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ANALYTICAL BENCHMARK TEST SET FOR CRITICALITY CODE VERIFICATION 

A. Sood (NCSU), R.A. Forster (LANL), and D.K. Parsons (LANL) 

ABSTRACT 

A number of published numerical solutions to analytic eigenvalue (ke.f) and 
eigenfunction equations are summarized for the purpose of creating a critical- 
ity verification benchmark test set. The 75-problem test set allows the user to 
verify the correctness of a criticality code for infinite medium and simple geome- 
tries in one- and two-energy groups, one- and two-media, and both isotropic and 
anisotropic neutron scattering. The problem specifications will produce both 
k,ff=l and the quoted k, to at least five decimal places. Additional uses of the 
test set for code verification are also discussed. A list of 45 references and an 
appendix with k, derivations is also included. 



I. INTRODUCTION 

This report describes a set of benchmark problems with analytic eigenvalue (k,ff) and eigenfunction 

(flux) solutions to the neutron transport equation from peer-reviewed journal articles. The purpose of the 

test set is to verify that transport algorithms and codes can correctly calculate the analytic k,ff and fluxes 

to at least five decimal places. These test set problems for infinite medium, slab, cylindrical, and spherical 

geometries in one- and two-energy groups, one- and two-media, and both isotropic and linearly anisotropic 

scattering are completely described using the listed references in this report. A three-group infinite medium 

and a six-group variant k, problem (unpublished) are also included. 

Verification is defined as “the process of evaluating a system or component to determine whether 

the products of a given development phase satisfy the conditions imposed at the start of the phase”’ or 

as a “proof of ‘correctness.” Confirmation (proof) of correctness is “a formal technique used to prove 

mathematically that a computer program satisfies its specified requirements.“i In contrast to verification, 

validation is defined as “the process of evaluating a system or component during or at the end of the 

development process to determine whether it satisfies specified requirements.“’ Thus code verification checks 

that the intended calculations have been executed correctly, while code validation compares the calculated 

results with experimental data. 

The objectives of this report are to define and document a set of analytic benchmarks for verifying 

criticality codes. Benchmark is defined as “a standard against which measurement or comparisons can 

be made.” 1 Available benchmarks for code verification do not focus on criticality problems.2 Validation 

benchmarks from critical experiments do exist, but are not verification benchmarks.3 Initial efforts to compile 

a benchmark test set for criticality calculation verification was begun, but not completed.4l5 The analytic 

benchmarks described here can be used to verify computed numerical solutions for k,ff and the associated 

flux with virtually no uncertainty in the numerical benchmark values.’ 

II. WHY THESE SOLUTIONS SERVE AS A TEST SET 

All critical dimensions, k,ff , and scalar neutron flux results quoted here are based on numerical com- 

putations using the analytic solutions to the k,ff eigenvalue (homogeneous) transport equation for “simple” 

problems. The analytic methods used include Case’s singular eigenfunction6 FN and BN methods,7s and 

Green’s functions.g All of these test set problem specifications and results are from peer-reviewed journals, 

and have, in some cases, been solved numerically using more than one analytic solution. All calculated values 

for critical dimensions, k,ff, and the scalar neutron flux are believed to be accurate to at least five decimal 

places. 
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III. SCOPE OF THE CRITICALITY VERIFICATION TEST SET 

The verification test set was chosen to represent a “wide” range of problems from the relatively small 

number of published solutions. These problems include simple geometries, few neutron energy groups, and 

simplified (isotropic and linearly anisotropic) scattering models. The problems use neutron cross sections 

that are reasonable representations of the materials described. These cross sections are not general purpose 

multi-group values. The cross sections are used because they are extracted from the literature results and 

are intended to be used only to verify algorithm performance and not to predict criticality experiments. 

The basic geometries include an infinite medium, slab, cylinder, and sphere with one- and two-energy 

group representations of uniform homogeneous materials. The slab and cylinder geometries are one-dimensional, 

as shown in Fig. 1; that is, each is finite in one dimension (thickness for slab and radius for the cylinders) and 

infinite elsewhere. The two-media problems surround each geometry with a specified thickness of reflector. 

Solutions for one-, two-, and three-group infinite medium problems are derived in Appendix A. 

The critical dimension, rc, is defined pictorially for the one-dimensional, one-medium problem geometries 

in Fig. 1, as well as the two-media infinite slab lattice cell. Reflector dimension(s) are provided for the 

reflected cases. 

htinite Slab Infinite Cylinder 

Figure 1: Critical Dimension, rc, for Bare One-Dimensional Geometries and Infinite Slab Lattice Cell 

The emphasis of the test set is on the fundamental eigenvalue, k,ff. All k,ff eigenvalues for finite fissile 

materials are unity to at least five decimal places. The k, values for a uniform homogeneous infinite medium 

are greater than unity. Few numerical eigenfunction solutions are published; consequently, mainly one-group 

and uniform homogeneous infinite medium fluxes are included in the test set results. 

To assist in verification, each problem has a unique problem number and identifier. Since the test set 

includes bare and multi-media problems, there are two forms of the identifier. The first form is for a bare 

geometry: 



Fissile Material - Energy Groups - Scattering - Geometry 

The possible entries for each category are listed in Table 1. The fissile materials and identifier consist of Pu- 

239 (PU), U-235 (U), highly enriched uranium-aluminum-water assembly (UAL), low enrichment uranium 

and DsO reactor system (UD20), and a highly enriched uranium research reactor (URR). The identifier may 

be followed by a letter to differentiate between different cross-section sets from nominally the same material. 

The table lists identifiers for the reflector material (if any), number of energy groups, scattering order, and 

geometry. The geometry is identified by the first two letters in the table. The exception is for the infinite 

slab lattice cell which uses ISLC. An example of the one material form of the identifier is: 

u-2-o-SP 

which is the identifier for a bare U-235 reactor (no reflector), 2 energy groups, isotropically scattering, in 

spherical geometry. 

The second form of the identifier includes the reflecting material. The reflectors are usually Hz0 with an 

exception of a three region Fe, Na, Fe reflector. Although many of the reflectors are identified as HsO, the 

reflector cross sections are often unique to each problem. Consequently, a letter may follow H20 indicating 

the HsO cross-section set used. The multi-media identifier form is: 

Fissile Material - Reflecting Material (thickness) - Energy Groups - Scattering - Geometry 

To separate multiple reflector thicknesses for the same fissile material, the thickness is given in parenthesis 

in the title in units of mean free paths (mfp). For example, 

UD20-H20(10)-l-O-SL 

is the identifier for a uranium and D20 reactor with a Hz0 reflector of 10 mean free path thickness, one- 

energy group, isotropically scattering, in slab geometry. An “IN” in parenthesis after the H20 means an 

infinite water reflector. 

Table 1: Nomenclature for Problem Identifiers 

Fissile Material Reflector Material 
PU bare 
U H20 

UD20 Fe-Na 
UAL 
URR 

Energy Groups 
1 group 
2 groups 
3 groups 
6 groups I 

Scattering Order 
0 - Pe Isotropic 
1 - Pi Anisotropic 
2 - P2 Anisotropic alinder 

Infinite slab Lattice cell 

Tables 2, 3, and 4 summarize each of the 75 problems in the test set and give the page number in this 

report. An “x” in the “Flux” column appears if the associated normalized spatial neutron fluxes or energy 

group flux ratio are given. An asterisk in the ‘Scattering” column appears if the Pi scattering expansion 
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becomes negative over part of the p interval from -1 to 1. The purpose of the layout of the test set problems 

is to increase user-friendliness. The user has all pertinent information to define any given problem in the 

verification test set on a single page. 

There are 43 problems in the one-energy group case: 30 problems assume isotropic scattering and 13 

have anisotropic scattering. For the two-energy group problems, there are 30 problems subdivided into 26 

isotropic scattering problems and 4 linearly anisotropic problems. Also included for an infinite medium are 

a three-group and a six-group (2 coupled sets of three groups) isotropic problem. The test set includes 24 

infinite medium problems, 24 slabs, 9 one-energy group cylinders, 14 spheres, and 4 infinite slab lattice cells. 



Table 2: Overview and Page Location for One-Energy Group Problem Identifiers 

Number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

*PI scat! 

Problem Identifier 
PUa-l-O-IN 
PUa-l-0-SL 
PUa-H20(1)-l-0-SL 
PUa-H20(0.5)-l-0-SL 
Pub-l-O-IN 
Pub-l-0-SL 
Pub-l-0-CY 
Pub-I-0-SP 
Pub-H20( l)-l-0-CY 
Pub-H20(10)-l-O-CY 
Ua-l-O-IN 
Ua-l-0-SL 
Ua-l-0-CY 
Ua-l-0-SP 
Ub-l-O-IN 
Ub-H20( l)-l-0-SP 
UC-~-O-IN 
UC-H20(2)-l-O-SP 
Ud-l-O-IN 
Ud-H20(3)-l-o-SP 
UDZO-l-O-IN 
UDPO-l-0-SL 
UDSO-l-0-CY 
UD20-l-0-SP 
UD20-H20(1)-l-O-SL 
UD20-H20(10)-l-O-SL 
UD20-H20( l)-l-0-CY 
UD20-H20(10)-l-o-CY 
Ue-l-O-IN 
Ue-Fe-Na-1-0-SL 
PU-l-l-IN 
PUa-l-I-SL 
PUa-l-2-SL 
Pub-l-l-SL 
Pub-l-2-SL 
Ua-l-l-CY 
Ub-l-l-CY 
UD20a-l-l-IN 
UD20a-l-l-SP 
UDZOb-l-l-IN 
UD20b-l-l-SP 
UD20c-l-l-IN 
UD20c-l-l-SP 

. , 

X 

X 

X 

X 

X 

X 

X’ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Page Number 
16 
16 
17 
17 
16 
16 
16 
16 
17 
17 
18 
18 
18 
18 
18 
19 
18 
19 
18 
19 
20 
20 
20 
20 
20 
20 
20 
20 
21 
21 
22 
22 
22 
22 
22 
23 
23 
24 
24 
24 
24 
24 
24 

Isotropic 

* 

* 
Anisotropic 

L * 
mg expansion oecomes negative over part ot the p interval from -1 to 1. 

Flux Scattering 
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Table 3: Overview and Page Location for Two-Energy Group Problem Identifiers 

Number 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

*PI scatt 

Problem Identifier 
PU-2-O-IN 
PU-2-o-SL 
PU-2-o-SP 
U-2-O-IN 
u-2-o-SL 
u-2-o-SP 
UAL-2-O-IN 
UAL-2-0-SL 
UAL-2-O-SP 
URRa-2-O-IN 
URRa-2-0-SL 
URRa-2-0-SP 
URRb-2-O-IN 
URRc-2-O-IN 
URRb-H20a(l)-2-0-SL 
URRb-H20a(5)-2-O-SL 
URRb-H20a(IN)-2-0-SL 
URRc-H2Oa(IN)-2-0-SL 
URRd-2-O-IN 
URRd-H2Ob(l)-2-0-ISLC 
URRd-H20b( lo)-2-0-ISLC 
URRd-H20c(l)-2-0-ISLC 
URRd-H20c(lO)-2-O-ISLC 
UD20-2-O-IN 
UD20-2-O-SL 
UD20-2-O-SP 
URRa-2-I-IN 
URRa-2-l-SL 
UD20-2-l-IN 
UD20-2-l-SL 

_ 

Flux Page Number 
27 
27 
27 
28 
28 
28 
29 
29 
29 
30 
30 
30 
31 
31 
31 
31 
31 
31 
32 
32 
32 
32 
32 
33 
33 
33 
34 
34 
35 
35 

Scattering 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Isotropic 

* 
Anisotropic 

ng expansion becomes negative over part of the p interval from -1 to 1. 

Table 4: Overview and Page Location for Three- and Six-Energy Group Problem Identifiers 

Number Problem Identifier Flux Page Number Scattering 
74 URR-3-O-IN X 36 Isotropic 
75 URR-6-O-IN X 38 



IV. USES OF THE CRITICALITY VERIFICATION TEST SET 

This report provides all necessary problem definitions and published critical (keff = 1) dimensions, k,, 

and scalar neutron %ux results to verify a criticality transport algorithm or code and associated numerics such 

as random number generation and round-off errors. All material cross sections provided are macroscopic, so 

the atom density used by the code should be unity. Not all of the analytic solutions from the references are 

used, however, because the number of problems in the test set becomes too large. For other solutions not 

included in this report, see the reference list. 

The verification test set problems can be used in several ways. The user can choose to simply calculate 

the problems and compare forward and adjoint k,ff and neutron Aux results with the benchmark solutions. 

However, there are several more verification processes that could be included. For example, in Monte Carlo 

codes, both multi-group and pointwise representation of multi-group data can be used. In multi-group 

problems, an alternative verification procedure is to change the energy group structure when up-scattering 

is allowed; that is, reverse the order of the fast and slow groups. To examine the alpha eigenvalue or time- 

dependent neutron decay or growth, the capture and total cross sections can be modified by a/v to represent 

subcritical and supercritical systems. 

Another part of code verification is testing different representations of the same geometry (e.g., reflecting 

boundaries and lattices). An example is an infinite one-dimensional slab (finite in one dimension and infinite 

in the other two dimensions) as shown in Fig. 1, which could be modeled as a three-dimensional cube with 

four reflective boundaries. Other geometry options can be tested by constructing several smaller cubes inside 

of the three-dimensional representation of a one-dimensional critical slab. The infinite medium problem can 

be represented by using large geometric boundaries, reflecting boundaries, or infinite lattices of finite shapes. 

Infinite medium problems can be used to verify constant scalar and angular flux in each energy group as 

well as scalar %ux ratios for more than one energy group. Three-dimensional geometric representations of 

optically small objects can also be tested for k, in infinite medium problems. lo Purely absorbing one-group 

infinite medium problems can provide faster code verification since scattering does not alter the infinite 

medium k, (see Appendix A). 

Another use of this verification set includes testing of any %ux tally approximations. This can be especially 

important at near tangential angles where some codes assume an average value for the cosine of the angle. 

This can also affect k,ff if it is estimated by same section of code that calculates the %ux. 

Different calculation capabilities of a code should be tested using these problems. For Monte Carlo 

codes, different variance reduction methods such as analog or implicit capture and geometric splitting or 

Russian roulette can be verified. Cycle-to-cycle correlations in the estimated k,ff standard deviation must 

be taken into account to form valid k,.f confidence intervals. Statistically independent runs can be made 

and analyzed if necessary. The magnitude of any negative bias in k,ff , which is a function of the number of 

neutron histories per fission generation, also needs to be considered and made smaller than O.OOOO1.ll 
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Deterministic codes can assess convergence characteristics and correctness of k,ff and the flux as a 

function of space and angle representation. Various characteristics of discrete ordinates numerics can also 

be checked such as the effects of eigenvalue search algorithms, angular redistribution terms in curvilinear 

geometries, ray effects, and various alternative geometric descriptions. 

V. NEUTRON TRANSPORT EQUATION OVERVIEW 

The neutron transport equation being solved in these benchmark problems is brie%y described for one- 

and two-energy groups and the isotropic and linearly anisotropic cases. The infinite medium solutions for 

k, and the %ux ratios are described in Appendix A. 

A. General k,ff Eigenvalue Equation 

The steady state neutron transport equation can be written as a k,ff eigenvalue problem as:12 

where: 

Q(F, E, 6) = angular neutron Aux as a function of space r’, energy E, and angle 6 

C,(F, E) = total neutron macroscopic cross section 

Cs(F, E’ 3 E, ii’ + f=i)dEdfi = neutron scattering macroscopic cross section 

from E’ to E+dE in direction dfi’ about 6 

= c elastic + qn,d) + qn,z”) f -** 

cf(q3’) = neutron fission macroscopic cross section 

Y(F, E’) = number of neutrons emitted from each fission event 

x(E) = fission neutron energy distribution 

For these test problems, there are no (n, zn’) reactions, z > 1, included in C,. The scattering cross section 

includes only isotropic scattering and no higher order scattering components. Therefore, C, = & - C, - Cf, 

where C, is the neutron capture cross section (zero neutrons emitted). This report also provides values for 

the scalar neutron flux, which is defined as $(r, E) = Jo S(F, E, fi)d6. The reported scalar neutron %ux 

values are normalized to the %ux at the center of the fissile material. 

The correct solution for k,ff will provide equality or balance for Eq. 1: losses equal gains. The k,ff 

eigenvalue is only associated with the fission reaction and no other multiplying process such as (n,2n). The 
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fundamental eigenvalue, k,ff, is unity for a critical system, less than unity for a subcritical system, and 

greater than unity for a supercritical system. The steady state k,ff eigenvalue equation is physically correct 

only when k,ff is unity and there is no decay or growth in iI?(r, E, 6). A solution when k,ff is not unity 

is still a valuable indicator of the ability of a system to sustain a fission chain reaction. When an infinite 

medium is considered, k,.f will be referred to as k,. This report gives results for the fundamental k,ff 

eigenvalue. For higher eigenvalue results, see Refs. 13,14,15,17,18,19,20. 

Analytic solutions to this general form of the transport equation do not exist. If we begin to simplify 

the equation by considering a one-dimensional slab with azimuthally symmetric scattering, the transport 

equation reduces to: 

pW(x, E, P) I” s 1 
dX 

+Ct(x,E)Q(x,E,p) = 2n dE’ Cs(x, E’ + E, p, p’)‘+? E’, p’)dp’ 
-1 

+x(E) ,jE, ‘(‘7 E’) 
1 --c,(x, E') 2ketf J q‘(r, E', d)dcL' (2) 

-1 

where ,CL is the cosine of the angle relative to a given direction. 

For the other finite geometries, the slab leakage term, ~2 must be replaced with the appropriate leakage 

term for a cylinder or sphere. l2 This equation is still too difficult to solve analytically. Approximations are 

required in both the space, angle, and energy variables to allow an analytic solution. 

B. One-Energy Group in One-Dimensional Slab Geometry 
1. Isotropic Scattering. 

To simplify Eq. 2, isotropic scattering is assumed, which implies that the emission angle after scattering 

is equally likely in all directions, giving: 

c,(F, E’ + E, 6’ + 6) = -$(r, E’ + E) 

The transport equation can be further simplified by assuming a homogeneous medium and only one 

energy group. Using these additional assumptions to define one-group scalar Aux weighted average cross 

sections, the transport equation becomes:r2 

A convenient transformation for this form of the transport equation is to change the position variable into 

a mean free path, or optical thickness, z. This change is done by using z = Ctx, thereby making dz/dx = Ct. 
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If we divide the transport equation by &, and use the change of variables, the neutron transport equation 

becomes: 

Notice that the dimensionless position variable, Z, is now defined in terms of mean free paths (mfp) (i.e., 

l/Et). The final simplified one-energy group transport equation for a slab can be written in a slightly more 

convenient form as: 

where: 

(6) 

The parameter c is defined as the mean number of secondary neutrons produced per neutron reaction 

and is also known as the secondaries ratio. This equation is the form of the one-medium, one-energy group 

transport equation for a slab. This equation still requires elaborate mathematics to solve as reported in the 

literature. Derivation of the one-energy group k, solution for the infinite medium case is shown in Appendix 

A. A c of unity is equivalent to a k, of unity. Thus, c must be greater than unity to have a finite critical 

system. 

The literature uses this form of the neutron transport equation with a non-reentrant boundary condition 

to derive one-energy group, isotropic scattering analytic solutions for the critical (k,ff=l) dimensional scalar 

neutron flux. It should be noted that c values for k,ff = 1 in Eq. 6 are presented in the literature, thereby 

cs+“cf making c = Ct. The typical range of c found in the literature for fissile materials is from 1.01 to 2.00. 

The one-group cross sections selected for the test set mimic the physical characteristics of the two-group 

problems and range from 1.02 to 1.50. A value of c of 1.5 is the upper limit for real fissile materials. 

2. Linearly Anisotropic Scattering. 

The scattering term, Cs(F, E’ + E, 6’ + 6) can be a strong function of the cosine of the scattering 

angle, PQ = 6’ . 6. The angular dependence can be analyzed by Legendre polynomial series expansion of 

C,(F’, E’ -+ E, i=i’ . 6). ” Using the Legendre polynomial expansion, the one-energy group, one-dimensional 

slab, neutron transport equation can be written in a similar form to Eq. 5:22723 

//wZ7 P) +9(.&p) = ; J 1 dz wz, m f P'/-wP' 
-1 

Solutions for this form of the neutron transport equation are often found in the literature. The solution of 

this equation includes linearly anisotropic scattering; however, it also includes a linearly anisotropic fission 
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source emission. For problems that include the anisotropic effect on the fission term, see Refs. 15,22,23. 

Solutions for the higher eigenvalues exist for this form of the transport equation.13~14~15~17~18Jg~20 

Numerical solutions exist that do not force the anisotropic effect on the fission term. This limitation 

on the different anisotropic behavior of scattering and fission can be removed by using different transfer 

functions for scattering and fission. The neutron transport equation can be written as:24 

where: 

mh P) = PWPO) + (1 - PWf (PO) 

p= cs C,+“Cf’ O<PIl 
The parameters, fI,(~O) and rif&,), are the angular transfer functions for scattering and fission, re- 

spectively, and are dependent on p and p’. The weighting parameter, p, allows for the different anisotropic 

behavior for the scattering and fission terms. This is one of several ways found in the references of separating 

the anisotropic scattering and fission terms. 

C. Two-Energy Groups in One-Dimensional Slab Geometry 
1. Isotropic Scattering. 

Using the same procedures as in the one-group case, the two-energy group form of the transport equation 

for a slab can be written as:* 

where: 

Ci = total neutron macroscopic cross section of group i 

Cij = total neutron group transfer macroscopic cross section 

from group j to group i 

In this report, the fast energy group is group 2 to be consistent with most of the references. 

This notation is the reverse of most nuclear engineering textbooks. 

Assuming group 2 is the fast group and no nonfission up-scatter for the slow group 1, the group transfer 

cross sections are given by: 
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Cl1 = Gls + xl~l&f/k,ff 

c21 = x2Glf/ketf 

Cl2 = &2s +xm~2f/k,i~ 

x22 = C22s +xm&flk,t~ 

Note that Ci = Ci, + Cif + &is + Cjis, where the Cjis represents nonfission scattering to group j # i. This 

equation for Ci again assumes that the C(,Q~)~ + . . . components are zero. 

The two-energy group form of the transport equation, which has solutions in the literature, can be 

written in a similar form to the one-group equations utilizing the optical thickness parameter, z = Czx, but 

in matrix-vector notation as seen below. 

where: 

(11) 

and 
cij = &j/&. (12) 

The derivations for the infinite medium k, and the group 2 to group 1 flux ratio are given in Appendix A. 

2. Linearly Anisotropic Scattering. 

One of the above simplifying assumptions to the steady state neutron transport equation is that neutron 

scattering is isotropic (no angular dependence). However, the scattering term, C,(F, E’ -+ E, fi’ + 6) can 

be a strong function of the cosine of the scattering angle, ,UO = 6’ .fi. This angular dependence can be 

analyzed by Legendre polynomial series expansion of C,(?, E’ + E, 6’ . fi),‘l giving 

M 21+1 
IZ,(F’,E’+E,fi’di) = c --c,,(r‘, E’ -+ E)P@’ . i=i) 

l=O 47r 
(13) 

where M indicates the degree of anisotropy. For A4 = 0, scattering in the lab system is isotropic and for 

M = 1, scattering is linearly anisotropic. A complete mathematical description is in Ref. 12 and 21. For 

linearly anisotropic scattering, the scattering cross section consists of two components, C,, and C,, , where 
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C,, is the linear anisotropic scattering component and affects the scattering angular distribution for both in 

and out of group scattering. Anisotropic scattering can be forward or backward peaked and thus C,, can be 

positive or negative. For linear anisotropic scattering in the one-energy group case, C,(p) = (C,, +3@,,)/2. 

Thus, C,(p) can become negative when IX,, 1 > C,,/3. Test set problems 34, 37, 43, and 71 exhibit this 

behavior. The total scattering cross section is not dependent on C,, . The anisotropic cross section only affects 

the angular distribution. Infinite medium k co and neutron flux results are independent of the anisotropic 

cross section. 

Using the Legendre polynomial expansion, the neutron transport equation for a one-dimensional slab 

with azimuthally symmetric scattering can be written in a form similar to Eq. 2: 

/W, E, cl> + Ct(x, E)+(x, E, p) = 
8X 

2n fi(d)~(~,p’)cEcL’ 
00 

+x(E) J dE, u(x> E’) 1 

---Cf (2, E') 
0 2keff J Q(T, E', cl')d/J (14 

-1 

Following the same procedures as in Eq. 5, the general two-speed linearly anisotropically scattering 

analogue to Eq. 10 which also has numerical solutions is:25 

where: 

(15) 

(16) 

and 

Cijl = (21 + l&j&. (17) 

The CijS, term is the linearly anisotropic scattering cross section and is given in the problem descriptions 

without the (22 + 1) term. 
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ONE-ENERGY GROUP PROBLEM DEFINITIONS 

AND RESULTS 

For the one-energy group cases, the critical dimension(s) for each geometry depends upon the c value 

chosen from the literature and not specific cross-section sets. To use the literature results, the cross sections 

were selected to match published c values with k,ff= 1 at low, middle, and high c values listed. Values ranging 

from 1.02, 1.30, 1.40, and 1.50 were chosen because they are similar to the physical systems in the two-group 

cases: uranium-D20 reactor, U-235, and Pu-239. These problems use cross sections that are reasonable 

representations of these materials; however, these cross sections are not general purpose one-group values. 

The cross sections are used because they define the c values used in the literature and are intended to be 

used only to verify algorithm performance and not to predict any actual criticality experiments. 

The isotropic neutron macroscopic cross sections provided for each case are: the total cross section, 

Ct, the capture (no neutrons emitted) cross section, C,, the scattering cross section, C,, the fission cross 

section, Cf, and the number of neutrons, v, emitted for each fission. The (n,2n), (n,3n), . . . cross sections 

are assumed to be zero (but need not be). Thus the total cross section equals the sum of C,, C,, and Cf, 

thereby providing a consistency check on the cross-section set. Many references give (VCf) instead of v 

and Cf. Since both parameters (not the product) may be required by a code for the problem solution, the 

product (UC,) has been split into v and Cf preserving their product and Ct. The value of c for k,ff=l in 

Eq. 6 is also included in each cross-section table. For the reflected spheres, different secondaries ratios, c, are 

reported with the critical dimension for k,ff=l for various combinations of core and reflector thicknesses. 

To maintain consistent cross sections with the U-235 set, the parameter, v, was modified to match c to the 

literature values. 

When anisotropic scattering cross sections are provided, the anisotropic components are designated by 

&, and G,, respectively. Similarly, the isotropic scattering component is designated by C,, . 

The value of k,, as defined in Appendix A, is given for each cross-section set. For finite problems where 

k eff is unity, the critical dimension, rC, is listed for each geometry in both mean free paths (to indicate the 

neutron optical thickness) and in centimeters for the one-dimensional geometries. When available in the 

literature, the scalar flux values, normalized to the flux at the center of the fissile material, are also provided. 

The two-media problems have cl > 1 for the core region 1 and cz < 1 for the surrounding reflector region 2. 

The two-media problems use the cross sections for the nonmultiplying reflector. The critical dimensions for 

the multiplying medium and reflector thickness are given in both mean free paths and centimeters. 

A comparison of the critical dimensions for the different geometries behave as expected; that is, the 

critical dimension is smallest for the one-dimensional slab and increases for the cylinder and sphere. This 

behavior is to be expected due to the increased leakage with the curvi-linear geometries. For the reflected 

geometries, the critical dimension decreases with increasing reflector thickness. 
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A. One-Energy Group Isotropic Scattering 
1. One-Group Pu-239. 

One-Energy Group Isotropic Cross Sections 

Table 5 gives the one-group, isotropic cross sections for two case of Pu-239 (c=1.50 and c=1.40) and a 

Hz0 (c=O.90) reflector. The total cross sections are the same for both Pu-239 cases and Hz0 as required by 

the reference for the two-media solutions. 

Table 5: One-Group Macroscopic Cross Sections (cm-‘) for Pu-239 (c=1.40,1.50) and Hz0 (c=O.90) 

Material Cf -& Es & 
Pu-239 (a) 3.14 0.081600 0.019584 0.225216 0.32640 l.iO 
Pu-239 (b) 2.84 0.081600 0.019584 0.225216 0.32640 1.40 
Hz0 (refl) 0.0 0.0 0.032640 0.293760 0.32640 0.90 

Infinite Medium (PUa-l-O-IN and Pub-l-O-IN) 

Using the cross sections for Pu-239 (a) (problem 1) in Table 5, k, = 2.612903 with a constant angular 

and scalar flux everywhere. Using the cross sections for Pu-239 (b) (problem 5) in Table 5, k, = 2.290323 

with a constant angular and scalar Aux everywhere. 

One-Medium Slab, Cylinder, and Sphere Critical Dimensions 

The Pu-239 ( a critical dimension, r,., is listed in Table 6. ) 

Table 6: Critical Dimensions, rc, for One-Group Bare Pu-239 (c=1.50) 

Problem 1 Identifier 1 Geometry rc (mfp) rc (cm) Reference 
2 ) PUa-I-0-SL 1 Slab 0.605055 1.853722 9 

The Pu-239 (b) critical dimensions, rc, are listed in Table 7. The normalized scalar flux for four spatial 

positions are given in Table 8 using the same references. The flux ratios for Pub-l-0-CY are only available 

to four decimal places. 

Table 7: Critical Dimensions, rc, for One-Group Bare Pu-239 (c=1.40) 

Problem Identifier Geometry rc bfp) rc (cm) Reference 
6 Pub-l-0-SL Slab 0.73660355 2.256751 26 
7 Pub-l-0-CY Cylinder 1.396979 4.279960 27,28 
8 Pub-l-0-SP Sphere 1.9853434324 6.082547 26 

Table 8: Normalized Scalar Fluxes for One-Group Bare Pu-239 (c=1.40) 

Problem Identifier Geometry r/r, = 0.25 r/r, = 0.5 r/r, = 0.75 r/r, = 1.0 
6 Pub-l-0-SL Slab 0.9701734 0.8810540 0.7318131 0.4902592 
7 Pub-l-0-CY Cylinder - 0.8093 - 0.2926 
8 Pub-l-0-SP Sphere 0.93538006 0.75575352 0.49884364 0.19222603 
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Two-Media Slab and Cylinder Critical Dimensions 

The literature values in Tables 9 and 10, give the critical dimensions for Pu-239 (a) for two Hz0 reflector 

thicknesses. The first two-media problem (problem 3) in Table 9 is a special nonsymmetric two-region, Pu- 

239 and HzO, problem. The second two-media problem (problem 4) in Table 10 is a symmetric three-region 

problem with the reflector on both sides of the fissile medium. 

Table 9: Critical Dimensions for One-Group Pu-239 Slab (c=1.50) with Non-Symmetric Hz0 Reflector 
(c=O.90) 

Problem Identifier Geometry Pu I, Ha0 thickness Pu+HeO Radius Reference 
3 PUa-H20(1)-l-0-SL Slab (mfp) 0.48255 1 9 

(cm) 1.478401 3.063725 4.542126 

Table 10: Critical Dimensions for One-Group Pu-239 Slab (c=1.50) with Hz0 Reflector (c=O.90) 

Problem Identifier Geometry Pu rc Ha0 thickness Pu+HeO radius Reference 
4 PUa-H20(0.5)-l-0-SL Slab (mfp) 0.43014 0.5 9 

(cm) 1.317831 1.531863 2.849694 

The literature values in Table 11, give the critical dimensions for Pu-239 (b) with two Hz0 reflector 

thicknesses. 

Table 11: Critical Dimensions for One-Group Pu-239 Cylinder (c=1.40) with Hz0 Reflector (c=O.90) 

Problem Identifier Geometry Pu rc Hz0 thickness Pu+HaO Radius Reference 
9 Pub-H20(1)-I-0-CY Cylinder (mfp) 1.10898 1 29 

(cm) 3.397610 3.063725 6.461335 
10 Pub-H20(10)-l-O-CY Cylinder (mfp) 1.00452 10 29 

(cm) 3.077574 36.637255 33.714829 
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2. One-Group U-235. 

One-Group Isotropic Cross Sections 

Table 12 gives the one-group, isotropic cross sections for two cases of U-235 and a Hz0 reflector. Notice 

that one-group & for Pu-239 and U-235 are the same as given in reference 32, but the secondaries ratio, c, 

differs. 

Table 12: One-Group Macroscopic Cross Sections (cm-‘) for U-235 (1~1.30) 

Material v Cf cc & Et C 

U-235 (a) 2.70 0.065280 0.013056 0.248064 0.32640 1.30 
U-235 (b) 2.797101 0.065280 0.013056 0.248064 0.32640 1.3194202 
U-235 (c) 2.707308 0.065280 0.013056 0.248064 0.32640 1.3014616 
U-235 (d) 2.679198 0.065280 0.013056 0.248064 0.32640 1.2958396 
Hz0 (refl) 0.0 0.0 0.032640 0.293760 0.32640 0.90 

Infinite Medium (Ua-l-O-IN , Ub-l-O-IN , UC-~-O-IN , and Ud-l-O-IN ) 

Using the cross sections for U-235 (a) in Table 12, k, = 2.25 (problem 11) with a constant angular and 

scalar flux everywhere. Using the cross sections for U-235 (b), U-235 (c), and U-235 (d) in Table 12, k, 

= 2.330917 (problem 15), 2.256083 (problem 17), and 2.232667 (problem 19) with a constant angular and 

scalar flux everywhere, respectively. 

One-Medium Slab, Cylinder, and Sphere Critical Dimensions 

The critical dimension, r,, and spatial flux ratios are given in Table 13 and 14 for U-235 (a). The 

references are the same for both tables. 

Table 13: Critical Dimensions, rc, for One-Group Bare U-235 (c=1.30) 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 
12 Ua-l-0-SL Slab 0.93772556 2.872934 26 
13 Ua-l-0-CY Cylinder 1.72500292 5.284935 27,28 
14 Ua-l-0-SP Sphere 2.4248249802 7.428998 26 

Table 14: Normalized Scalar Fluxes for One-Group Bare U-235 (c=1.30) 

Problem Identifier Geometry r/r., = 0.25 r/r, = 0.5 r/r, = 0.75 r/r, = 1.0 
12 Ua-l-0-SL Slab 0.9669506 0.8686259 0.7055218 0.4461912 
14 Ua-l-0-SP Sphere 0.93244907 0.74553332 0.48095413 0.17177706 
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Two-Media &here Critical Dimensions 

The literature values in Table 15, give the critical dimensions for U-235 (b), U-235 (c), and U-235 (d) for 

three spherical Hz0 reflector thicknesses. 

Table 15: Critical Dimensions for One-Group U-235 Sphere with Hz0 Reflector (c=O.90) 

Problem 
16 

18 

20 

Identifier 
Ub-H20(1)-l-0-SP 

UC-H20(2)-l-O-SP 

Ud-H20(3)-l-O-SP 

Geometry 
Sphere (mfp) 

(cm> 
Sphere (mfp) 

(4 
Sphere (mfp) 

(cm> 

U rr 
2 

6.12745 
2 

6.12745 
2 

6.12745 

HZ 0 thickness 
1 

3.063725 
2 

6.12745 
3 

9.191176 

U+H, 0 Radius 

9.191176 

12.2549 

15.318626 

Reference 
17,20 

17,20 

17,20 
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3. One-Group U-D20 Reactor. 

One-Group Isotropic Cross Sections 

Table 16 gives the one-group, isotropic cross sections for the uranium-D20 reactor and Hz0 reflector. 

Note that the uranium-D20 reactor and Hz0 reflector have the same total cross section as required by the 

references for the reflected cylindrical solutions. 

Table 16: One-Group Macroscopic Cross Sections (cm-‘) for U-D20 Reactor (c=1.02) and Hz0 (c=O.90) 

Material v Cf .G x.5 & C 

U-D20 1.70 0.054628 0.027314 0.464338 0.54628 1.02 
Hz0 (refl) 0.0 0.0 0.054628 0.491652 0.54628 0.90 

Infinite Medium (UD20-l-O-IN) 

Using the cross sections for U-D20 in Table 16, k, = 1.133333 (problem 21) with a constant angular 

and scalar flux everywhere. 

One-Medium Slab, Cylinder, and Sphere Critical Dimensions 

The critical dimension, rc, and spatial flux ratios are listed in Table 17 and 18. 

Table 17: Critical Dimensions, rc, for One-Group Bare U-D20 Reactor (c=1.02) 

Problem Identifier Geometry PC bfp) rc (cm) Reference 
22 UD20-l-0-SL Slab 5.6655054562 10.371065 26 
23 UD20-l-0-CY Cylinder 9.043255 16.554249 27,28 
24 UD20-l-0-SP Sphere 12.0275320980 22.017156 26 

Table 18: Normalized Scalar Fluxes for One-Group Bare U-D20 Reactor (~1.02) 

Problem Identifier Geometry r/r, = 0.25 r/r, = 0.5 r/rc = 0.75 r/r, = 1.0 
22 UD20-l-0-SL Slab 0.93945236 0.76504084 0.49690627 0.13893858 
24 UD20-l-0-SP Sphere 0.91063756 0.67099621 0.35561622 0.04678614 

Two-Media Slabs and Cylinders Critical Dimensions 

Table 19 gives the U-D20 critical dimension, r,, for two Hz0 reflector thicknesses. 

Table 19: Critical Dimensions for One-Group U-D20 (c=1.02) Slab and Cylinder with Hz0 (c=O.90) Re- 
flector 

Problem Identifier Geometry UDzO rc Hz0 thickness UD20 + Hz0 radius Reference 
25 UD20-H20(1)-l-O-SL Slab (mfp) 5.0335 1 33,34 

(4 9.214139 1.830563 11.044702 
26 UD20-H20(10)-l-O-SL Slab (mfp) 4.6041 10 33,34 

(4 8.428096 18.30563 26.733726 
27 UD20-H20(1)-l-O-CY Cylinder (mfp) 8.411027 1 29 

(cm) 15.396916 1.830563 17.227479 
28 UD20-H20(10)-l-O-CY Cylinder (mfp) 7.979325 10 29 

(cm) 14.606658 18.30563 32.912288 
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4. One-Group U-235 Reactor. 

One-Group Isotropic Cross Sections 

Table 20 gives the one-group, isotropic cross sections for the U-235 reactor with a Fe reflector and Na 

moderator. 

Table 20: One-Group Macroscopic Cross Sections (cm-l) for U-235 Reactor, Fe reflector, and Na Moderator 

Material Cf cc 
U-235 (e) 2lO 0.06922744 0.01013756 

& & C 

0.328042 0.407407 1.230 
Fe (refl) 0.0 0.0 0.00046512 0.23209488 0.23256 0.9980 

Na (mod) 0.0 0.0 0.0 0.086368032 0.086368032 1.00 

Infinite Medium (Ue-l-O-IN) 

Using the cross sections for the U-235 reactor in Table 20, k, = 2.1806667 (problem 29) with a constant 

angular and scalar flux everywhere. 

One-Medium Slab Critical Dimensions 

Note that this problem is a nonsymmetric four-region problem. The U-235 is surrounded by a Fe cladding 

on two sides but moderated by Na on one side. The critical dimension, rc, is listed in Tables 21 and 22. 

Table 21: Critical Dimensions, r,-, for One-Group U-235 Reactor 

Problem Identifier Geometry Fe thickness U-235 thickness Fe thickness Na thickness Reference 
30 Ue-Fe-Na-l-O-SL Slab (mfp) 0.0738 2.0858098 0.0738 0.173 45 

(cm) 0.317337461 5.119720083 0.317337461 2.002771002 

Table 22: Critical Dimensions, rc, for One-Group U-235 Reactor 

Problem Identifier ( Geometry ( Fe thickness Fe+U 1 Fe+U+Fe Fe+U+Fe+Na 
30 Ue-Fe-Na-1-0-SL ) Slab (cm) 1 0.317337461 5.437057544 1 5.754395005 7.757166007 

The U-235 (e) critical dimensions, rc, are listed in Tables 21 and 22. The normalized scalar flux for four 

spatial positions are given in Table 23 using the same references. These positions correspond to the material 

boundaries and are normalized by the scalar neutron flux at the left boundary. 

Table 23: Normalized Scalar Fluxes for One-Group U-235 Reactor 

Problem ( Identifier 1 Geometry Fe-U U-Fe Fe-Na 1 Na 
30 ) Ue-Fe-Na-1-0-SL 1 Slab 1.229538 1.49712 1.324899 1 0.912273 
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B. One-Group Anisotropic Scattering 
1. One-Group Pu-239. 

One-Energy Group Anisotropic Cross Sections 

Table 24 gives the one-group, anisotropic cross sections for two cases of anisotropic scattering. The first 

cross-section set, Pu-239 (a), includes Pi and PZ scattering cross sections, where 1 ~1 I< l/3. The second 

cross-section set, Pu-239 (b), includes the Pi and P2 scattering cross sections where 1 p I> l/3. Care must 

be used to correctly solve benchmark problem 34 because of the negative scattering for ,u near 

-1. 

Table 24: One-Group Macroscopic Anisotropic Cross Sections (cm-l) for Pu-239 (c=1.40) 

Material v Cf C, C,, c 
o.%b 

c 
0.0;s 

Ct 
Pu-239 (a) 2.5 0.266667 0.0 0.733333 1.0 l.c40 
Pu-239 (b) 2.5 0.266667 0.0 0.733333 0.333333 0.125 1.0 1.40 

Infinite Medium (PU-l-l-IN) 

Using the cross sections for Pu-239 (a) and Pu-239 (b) in Table 24, k, = 2.5 (problem 31) with a constant 

angular and scalar flux everywhere. The anisotropic scattering cross sections do not change k,. 

One-Medium Slab Critical Dimensions 

The Pu-239 critical dimensions, rc, for both Pi and P2 problems are listed in Table 25. 

Table 25: Critical Dimensions, r,, for One-Group Bare Pu-239 (c=1.40) 

Problem Identifier Geometry rc (mfp) r, (cm) Reference 
32 PUa-l-I-SL Slab 0.77032 0.77032 30 
33 PUa-l-2-SL Slab 0.76378 0.76378 30 
34 Pub-l-l-SL Slab 0.79606 0.79606 30 
35 Pub-l-2-SL Slab 0.78396 0.78396 30 
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2. One-Group U-235 

One-Energy Group Anisotropic Cross Sections 

Table 26 gives the two sets of one-group, anisotropic cross sections for U-235. Notice that the cross 

sections are the same as in Table 12 with the addition of Pi scattering cross sections. The first cross-section 

set, U-235 (a), includes PI scattering cross sections, where 1 p (< l/3. The second cross-section set, U-235 

(b), includes the Pi scattering cross sections where I p I> l/3. Care must be used to correctly solve 

benchmark problem 37 because of the negative scattering for p near-l. 

Table 26: One-Group Macroscopic Anisotropic Cross Sections (cm-‘) for U-235 (c=1.30) 

Material v Cf cc c c 
U-235 (a) 2.70 0.065280 0.013056 0.24$64 0.04232 

& 
0.32640 l.iO 

U-235 (b) 2.70 0.065280 0.013056 0.248064 0.212160 0.32640 1.30 

Infinite Medium (U-l-l-IN) 

Using the cross sections for U-235 (a) and U-235 (b) in Table 26, k, = 2.25 (problem 11) with a constant 

angular and scalar flux everywhere. The anisotropic scattering cross sections do not change k,. 

One-Medium Slab Critical Dimensions 

The U-235 critical dimensions, rc, for both PI problems are listed in Table 27. 

Table 27: Critical Dimensions, r,, for One-Group Bare U-235 (c=1.30) 

Problem Identifier Geometry rc bfd rc (cm) Reference 
36 Ua-l-l-CY Cylinder 1.799866479 5.514296811 31 
37 Ub-l-I-CY Cylinder 2.265283130 6.940205668 31 
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3. One-Group U-D20 

One-Energy Group Anisotropic Cross Sections 

Table 28 gives the two sets of one-group, anisotropic cross sections for U-D20 reactor. Notice that the 

cross sections are the same as in Table 16 with the addition of Pi scattering cross sections. The cross-ections 

set for two U-D20 cases include Pi scattering cross sections, where 1 1-1 I< l/3, and a PI case where ~1 < 0 and 

the scattering cross section is negative. Care must be used to correctly solve benchmark problem 

43 because of the negative scattering for p near 1. 

Table 28: One-Group Macroscopic Anisotropic Cross Sections (cm-‘) for U-D20 Reactor 

Material Cf cc c %I Et 
U-D20 (a) 1.801381 0.054628 0.027314 0.46;38 0.056312624 0.54628 1.03;8381 
U-D20 (b) 1.841086 0.054628 0.027314 0.464338 0.112982569 0.54628 1.0341086 
U-D20 (c) 1.6964 0.054628 0.027314 0.464338 -0.27850447 0.54628 1.01964 

Infinite Medium UD20a-l-l-IN , UDSOb-l-l-IN , and UD2Oc-l-l-IN 

Using the cross sections for U-D20 (a), U-D20 (b), and U-D20 (c) in Table 28, k, = 1.205587 (problem 

38), 1.227391 (problem 40), and 1.130933 (problem 42), respectively, with a constant angular and scalar flux 

everywhere. The anisotropic scattering cross sections do not change k,. 

One-Medium Slab Critical Dimensions 

The U-D20 critical dimensions, rc, for the Pi problems are listed in Table 29. 

Table 29: Critical Dimensions, rc, for One-Group Bare U-D20 

Problem Identifier Geometry T, (mfp) rc (cm> Reference 
39 UD20a-l-l-SP Sphere 10 18.30563081 15 
41 UD20b-l-l-SP Sphere 10 18.30563081 15 
43 UD20c-l-l-SP Sphere 10 18.30563081 16 
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VII. TWO-ENERGY GROUP PROBLEM DEFINITIONS 

AND RESULTS 

The isotropic two-energy group cross sections for five bare and two water reflected cases are listed in this 

section. There are also two linearly anisotropic scattering cross-sections sets provided for bare and infinite 

medium reactors. Unlike the one-group case, there is no flexibility in choosing these values since they are used 

throughout the literature. The cross sections listed here are similar to Pu-239,32 U-235,32 a realistic enriched 

uranium-aluminum-water assembly,* a 93% enriched U-235 model of a university research reactor,8T35*36 and 

a typical large size DsO reactor with low enrichment of U-235. 8p35,36 Also included are critical dimensions 

for a similar uranium research reactor with a water reflector in an infinite lattice.34 Again, these problems 

use cross sections that are reasonable representations of the materials described. These cross sections are 

not general purpose two-group values. The cross sections are used because they are defined in the literature 

and are intended to be used only to verify algorithm performance and not to predict any actual criticality 

experiments. 

The isotropic neutron cross macroscopic sections (cm-r) provided for these problems are the total cross 

section of group i, &, the capture (no neutrons emitted) cross section, CCi, the within group scattering cross 

section, Ciis, the group-to-group scattering cross sections, Cijs and Cjis, the fission cross section, Cif , the 

number of neutrons, Vi, emitted from each fission in a group, and the fission distribution, xi. 

In this report, the fast energy group is group 2 to be consistent with most of the references. 

This notation is the reverse of most nuclear engineering textbooks. 

The literature solutions are often based on the group transfer cross sections, I&, given in the references; 

therefore, the individual cross sections may not be unique. Most references give (vCf)i instead of vi and Cfi. 

Since both parameters (not the product) may be required by a code for the problem solution, the product 

(VCf)i has been split into Vi and Cfi preserving their product and C t. The infinite slab lattice problems use 

a slightly unphysical set of cross sections to possibly stress code verification. 

The two sets of linearly anisotropic cross sections provided are extensions of the university research 

reactor and D20 cases.25 The anisotropic scattering component is designated for the in-group and group-to- 

group scattering cross section by Ciisl and Cjis,, respectively. Similarly, the isotropic scattering component 

is designated by I&is0 and Cjis,,. 

The value for k, is given for each cross-section set. The in-group scattering cross sections do not affect 

k 03’ For finite problems, the critical dimension, r,-, is listed in both fast group mean free paths (to indicate 

the neutron optical thickness) and in centimeters. For two-media problems, critical dimensions for the inner 

multiplying medium and outer reflector thickness are given in both fast mean free paths and centimeters. 

The critical dimensions, rC, and reflector half thicknesses are also given for a water reflected infinite slab 
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lattice cell. Flux values are given for the university research reactor (a) (problems 54 and 71) at four spatial 

points. Angular fluxes can be found in the dissertation references. 

To distinguish between the different URR fissile material cross-section sets, each is labeled with a letter 

“a,““b,““c,” or “CF’, respectively. The infinite slab lattice cell cross sections are similar to the other three 

cross-section sets for the university research reactor and are labeled with URRd identifiers. The literature 

also uses three different Hz0 reflectors. Their cross sections are also labeled with a letter “a,” “b,” or “c” 

in the identifier. URR cross-section sets “b” and “c” have thermal upscattering. All other two-group cross 

sections have no thermal upscattering. 

A comparison of the critical dimensions for the different geometries behave as expected; that is, the critical 

dimension is smallest for the one-dimensional slab and increases for the cylinder and sphere. This behavior is 

to be expected due to the increased leakage with the curvi-linear geometries. The effect of increased leakage 

on the critical dimension can be also be seen for the forward peaked linear anisotropically scattering cases. 

For the reflected geometries, the critical dimension decreases with increasing reflector thickness. However, 

the critical dimension for the infinite lattice cell increases with the increasing moderator thickness. Even 

though this may seem counter-intuitive, it should be expected because the amount of interaction between 

the fissile medium and adjacent cells decreases with increasing moderator half thickness.34 
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A. Isotropic Scattering 
1. Two-Group Pu-239. 

Two-Group Isotropic Cross Sections 

Tables 30 and 31 give the two-group, isotropic cross sections for Pu-239. 

Table 30: Fast Energy Group Macroscopic Cross Sections (cm-l) for Pu-239 

Material 1 ~2 ( Elf 1 c c22s G2s x2 1 x2 
Pu-239 1 3.10 1 0.0936 1 O.OC%O 1 0.0792 I 0.0432 1 0.2208 1 0.575 

Table 31: Slow Energy Group Macroscopic Cross Sections (cm-‘) for Pu-239 

Material ) vi ) Elf &C 1 c 11.9 c21s Cl 
Pu-239 1 2.93 j 0.08544 1 0.0144 1 0.23616 1 0.0 1 0.3360 0.%5 

Infinite Medium (PU-2-O-IN) 

Using the two-group isotropic Pu-239 cross-section set from Tables 30 and 31, k, = 2.683767 (problem 

44) with a constant group angular and scalar flux and a group 2 to group 1 flux ratio = 0.675229. 

One-Medium Slab and Sphere Critical Dimensions 

The critical dimensions, rc, are listed in Table 32. 

Table 32: Critical Dimensions, r,, for Two-Group Bare Pu-239 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 
45 PU-2-o-SL Slab 0.396469 1.795602 8,35,36 
46 PU-2-o-SP &here 1.15513 5.231567 8 
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2. Two-Group U-235. 

Two-Group Cross Sections 

Tables 33 and 34 give the two-group, isotropic cross sections for U-235. 

Table 33: Fast Energy Group Macroscopic Cross Sections (cm-l) for U-235 

Material I ~2 ) % c2c c22s &2s x2 1 x2 
U-235 1 2.70 1 0.06192 ) 0.00384 1 0.078240 1 0.0720 1 0.2160 1 0.575 

Table 34: Slow Energy Group Macroscopic Cross Sections (cm-‘) for U-235 

Material VI 1 =lf c &ls c21s Cl 
U-235 2.50 1 0.06912 0.01:44 0.26304 0.0 0.3456 0.x4125 

Infinite Medium (U-2-O-IN) 

Using the two-group U-235 cross-section set from Tables 33 and 34, k, = 2.216349 (problem 47) with a 

constant group angular and scalar flux and the group 2 to group 1 flux ratio = 0.474967. 

One-Medium Slab and Sphere Critical Dimensions 

The critical dimensions, rc, are listed in Table 35. 

Table 35: Critical Dimension, r,, for Two-Group Bare U-235 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 
48 u-2-o-SL Slab 0.649377 3.006375 8,35,36 
49 u-2-o-SP &here 1.70844 7.909444 8 
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3. Two-Group Uranium-Aluminum-Water Assembly. 

Two-Group Isotropic Cross Sections 

Tables 36 and 37 gives the two-group, isotropic cross sections for the uranium, aluminum, and water 

assembly. 

Table 36: Fast Energy Group Macroscopic Cross Sections(cm-‘) for U-AI 

Material ~2 I =zf c2c c22s &2s 22 1 x2 
U-Al 0.0 1 0.0 ) 0.000222 ) 0.247516 0.020432 1 0.26817 1 1.0 

Table 37: Slow Energy Group Macroscopic Cross Sections (cm-l) for U-Al 

Material vi Elf c &IS x213 Cl 
U-Al 2.83 0.06070636042 1 0.0031:;63958 1 1.21313 0.0 ( 1.27698 o”.‘o 

Infinite Medium (UAL-2-O-IN) 

With the two-group cross-section set from Tables 36 and 37, k, = 2.661745 (problem 50) and the group 

2 to group 1 flux ratio = 3.1250. 

One-Medium Slab and Sphere Critical Dimensions 

Using the cross sections given in Tables 36 and 37, the critical dimensions, rc, are given in Table 38. 

Table 38: Critical Dimensions, rc, for Two-Group Uranium-Aluminum-Water Assembly 

Problem Identifier Geometry r, (mfp) rc (cm> Reference 
51 UAL-2-0-SL Slab 2.09994 7.830630 8,35,36 
52 UAL-2-O-SP Sphere 4.73786 17.66738 8 
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4. Two-Group Uranium Research Reactor. 

Two-Group Isotropic Cross Sections 

The cross sections for the one-medium (a), two-media (b and c), and infinite slab lattice (d) cases are 

different and are therefore listed separately. Tables 39 and 40 gives the two-group, one-medium, isotropic 

cross sections for the 93% enriched uranium bare university research reactor. 

Table 39: Fast Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor (a) 

Material I Elf c2c c22s &2s x2 1 x2 
Research Reactor (a) ) 2?0 1 0.0010484 1 0.0010046 I 0.62568 ) 0.029227 ) 0.65696 I 1.0 

Table 40: Slow Energy Group Macroscopic Cross Sections (cm-l) for Research Reactor (a) 

Material 4 =lf Cl, &lS c 21s Cl 
Research Reactor (a) ) 2.50 0.050632 I 0.025788 I 2.44383 0.0 1 2.52025 6 

Infinite Medium (URRa-2-O-IN) 

The test set uses the two-group enriched U-235 cross-section set for the research reactor in Tables 39 and 

40 with k, = 1.631452 (problem 53) and the group 2 to group 1 flux ratio = 2.614706. 

One-Medium Slab and Sphere Critical Dimensions 
. . . The critical dimensions, rc, are listed in Table 41. 

Table 41: Critical Dimensions, r,, for Two-Group Bare Research Reactor (a) 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 
54 URRa-2-0-SL Slab 4.97112 7.566853 8,35,36 
55 URRa-2-0-SP Sphere 10.5441 16.049836 8 

One-Medium Slab Scalar Neutron Fluxes 

Table 42 gives the normalized scalar neutron flux for the two-group bare research reactor (a) at four 

spatial points 36. All values are normalized with the fast group flux at the center. 

Table 42: Normalized Scalar Fluxes for Two-Group Bare Research Reactor (a) 

Problem Identifier Geometry Energy Group r/r, = 0.241394 r/r, = 0.502905 r/r, = 0.744300 r/rc = 1.0 
54 URRa-2-0-SL Slab Fast 0.943363 0.761973 0.504012 0.147598 

Slow 0.340124 0.273056 0.173845 0.0212324 

Two-Media Cross Sections for Slab Geometry 

The cross sections for the two-media problems for the uranium research reactor are given for two different 

multiplying media with one nonmultiplying reflector. The two multiplying materials are labeled (b) and (c), 
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respectively. The multiplying region consists of an Hz0 + U-235 mixture surrounded by a Hz0 reflector. 

The results in the literature for case (c) only include the infinite water reflector. The cross sections are 

given in Tables 43 and 44. Notice that this problem allows thermal upscattering in both multiplying and 

nonmultiplying regions. 

Table 43: Fast Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor (b), (c) and HsO 
Reflector (a) 

Material C2f c2c c22s &2s x2 
Research Reactor (b) 2yiO 0.000836 0.001104 0.83892 0.04635 0.88721 ?“o 
Research Reactor (c) 2.50 0.001648 0.001472 0.83807 0.04536 0.88655 1.0 

Hz0 (a) (refl) 0.0 0.0 0.00074 0.83975 0.04749 0.88798 0.0 

Table 44: Slow Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor (b), (c) and Hz0 
Reflector (a) 

Material 
2f(50 

Elf Cl, &lS c21s. Cl 
Research Reactor (b) 0.029564 0.024069 2.9183 0.000767 2.9727 & 
Research Reactor (c) 2.50 0.057296 0.029244 2.8751 0.00116 2.9628 0.0 

HsO (a) (refl) 0.0 0.0 0.018564 2.9676 0.000336 2.9865 0.0 

Infinite Medium (URRb-S-O-IN and URRc-2-O-IN ) 

Using the two-group cross-section set for the research reactor (b) from Tables 43 and 44, k, = 1.365821 

(problem 56) with a constant group angular and scalar flux and the group 2 to group 1 flux ratio = 1.173679. 

Using the two-group cross-ection set for research reactor (c) from Tables 43 and 44, k, = 1.633380 (problem 

57) with a constant group angular and scalar flux and the group 2 to group 1 flux ratio = 1.933422. 

Two-Media Slab Critical Dimensions 

Using the cross sections in Tables 43 and 44 for the Hz0 + U-235 research reactor and the Hz0 reflector, 

the critical dimensions are given in Table 45. The mfp results use the group 2 total macroscopic cross section 

of region i to obtain the dimensions in cm. 

Table 45: Critical Dimensions for Two-Group Research Reactor (b),(c) with Hz0 Reflector (a) 

Problem Identifier Geometry U-235, rC Hz0 Width U-235 + Hz0 Width Ref. 
58 URRb-H20a( l)-2-0-SL Slab (mfp) 5.94147 1 37 

(cm) 6.696802 1.126152 7.822954 
59 URRb-H20a(5)-2-O-SL Slab (mfp) 4.31485 5 37 

(cm) 4.863392 5.630757 10.494149 
60 URRb-H20a(IN)-2-0-SL Slab (mfp) 4.15767 00 co 37 

(cm) 4.686230 00 cx) 
61 URRc-H20a(IN)-2-0-SL Slab (mfp) 2.1826 Ccl Co 37 

(-4 2.461903 00 cm 
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Two-Media Cross Sections for Infinite Slab Lattice Cell 

The two-media cross sections are given in Tables 46 and 47 for a similar uranium enriched university 

research reactor. The ~2 is slightly unphysical to stress criticality codes. Two different reflector materials 

are also given in Tables 46 and 47. The problems that use these cross sections are for an infinite slab lattice 

cell. 

Table 46: Fast Group Macroscopic Cross Sections (cm-‘) for Research Reactor(d) and Hz0 Reflector (b), 
cc> 

Material v2 C2f c2c c 22s &2s x2 

Research Reactor (d) 1.004 0.61475 0.0019662 0.0 0.0342008 0.650917 
Hz0 (b) (refl) 0.0 0.0 8.48O293x1O-6 0.1096742149 0.001000595707 0.1106832906 0.0 
Hz0 (c) (refl) 0.0 0.0 4.97229x10-4 1.226381244 0.1046395340 1.331518007 0.0 

Table 47: Slow Group Macroscopic Cross Sections (cm-l) for Research Reactor(d) and Hz0 Reflector (b), 

VI Elf &c &lS p 21s Cl 
) 2.50 1 0.045704 1 0.023496 1 2.06880 ( 0.0 ( 2.13800 1 tt, 

0.0 0.0 0.00016 0.36339 0.0 0.36355 0.0 
0.0 0.0 0.0188 4.35470 0.0 4.37350 0.0 

Infinite Medium (URRd-2-O-IN ) 

The test set uses the two-group cross-section set for the research reactor in Tables 46 and 47 with k, = 

1.034970 (problem 62) and the group 2 to group 1 flux ratio = 2.023344. 

Two-Media Infinite Slab Lattice Cell Critical Dimensions 

Using the cross sections in Tables 46 and 47 for the enriched uranium research reactor with a H20 

reflector, the critical dimensions for an infinite slab lattice cell as shown in Fig. 1 are given in Table 48. 

Because this is an infinite slab lattice cell with reflecting outer boundaries, notice that the moderator half 

thickness is given. 

Table 48: Critical Dimensions for Two-Group Infinite Slab Lattice Cell and Hz0 Reflector (b), (c) 

Problem Identifier Geometry U-235, rc Hz0 Width U-235+H& Width Ref. 
63 URRd-H2Ob(l)-2-0-ISLC Inf. Slab (mfp) 0.02142 1 34 

Lat. Cell (cm) 0.0329074 9.034787 9.067695 
64 URRd-H2Ob(lO)-2-O-ISLC Inf. Slab (mfp) 0.29951 10 34 

Lat. Cell (cm) 0.460135 90.347875 90.808010 
65 URRd-H20c( l)-2-0-ISLC Inf. Slab (mfp) 0.22197 1 34 

Lat. Cell (cm) 0.341011 0.751023 1.092034 
66 URRd-H20c(lO)-2-O-ISLC Inf. Slab (mfp) 1.7699 10 34 

Lat. Cell (cm) 2.719087 7.510225 10.229312 
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5. Two-Group U-D20 Reactor. 

Two-Group Isotropic Cross Sections 

Tables 49 and 50 give the two-group, isotropic cross sections for the uranium-D20 system. 

Table 49: Fast Energy Group Macroscopic Cross Sections (cm-l) for U-D20 

Material 1 vz ) C2f 1 c c22s k?S c2 
U-D20 1 2.50 ) 0.002817 1 O.OO;OS 0.31980 1 0.004555 0.33588 1 Il”o 

Table 50: Slow Energy Group Macroscopic Cross Sections (cm-l) for U-D20 

Material y Elf 1 c c' 1 c21s Cl 

U-D20 2.50 0.097 1 0.02&8 0.4i:lO 1 0.0 1 0.54628 o".'o 

Infinite Medium (UD20-2-O-IN ) 

The test set uses the two-group U-D20 cross-section set from Tables 49 and 50 with k, = 1.000196 

(problem 67) and the group 2 to group 1 flux ratio = 26.823271. 

One-Medium Slab and Sphere Critical Dimensions 

The critical dimensions, rcr are listed in Table 51. 

Table 51: Critical Dimension, rc, for Two-Group D20 System 

Problem Identifier Geometry r, (mfp) rc (4 Reference 
68 UD20-2-O-SL Slab 284.367 846.632726 8,35,36 
69 UD20-2-O-SP Sphere 569.430 1695.337621 8 
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B. Linearly Anisotropic Scattering 

The anisotropic scattering cross sections for the enriched U-235 research reactor and U-D20 reactor cases 

are the same as the isotropic set with the addition of the anisotropic cross sections, C2ss1, Cizsl, and &is1 . 

1. Two-Group Uranium Research Reactor. 

Two-Group Anisotropic Macroscopic Cross Sections 

Tables 52 and 53 gives the two-group, linearly anisotropic cross sections for the research reactor. Care 

must be used to correctly solve benchmark problem 71 because of the negative scattering for 

p near -1. 

Table 52: Fast Group Cross Sections for Linearly Anisotropic Scattering (cm-l) Research Reactor (a) 

Material vi C2f I c2c c22so C22Sl G2so 12Sl x2 
Research Reactor (a) I 2.50 ) 

1 c 

0.0010484 1 0.0010046 I 0.62568 1 0.27459 ) 
I x2 

0.029227 ( 0.0075737 ) 0.65696 I 1.0 

Table 53: Slow Group Cross Sections for Linearly Anisotropic Scattering (cm-‘) Research Reactor (a) 

Material 
Research Reactor (a) ( 2yiO 

=lf Cl, &ls 1 c c21s Cl 
0.050632 I 0.025788 I 2.443:3 I 0.8%8 ) 0.0 ) 2.52025 I o”.‘o 

Infinite Medium (URRa-2-l-IN ) 

The test set uses the two-group enriched U-235 cross-ection set from Tables 52 and 53 with k, = 1.631452 

(problem 70) and the group 2 to group 1 ilux ratio = 2.614706. 

One-Medium Slab Critical Dimension 

The critical dimensions are listed in Table 54. 

Table 54: Critical Dimension, rc, for Two-Group Linearly Anisotropic Scattering Research Reactor (a) 

Problem 1 Identifier ) Geometry r, (mfp) I r, (cm) ) Reference 
71 I URRa-2-I-SL I Slab 6.2356 1 9.491600 1 25 

One-Medium Slab Scalar Neutron Fluxes 

Table 55 gives the normalized scalar neutron flux for the two-group bare research reactor (a) with linearly 

anisotropic scattering at four spatial points. 25 All values are normalized with the fast group flux at the center. 

Table 55: Normalized Scalar Fluxes for Two-Group Bare Research Reactor (a) 

Problem Identifier Geometry Energy Group r/rc = 0.20 r/r, = 0.50 r/rc = 0.80 r/r, = 1.0 
71 URRa-2-l-SL Slab Fast 0.963873 0.781389 0.472787 0.189578 

Slow 0.349006 0.280870 0.157376 0.0277639 
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2. Two-Group U-D20 Reactor. 

Two-Group Anisotropic Macroscopic Cross Sections 

Tables 56 and 57 gives the two-group, linearly anisotropic cross sections for the U-D20 system. 

Table 56: Fast Energy Group Cross Sections for Linearly Anisotropic Scattering (cm-l) for U-D20 

Material ~2 I =2f c2c 1 c 22so c22s* c 12so 1 c 12.31 x2 
D20 2.50 1 0.002817 1 0.008708 1 0.31980 0.06694 0.004555 ) -0.0003972 0.33588 ( ??I 

Table 57: Slow Energy Group Cross Sections for Linearly Anisotropic Scattering (cm-l) for U-D20 

Material ) ~1 I =lf 1 c .&so 1 c c21s Cl 
D20 ( 2.50 1 0.097 ( 0.02&8 0.42410 1 0.0:;;9 0.0 1 0.54628 ( o”.;, 

Infinite Medium (UD20-2-l-IN ) 

The test set uses the two-group linearly anisotropic DsO cross-section set from Tables 56 and 57 with 

k, = 1.000196 (problem 72) and the group 2 to group 1 flux ratio = 26.823271. 

One-Medium Slab Critical Dimension 

The critical dimension, r,, is listed in Table 58. 

Table 58: Critical Dimension, r,, for Two-Group Linearly Anisotropic Scattering for U-D20 Reactor 

Problem I Identifier I Geometry ( rc (mfp) I rc (cm) I Reference 
73 ( UD20-2-l-SL I Slab ( 336.05 ( 1000.506133 I 25 
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VIII. THREE-ENERGY GROUP PROBLEM DEFINITIONS 

AND RESULTS 

A three-energy group isotropic infinite medium problem is defined in this section. The derivation appears 

in Appendix A.38l43 This problem assumes no thermal upscattering and no fission neutrons born in the slowest 

energy group. 

The fast energy group is group 3 to be consistent with most of the references. Again, this 

notation is the reverse of most nuclear engineering textbooks. 

The cross sections listed here are similar to the uranium university research reactors. Again, this problem 

uses cross sections that are reasonable representations of the materials described and are not general purpose 

values. The cross sections are intended to be used to verify algorithm performance and not to predict 

criticality experiments. The cross sections are from Ref. 38 and are derived in Appendix A. 

Table 59: Fast Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material C3f c3c c33s c23s &3s x3 
Research Reactor 2 1 0.006 0.006 0.024 1 0.171 0.033 1 0.240 0?;6 

Table 60: Middle Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material v2 C2f c2c c22s c32s c12s x2 
Research Reactor 1 2.50 1 0.060 I 0.040 I 0.60 I 0.0 I 0.275 I 0.975 I 0!:4 

Table 61: Slow Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material =lf &C Qls c21.s 
Research Reactor [ 2 0.90 I 0.20 [ 2.0 I 0.0 

c31s & 
0.0 1 3.10 I & 

Infinite Medium (URR-3-O-IN ) 

Using the three-group cross-section set from Tables 59, 60, and 61, k, = 1.60 (problem 74) with a 

constant group angular and scalar flux and the group 2 to group 3 flux ratio = 0.480, the group 1 to group 

2 flux ratio = 0.3125, and the group 1 to group 3 flux ratio = 0.150. 
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IX. SIX-ENERGY GROUP PROBLEM DEFINITIONS 

AND RESULTS 

A six-energy group isotropic infinite medium problem comprised of two coupled three-energy group cross 

sections used in URR-3-O-IN is defined in this section. This test problem defines a six group cross-section 

set3g such that energy groups 6 and 1, 5 and 2, and 4 and 3 are equivalent. The top three groups are 

decoupled from the lower three groups except for the fission distribution, xi, which affects energy groups 6, 

5, 2, and 1. Energy group 6 (group 1) scatters to groups 5 and 4 (groups 2 and 3). Energy group 5 (group 

2) scatters to group 4 (group 3). Energy group 4 (group 3) self-scatters only. Since groups 1,2, and 3 are 

upscatter equivalents of groups 6, 5, and 4, respectively, this problem should only be used with codes that 

allow for thermal upscattering. 

Table 62: Fast Energy Group 6 Macroscopic Cross Sections (cm-r) for Research Reactor 

Material v6 c6f x6c c 66s c56s c46s x6 ) x6 
Research Reactor I 3.0 0.006 0.006 0.024 I 0.171 ) 0.033 I 0.240 ( 0.48 

Table 63: Energy Group 5 Macroscopic Cross Sections (cm-l) for Research Reactor 

Material v5 C5f &c c55s c65s c45s x5 1 x5 
Research Reactor 2.50 / 0.060 1 0.040 I 0.60 0.0 0.275 1 0.975 1 0.02 

Table 64: Energy Group 4 Macroscopic Cross Sections (cm-l) for Research Reactor 

Material v4 C4f c4c c44s c54s c64s x4 x4 
Research Reactor 1 2.0 1 0.90 0.20 2.0 1 0.0 1 0.0 ) 3.10 ) 0.0 

Table 65: Energy Group 3 Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material lJ3 CSf c3c p 33s 'x23s Cl33 x3 x3 
Research Reactor I 2.0 1 0.90 I 0.20 I 2.0 ( 0.0 I 0.0 I 3.10 I 0.0 

Table 66: Energy Group 2 Macroscopic Cross Sections (cm-r) for Research Reactor 

Material v2 C2f c2c c22s &2s c32s x2 
Research Reactor 1 2.50 1 0.060 0.040 I 0.60 I 0.0 I 0.275 I 0.975 I 0?;2 

Table 67: Slow Energy Group 1 Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material Vl Elf Cl, Gls c21s c31s Cl I Xl 
Research Reactor 1 3.0 1 0.006 1 0.006 1 0.024 1 0.171 i 0.033 1 0.240 1 0.48 
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Infinite Medium (URR-6-O-IN ) 

Since this problem is comprised of problem URR-3-O-IN cross sections with modified xi values, the final 

k, value and flux ratios will not change. Using the six-group cross-section set from Tables 62, 63, 64 65, 

66, and 67, k, = 1.60 (problem 75) with a constant angular and scalar flux in each group. The group 5 to 

group 6 and group 2 to group 1 flux ratio = 0.480, the group 4 to group 5 and group 3 to group 2 flux ratio 

= 0.3125, and a group 4 to group 6 and group 3 to group 1 flux ratio = 0.150. These ratios are the same as 

in the three-group problem. 
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X. SUMMARY 

In this report, we have documented 75 problem descriptions with precise results for the critical dimen- 

sions, k,ff eigenvalue, and some eigenfunction (scalar neutron flux) results for infinite, slab, cylindrical, 

and spherical geometries for one- and two-energy group, multiple-media, and both isotropic and linearly 

anisotropic scattering using the listed references. We have not given a complete listing of every referenced 

result that has been published. Instead, we have included the references that provide both true transport 

solutions and enough information to reproduce the results. Several other references are included for reference 

completeness. All test set problems specifications and results are from peer reviewed journals, and have, in 

many cases, been solved numerically by more than one analytic method. These calculated values for k,ff 

and the scalar neutron flux are believed to be accurate to at least five decimal places. Criticality codes can 

be verified using these analytic benchmark test problems. 
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APPENDIX A 
Derivation of One-, Two-, and Three-Group k, 

To follow the benchmark referenced literature for the multi-group problems, the lowest en- 

ergy group is group 1. This notation is the reverse from most nuclear engineering textbooks. 

I. One-Energy Group Infinite Medium k, 

For an infinite, isotropic, homogeneous medium, the neutron leakage term, Cl . VQ = 0, and the angular 

and scalar neutron flux is constant everywhere. Integrating the one-energy group infinite medium form of 

the transport equation over angle produces: 

VCf w =’ W+,$ 00 

where C$ is the scalar neutron llux. The equation can be directly solved for k,. 

k, = - 
Et - Es 

or, in terms of mean number of secondaries, c: 

k, = c VCf& 
(Et - W(& + vc,> 1 

II. Two-Energy Group Infinite Medium k, 

The two-group infinite medium form of the neutron transport equation reduces to: 

Cl41 = ~llsh+ G2s42 + p [Y&41 + V2C2f(P2] 
co 

Rearranging the equations in terms of I#Q and $2: 

[ 
x2 - c22s - $52C2f 

I [ 
$2 - %s+ 

ccl 
$%Gf dl = 0 

0 1 
[ Cl - Ells - +k 1 [ 41 - 

co 
cm + fh2CZf c#2 = 0 03 I 

(18) 

(1% 

(20) 

(21) 

(22) 

(23) 

(24) 
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This equation can be written in matrix form as:42 

[ 
- ( c21s + ~&j 

> ( 
x2 - x223 - 2V2C2f 

( 
Cl - &Is - &4h) - (&zs + ev2Czj) )][::I = [:I 

(25) 

To simplify the matrix elements, it is useful to define a total removal cross section, C,, for each energy 

group g as the difference between the total cross section and in-group scattering or:4o 

Pm72 
x2 = x2 - c22s P-9 

rem 
Cl = & - Gls (27) 

Setting the determinant of this matrix equal to zero will give an equation that can be solved for k,. One 

solution is k, = 0. The other solution is: 

If there is no thermal upscattering, the equation reduces to: 

k, = XlYGj 

( 

a&jG2s V2C2f 
,ym +x2 qemq372 + gzz 

To obtain the flux ratio, Eqs. 23 and 24 are added to eliminate xi and x2 to give: 

-p-em -C Vl=&j 
1 

21s - k, 
= 0 

where XI + x2 = 1. 

Solving for ~$2 /c#J~ : 

If there is no thermal upscattering, the equation reduces to: 

(29) 

(30) 

(31) 

(32) 
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III. Three-Energy Group Infinite Medium k, (a) 

To make the three-energy group problem simpler, the following assumptions are made:40 

l No thermal upscattering from group j to group i, j < i, CijS = 0 

l No fission neutrons are born in the lowest energy group, i.e., xi=0 

The neutron transport equation can be written as: 

x343 = X33&3 + $qV3C3jd3 +v2x2j42 +vlclj#Jl] 
00 

x242 = '2242 +c23s+3 + +3c3jd3 + .v~C~~C++~ ++-+$1] co 

Cl41 = &ld#'l +x12&2 + &3s$2 

Rearranging the equations in terms of $i, +2 and c$~: 

[ 
.x3 - c33s - x3 73C3j 43 - 

M ] [3a2f] 42 - [evl&,] (61 = 0 

- c23s f +3x3/ 43 + 
ca 1 [ x2 - c22s - pv2czf d2 _ 00 ] 

-&3s43 - &2s42 + 1x1 - &s]$l = 0 

This equation can be written in matrix form as:4o 

(33) 

(34) 

(35) 

(36) 

(37) 

(33) 

x3 -c33s - J,., -z%v3c3j - +2c2j 

- (c23s + $$+3c3j) (x2 -x22:- &'2z2j) -@$'I+ (39) 

-&3s -&2s 

Using the total removal cross sections defined in Eqs. 26 and 27, the determinant of the matrix then becomes: 

(40) 

If we multiply the second line by x3, multiply the first line by ~2, and subtract the results, and multiply the 

first line by k,, the determinant becomes: 
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@Y-k, -x3~3C3j) - (X3V2E2f) -(x3a&p) 

-(X3~23s+X2~?) (X3x77 0 

-x13.9 -&2s 
rem 

Cl 

TWO of the k, solutions are zero. The other solution is: 

(41) 

k, = (x3c23s +X2Cym) (-%-&f%2s + V2~2j~~m) fX3~~m(V1C1jC13s +V3C3fxym) 
ynqtmqem 

(42j 

IV. Three-Energy Group Infinite Medium k, (b) 

An alternative method for solving the three-group k, problem3* is to rearrange the three-group transport 

equations in Eqs. 33, 34, 35: 

(X3 - C33s)43 = $%3C3j43 +v&j~2 +ycljqsl] 
ca 

(Cl - %ls) 41 = &2sd2 -I- &3s43 

Divide each equation by $3 and define: 

42 
423 = - 

43 

$1 
413 = - 

$3 

The result gives: 

x3 
Tern = 

F [U3C3f +V:!x2j$23 + dlf$13] 
00 

rem 
413% = 213s + '%2&23 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 
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If we divide Eqs. 50 and 51 by u3Csf and define: 

f23 = 
V2C2f 
-423 
V3C3f 

fl3 = 
h%f 
-413 
V3C3f 

Then we get: 

Te3n 
x3 = 

X3V3C3f 
$ [l + f23 + fl3] 

co 

x2v;c3j [C;emd)23 - c23sj = $[I + f23 + fl3] 
ccl 

TenI 
413% = &3s +x12&23 

If we substitute Eq. 56 into 57 and rearranging, 

~‘e” 
g---&p23 = 3% + E 

3 
pml 

3 

pwn 
+413 = c13s + 2423 

3 
pwn 

3 3 

k, = 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

Equations 57, 58, and 59 give the 0ux ratios and k,. Tables 43, 44, and 45 give the cross sections used for 

the three-group problem.38 

There are numerous cross sections involved in these equations, implying that there are numerous arbitrary 

choices we can make that will yield solutions to these equations. We show one set of cross sections that will 

satisfy a set of chosen conditions.38 

If we make our basic choices as: 

. k, = 1.600 

l x3=0.96, x2=0.04, x1=0.0 

l 5% of fission production occurs in group 3 

l 20% of fission production occurs in group 2 

l 75% of fission production occurs in group 1 
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With these choices and the definitions of f23 and fi3, we get: 

f23 = -- V2C2f 42 = 

V3C3f 43 

4 

f 13 = --= VlClf 41 

V3C3f $3 

15 

Using this gives: 

rem 
x3 -= 

V3C3j 
F [l + f23 + fl3] 

w 

TenI 
x3 - = 12.0 

U3C3f 

We can now make more arbitrary choices. If we choose: 

l ~3~3.0, C3f=O.OO6 

l v2=2.5, Czf=0.060 

l q=2.0, clf=o.900 

Then we get: 

423 = 0.480 

$13 = 0.150 

making X5,,= 0.216 from Eq. 63. If we make more choices: 

c33s = 0.024 

c 3c = 0.006 

G3s = 0.033 

making &=0.240 and &3,=0.171. Using Eq. 57, Cy”=0.375. This result now gives: 

(f-50) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(6% 
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c22s = 0.600 

c2c = 0.040 

(69) 

(70) 

making X2=0.975 and &2,=0.275. Using Eq. 58, Cyrn= 1.10. One last arbitrary choice is: 

Gls = 2.00 (71) 

making X1=3.10 and &,=0.20. 

V. General Multigroup Infinite Medium k, 

More than three-group k, derivations have been done (see Ref. 43). A general multigroup k, derivation 

is included in this section for completeness.44 

Given 

where: 
E ct = GxG matrix 
= 
c, = GxG matrix 

x = Gxl vector 

VCf = lxG vector 

$ = Gxl vector 

k = scalar 

then: 

(72) 

(73) 

(74) 

(75) 
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Since VC~C#J is a scalar, it can be cancelled out and we get the followng explicit result: 

k = VCf(&z)-‘$ 

The right hand side of this equation is a scalar, equal to k. Only one matrix inversion is necessary. 

(7’3) 
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