeled according to their appropriate use. A full

listing of all input decks would duplicate many of these sub-sections therefore they are

listed individually.

Activation Calculations

Geometry With Block and Ingot

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 17 -0.001225 102 -121 209 -201
c
c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 17 -0.001225 312 -311 214 -211
 298 17 -0.001225 319 -313 215 -212
 299 17 -0.001225 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)
 221 15 -7.9 -312 212

481

 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 17 -0.001225 321 -111 233 -219
 392 17 -0.001225 111 -112 231 -219
 393 17 -0.001225 112 -113 232 -219
 394 17 -0.001225 113 -121 239 -219
c
c Air surrounding target and filters
 399 17 -0.001225 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 17 -0.001225 (480:-481 : -482: 483 : -484: 485)
 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 17 -0.001225 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 17 -0.001225 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 17 -0.001225 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
c Gold ingot at isocenter
 501 19 -19.32 -511 512 513 -514 515 -516
 502 20 -1.12 -521 511 523 -524 525 -526
 503 20 -1.12 -512 522 523 -524 525 -526
 598 17 -0.001225 (-513: 514 : -515: 516)
 (-511 512 523 -524 525 -526)
 599 17 -0.001225 (521:-522 : -523: 524 : -525: 526)
 (-401 599 410 -412 420 -422)
c
c ------
c Room
c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c
c Concrete walls
c

482

 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603
 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603
 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604
 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room
c
 644 17 -0.001225 630 -632 -656 662 -601 603
 645 17 -0.001225 630 -631 -654 656 -601 603
 646 17 -0.001225 628 -631 -651 654 -601 603
c
c Ingot in maze
c
 670 19 -19.32 670 -671 672 -673 674 -675
 647 17 -0.001225 (-670: 671: -672: 673: -674: 675)
 (628 -629 -654 659 -601 603)
c
 648 17 -0.001225 626 -629 -659 661 -601 603
 649 17 -0.001225 626 -627 -655 659 -601 603
 650 17 -0.001225 625 -626 -652 661 -601 603
 651 17 -0.001225 624 -625 -653 660 -602 603
 652 17 -0.001225 623 -624 -653 657 -602 603
 653 17 -0.001225 623 -624 -658 660 -602 603
 654 17 -0.001225 622 -623 -653 660 -602 603
 655 17 -0.001225 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 17 -0.001225 623 -624 -657 658 -602 201
 657 17 -0.001225 623 -624 -657 658 -599 605
 658 17 -0.001225 422 -624 -657 658 -201 599
 659 17 -0.001225 420 -422 -657 412 -201 599
 660 17 -0.001225 420 -422 -410 658 -201 599
 661 17 -0.001225 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600
99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632

483

99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

c
c **********************
c Surface Descriptions
c **********************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5
c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66
c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 10x10 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 461 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01
 464 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.0000000E-03
 465 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.5001000E+01
c

484

 470 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 471 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.0000000E-03
 475 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.5001000E+01
c
 480 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -2.7100000E+01
 481 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.0000000E-03
 483 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.5001000E+01
 484 px -1.1000000E+01
 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -2.7100000E+01
 491 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.0000000E-03
 493 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 511 pz -99.91819559
 512 pz -100.08180441
 513 px -1.2
 514 px 1.2
 515 py -2.05
 516 py 2.05
c
 521 pz -92.0
 522 pz -108.0
 523 px -15.0
 524 px 15.0
 525 py -15.0
 526 py 15.0
c
 599 pz -130.0
c
c ------
c Room
c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48
 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88

485

 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73
 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41
 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75
 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73
 664 py -125.73
c
 670 px 564
 671 px 564.163608812
 672 py 30.95
 673 py 35.05
 674 pz -106.7
 675 pz -104.3
c
c **************************
c END Surface Descriptions
c **************************
c

Geometry Without Block But With Ingot

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 17 -0.001225 102 -121 209 -201
c
c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 17 -0.001225 312 -311 214 -211

486

 298 17 -0.001225 319 -313 215 -212
 299 17 -0.001225 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)
 221 15 -7.9 -312 212
 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 17 -0.001225 321 -111 233 -219
 392 17 -0.001225 111 -112 231 -219
 393 17 -0.001225 112 -113 232 -219
 394 17 -0.001225 113 -121 239 -219
c
c Air surrounding target and filters
 399 17 -0.001225 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 17 -0.001225 (480:-481 : -482: 483 : -484: 485)
 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 17 -0.001225 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 17 -0.001225 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 17 -0.001225 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
c Gold ingot at isocenter
 501 19 -19.32 -511 512 513 -514 515 -516
 599 17 -0.001225 (511:-512 : -513: 514 : -515: 516)
 (-401 599 410 -412 420 -422)
c
c ------
c Room
c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c

487

c Concrete walls
c
 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603
 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603
 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604
 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room
c
 644 17 -0.001225 630 -632 -656 662 -601 603
 645 17 -0.001225 630 -631 -654 656 -601 603
 646 17 -0.001225 628 -631 -651 654 -601 603
c
c Ingot in maze
c
 670 19 -19.32 670 -671 672 -673 674 -675
 647 17 -0.001225 (-670: 671: -672: 673: -674: 675)
 (628 -629 -654 659 -601 603)
c
 648 17 -0.001225 626 -629 -659 661 -601 603
 649 17 -0.001225 626 -627 -655 659 -601 603
 650 17 -0.001225 625 -626 -652 661 -601 603
 651 17 -0.001225 624 -625 -653 660 -602 603
 652 17 -0.001225 623 -624 -653 657 -602 603
 653 17 -0.001225 623 -624 -658 660 -602 603
 654 17 -0.001225 622 -623 -653 660 -602 603
 655 17 -0.001225 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 17 -0.001225 623 -624 -657 658 -602 201
 657 17 -0.001225 623 -624 -657 658 -599 605
 658 17 -0.001225 422 -624 -657 658 -201 599
 659 17 -0.001225 420 -422 -657 412 -201 599
 660 17 -0.001225 420 -422 -410 658 -201 599
 661 17 -0.001225 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600
99995 0 -606

488

99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

c
c **********************
c Surface Descriptions
c **********************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5
c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66
c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 10x10 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 461 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01
 464 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.0000000E-03

489

 465 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.5001000E+01
c
 470 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 471 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.0000000E-03
 475 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.5001000E+01
c
 480 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -2.7100000E+01
 481 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.0000000E-03
 483 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.5001000E+01
 484 px -1.1000000E+01
 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -2.7100000E+01
 491 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.0000000E-03
 493 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 511 pz -99.91819559
 512 pz -100.08180441
 513 px -1.2
 514 px 1.2
 515 py -2.05
 516 py 2.05
c
 599 pz -130.0
c
c ------
c Room
c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48
 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88
 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73

490

 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41
 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75
 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73
 664 py -125.73
c
 670 px 564
 671 px 564.163608812
 672 py 30.95
 673 py 35.05
 674 pz -106.7
 675 pz -104.3
c
c **************************
c END Surface Descriptions
c **************************
c

Geometry With Block But Without Ingot

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 17 -0.001225 102 -121 209 -201
c
c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 17 -0.001225 312 -311 214 -211
 298 17 -0.001225 319 -313 215 -212
 299 17 -0.001225 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)

491

 221 15 -7.9 -312 212
 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 17 -0.001225 321 -111 233 -219
 392 17 -0.001225 111 -112 231 -219
 393 17 -0.001225 112 -113 232 -219
 394 17 -0.001225 113 -121 239 -219
c
c Air surrounding target and filters
 399 17 -0.001225 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 17 -0.001225 (480:-481 : -482: 483 : -484: 485)
 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 17 -0.001225 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 17 -0.001225 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 17 -0.001225 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
c A-150 plastic block at isocenter
 501 20 -1.12 -521 522 523 -524 525 -526
 599 17 -0.001225 (521:-522 : -523: 524 : -525: 526)
 (-401 599 410 -412 420 -422)
c
c ------
c Room
c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c
c Concrete walls
c
 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603

492

 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603
 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604
 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room
c
 644 17 -0.001225 630 -632 -656 662 -601 603
 645 17 -0.001225 630 -631 -654 656 -601 603
 646 17 -0.001225 628 -631 -651 654 -601 603
 647 17 -0.001225 628 -629 -654 659 -601 603
c
 648 17 -0.001225 626 -629 -659 661 -601 603
 649 17 -0.001225 626 -627 -655 659 -601 603
 650 17 -0.001225 625 -626 -652 661 -601 603
 651 17 -0.001225 624 -625 -653 660 -602 603
 652 17 -0.001225 623 -624 -653 657 -602 603
 653 17 -0.001225 623 -624 -658 660 -602 603
 654 17 -0.001225 622 -623 -653 660 -602 603
 655 17 -0.001225 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 17 -0.001225 623 -624 -657 658 -602 201
 657 17 -0.001225 623 -624 -657 658 -599 605
 658 17 -0.001225 422 -624 -657 658 -201 599
 659 17 -0.001225 420 -422 -657 412 -201 599
 660 17 -0.001225 420 -422 -410 658 -201 599
 661 17 -0.001225 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600
99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

493

c
c **********************
c Surface Descriptions
c **********************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5
c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66
c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 10x10 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 461 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01
 464 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.0000000E-03
 465 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.5001000E+01
c
 470 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 471 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.0000000E-03
 475 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.5001000E+01
c
 480 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -2.7100000E+01

494

 481 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.0000000E-03
 483 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.5001000E+01
 484 px -1.1000000E+01
 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -2.7100000E+01
 491 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.0000000E-03
 493 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 521 pz -92.0
 522 pz -108.0
 523 px -15.0
 524 px 15.0
 525 py -15.0
 526 py 15.0
c
 599 pz -130.0
c
c ------
c Room
c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48
 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88
 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73
 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41
 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75

495

 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73
 664 py -125.73
c
c **************************
c END Surface Descriptions
c **************************
c

Geometry Without Block or Ingot

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 17 -0.001225 102 -121 209 -201
c
c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 17 -0.001225 312 -311 214 -211
 298 17 -0.001225 319 -313 215 -212
 299 17 -0.001225 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)
 221 15 -7.9 -312 212
 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 17 -0.001225 321 -111 233 -219
 392 17 -0.001225 111 -112 231 -219
 393 17 -0.001225 112 -113 232 -219
 394 17 -0.001225 113 -121 239 -219
c

496

c Air surrounding target and filters
 399 17 -0.001225 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 17 -0.001225 (480:-481 : -482: 483 : -484: 485)
 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 17 -0.001225 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 17 -0.001225 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 17 -0.001225 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 17 -0.001225 -401 599 410 -412 420 -422
c
c ------
c Room
c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c
c Concrete walls
c
 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603
 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603
 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604

497

 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room
c
 644 17 -0.001225 630 -632 -656 662 -601 603
 645 17 -0.001225 630 -631 -654 656 -601 603
 646 17 -0.001225 628 -631 -651 654 -601 603
 647 17 -0.001225 628 -629 -654 659 -601 603
 648 17 -0.001225 626 -629 -659 661 -601 603
 649 17 -0.001225 626 -627 -655 659 -601 603
 650 17 -0.001225 625 -626 -652 661 -601 603
 651 17 -0.001225 624 -625 -653 660 -602 603
 652 17 -0.001225 623 -624 -653 657 -602 603
 653 17 -0.001225 623 -624 -658 660 -602 603
 654 17 -0.001225 622 -623 -653 660 -602 603
 655 17 -0.001225 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 17 -0.001225 623 -624 -657 658 -602 201
 657 17 -0.001225 623 -624 -657 658 -599 605
 658 17 -0.001225 422 -624 -657 658 -201 599
 659 17 -0.001225 420 -422 -657 412 -201 599
 660 17 -0.001225 420 -422 -410 658 -201 599
 661 17 -0.001225 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600
99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

c
c **********************
c Surface Descriptions
c **********************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5

498

c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66
c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 10x10 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 461 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01
 464 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.0000000E-03
 465 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.5001000E+01
c
 470 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 471 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.0000000E-03
 475 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.5001000E+01
c
 480 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -2.7100000E+01
 481 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.0000000E-03
 483 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.5001000E+01
 484 px -1.1000000E+01
 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -2.7100000E+01
 491 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.0000000E-03
 493 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 pz -130.0
c
c ------
c Room

499

c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48
 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88
 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73
 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41
 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75
 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73
 664 py -125.73
c
c **************************
c END Surface Descriptions
c **************************
c

Electron-Photoatomic Description of the Materials

m11 plib=02p elib=03e
 74000 -0.90 75000 -0.10
m12 plib=02p elib=03e
 29000 1
m13 plib=02p elib=03e
 74000 -0.95 28000 -0.035 29000 -0.015
m14 plib=02p elib=03e

500

 13027 1
m15 plib=02p elib=03e
 26000 -0.70 24000 -0.18 28000 -0.09
 25000 -0.02 14000 -0.01
m16 plib=02p elib=03e
 82000 1
m17 plib=02p elib=03e
 7000 0.784403 8000 0.210747 18000 0.004691
 6000 0.000159
m18 plib=02p elib=03e
 1000 -0.0055 8000 -0.4984 14000 -0.3157
 20000 -0.0826 11000 -0.017 12000 -0.0026
 13000 -0.0455 16000 -0.0013 19000 -0.0191
 26000 -0.0123
m19 plib=02p elib=03e
 79000 1
m20 plib=02p elib=03e
 6000 -0.768 1000 -0.102 8000 -0.059
 7000 -0.036 20000 -0.018 9000 -0.017

Electron-Photon-Neutron Description of the Materials

m11 nlib=60c plib=02p elib=01e pnlib=03u
 74182 0.237294
 74183 0.129157
 74184 0.276674
 74186 0.258020
 75185 0.036972
 75187 0.061883
mpn11 74184 5r
m12 nlib=60c plib=02p elib=01e pnlib=03u
 29063 0.6917
 29065 0.3083
mpn12 29063 1r
m13 nlib=60c plib=02p elib=01e pnlib=03u
 74182 0.226794
 74183 0.123441
 74184 0.264431
 74186 0.246603
 28058 0.067660
 28060 0.026063
 28061 0.001133
 28062 0.003612
 28064 0.000920
 29063 0.027213
 29065 0.012129
mpn13 74184 3r 29063 6r
m14 nlib=60c plib=02p elib=01e pnlib=03u
 13027 1
m15 nlib=60c plib=02p elib=01e pnlib=03u
 26054 0.039836
 26056 0.629963
 26057 0.015110
 26058 0.001923
 24050 0.008242
 24052 0.158937
 24053 0.018022
 24054 0.004486
 28058 0.057199
 28060 0.022033
 28061 0.000958
 28062 0.003053
 28064 0.000778
 25055 0.019948
 14000 0.019510
mpn15 26056 7r 29063 4r 26056 13027
m16 nlib=60c plib=02p elib=01e pnlib=03u
 82206 0.245667
 82207 0.225666
 82208 0.528667

501

m17 nlib=60c plib=02p elib=01e pnlib=03u
 7014 0.781532
 8016 0.210747
 18000.35c 0.004691
 7015 0.002871
 6000 0.000159
mpn17 0 4r
m18 nlib=60c plib=02p elib=01e pnlib=03u
 1001 0.103128
 8016 0.585223
 14000 0.211247
 20000 0.038705
 11023 0.013912
 12000 0.001974
 13027 0.031709
 16000 0.000748
 19000 0.009203
 26054 0.000245
 26056 0.003812
 26057 0.000095
mpn18 0 0 13027 20040 0 0 13027 0 0 26056 2r
m19 nlib=60c plib=02p elib=01e pnlib=03u
 79197 1
mpn19 0
m20 nlib=60c plib=02p elib=01e pnlib=03u
 1001 0.585827
 6000 0.370166
 8016 0.021348
 7014 0.014879
 20000 0.002600
 9019 0.005180
mpn20 0 3r 20040 0

Electron-Photoatomic Options For Tally Detectors

mode e p
phys:p 3j
cut:e j 5.7 0 0
cut:p j 5.7 0 0
print -85 -120
prdmp 3j 3

Electron-Photoatomic Options For Volume Detectors

mode e p
phys:p 2j 1
cut:e j 5.7 0 0
cut:p j 5.7 0 0
print -85 -120
prdmp 3j 3

Electron-Photon-Neutron Options For Tally Detectors

mode e p n
phys:p 2j 1 -1
cut:e j 5.7 0 0
cut:p j 5.7 0 0
cut:n j j 0 0
print -85 -120
prdmp 3j 3

Electron-Photon-Neutron Options For Volume Detectors

mode e p n
phys:p 3j -1
cut:e j 5.7 0 0

502

cut:p j 5.7 0 0
cut:n j j 0 0
print -85 -120
prdmp 3j 3

Weight-Windows for Electron-Photon Simulation With Block and Ingot

wwp:e,p 4 3 10 0 0
wwe:e,p 1e20
wwn1:e,p 0.25 80r -1 5r

Weight-Windows for Electron-Photon Simulation With Block But Without Ingot

wwp:e,p 4 3 10 0 0
wwe:e,p 1e20
wwn1:e,p 0.25 76r -1 5r

Weight-Windows for Electron-Photon Simulation Without Block But With Ingot

wwp:e,p 4 3 10 0 0
wwe:e,p 1e20
wwn1:e,p 0.25 77r -1 5r

Weight-Windows for Electron-Photon Simulation Without Block or Ingot

wwp:e,p 4 3 10 0 0
wwe:e,p 1e20
wwn1:e,p 0.25 75r -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation With Block and Ingot

wwp:e,p,n 4 3 10 0 0
wwe:e,p,n 1e20
wwn1:e,p 0.25 80r -1 5r
wwn1:n 0.002 80r -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation With Block But Without
Ingot

wwp:e,p,n 4 3 10 0 0
wwe:e,p,n 1e20
wwn1:e,p 0.25 76r -1 5r
wwn1:n 0.002 76r -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation Without Block But With
Ingot

wwp:e,p,n 4 3 10 0 0
wwe:e,p,n 1e20
wwn1:e,p 0.25 77r -1 5r
wwn1:n 0.002 77r -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation Without Block or Ingot

wwp:e,p,n 4 3 10 0 0
wwe:e,p,n 1e20
wwn1:e,p 0.25 75r -1 5r
wwn1:n 0.002 75r -1 5r

503

Incident Electron Source – 19 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 19 MeV)
si2 sp2
 l d
 17.9 0.0054
 18.0 0.0141
 18.1 0.0335
 18.2 0.0725
 18.3 0.1433
 18.4 0.2589
 18.5 0.4268
 18.6 0.6426
 18.7 0.8833
 18.8 1.1087
 18.9 1.2707
 19.0 1.3298
 19.1 1.2707
 19.2 1.1087
 19.3 0.8833
 19.4 0.6426
 19.5 0.4268
 19.6 0.2589
 19.7 0.1433
 19.8 0.0725
 19.9 0.0335
 20.0 0.0141
 20.1 0.0054

Incident Electron Source – 20 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 20 MeV)
si2 sp2
 l d
 18.9 0.0054
 19.0 0.0141
 19.1 0.0335
 19.2 0.0725
 19.3 0.1433
 19.4 0.2589
 19.5 0.4268
 19.6 0.6426
 19.7 0.8833
 19.8 1.1087
 19.9 1.2707
 20.0 1.3298
 20.1 1.2707
 20.2 1.1087
 20.3 0.8833
 20.4 0.6426
 20.5 0.4268

504

 20.6 0.2589
 20.7 0.1433
 20.8 0.0725
 20.9 0.0335
 21.0 0.0141
 21.1 0.0054

Incident Electron Source – 21 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 21 MeV)
si2 sp2
 l d
 19.9 0.0054
 20.0 0.0141
 20.1 0.0335
 20.2 0.0725
 20.3 0.1433
 20.4 0.2589
 20.5 0.4268
 20.6 0.6426
 20.7 0.8833
 20.8 1.1087
 20.9 1.2707
 21.0 1.3298
 21.1 1.2707
 21.2 1.1087
 21.3 0.8833
 21.4 0.6426
 21.5 0.4268
 21.6 0.2589
 21.7 0.1433
 21.8 0.0725
 21.9 0.0335
 22.0 0.0141
 22.1 0.0054

Incident Electron Source – 22 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 22 MeV)
si2 sp2
 l d
 20.9 0.0054
 21.0 0.0141
 21.1 0.0335
 21.2 0.0725
 21.3 0.1433
 21.4 0.2589
 21.5 0.4268
 21.6 0.6426
 21.7 0.8833
 21.8 1.1087

505

 21.9 1.2707
 22.0 1.3298
 22.1 1.2707
 22.2 1.1087
 22.3 0.8833
 22.4 0.6426
 22.5 0.4268
 22.6 0.2589
 22.7 0.1433
 22.8 0.0725
 22.9 0.0335
 23.0 0.0141
 23.1 0.0054

Incident Electron Source – 23 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 23 MeV)
si2 sp2
 l d
 21.9 0.0054
 22.0 0.0141
 22.1 0.0335
 22.2 0.0725
 22.3 0.1433
 22.4 0.2589
 22.5 0.4268
 22.6 0.6426
 22.7 0.8833
 22.8 1.1087
 22.9 1.2707
 23.0 1.3298
 23.1 1.2707
 23.2 1.1087
 23.3 0.8833
 23.4 0.6426
 23.5 0.4268
 23.6 0.2589
 23.7 0.1433
 23.8 0.0725
 23.9 0.0335
 24.0 0.0141
 24.1 0.0054

Incident Electron Source – 24 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 24 MeV)
si2 sp2
 l d
 22.9 0.0054
 23.0 0.0141
 23.1 0.0335

506

 23.2 0.0725
 23.3 0.1433
 23.4 0.2589
 23.5 0.4268
 23.6 0.6426
 23.7 0.8833
 23.8 1.1087
 23.9 1.2707
 24.0 1.3298
 24.1 1.2707
 24.2 1.1087
 24.3 0.8833
 24.4 0.6426
 24.5 0.4268
 24.6 0.2589
 24.7 0.1433
 24.8 0.0725
 24.9 0.0335
 25.0 0.0141
 25.1 0.0054

Incident Electron Source – 25 MeV Mean Energy

sdef par 3 $ electrons
 pos 0 0 0 $ starting at the origin
 sur 201 rad=d1 $ distributed uniformly on the surface within a spot
 vec 0 0 -1 dir=1 $ perpendicularly incident
 erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
si1 0.05
c
c Gaussian in energy (About 25 MeV)
si2 sp2
 l d
 23.9 0.0054
 24.0 0.0141
 24.1 0.0335
 24.2 0.0725
 24.3 0.1433
 24.4 0.2589
 24.5 0.4268
 24.6 0.6426
 24.7 0.8833
 24.8 1.1087
 24.9 1.2707
 25.0 1.3298
 25.1 1.2707
 25.2 1.1087
 25.3 0.8833
 25.4 0.6426
 25.5 0.4268
 25.6 0.2589
 25.7 0.1433
 25.8 0.0725
 25.9 0.0335
 26.0 0.0141
 26.1 0.0054

196Au Production in Ingot 1

dxt:p 0 0 -100 2.5 r 0.1 0.0001
f204:p 501
e204 7.5 10 12.5 15 17.5 20 22.5 25 30
f214:p 501
fc214 Au-196 production in gold ingot at isocenter.
fm214 0.0595806783
de214 lin
 8.071 8.08 8.35 8.62 8.89

507

 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df214 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0

196Au Production in Ingot 2

dxt:p 0 0 -100 30 r 0.1 0.0001
f204:p 501
e204 7.5 10 12.5 15 17.5 20 22.5 25 30
f224:p 501
fc224 Au-196 production in gold ingot at isocenter with A-150 moderator block.
fm224 0.0595806783
de224 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df224 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0

196Au Production in Ingot 3

dxt:p 564.081804406 33 -105.5 2.5 r 1e-08 1e-11
f204:p 501
e204 7.5 10 12.5 15 17.5 20 22.5 25 30
f234:p 670
fc234 Au-196 production in gold ingot in maze.
fm234 0.0595806783
de234 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df234 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941

508

 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0

198Au Production in Ingot 1

dxt:n 0 0 -100 2.5 r 1e-5 1e-8
f104:n 501
e104 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
f114:n 501
fc114 Au-198 production in gold ingot at isocenter.
fm114 0.0595806783 19 102
f124:n 501
fc124 Au-196 production in gold ingot at isocenter.
fm124 0.0595806783 19 16

198Au Production in Ingot 2

dxt:n 0 0 -100 30 r 1e-4 1e-7
f134:n 501
e134 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
f144:n 501
fc144 Au-198 production in gold ingot at isocenter with A-150 moderator block.
fm144 0.0595806783 19 102
f154:n 501
fc154 Au-196 production in gold ingot at isocenter with A-150 moderator block.
fm154 0.0595806783 19 16

198Au Production in Ingot 3

dxt:n 564.081804406 33 -105.5 2.5 r 1e-7 1e-10
f164:n 670
e164 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
f174:n 670
fc174 Au-198 production in gold ingot in maze.
fm174 0.0595806783 19 102
f184:n 670
fc184 Au-196 production in gold ingot in maze.
fm184 0.0595806783 19 16

196Au Production by Point Detectors

f205:p 0 0 -100 0
e205 7.5 10 12.5 15 17.5 20 22.5 25 30
f215:p 0 0 -100 0
fc215 Au-196 production (pt. est.) at isocenter
fm215 0.0595806783
de215 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df215 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064

509

 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0
f225:p 0 -3 -100 0
fc225 Au-196 production (pt. est.) at radius 3 cm (cross-plane)
fm225 0.0595806783
de225 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df225 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0
f235:p 0 -6 -100 0
fc235 Au-196 production (pt. est.) at radius 6 cm (cross-plane)
fm235 0.0595806783
de235 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df235 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0
f245:p 0 -9 -100 0
fc245 Au-196 production (pt. est.) at radius 9 cm (cross-plane)
fm245 0.0595806783
de245 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df245 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317

510

 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0
f255:p 0 -11.5 -100 0
fc255 Au-196 production (pt. est.) at radius 11.5 cm (cross-plane)
fm255 0.0595806783
de255 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df255 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0
f265:p 0 -14.5 -100 0
fc265 Au-196 production (pt. est.) at radius 14.5 cm (cross-plane)
fm265 0.0595806783
de265 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df265 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483
 0.0436 0.0399 0.037 0.035 0.0
f275:p 564.081804406 33 -105.5 0
fc275 Au-196 production (pt. est.) in maze
fm275 0.0595806783
de275 lin
 8.071 8.08 8.35 8.62 8.89
 9.16 9.44 9.71 9.98 10.25
 10.52 10.8 11.07 11.34 11.61
 11.88 12.16 12.43 12.7 12.97
 13.24 13.52 13.79 14.06 14.33
 14.6 14.88 15.42 15.69 15.96
 16.24 16.51 16.78 17.05 17.32
 17.6 17.87 18.14 18.41 18.68
 18.96 19.23 19.5 19.77 26.1
df275 lin
 0.0 0.0053 0.0223 0.0294 0.0399
 0.0496 0.0537 0.0736 0.0944 0.0941
 0.1117 0.1487 0.1741 0.2045 0.2636
 0.3126 0.3556 0.4135 0.4644 0.5064
 0.5249 0.5292 0.5268 0.5094 0.4961
 0.457 0.4207 0.3252 0.2762 0.2317
 0.1991 0.1662 0.1171 0.1031 0.0906
 0.0795 0.0697 0.0613 0.0542 0.0483

511

 0.0436 0.0399 0.037 0.035 0.0

198Au Production by Point Detectors

f105:n 0 0 -100 0
e105 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
f115:n 0 0 -100 0
fc115 Au-198 production (pt. est.) at isocenter
fm115 0.0595806783 19 102
f125:n 0 -3 -100 0
fc125 Au-198 production (pt. est.) at radius 3 cm (cross-plane)
fm125 0.0595806783 19 102
f135:n 0 -6 -100 0
fc135 Au-198 production (pt. est.) at radius 6 cm (cross-plane)
fm135 0.0595806783 19 102
f145:n 0 -9 -100 0
fc145 Au-198 production (pt. est.) at radius 9 cm (cross-plane)
fm145 0.0595806783 19 102
f155:n 0 -11.5 -100 0
fc155 Au-198 production (pt. est.) at radius 11.5 cm (cross-plane)
fm155 0.0595806783 19 102
f165:n 0 -14.5 -100 0
fc165 Au-198 production (pt. est.) at radius 14.5 cm (cross-plane)
fm165 0.0595806783 19 102
f175:n 564.081804406 33 -105.5 0
fc175 Au-198 production (pt. est.) in maze
fm175 0.0595806783 19 102

Dose Calculations

Geometry For 5x5 Photon Field

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 0 102 -121 209 -201
c
c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 0 312 -311 214 -211
 298 0 319 -313 215 -212
 299 0 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)

512

 221 15 -7.9 -312 212
 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 0 321 -111 233 -219
 392 0 111 -112 231 -219
 393 0 112 -113 232 -219
 394 0 113 -121 239 -219
c
c Air surrounding target and filters
 399 0 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 0 (480:-481 : -482: 483 : -484: 485)
 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 0 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 0 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 0 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 0 -401 599 410 -412 420 -422
c
c ------
c Room
c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c
c Concrete walls
c
 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603
 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603

513

 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604
 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room
c
 644 0 630 -632 -656 662 -601 603
 645 0 630 -631 -654 656 -601 603
 646 0 628 -631 -651 654 -601 603
 647 0 628 -629 -654 659 -601 603
 648 0 626 -629 -659 661 -601 603
 649 0 626 -627 -655 659 -601 603
 650 0 625 -626 -652 661 -601 603
 651 0 624 -625 -653 660 -602 603
 652 0 623 -624 -653 657 -602 603
 653 0 623 -624 -658 660 -602 603
 654 0 622 -623 -653 660 -602 603
 655 0 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 0 623 -624 -657 658 -602 201
 657 0 623 -624 -657 658 -599 605
 658 0 422 -624 -657 658 -201 599
 659 0 420 -422 -657 412 -201 599
 660 0 420 -422 -410 658 -201 599
 661 0 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600
99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

c
c **********************
c Surface Descriptions
c **********************

514

c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5
c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66
c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 05x05 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -2.4992258E-02 0.0000000E+00 9.9968764E-01 -4.0800000E+01
 461 p -2.4992258E-02 0.0000000E+00 9.9968764E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01
 464 p 9.9968764E-01 0.0000000E+00 2.4992258E-02 1.0000000E-03
 465 p 9.9968764E-01 0.0000000E+00 2.4992258E-02 1.5001000E+01
c
 470 p 2.4992258E-02 0.0000000E+00 9.9968764E-01 -4.0800000E+01
 471 p 2.4992258E-02 0.0000000E+00 9.9968764E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.9968764E-01 0.0000000E+00 -2.4992258E-02 -1.0000000E-03
 475 p 9.9968764E-01 0.0000000E+00 -2.4992258E-02 -1.5001000E+01
c
 480 p 0.0000000E+00 -2.4992258E-02 9.9968764E-01 -2.7100000E+01
 481 p 0.0000000E+00 -2.4992258E-02 9.9968764E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.9968764E-01 2.4992258E-02 1.0000000E-03
 483 p 0.0000000E+00 9.9968764E-01 2.4992258E-02 1.5001000E+01
 484 px -1.1000000E+01

515

 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 2.4992258E-02 9.9968764E-01 -2.7100000E+01
 491 p 0.0000000E+00 2.4992258E-02 9.9968764E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.9968764E-01 -2.4992258E-02 -1.0000000E-03
 493 p 0.0000000E+00 9.9968764E-01 -2.4992258E-02 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 pz -130.0
c
c ------
c Room
c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48
 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88
 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73
 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41
 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75
 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73

516

 664 py -125.73
c
c **************************
c END Surface Descriptions
c **************************
c

Geometry For 10x10 Photon Field

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 0 102 -121 209 -201
c
c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 0 312 -311 214 -211
 298 0 319 -313 215 -212
 299 0 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)
 221 15 -7.9 -312 212
 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 0 321 -111 233 -219
 392 0 111 -112 231 -219
 393 0 112 -113 232 -219
 394 0 113 -121 239 -219
c
c Air surrounding target and filters
 399 0 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 0 (480:-481 : -482: 483 : -484: 485)

517

 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 0 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 0 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 0 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 0 -401 599 410 -412 420 -422
c
c ------
c Room
c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c
c Concrete walls
c
 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603
 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603
 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604
 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room

518

c
 644 0 630 -632 -656 662 -601 603
 645 0 630 -631 -654 656 -601 603
 646 0 628 -631 -651 654 -601 603
 647 0 628 -629 -654 659 -601 603
 648 0 626 -629 -659 661 -601 603
 649 0 626 -627 -655 659 -601 603
 650 0 625 -626 -652 661 -601 603
 651 0 624 -625 -653 660 -602 603
 652 0 623 -624 -653 657 -602 603
 653 0 623 -624 -658 660 -602 603
 654 0 622 -623 -653 660 -602 603
 655 0 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 0 623 -624 -657 658 -602 201
 657 0 623 -624 -657 658 -599 605
 658 0 422 -624 -657 658 -201 599
 659 0 420 -422 -657 412 -201 599
 660 0 420 -422 -410 658 -201 599
 661 0 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600
99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

c
c **********************
c Surface Descriptions
c **********************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5
c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66

519

c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 10x10 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 461 p -4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01
 464 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.0000000E-03
 465 p 9.9875234E-01 0.0000000E+00 4.9937526E-02 1.5001000E+01
c
 470 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -4.0800000E+01
 471 p 4.9937526E-02 0.0000000E+00 9.9875234E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.0000000E-03
 475 p 9.9875234E-01 0.0000000E+00 -4.9937526E-02 -1.5001000E+01
c
 480 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -2.7100000E+01
 481 p 0.0000000E+00 -4.9937526E-02 9.9875234E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.0000000E-03
 483 p 0.0000000E+00 9.9875234E-01 4.9937526E-02 1.5001000E+01
 484 px -1.1000000E+01
 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -2.7100000E+01
 491 p 0.0000000E+00 4.9937526E-02 9.9875234E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.0000000E-03
 493 p 0.0000000E+00 9.9875234E-01 -4.9937526E-02 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 pz -130.0
c
c ------
c Room
c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48

520

 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88
 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73
 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41
 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75
 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73
 664 py -125.73
c
c **************************
c END Surface Descriptions
c **************************
c

Geometry For 30x30 Photon Field

c *******************
c Cell Descriptions
c *******************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
c Tungsten/Rhenium electron target
 101 11 -19.47 -101 202 -201
c
c Copper housing/cooling for electron target
 111 12 -8.96 -101 209 -202
 112 12 -8.96 101 -102 209 -201
c
c Air around target assembly
 199 0 102 -121 209 -201
c

521

c Primary (tungsten) collimator
 201 13 -18.78 311 -121 215 -209
c
c Aluminum hardening filter
c (within primary collimator)
 211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
 291 0 312 -311 214 -211
 298 0 319 -313 215 -212
 299 0 319 -121 219 -215
c
c Flattening filter
c (within primary collimator)
 221 15 -7.9 -312 212
 222 15 -7.9 -319 -212
 223 15 -7.9 313 -312 215 -212
 224 15 -7.9 312 -311 215 -214
c
c Flattening filter
 301 15 -7.9 -321 233
 302 15 -7.9 -111 239 -233
 303 15 -7.9 111 -112 239 -231
 304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
 391 0 321 -111 233 -219
 392 0 111 -112 231 -219
 393 0 112 -113 232 -219
 394 0 113 -121 239 -219
c
c Air surrounding target and filters
 399 0 121 239 -201
 410 -412 420 -422
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c
c Positive Y collimator
 401 16 -11.35 -480 481 482 -483 484 -485
 402 0 (480:-481 : -482: 483 : -484: 485)
 (-239 400 411 -412 420 -422)
c
c
c Negative Y collimator
 411 16 -11.35 -490 491 -492 493 494 -495
 412 0 (490:-491 : 492:-493 : -494: 495)
 (-239 400 410 -411 420 -422)
c
c
c Positive X collimator
 421 16 -11.35 -460 461 462 -463 464 -465
 422 0 (460:-461 : -462: 463 : -464: 465)
 (-400 401 410 -412 421 -422)
c
c
c Negative X collimator
 431 16 -11.35 -470 471 472 -473 -474 475
 432 0 (470:-471 : -472: 473 : 474:-475)
 (-400 401 410 -412 420 -421)
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 0 -401 599 410 -412 420 -422
c
c ------
c Room

522

c ------
c
c Ceiling slab
c
 600 18 -2.35 620 -632 -650 662 -600 601
 601 18 -2.35 622 -625 -653 660 -601 602
c
c Concrete walls
c
 602 18 -2.35 620 -621 -650 662 -601 603
 603 18 -2.35 621 -622 -650 651 -601 603
 604 18 -2.35 622 -625 -650 653 -601 603
 605 18 -2.35 625 -626 -650 652 -601 603
 606 18 -2.35 626 -628 -650 655 -601 603
 607 18 -2.35 627 -628 -655 659 -601 603
 608 18 -2.35 628 -631 -650 651 -601 603
 609 18 -2.35 631 -632 -650 656 -601 603
 610 18 -2.35 621 -622 -661 662 -601 603
 611 18 -2.35 622 -625 -660 662 -601 603
 612 18 -2.35 625 -629 -661 662 -601 603
 613 18 -2.35 629 -630 -654 662 -601 603
c
 614 18 -2.35 633 -623 -663 664 -604 605
 615 18 -2.35 623 -624 -663 657 -604 605
 616 18 -2.35 623 -624 -658 664 -604 605
 617 18 -2.35 624 -634 -663 664 -604 605
c
c Floor slabs
c
 618 18 -2.35 620 -623 -650 662 -603 604
 619 18 -2.35 623 -624 -650 657 -603 604
 620 18 -2.35 623 -624 -658 662 -603 604
 621 18 -2.35 624 -632 -650 662 -603 604
 622 18 -2.35 633 -634 -663 664 -605 606
c
c Ground under slab (void)
c
 640 0 620 -633 -650 662 -604 606
 641 0 633 -634 -650 663 -604 606
 642 0 633 -634 -664 662 -604 606
 643 0 634 -632 -650 662 -604 606
c
c Air inside room
c
 644 0 630 -632 -656 662 -601 603
 645 0 630 -631 -654 656 -601 603
 646 0 628 -631 -651 654 -601 603
 647 0 628 -629 -654 659 -601 603
 648 0 626 -629 -659 661 -601 603
 649 0 626 -627 -655 659 -601 603
 650 0 625 -626 -652 661 -601 603
 651 0 624 -625 -653 660 -602 603
 652 0 623 -624 -653 657 -602 603
 653 0 623 -624 -658 660 -602 603
 654 0 622 -623 -653 660 -602 603
 655 0 621 -622 -651 661 -601 603
c
c Air above pit and around accelerator/phantom
c
 656 0 623 -624 -657 658 -602 201
 657 0 623 -624 -657 658 -599 605
 658 0 422 -624 -657 658 -201 599
 659 0 420 -422 -657 412 -201 599
 660 0 420 -422 -410 658 -201 599
 661 0 623 -420 -657 658 -201 599
c
c ---------------
c Outside world
c ---------------
c
99994 0 600

523

99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620 650
c
c ***********************
c END Cell Descriptions
c ***********************
c

c
c **********************
c Surface Descriptions
c **********************
c
c --------------------------------------
c Target, Primary Collimator & Filters
c --------------------------------------
c
 101 cz 0.2725
 102 cz 1.0
c
 111 cz 3.85
 112 cz 4.0
 113 cz 4.65
c
 121 cz 10.0
c
 201 pz -0.0
 202 pz -0.1
 209 pz -1.5
c
 211 pz -7.62
 212 pz -10.6
 214 pz -11.57
 215 pz -11.79
 219 pz -12.4
c
 231 pz -14.86
 232 pz -15.11
 233 pz -15.46
 239 pz -15.66
c
 311 kz -1.028 0.0631 -1
 312 kz -7.84 0.416 -1
 313 kz -9.94 1.653 -1
 319 kz -12.32 0.1914 +1
c
 321 kz -13.26 1.83376736112 -1
c
c -------------------------
c Collimator Jaw Assembly
c -------------------------
c Collimator opening set for a 30x30 field size
c
 400 pz -38.0
 401 pz -51.0
c
 410 py -50.0
 411 py 0.0
 412 py 50.0
c
 420 px -50.0
 421 px 0.0
 422 px 50.0
c
 460 p -1.4834105E-01 0.0000000E+00 9.8893626E-01 -4.0800000E+01
 461 p -1.4834105E-01 0.0000000E+00 9.8893626E-01 -5.0800000E+01
 462 py -1.1000000E+01
 463 py 1.1000000E+01

524

 464 p 9.8893626E-01 0.0000000E+00 1.4834105E-01 1.0000000E-03
 465 p 9.8893626E-01 0.0000000E+00 1.4834105E-01 1.5001000E+01
c
 470 p 1.4834105E-01 0.0000000E+00 9.8893626E-01 -4.0800000E+01
 471 p 1.4834105E-01 0.0000000E+00 9.8893626E-01 -5.0800000E+01
 472 py -1.1000000E+01
 473 py 1.1000000E+01
 474 p 9.8893626E-01 0.0000000E+00 -1.4834105E-01 -1.0000000E-03
 475 p 9.8893626E-01 0.0000000E+00 -1.4834105E-01 -1.5001000E+01
c
 480 p 0.0000000E+00 -1.4834105E-01 9.8893626E-01 -2.7100000E+01
 481 p 0.0000000E+00 -1.4834105E-01 9.8893626E-01 -3.7100000E+01
 482 p 0.0000000E+00 9.8893626E-01 1.4834105E-01 1.0000000E-03
 483 p 0.0000000E+00 9.8893626E-01 1.4834105E-01 1.5001000E+01
 484 px -1.1000000E+01
 485 px 1.1000000E+01
c
 490 p 0.0000000E+00 1.4834105E-01 9.8893626E-01 -2.7100000E+01
 491 p 0.0000000E+00 1.4834105E-01 9.8893626E-01 -3.7100000E+01
 492 p 0.0000000E+00 9.8893626E-01 -1.4834105E-01 -1.0000000E-03
 493 p 0.0000000E+00 9.8893626E-01 -1.4834105E-01 -1.5001000E+01
 494 px -1.1000000E+01
 495 px 1.1000000E+01
c
c -----------------------
c Area around isocenter
c -----------------------
c
 599 pz -130.0
c
c ------
c Room
c ------
c
c Z planes for floor and ceiling locations
c
 600 pz 333.8
 601 pz 237.28
 602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
 603 pz -225.0
 604 pz -255.48
 605 pz -476.46
 606 pz -506.94
c
c X planes for walls
c
 620 px -495.3
 621 px -403.86
 622 px -190.5
 623 px -95.25
c 422 px -50.0
c 421 px 0.0
c 420 px 50.0
 624 px 95.25
 625 px 190.5
 626 px 472.44
 627 px 518.16
 628 px 563.88
 629 px 723.9
 630 px 830.58
 631 px 990.6
 632 px 1036.32
 633 px -125.73
 634 px 125.73
c
c Y planes for walls
c
 650 py 577.85
 651 py 486.41

525

 652 py 448.31
 653 py 372.11
 654 py 276.86
 655 py 158.75
 656 py 128.27
 657 py 95.25
c 412 py 50.0
c 411 py 0.0
c 410 py -50.0
 658 py -95.25
 659 py -207.01
 660 py -367.03
 661 py -419.1
 662 py -525.78
 663 py 125.73
 664 py -125.73
c
c **************************
c END Surface Descriptions
c **************************
c

Materials for Electron-Photon Simulation

m11 plib=02p elib=03e
 74000 -0.90 75000 -0.10
m12 plib=02p elib=03e
 29000 1
m13 plib=02p elib=03e
 74000 -0.95 28000 -0.035 29000 -0.015
m14 plib=02p elib=03e
 13027 1
m15 plib=02p elib=03e
 26000 -0.70 24000 -0.18 28000 -0.09
 25000 -0.02 14000 -0.01
m16 plib=02p elib=03e
 82000 1
m18 plib=02p elib=03e
 1000 -0.0055 8000 -0.4984 14000 -0.3157
 20000 -0.0826 11000 -0.017 12000 -0.0026
 13000 -0.0455 16000 -0.0013 19000 -0.0191
 26000 -0.0123

Materials for Electron-Photon-Neutron Simulation

m11 nlib=60c plib=02p elib=01e pnlib=03u
 74182 0.237294
 74183 0.129157
 74184 0.276674
 74186 0.258020
 75185 0.036972
 75187 0.061883
mpn11 74184 5r
m12 nlib=60c plib=02p elib=01e pnlib=03u
 29063 0.6917
 29065 0.3083
mpn12 29063 1r
m13 nlib=60c plib=02p elib=01e pnlib=03u
 74182 0.226794
 74183 0.123441
 74184 0.264431
 74186 0.246603
 28058 0.067660
 28060 0.026063
 28061 0.001133
 28062 0.003612
 28064 0.000920
 29063 0.027213
 29065 0.012129

526

mpn13 74184 3r 29063 6r
m14 nlib=60c plib=02p elib=01e pnlib=03u
 13027 1
m15 nlib=60c plib=02p elib=01e pnlib=03u
 26054 0.039836
 26056 0.629963
 26057 0.015110
 26058 0.001923
 24050 0.008242
 24052 0.158937
 24053 0.018022
 24054 0.004486
 28058 0.057199
 28060 0.022033
 28061 0.000958
 28062 0.003053
 28064 0.000778
 25055 0.019948
 14000 0.019510
mpn15 26056 7r 29063 4r 26056 13027
m16 nlib=60c plib=02p elib=01e pnlib=03u
 82206 0.245667
 82207 0.225666
 82208 0.528667
m18 nlib=60c plib=02p elib=01e pnlib=03u
 1001 0.103128
 8016 0.585223
 14000 0.211247
 20000 0.038705
 11023 0.013912
 12000 0.001974
 13027 0.031709
 16000 0.000748
 19000 0.009203
 26054 0.000245
 26056 0.003812
 26057 0.000095
mpn18 0 0 13027 20040 0 0 13027 0 0 26056 2r

Options for Electron-Photon Simulation

mode e p
phys:p 2j 1
cut:e j 0.5 0 0
cut:p j 0.1 0 0
print -85
prdmp 3j 3

Options for Electron-Photon-Neutron Simulation

mode e p n
phys:p 2j 1 -1
cut:e j 5.7 0 0
cut:p j 5.7 0 0
cut:n j j 0 0
print -85
prdmp 3j 3

Weight-Windows for Electron-Photon Simulation

wwp:e,p 5 3 10 0 0
wwe:e,p 1e20
wwn1:e,p 0.2 75r -1 5r

527

Weight-Windows for Electron-Photon-Neutron Simulation

wwp:e,p,n 5 3 10 0 0
wwe:e,p,n 1e20
wwn1:e,p 0.2 75r -1 5r
wwn1:n 0.002 75r -1 5r

Energy Specification for 10 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 10
si1 0.05

Energy Specification for 15 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 15
si1 0.05

Energy Specification for 20 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 20
si1 0.05

Energy Specification for 25 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 25
si1 0.05

Energy Specification for 30 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 30
si1 0.05

Energy Specification for 40 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 40
si1 0.05

Energy Specification for 50 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 50
si1 0.05

Energy Specification for 75 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 75
si1 0.05

Energy Specification for 100 MeV

sdef par 3 pos 0 0 0 sur 201 rad d1 vec 0 0 -1 dir=1 erg 100
si1 0.05

528

REFERENCES

1. Heaton, H.T. II, and Jacobs, R., eds. Proceedings of a Conference on Neutrons
from Electron Medical Accelerators. NBS Special Publication 554. National
Bureau of Standards, Department of Commerce: Gaithersburg, MD, 1979.

2. McCall, R.C., Almond, P. R., Devanney, J. A., Fuller, E. G., Holeman, G. R.,
Lanzl, L. H., Ing, H., and Swanson, W. P. Neutron Contamination from Medical
Electron Accelerators. NCRP Report No. 79. National Council on Radiation
Protection and Measurements: Bethesda, MD, 1984.

3. Breismeister, J.F., ed. MCNP - A General Monte Carlo N-Particle Transport
Code. LA-12625-M. Los Alamos National Laboratory: Los Alamos, NM, 1997.

4. Metropolis, N. and Ulam, S. “The Monte Carlo Method,” Journal of the
American Statistical Association. Vol. 44, No. 247, pp. 335-341, 1949.

5. Bohr, A. and Mottelson, B.R. Nuclear Structure. 2nd Edition. World Scientific:
Singapore, 1998.

6. Levinger, J.S. “Neutron Production by Complete Absorption of High-Energy
Photons,” Nucleonics. Vol. 6, No. 5, pp. 64-67, 1950.

7. Levinger, J.S. “The High Energy Nuclear Photoeffect,” Physical Review. Vol. 84,
No. 1, pp. 43-51, 1951.

8. Chadwick, M.B., Oblozinsky, P., Hodgson, P.E., and Reffo, G. “Pauli-Blocking
in the Quasideuteron Model of Photoabsorption,” Physical Review C. Vol. 44,
No. 2, pp. 814-823, 1991.

9. Wu, J.R. and Chang, C.C. “Pre-Equilibrium Particle Decay in the Photonuclear
Reactions,” Physical Review C. Vol. 16, No. 5, pp. 1812-1824, 1977.

10. Blann, M., Berman, B.L., and Komoto, T.T. “Precompound-Model Analysis of
Photoneutron Reaction,” Physical Review C. Vol. 28, No. 6, pp. 2286-2298,
1983.

11. Chadwick, M.B., Young, P.G, and Chibas, S. “Photonuclear Angular-
Distribution Systematics in the Quasideuteron Regime,” Journal of Nuclear
Science and Technology. Vol. 32, No. 11, pp. 1154-1158, 1995.

529

12. Fasso, A., Ferrari, A., and Sala, P.R. “Total Giant Resonance Photonuclear Cross
Sections for Light Nuclei: A Database for the FLUKA Monte Carlo Transport
Code,” Proceedings of the Third Specialists Meeting on Shielding Aspects of
Accelerators, Targets, and Irradiation Facilities. SATIF-3, Tohoku University,
Sendai, Japan. Organization for Economic Cooperation and Development
Nuclear Energy Agency: Paris, France, 1997.

13. Mughabghab, S.F., Divadeenam, M., Holden, N.E., McLane, V., Dunford, C.L.,
and Rose, P.F., eds. Neutron Cross Sections. 4th Edition. BNL-325.
Brookhaven National Laboratory: Upton, NY, 1981.

14. Fuller, E.G., Gerstenberg, H.M., Vander Molen, H., and Dunn, T.C., eds.
Photonuclear Reaction Data. NBS Special Publication 380. National Bureau of
Standards, Department of Commerce: Gaithersburg, MD, 1973.

15. Fuller, E.G. and Gerstenberg, H.M., eds. Photonuclear Data Index 1973-1977.
NBS Special Publication 380, Supplement 1. National Bureau of Standards,
Department of Commerce: Gaithersburg, MD, 1978.

16. Berman, B.L. “Atlas of Photoneutron Cross Sections Obtained With
Monoenergetic Photons,” Atomic Data and Nuclear Data Tables. Vol. 15, No. 4,
pp. 319-390, 1975.

17. Dietrich, S.S. and Berman, B.L. “Atlas of Photoneutron Cross Sections Obtained
with Monoenergetic Photons,” Atomic Data and Nuclear Data Tables. Vol. 38,
No. 2, pp. 199-338, 1988.

18. Varlamov, A.V., Varlamov, V.V., Rudenko, D.S., and Stepanov, M.E. Atlas of
Giant Dipole Resonance Parameters and Graphs of Photonuclear Reaction Cross
Sections. INDC(NDS)-394. International Atomic Energy Association: Vienna,
Austria, 1999.

19. Dunford, C.L. Internet Connection to the National Nuclear Data Center
(NNDC). http://www.nndc.bnl.gov/. Brookhaven National Laboratory: Upton,
NY, 1998.

20. Alsmiller, R.G. Jr. and Moran, H.S. “Electron-Photon Cascade Calculations and
Neutron Yields from Electron in Thick Targets,” Nuclear Instruments and
Methods. Vol. 48, pp. 109-116, 1967.

21. Alsmiller, R.G. Jr. and Moran, H.S. “Photoneutron Production from 34- and 100-
MeV Electrons in Thick Uranium Targets,” Nuclear Instruments and Methods.
Vol. 51, pp. 339-340, 1967.

22. Alsmiller, R.G. Jr., Gabriel, T.A., and Guthrie, M.P. “The Energy Distribution of
Photoneutrons Produced by 150 MeV Electrons in Thick Beryllium and Tantalum
Targets,” Nuclear Science and Engineering. Vol. 40, No. 3, pp. 365-374, 1970.

530

23. Gabriel, T.A. and Alsmiller, R.G. Jr. “Photonucleon and Photopion Production
from 400 MeV Electrons in Thick Copper Targets,” Nuclear Physics B. Vol.
B14, No. 2, pp. 303-315, 1969.

24. Gabriel, T.A. and Alsmiller, R.G. Jr. “Photonuclear Disintegration at High
Energies (<350 MeV),” Physical Review. Vol. 182, No. 4, pp. 1035-1050, 1969.

25. Hansen, E.C., Bartoletti, C.S., and Daitch, P.B. “Analog Monte Carlo Studies of
Electron-Photon Cascades and the Resultant Production and Transport of
Photoneutrons in Finite three-dimensional Systems,” Journal of Applied Physics.
Vol. 46, No. 3, pp. 1109-1123, 1975.

26. Kase, T. and Harada, H. “An Assessment of the Continuous Neutron Source
Using a Low-Energy Electron Accelerator,” Nuclear Science and Engineering.
Vol. 126, No. 1, pp. 59-70, 1997.

27. Mokhov, N.V., Striganov, S.I., Van Ginneken, A., Mashnik, S.G., Sierk, A.J., and
Ranft, J. “MARS Code Development,” Proceedings of the Fourth Specialists
Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities.
SATIF-4, Knoxville, TN. Organization for Economic Cooperation and
Development Nuclear Energy Agency: Paris, France, 1998.

28. Prokofiev, A.V., Mashnik, S.G., and Sierk, A.J. “Cascade-Exciton Model
Analysis of Nucleon-Induced Fission Cross Sections of Lead and Bismuth at 45-
to 500-MeV Energies,” Nuclear Science and Engineering. Vol. 131, No. 1, pp.
78-95, 1999.

29. Swanson, W.P. “Activation of Aluminum Beam Dumps By High-Energy
Electrons At SLAC,” Health Physics. Vol. 28, No. 5, pp. 495-502, 1975.

30. Swanson, W.P. “Neutron Yields From Electrons Stopped in Selected Materials,”
Health Physics. Vol. 33, No. 6, pp. 686-687, 1977.

31. Swanson, W.P. “Calculation of Neutron Yields Released By Electrons Incident
On Selected Materials,” Health Physics. Vol. 35, No. 2, pp. 353-367, 1978.

32. Swanson, W.P. “Improved Calculation of Photo-Neutron Yields Released By
Incident Electrons,” Health Physics. Vol. 37, No. 3, pp. 347-358, 1979.

33. Swanson, W.P. “Estimate of the Risk in Radiation-Therapy Due to Unwanted
Neutrons,” Medical Physics. Vol. 7, No. 2, pp. 141-144, 1980.

34. Manfredotti, C., Nastasi, U., Ornato, E., and Zanini, A. “Evaluation of the
Undesired Neutron Dose Equivalent to Critical Organs in Patients Treated By
Linear-Accelerator Gamma-Ray Therapy,” Radiation Protection Dosimetry. Vol.
44, No. 1-4, pp. 457-462, 1992.

531

35. Agosteo, S., Para, A.F., Silari, M., Torresin, A., and Tosi, G. “Monte-Carlo
Simulations of Neutron-Transport in a Linac Radiotherapy Room,” Nuclear
Instruments & Methods in Physics Research Section B. Vol. 72, No. 1, pp. 84-90,
1992.

36. Agosteo, S., Para, A.F., Gerardi, F., Silari, M., Torresin, A., and Tosi, G.
“Photoneutron Dose in Soft-Tissue Phantoms Irradiated By 25 MeV X-Rays,”
Physics in Medicine and Biology. Vol. 38, No. 10, pp. 1509-1528, 1993.

37. Gallmeier, F.X. “A Photoneutron Production Option for MCNP4A,” Proceedings
of the Radiation Protection and Shielding Topical Conference on Advancements
and Applications in Radiation Protection and Shielding. No. Falmouth, MA.
American Nuclear Society: La Grange Park, IL, 1996.

38. Liu, J.C., Nelson, W.R., Kase, K.R., and Mao, X.S. “Calculations of the Giant-
Dipole-Resonance Photoneutrons Using a Coupled EGS4-MORSE Code,”
Radiation Protection Dosimetry. Vol. 70, No. 1-4, pp. 49-54, 1997.

39. Chadwick, M.B., Brown, T.H., and Little, R.C. “Photoneutron Production in
Electron Beam Stop for Dual Axis Radiographic Hydrotest Facility (DARHT),”
Proceedings of the Radiation Protection and Shielding Topical Conference.
Nashville, TN. American Nuclear Society: La Grange Park, IL, 1998.

40. Chadwick, M.B., Young, P.G., Chiba, S., Frankle, S.C., Hale, G.M., Hughes,
H.G., Koning, A.J., Little, R.C., MacFarlane, R.E., Prael, R.E., and Waters, L.S.
“Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and
Implementation in MCNPX,” Nuclear Science and Engineering. Vol. 131, No. 3,
pp. 293-328, 1999.

41. Young, P.G. and Chadwick, M.B. “Comprehensive Nuclear Model Calculations:
Theory and Use of the GNASH Code,” IAEA Workshop on Nuclear Reaction
Data and Nuclear Reactors - Physics, Design and Safety. Triest, Italy. World
Scientific Publishing, Ltd: Singapore, 1996.

42. Hughes, H.G., Prael, R.E., and Little, R.C. MCNPX - The LAHET/MCNP Code
Merger. XTM-RN-97-012. Los Alamos National Laboratory: Los Alamos, NM,
1997.

43. Oblozinsky, P., ed. Summary Report of IAEA 1st Research Coordination
Meeting. INDC(NDS)-364. International Atomic Energy Association: Vienna,
Austria, 1997.

44. Oblozinsky, P., ed. Handbook of Photonuclear Data for Applications. IAEA-
TECDOC-In Press. International Atomic Energy Association: Vienna, Austria,
2000.

532

45. McLane, V., Dunford, C.L., and Rose, P.F., eds. ENDF-102 Data Formats and
Procedures for the Evaluated Nuclear Data File ENDF-6. BNL-NCS-44945.
Brookhaven National Laboratory: Upton, NY, 1997.

46. Werner, C.J. Proposed Delayed Neutron Data Format for MCNP Libraries.
XCI:CJW-98-121. Los Alamos National Laboratory: Los Alamos, NM, 1998.

47. Frankle, S.C. Proposed APT Data Library Formats and ZAID Specifications.
XTM:SCF-96-200. Los Alamos National Laboratory: Los Alamos, NM, 1996.

48. Frankle, S.C. Follow-up to XTM:SCF-96-200, Proposed APT Data Library
Formats. XTM:SCF-96-312. Los Alamos National Laboratory: Los Alamos,
NM, 1996.

49. MacFarlane, R.E. and Muir, D.W. The NJOY Nuclear Data Processing System,
Version 91. LA-12740-M. Los Alamos National Laboratory: Los Alamos, NM,
1994.

50. Kalbach, C. Systematics of Continuum Angular Distributions: Extensions to
Higher Energies. LA-UR-87-4139. Los Alamos National Laboratory: Los
Alamos, NM, 1987.

51. Kalbach, C. “Systematics of Continuum Angular Distributions: Extensions to
Higher Energies,” Physical Review C. Vol. 37, No. 6, pp. 2350-2370, 1988.

52. White, M.C. Modifications to the MCNP ACE Routines. XCI:MCW-99-80. Los
Alamos National Laboratory: Los Alamos, NM, 1999.

53. White, M.C. Verification of the ACE Modifications to MCNP. XCI:MCW-99-92.
Los Alamos National Laboratory: Los Alamos, NM, 1999.

54. Hendricks, J.S. MCNP4C ENDF65 Capability. X-5:JSH-99-08. Los Alamos
National Laboratory: Los Alamos, NM, 1999.

55. White, M.C. MCNPX Modifications - Proton Table Loading and Mix & Match
Issues. XCI:MCW-99-2. Los Alamos National Laboratory: Los Alamos, NM,
1999.

56. Carter, L.L. and Cashwell, E.D. Particle-Transport Simulation with the Monte
Carlo Method. Report No. TID-26607. National Technical Information Service:
Springfield, VA, 1975.

57. Hendricks, J.S. MCNP4C Delayed Neutrons. X-5:JSH-99-10. Los Alamos
National Laboratory: Los Alamos, NM, 1999.

58. Barber, W.C. and George, W.D. “Neutron Yields from Targets Bombarded by
Electrons,” Physical Review. Vol. 116, No. 6, pp. 1551-1559, 1959.

533

59. White, M.C. Response to X-5:JSH-99-08 - MCNP4C ENDF65 Capability. X-
5:MCW-99-17. Los Alamos National Laboratory: Los Alamos, NM, 1999.

60. White, M.C. Photonuclear Physics in MCNP(X) Progress Report. XCI:MCW-
99-17. Los Alamos National Laboratory: Los Alamos, NM, 1999.

61. Yung-Su, T. “Pair Production and Bremsstrahlung of Charged Leptons,” Reviews
of Modern Physics. Vol. 46, No. 4, pp. 815-851, 1974.

62. Veyssiere, A., Beil, H., Bergere, R., Carlos, P., Lepretre, A., and De Miniac, A.
“A Study of the Photoneutron Contribution to the Giant Dipole Resonance of s-d
Shell Nuclei,” Nuclear Physics A. Vol. A227, No. 3, pp. 513-540, 1974.

63. Montalbetti, R., Katz, L., and Goldemberg, J. “Photoneutron Cross Sections,”
Physical Review. Vol. 91, No. 3, pp. 659-673, 1953.

64. Price, G.A. and Kerst, D.W. “Yields and Angular Distributions of Some Gamma-
Neutron Processes,” Physical Review. Vol. 77, No. 6, pp. 806-809, 1950.

65. Fultz, S.C., Bramblett, R.L., Caldwell, J.T., and Harvey, R.R. “Photoneutron
Cross Sections for Natural Cu, Cu63 and Cu65,” Physical Review. Vol. B133, No.
5, pp. 1149-1154, 1964.

66. Bergere, R., Beil, H., and Veyssiere, A. “Photoneutron Cross Sections of La, Tb,
Ho and Ta,” Nuclear Physics A. Vol. A121, No. 2, pp. 463-480, 1968.

67. Veyssiere, A., Beil, H., Bergere, R., Carlos, P., Lepretre, A., and de Miniac, A.
“Etude de la Resonance Geante Dipolaire dans la Region de Transitio autour de A
= 190,” Le Journal de Physique. Vol. 36, pp. L267-L270, 1975.

68. Harvey, R.R., Caldwell, J.T., Bramblett, R.L., and Fultz, S.C. “Photoneutron
Cross Sections of Pb206, Pb207, Pb208 and Bi209,” Physical Review. Vol. B136, No.
1, pp. 126-131, 1964.

69. Veyssiere, A., Beil, H., Bergere, R., Carlos, P., and Lepretre, A. “Photoneutron
Cross Sections of 208Pb and 197Au,” Nuclear Physics A. Vol. A159, No. 2, pp.
561-576, 1970.

70. Hendricks, J.S., Frankle, S.C., and Court, J.D. ENDF/B-VI Data for MCNP. LA-
12891. Los Alamos National Laboratory: Los Alamos, NM, 1994.

71. Ahrens, J., Borchert, H., Czock, K.H., Eppler, H.B., Gimm, H., Gundrum, H.,
Kroning, M., Riehn, P., Sita, G., Zieger, A., and Ziegler, B. “Total Nuclear
Photon Absorption Cross Sections for Some Light Elements,” Nuclear Physics A.
Vol. A251, No. 3, pp. 479-492, 1975.

534

72. Fultz, S.C., Caldwell, J.T., Berman, B.L., Bramblett, R.L., and Harvey, R.R.
“Photoneutron Cross Sections for C12 and Al27,” Physical Review. Vol. 143, No.
3, pp. 790-796, 1966.

73. Varlamov, V.V., Sapunenko, V.V., and Stepanov, M.E. Internet Connection to
the Photonuclear Data Index 1976-1995. http://depni.npi.msu.su/cdfe/.
Izdatel'stvo Muskovskogo Universiteta, Moscow State University: Moscow,
Russia, 1996.

74. Kishida, N. Nuclear Data Evaluation Methodology. World Scientific: Singapore,
1993.

75. Costa, S., Ferrero, F., Manfredotti, C., Pasqualini, L., and Piragino, G. “Behavior
of the (γ,Tn) Cross-Section in Selenium and Iron,” Nuovo Cimento. Vol. 51B,
Series 10, No. 1, pp. 199-201, 1967.

76. Dolbilkin, B.S., Isakov, A.I., Korin, V.I., Lazareva, L.E., Lin'kova, N.V., and
Tulupov, B.A. “Absorption of Gamma Quanta by Iron Nuclei Near the Giant
Resonance,” Yadernaya Fizika. Vol. 9, No. 4, pp. 675-679, 1969.

77. Sund, R.E., Baker, M.P., Kull, L.A., and Walton, R.B. “Measurements of the
63Cu (γ,n) and (γ,2n) Cross Sections,” Physical Review. Vol. 176, No. 4, pp.
1366-1376, 1968.

78. Miller, J., Schuhl, C., and Tzara, C. “Mesure des Sections Efficaces (γ,n) de Cu,
Ce, La, Ta, Au, Pb et Bi en Valeur Absolue,” Nuclear Physics. Vol. 32, pp. 236-
245, 1962.

79. Bramblett, R.L., Caldwell, J.T., Auchampaugh, G.F., and Fultz, S.C.
“Photoneutron Cross Sections of Ta181 and Ho165,” Physical Review. Vol. 129,
No. 6, pp. 2723-2729, 1963.

80. Lee, Y.O., Fukahori, T., and Chatt, J. “Evaluation of Photonuclear Reaction Data
on Tantalum-181 up to 140 MeV,” Journal of Nuclear Science and Technology.
Vol. 35, No. 10, pp. 685-691, 1998.

81. Berman, B.L., Pywell, R.E., Thompson, M.N., McNeill, K.G., Jury, J.W., and
Woodworth, J.G. Bulletin of the American Physical Society. Vol. 31, p. 855,
1986.

82. Barber, W.C. “Specific Ionization by High-Energy Electrons,” Physical Review.
Vol. 97, No. 4, pp. 1071-1077, 1955.

83. Udalesmith, M. “Monte-Carlo Calculations of Electron-Beam Parameters For 3
Philips Linear Accelerators,” Physics in Medicine and Biology. Vol. 37, No. 1,
pp. 85-105, 1992.

535

84. Rogers, D.W.O., Faddegon, B.A., Ding, G.X., Ma, C.M., We, J., and Mackie,
T.R. “BEAM: A Monte Carlo Code to Simulate Radiotherapy Treatment Units,”
Medical Physics. Vol. 22, No. 5, pp. 503-524, 1995.

85. Hughes, G.H. Information on the MCPLIB02 Photon Library. X-6:HGH-93-77.
Los Alamos National Laboratory: Los Alamos, NM, 1993.

86. Chetty, I. A Photon Phase Space Source Model Incorporating Efficient Sampling
Algorithms for Clinical Treatment Planning Using the Monte Carlo Method.
Dissertation. Department of Radiation Oncology, University of California at Los
Angeles: Los Angeles, CA, 1999.

87. Alfassi, Z.B., ed. Activation Analysis. CRC Press: Boca Raton, FL, 1990.

88. Nath, R., Boyer, A.L., La Riviere, P.D., McCall, R.C., and Price, K.W. Neutron
Measurements Around High Energy X-ray Radiotherapy Machines. AAPM
Report No. 19. American Association of Physicists in Medicine: New York, NY,
1986.

89. Fultz, S.C., Bramblett, R.L., Caldwell, J.T., and Kerr, N.A. “Photoneutron Cross-
Section Measurements on Gold Using Nearly Monochromatic Photons,” Physical
Review. Vol. 127, No. 4, pp. 1273-1279, 1962.

90. Berman, B.L., Pywell, R.E., Dietrich, S.S., Thompson, M.N., McNeill, K.G., and
Jury, J.W. “Absolute photoneutron cross sections for Zr, I, Pr, Au, and Pb,”
Physical Review C. Vol. 36, No. 4, pp. 1286-1292, 1987.

91. DeMarco, J.J. Modeling the Phillips SL Series MEA. E-mail communication.
1998.

92. Chetty, I., DeMarco, J.J., and Solberg, T.D. “A Virtual Source Model for Monte
Carlo Modeling of Arbitrary Intensity Distributions,” Medical Physics. Vol. 27,
No. 1, pp. 166-172, 2000.

93. Hansen Lind Meyer Inc. Radiation Therapy Center for the University of Florida
Health Science Center. Project Number #87061.05. Hansen Lind Meyer Inc.:
Orlando, FL, 1989.

94. White, R.C. Typical Construction Materials Used in Finishing a Clinical Setting.
E-mail communication. 1999.

95. Bates, T. Deflection System for Charged Particle Beams. Patent No. 4,409,486.
United States Patent and Trademark Office: Washington, D.C., 1983.

96. Halbleib, J.A., Kensek, R.P., Valdez, G.D., Seltzer, S.M., and Berger, M.J. “ITS:
The Integrated TIGER Series of Electron/Photon Transport Codes - Version 3.0,”
IEEE Transactions on Nuclear Science. Vol. 39, No. 4, pp. 1025-1030, 1992.

536

97. Love, P.A., Lewis, D.G., AlAffan, I.A.M., and Smith, C.W. “Comparison of
EGS4 and MCNP Monte Carlo Codes When Calculating Radiotherapy Depth
Doses,” Physics in Medicine and Biology. Vol. 43, No. 5, pp. 1351-1357, 1998.

98. Jeraj, R., Keall, P.J., and Ostwald, P.M. “Comparisons between MCNP ; EGS4
and experiment for clinical electron beams,” Physics in Medicine and Biology.
Vol. 44, No. 3, pp. 705-717, 1999.

99. Adams, K.J. Integration into MCNP4C of the ITS3.0 Radiative and Collisional
Stopping Power and Bremsstrahlung Production Model. X-5:KJA-00-34. Los
Alamos National Laboratory: Los Alamos, NM, 2000.

100. Adams, K.J. Availability of MCNP4BNU. E-mail communication. 1999.

101. Internet Connection to the Blue Mountain Supercomputing Platform Homepage.
http://www.lanl.gov/projects/asci/bluemtn/bluemtn.htm. Los Alamos National
Laboratory: Los Alamos, NM, 2000.

102. Frankle, S.C. ENDF60 Information. XTM:SCF-95-278. Los Alamos National
Laboratory: Los Alamos, NM, 1995.

103. MacFarlane, R.E. Internet Connection to the T-2 Nuclear Information Service.
http://t2.lanl.gov/. Los Alamos National Laboratory: Los Alamos, NM, 2000.

104. EG&G Ortec. Nuclide Navigator. Version 1.01. EG&G Ortec: Oak Ridge, TN,
1996.

105. EG&G Ortec. GammaVision. Version 4.10. EG&G Ortec: Oak Ridge, TN,
1997.

106. Rogers, D.W.O. “Fluence to Dose Equivalent Conversion Factors Calculated
With EGS3 For Electrons From 100-Kev to 20-Gev and Photons From 11-Kev to
20-Gev,” Health Physics. Vol. 46, No. 4, pp. 891-914, 1984.

107. Thomas, R.H., Brackenbush, L.W., Chartier, J-L., Clark, M.J., Dietze, G.,
Drexler, G., Menzel, H.G., Griffith, R., Grosswendt, B., Peroussi-Henss, N.,
Siebert, B.R.L., and Zankl, M. Conversion Coefficients for use in Radiological
Protection Against External Radiation. ICRU Report 57. International
Commission on Radiation Units and Measurements: Bethesda, MD, 1998.

108. Hughes, G.H. and Waters, L.S. Many-Particle MCNP. XTM:HGH-96-91. Los
Alamos National Laboratory: Los Alamos, NM, 1996.

109. Hughes, G.H. and Waters, L.S. Many-Particle MCNP Patch. XTM:HGH-96-
116. Los Alamos National Laboratory: Los Alamos, NM, 1996.

110. Hughes, G.H. and Waters, L.S. Many-Particle MCNP Patch for 4XQ.
XTM:HGH-96-226. Los Alamos National Laboratory: Los Alamos, NM, 1996.

537

111. White, M.C. ACE Tabular Angular Distributions. XCI:MCW-99-81. Los
Alamos National Laboratory: Los Alamos, NM, 1999.

This report has been reproduced directly from the
best available copy. It is available electronically on
the Web (http://www.doe.gov/bridge).

Copies are available for sale to U.S. Department of
Energy employees and contractors from—

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(423) 576-8401

Copies are available for sale to the public from—

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22616
(800) 553-6847

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545

	Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code
	Acknowledgments
	Table of Contents
	List of Figures
	Figure 2-1.
	Chapter 4 Figures
	Figure 4-1.
	Figure 4-2.
	Figure 4-3.
	Figure 4-4.
	Figure 4-5.
	Figure 4-6.
	Figure 4-7.
	Figure 4-8.
	Figure 4-9.
	Figure 4-10.
	Figure 4-11.
	Figure 4-12.
	Figure 4-13.
	Figure 4-14.
	Figure 4-15.
	Figure 4-16.
	Figure 4-17.
	Figure 4-18.
	Figure 4-19.
	Figure 4-20.

	Chapter 5 Figures
	Figure 5-1.
	Figure 5-2.
	Figure 5-3.
	Figure 5-4.
	Figure 5-5.
	Figure 5-6.
	Figure 5-7.
	Figure 5- 8.
	Figure 5-9.
	Figure 5-10.
	Figure 5-11.
	Figure 5-12.
	Figure 5-13.
	Figure 5-14.
	Figure 5-15.
	Figure 5-16.
	Figure 5-17.
	Figure 5-18.
	Figure 5-19.
	Figure 5-20.
	Figure 5-21.
	Figure 5-22.
	Figure 5-23.
	Figure 5-24.

	List of Tables
	Chapter 3 Tables
	Table 3-1.
	Table 3-2.
	Table 3-3.
	Table 3-4.
	Table 3-5.
	Table 3-6.
	Table 3-7.
	Table 3-8.
	Table 3-9.
	Table 3-10.
	Table 3-11.
	Table 3-12.

	Chapter 4 Tables
	Table 4-1.
	Table 4-2.
	Table 4-3.
	Table 4-4.
	Table 4-5.

	Chapter 5 Tables
	Table 5-1.
	Table 5-2.
	Table 5-3.

	Appendix A Tables
	Table A-1.
	Table A-2.
	Table A-3.
	Table A-4.
	Table A-5.
	Table A-6.
	Table A-7.
	Table A-8.
	Table A-9.
	Table A-10.
	Table A-11.
	Table A-12.
	Table A-13.
	Table A-14.
	Table A-15.
	Table A-16.
	Table A-17.
	Table A-18.
	Table A-19.
	Table A-20.
	Table A-21.
	Table A-22.
	Table A-23.
	Table A-24.
	Table A-25.
	Table A-26.
	Table A-27.
	Table A-28.
	Table A-29.
	Table A-30.
	Table A-31.

	Appendix D Tables
	Table D-1.
	Table D-2.
	Table D-3.
	Table D-4.
	Table D-5.
	Table D-6.
	Table D-7.
	Table D-8.
	Table D-9.
	Table D-10.
	Table D-11.
	Table D-12.
	Table D-13.
	Table D-14.
	Table D-15.
	Table D-16.
	Table D-17.
	Table D-18.
	Table D-19.
	Table D-20.

	Abstract
	Introduction
	Background
	Introduction
	Physics of Photonuclear Interactions
	Experimental Photonuclear Data
	Previous Photonuclear Studies
	Current Developments

	Implementation: Coupling Photonuclear Physics into MCNP(X)
	Introduction to Tabular Monte Carlo Radiation Transport
	Data Storage
	Photoatomic Versus Photonuclear Data
	Standard ACE Tables
	Photonuclear Class 'u' ACE Tables

	Data Processing
	Coupling Photonuclear Physics into MCNP(X)
	Introduction
	Setup and Storage
	Material Specification
	Photonuclear Isotope Override Card (MPN)
	Table ID Specification
	Default LIB Specifier
	Table Selection and Storage

	Physics Implementation
	Tallies, Summaries and Other Capabilities

	Future Work

	Verification and Validation
	Introduction to Verification and Validation
	Verification
	Comparison to Theoretical Yields
	Calculating Theoretical Yields
	Simulation Setup
	Comparison to Current Calculations

	Comparison to Measured Yields
	Experimental Setup
	Simulation Setup
	Comparison to Current Calculations

	Conclusions from Verification and Validation

	Application: Simulation of a Medical Electron Accelerator
	Introduction
	Validating the Simulation
	Background
	Physical Geometry
	Transport Data
	Radiation Source
	Transport Algorithms
	Obtaining Output

	Experimental Setup
	Simulation Setup
	Physical Geometry
	Transport Data
	Radiation Source
	Transport Algorithms
	Obtaining Output

	Discussion of the Results
	Depth Dose
	Activation

	Implications

	Summary and Conclusions
	Photonuclear ACE Table Format
	Introduction
	Table Layout
	NXS Array Elements
	JXS Array Elements
	XSS Block
	XSS Array
	ESZ Array
	TOT Array
	NON Array
	ELS Array
	THN Array
	MTR Array
	LQR Array
	LSIG Array
	SIG Array
	IXS Block
	IXS Array
	PXS Array
	PHN Array
	MTRP Array
	TYRP Array
	LSIGP Array
	SIGP Array
	LANDP Array
	ANDP Array
	LDLWP Array
	DLWP Array
	Law Header
	Energy Law 1
	Energy Law 2
	Energy Laws 3 & 33
	Energy Laws 4, 44 & 61
	Energy Law 5
	Energy Law 7
	Energy Law 9
	Energy Law 11
	Energy Law 22
	Energy Law 24
	Energy Law 66
	Energy Law 67

	MKPNT Processing Code
	Introduction
	mkpnt.c
	acepnData.h
	acepnIO.c
	afeCollectEnergies.c
	afeCreateNTableHeader.c
	areGetMTInformation.c
	afeGetMTNames.c
	afeGetMTProducts.c
	afeMakeNTable.c
	afeVerifyNTable.c
	endf6.h
	endf6.c
	endfConvert.h
	endfConvert.c
	endfLine.h
	endfLine.c
	endfMF1MT451.h
	endfMF1MT451.c
	endfMF1.h
	endfMF1.c
	endfMF2.h
	endfMF2.c
	endfMF3.h
	endfMF3.c
	endfMF4.h
	endfMF4.c
	endfMF5.h
	endfMF5.c
	endfMF6.h
	endfMF6.c
	Makefile

	Photonuclear Patch File
	zc
	vv
	cm
	blkdat
	jc
	ibldat
	imcn
	newcd1
	nexit1
	oldcd1
	setdas
	newcrd
	chekit
	nextit
	oldcrd
	iwtwnd
	stuff
	ixsdir
	xact
	getxst
	sread
	utask
	vtask
	msgcon
	hstory
	dxtran
	acegam
	acecol
	acecas
	acefcn
	acetbl
	acecos
	acecs6
	photot
	colidp
	mgcoln
	mgcolp
	tallyd
	calcps
	eventp
	kcalc
	sumary
	action
	disbug
	ratspl
	plot3d
	x3dmat
	cgsdci
	menrl
	getjdt
	acepxs
	angiso
	anglw1
	anglw2
	bnsrch
	coldpn
	expgpn
	pnctot
	retrpt
	savept
	tbl130
	tbl140

	Miscellaneous Data from Validation Studies
	Introduction
	Semi-infinite Aluminum Taget (Al-XX)
	Semi-infinite Iron Target (Fe-XX)
	Semi-infinite Copper Target (Cu-XX)
	Semi-infinite Tantalum Target (Ta-XX)
	Semi-infinite Tungsten Target (W-XX)
	Semi-infinite Lead Target (Pb-XX)
	One Radiation-Length Thick Aluminum Target (Al-I)
	One Radiation-Length Thick Copper Target (Cu-I)
	Two Radiation-Length Thick Copper Target (Cu-II)
	Three Radiation-Length Thick Copper Target (Cu-III)
	Four Radiation-Length Thick Copper Target (Cu-IV)
	One Radiation-Length Thick Tantalum Target (Ta-I)
	One Radiation-Length Thick Lead Target (Pb-I)
	Two Radiation-Length Thick Lead Target (Pb-II)
	Three Radiation-Length Thick Lead Target (Pb-III)
	Four Radiation-Length Thick Lead Target (Pb-IV)
	Six Radiation-Length Thick Lead Target (Pb-VI)
	Variation of Beam Energy
	Variation of Target Thickness
	Variation of Beam Radius

	Miscellaneous Data from Application Studies
	Introduction
	Activation Calculation
	Geometry with Block and Ingot
	Geometry without Block but with Ingot
	Geometry with Block but without Ingot
	Geometry without Block or Ingot
	Electron-Photoatomic Description of the Materials
	Electron-Photon-Neutron Description of the Materials
	Electron-Photoatomic Options for Tally Detectors
	Electron-Photoatomic Options for Volume Detectors
	Electron-Photon-Neutron Options for Tally Detectors
	Electron-Photon-Neutron Options for Volume Detectors
	Weight-Windows for Electron-Photon Simulation with Block and Ingot
	Weight-Windows for Electron-Photon Simulation with Block but without Ingot
	Weight-Windows for Electron-Photon Simulation without Block but with Ingot
	Weight-Windows for Electron-Photon Simulation without Block or Ingot
	Weight-Windows for Electron-Photon-Neutron Simulation with Block and Ingot
	Weight-Windows for Electron-Photon-Neutron Simulation with Block but without Ingot
	Weight-Windows for Electron-Photon-Neutron Simulation without Block but with Ingot
	Weight-Windows for Electron-Photon-Neutron Simulation without Block or Ingot
	Incident Electron Source - 19 MeV Mean Energy
	Incident Electron Source - 20 MeV Mean Energy
	Incident Electron Source - 21 MeV Mean Energy
	Incident Electron Source - 22 MeV Mean Energy
	Incident Electron Source - 23 MeV Mean Energy
	Incident Electron Source - 24 MeV Mean Energy
	Incident Electron Source - 25 MeV Mean Energy
	196-Au Production in Ingot 1
	196-Au Production in Ingot 2
	196-Au Production in Ingot 3
	198-Au Production in Ingot 1
	198-Au Production in Ingot 2
	198-Au Production in Ingot 3
	196-Au Production by Point Detectors
	198-Au Production by Point Detectors

	Dose Calculations
	Geometry for 5x5 Photon Field
	Geometry for 10x10 Photon Field
	Geometry for 30x30 Photon Field
	Materials for Electron-Photon Simulation
	Materials for Electron-Photon-Neutron Simulation
	Options for Electron-Photon Simulation
	Options for Electron-Photon-Neutron Simulation
	Weight-Windows for Electron-Photon Simulation
	Weight-Windows for Electron-Photon-Neutron Simulation
	Energy Specification for 10 MeV
	Energy Specification for 15 MeV
	Energy Specification for 20 MeV
	Energy Specification for 25 MeV
	Energy Specification for 30 MeV
	Energy Specification for 40 MeV
	Energy Specification for 50 MeV
	Energy Specification for 75 MeV
	Energy Specification for 100 MeV

	References

