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FOREWORD

This manual 15 a practical guide for the use of our general-purpose Monte
Carlo code MCNP. The first chapter is a primer for the novice user. The
second chapter describes the mathematics, data, physics, and Monte Carlo
stmulation found in MCNP. This discussion is not meant to be erhaustive—
details of the particular techniques and of the Monte Carlo method itself will
have to be found elsewhere. The third chapter shows the user how to prepare
input for the code. The fourth chapter contains several examples, and the
fifth chapter explains the output. The appendices show how to use MCNP
on various computer systems and also give details about some of the code
internals.

The Monte Carlo method emerged from work done at Los Alamos during
World War II. The invention 1s generally attributed to Fermi, von Neumann,
Ulam, Metropolis, and Richtmyer. MCNP us the successor to their work and
represents over 450 person—years of development.

Neither the code nor the manual s static. The code 1s changed as the
need arises and the manual 1s changed to reflect the latest version of the code.
Thus particular manual refers to Version 4B.

MCNP and this manual are the product of the combined effort of many
people in the Transport Methods Group (XTM) of the Applied Theoretical &
Computational Physics Division (X Division) at the Los Alamos National
Laboratory.

The code and manual can be obtained from the Radiation Safety Infor-
mation Computational Center (RSICC), P. O. Box 2008, Oak Ridge, TN,
37831-6562.

J. F. Briesmeister
Editor
505-667-7277
FAX: 505-665-5538

email: menp@lanl.gov
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COPYRIGHT NOTICE FOR MCNP VERSION 4B

Unless otherwise indicated, this information has been authored by an
employee or employees of the University of California, operator of the Los
Alamos National Laboratory under Contract No. W-7405-ENG-36 with
the U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this information. The public may copy and use
this information without charge, provided that this Notice and any statement
of authorship are reproduced on all copies. Neither the government nor the
University makes any warranty, express or implied, or assumes any liability
or responsibility for the use of this information.
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MCNP—A General Monte Carlo
N—Particle Transport Code
Version 4B

Transport Methods Group
Los Alamos National Laboratory

ABSTRACT

MCNP is a general-purpose Monte Carlo N-Particle code that can be
used for neutron, photon, electron, or coupled neutron/photon/electron trans-
port, including the capability to calculate eigenvalues for critical systems.
The code treats an arbitrary three-dimensional configuration of materials
in geometric cells bounded by first- and second-degree surfaces and fourth-
degree elliptical tori.

Pointwise cross-section data are used. For neutrons, all reactions given
in a particular cross-section evaluation (such as ENDF/B-VI) are accounted
for. Thermal neutrons are described by both the free gas and S(«, 5) mod-
els. For photons, the code takes account of incoherent and coherent scat-
tering, the possibility of fluorescent emission after photoelectric absorption,
absorption in pair production with local emission of annihilation radiation,
and bremsstrahlung. A continuous slowing down model is used for electron
transport that includes positrons, k x—rays, and bremsstrahlung but does
not include external or self-induced fields.

Important standard features that make MCNP very versatile and easy to
use include a powerful general source, criticality source, and surface source;
both geometry and output tally plotters; a rich collection of variance re-
duction techniques; a flexible tally structure; and an extensive collection of
cross-section data.
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CHAPTER 1

Introduction

CHAPTER 1
PRIMER

WHAT IS COVERED IN CHAPTER 1

Brief explanation of the Monte Carlo method.

Summary of MCNP features.

Introduction to geometry.

Description of MCNP data input illustrated by a sample problem.

How to run MCNP.
Tips on problem setup.

Chapter 1 will enable the novice to start using MCNP, assuming very
little knowledge of the Monte Carlo method and no experience with MCNP.
The primer begins with a short discussion of the Monte Carlo method. Five
features of MCNP are introduced: (1) nuclear data and reactions, (2) source
specifications, (3) tallies and output, (4) estimation of errors, and (5) vari-
ance reduction. The third section explains MCNP geometry setup, including
the concept of cells and surfaces. A general description of an input deck is
followed by a sample problem and a detailed description of the input cards
used in the sample problem. Section V tells how to run MCNP, VI lists tips
for setting up correct problems and running them efficiently, and VII is the
references for Chapter 1. The word “card” is used throughout this document
to describe a single line of input up to 80 characters.

MCNP is a general-purpose, continuous-energy, generalized-geometry,
time-dependent, coupled neutron/photon/electron Monte Carlo transport
code. It can be used in several transport modes: neutron only, photon only,
electron only, combined neutron/photon transport where the photons are
produced by neutron interactions, neutron/photon/electron, photon/electron,
or electron/photon. The neutron energy regime is from 107! MeV to 20
MeV, and the photon and electron energy regimes are from 1 keV to 1000
MeV. The capability to calculate k.ss eigenvalues for fissile systems is also
a standard feature.

The user creates an input file that is subsequently read by MCNP. This
file contains information about the problem in areas such as:

the geometry specification,

the description of materials and selection of cross-section evaluations,

the location and characteristics of the neutron, photon, or electron source,

the type of answers or tallies desired, and

any variance reduction techniques used to improve efficiency.

Each area will be discussed in the primer by use of a sample problem.

Remember five “rules” when running a Monte Carlo calculation. They
will be more meaningful as you read this manual and gain experience with
MCNP, but no matter how sophisticated a user you may become, never forget
the following five points:
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1. Define and sample the geometry and source well;

You cannot recover lost information;

Question the stability and reliability of results;

Be conservative and cautious with variance reduction biasing; and

CU L

The number of histories run is not indicative of the quality of the answer.

The following sections compare Monte Carlo and deterministic methods
and provide a simple description of the Monte Carlo method.

A. Monte Carlo Method vs Deterministic Method

Monte Carlo methods are very different from deterministic transport
methods. Deterministic methods, the most common of which is the discrete
ordinates method, solve the transport equation for the average particle be-
havior. By contrast, Monte Carlo does not solve an explicit equation, but
rather obtains answers by simulating individual particles and recording some
aspects (tallies) of their average behavior. The average behavior of particles
in the physical system is then inferred (using the central limit theorem) from
the average behavior of the simulated particles. Not only are Monte Carlo
and deterministic methods very different ways of solving a problem, even
what constitutes a solution is different. Deterministic methods typically give
fairly complete information (for example, flux) throughout the phase space
of the problem. Monte Carlo supplies information only about specific tallies
requested by the user.

When Monte Carlo and discrete ordinates methods are compared, it is
often said that Monte Carlo solves the integral transport equation, whereas
discrete ordinates solves the integro-differential transport equation. Two
things are misleading about this statement. First, the integral and integro-
differential transport equations are two different forms of the same equation;
if one is solved, the other is solved. Second, Monte Carlo “solves” a transport
problem by simulating particle histories rather than by solving an equation.
No transport equation need ever be written to solve a transport problem by
Monte Carlo. Nonetheless, one can derive an equation that describes the
probability density of particles in phase space; this equation turns out to be
the same as the integral transport equation.

Without deriving the integral transport equation, it is instructive to in-
vestigate why the discrete ordinates method is associated with the integro-
differential equation and Monte Carlo with the integral equation. The dis-
crete ordinates method visualizes the phase space to be divided into many
small boxes, and the particles move from one box to another. In the limit as
the boxes get progressively smaller, particles moving from box to box take a
differential amount of time to move a differential distance in space. In the
limit this approaches the integro-differential transport equation, which has
derivatives in space and time. By contrast, Monte Carlo transports particles
between events (for example, collisions) that are separated in space and time.
Neither differential space nor time are inherent parameters of Monte Carlo
transport. The integral equation does not have time or space derivatives.
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Monte Carlo 1s well suited to solving complicated three—dimensional
time—dependent problems. Because the Monte Carlo method does not use
phase space boxes, there are no averaging approximations required in space,
energy, and time. This is especially important in allowing detailed represen-
tation of all aspects of physical data.

B. The Monte Carlo Method

Monte Carlo can be used to duplicate theoretically a statistical process
(such as the interaction of nuclear particles with materials) and is particularly
useful for complex problems that cannot be modeled by computer codes that
use deterministic methods. The individual probabilistic events that comprise
a process are simulated sequentially. The probability distributions govern-
ing these events are statistically sampled to describe the total phenomenon.
In general, the simulation is performed on a digital computer because the
number of trials necessary to adequately describe the phenomenon is usu-
ally quite large. The statistical sampling process is based on the selection of
random numbers—analogous to throwing dice in a gambling casino—hence
the name “Monte Carlo.” In particle transport, the Monte Carlo technique
is pre-eminently realistic (a theoretical experiment). It consists of actually
following each of many particles from a source throughout its life to its death
in some terminal category (absorption, escape, etc.). Probability distribu-
tions are randomly sampled using transport data to determine the outcome
at each step of its life.

- > 6
Event Log >

1. Neutron scatter 3 /
Phot on Production
2. Fission 2 4
Phot on Producti on

3. Neutron Capture | nci dent
4. Neutron Leakage Neutron "1\ N
5. Photon Scatter S
AN
6. Photon Leakage N
7. Photon Capture Fi ssi onabl e
Voi d Mat eri al Voi d
Figure 1.1

Figure 1.1 represents the random history of a neutron incident on a slab
of material that can undergo fission. Numbers between 0 and 1 are selected
randomly to determine what (if any) and where interaction takes place, based
on the rules (physics) and probabilities (transport data) governing the pro-
cesses and materials involved. In this particular example, a neutron collision
occurs at event 1. The neutron is scattered in the direction shown, which
is selected randomly from the physical scattering distribution. A photon is
also produced and is temporarily stored, or banked, for later analysis. At
event 2, fission occurs, resulting in the termination of the incoming neutron
and the birth of two outgoing neutrons and one photon. One neutron and
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the photon are banked for later analysis. The first fission neutron is cap-
tured at event 3 and terminated. The banked neutron is now retrieved and,
by random sampling, leaks out of the slab at event 4. The fission-produced
photon has a collision at event 5 and leaks out at event 6. The remaining
photon generated at event 1 is now followed with a capture at event 7. Note
that MCNP retrieves banked particles such that the last particle stored in
the bank is the first particle taken out.

This neutron history is now complete. As more and more such histories
are followed, the neutron and photon distributions become better known.
The quantities of interest (whatever the user requests) are tallied, along
with estimates of the statistical precision (uncertainty) of the results.

II. INTRODUCTION TO MCNP FEATURES

Various features, concepts, and capabilities of MCNP are summarized in
this section. More detail concerning each topic is available in later chapters
or appendices.

A. Nuclear Data and Reactions

MCNP uses continuous-energy nuclear and atomic data libraries. The
primary sources of nuclear data are evaluations from the Evaluated Nuclear
Data File (ENDF)! system, the Evaluated Nuclear Data Library (ENDL)?
and the Activation Library (ACTL)? compilations from Livermore, and eval-
uations from the Applied Nuclear Science (T-2) Group*~® at Los Alamos.
Evaluated data are processed into a format appropriate for MCNP by codes
such as NJOY". The processed nuclear data libraries retain as much de-
tail from the original evaluations as is feasible to faithfully reproduce the
evaluator’s intent.

Nuclear data tables exist for neutron interactions, neutron—induced pho-
tons, photon interactions, neutron dosimetry or activation, and thermal par-
ticle scattering S(«, ). Photon and electron data are atomic rather than
nuclear in nature. Each data table available to MCNP is listed on a directory
file, XSDIR. Users may select specific data tables through unique identifiers
for each table, called ZAIDs. These identifiers generally contain the atomic
number 7, mass number A, and library specifier ID.

Over 500 neutron interaction tables are available for approximately 100
different isotopes and elements. Multiple tables for a single isotope are pro-
vided primarily because data have been derived from different evaluations,
but also because of different temperature regimes and different processing
tolerances. More neutron interaction tables are constantly being added as
new and revised evaluations become available. Neutron-induced photon pro-
duction data are given as part of the neutron interaction tables when such
data are included in the evaluations.

Photon interaction tables exist for all elements from Z=1 through Z=94.
The data in the photon interaction tables allow MCNP to account for coher-
ent and incoherent scattering, photoelectric absorption with the possibility of
fluorescent emission, and pair production. Scattering angular distributions
are modified by atomic form factors and incoherent scattering functions.
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Cross sections for nearly 2000 dosimetry or activation reactions involving
over 400 target nuclei in ground and excited states are part of the MCNP
data package. These cross sections can be used as energy-dependent re-
sponse functions in MCNP to determine reaction rates but can not be used
as transport cross sections.

Thermal data tables are appropriate for use with the S(«, ) scattering
treatment in MCNP. The data include chemical (molecular) binding and
crystalline effects that become important as the neutron’s energy becomes
sufficiently low. Data at various temperatures are available for light and
heavy water, beryllium metal, beryllium oxide, benzene, graphite, polyethy-
lene, and zirconium and hydrogen in zirconium hydride.

B. Source Specification

MCNP’s generalized user-input source capability allows the user to spec-
ify a wide variety of source conditions without having to make a code modifi-
cation. Independent probability distributions may be specified for the source
variables of energy, time, position and direction, and for other parameters
such as starting cell(s) or surface(s). Information about the geometrical ex-
tent of the source can also be given. In addition, source variables may depend
on other source variables (for example, energy as a function of angle) thus
extending the built-in source capabilities of the code. The user can bias all
input distributions.

In addition to input probability distributions for source variables, certain
built-in functions are available. These include various analytic functions for
fission and fusion energy spectra such as Watt, Maxwellian and Gaussian
spectra; Gaussian for time; and isotropic, cosine, and monodirectional for
direction. Biasing may also be accomplished by special built-in functions.

A surface source allows particles crossing a surface in one problem to be
used as the source for a subsequent problem. The decoupling of a calculation
into several parts allows detailed design or analysis of certain geometrical
regions without having to rerun the entire problem from the beginning each
time. The surface source has a fission volume source option that starts
particles from fission sites where they were written in a previous run.

MCNP provides the user three methods to define an initial criticality
source to estimate k. s, the ratio of neutrons produced in successive gener-
ations in fissile systems.

C. Tallies and Output

The user can instruct MCNP to make various tallies related to particle
current, particle flux, and energy deposition. MCNP tallies are normalized to
be per starting particle except for a few special cases with criticality sources.
Currents can be tallied as a function of direction across any set of surfaces,
surface segments, or sum of surfaces in the problem. Charge can be tallied for
electrons and positrons. Fluxes across any set of surfaces, surface segments,
sum of surfaces, and in cells, cell segments, or sum of cells are also available.
Similarly, the fluxes at designated detectors (points or rings) are standard
tallies. Heating and fission tallies give the energy deposition in specified

1-5 March 25, 1997



CHAPTER 1

Features

cells. A pulse height tally provides the energy distribution of pulses created
in a detector by radiation. In addition, particles may be flagged when they
cross specified surfaces or enter designated cells, and the contributions of
these flagged particles to the tallies are listed separately. Tallies such as the
number of fissions, the number of absorptions, the total helium production,
or any product of the flux times the approximately 100 standard ENDF
reactions plus several nonstandard ones may be calculated with any of the
MCNP tallies. In fact, any quantity of the form

C / #(E) f(E) dE

may be tallied, where ¢(E) is the energy-dependent fluence, and f(E) is
any product or summation of the quantities in the cross-section libraries or
a response function provided by the user. The tallies may also be reduced
by line-of-sight attenuation. Tallies may be made for segments of cells and
surfaces without having to build the desired segments into the actual problem
geometry. All tallies are functions of time and energy as specified by the user
and are normalized to be per starting particle.

In addition to the tally information, the output file contains tables of
standard summary information to give the user a better idea of how the
problem ran. This information can give insight into the physics of the prob-
lem and the adequacy of the Monte Carlo simulation. If errors occur during
the running of a problem, detailed diagnostic prints for debugging are given.
Printed with each tally is also its statistical relative error corresponding to
one standard deviation. Following the tally is a detailed analysis to aid in
determining confidence in the results. Ten pass/no pass checks are made for
the user—selectable tally fluctuation chart (TFC) bin of each tally. The qual-
ity of the confidence interval still cannot be guaranteed because portions of
the problem phase space possibly still have not been sampled. Tally fluctua-
tion charts, described in the following section, are also automatically printed
to show how a tally mean, error, variance of the variance, and slope of the
largest history scores fluctuate as a function of the number of histories run.

Tally results can be displayed graphically, either while the code is running
or in a separate postprocessing mode.

D. Estimation of Monte Carlo Errors

MCNP tallies are normalized to be per starting particle and are printed
in the output accompanied by a second number R, which is the estimated
relative error defined to be one estimated standard deviation of the mean
Sz divided by the estimated mean . In MCNP, the quantities required
for this error estimate—the tally and its second moment—are computed
after each complete Monte Carlo history, which accounts for the fact that
the various contributions to a tally from the same history are correlated.
For a well-behaved tally, R will be proportional to 1/\/N where N is the
number of histories. Thus, to halve R, we must increase the total number of
histories fourfold. For a poorly behaved tally, R may increase as the number
of histories increases.
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The estimated relative error can be used to form confidence intervals
about the estimated mean, allowing one to make a statement about what
the true result is. The Central Limit Theorem states that as N approaches
infinity there is a 68% chance that the true result will be in the range (1+R)
and a 95% chance in the range (1 + 2R). It is extremely important to note
that these confidence statements refer only to the precision of the Monte Carlo
calculation tself and not to the accuracy of the result compared to the true
physical value. A statement regarding accuracy requires a detailed analysis
of the uncertainties in the physical data, modeling, sampling techniques and
approximations, etc., used in a calculation.

The guidelines for interpreting the quality of the confidence interval for
various values of R are listed in Table 1.1.

Table 1.1
Guidelines for Interpreting the Relative Error Rx

Range of R Quality of the Tally
0.5to 1.0 Not meaningful
0.2 to 0.5 Factor of a few
0.1t0 0.2 Questionable
< 0.10 Generally reliable
< 0.05 Generally reliable for point detectors

*R = S3 /7 and represents the estimated relative error at the 1o level.
These interpretations of R assume that all portions of the problem phase
space are being sampled well by the Monte Carlo process.

For all tallies except next—event estimators, hereafter referred to as point
detector tallies, the quantity R should be less than 0.10 to produce generally
reliable confidence intervals. Point detector results tend to have larger third
and fourth moments of the individual tally distributions, so a smaller value
of R, < 0.05, is required to produce generally reliable confidence intervals.
The estimated uncertainty in the Monte Carlo result must be presented with
the tally so that all are aware of the estimated precision of the results.

Keep in mind the footnote to Table 1.1. For example, if an important
but highly unlikely particle path in phase space has not been sampled in a
problem, the Monte Carlo results will not have the correct expected values
and the confidence interval statements may not be correct. The user can
guard against this situation by setting up the problem so as not to exclude
any regions of phase space and by trying to sample all regions of the problem
adequately.

Despite one’s best effort, an important path may not be sampled often
enough, causing confidence interval statements to be incorrect. To try to
inform the user about this behavior, MCNP calculates a figure of merit
(FOM) for one tally bin of each tally as a function of the number of histories
and prints the results in the tally fluctuation charts at the end of the output.
The FOM is defined as

FOM = 1/(R*T),

1-7 March 25, 1997



CHAPTER 1

Features

where T is the computer time in minutes. The more efficient a Monte Carlo
calculation is, the larger the FOM will be because less computer time is
required to reach a given value of R.

The FOM should be approximately constant as N increases because
R? is proportional to 1/N and T is proportional to N. Always examine
the tally fluctuation charts to be sure that the tally appears well behaved, as
evidenced by a fairly constant FOM. A sharp decrease in the FOM indicates
that a seldom-sampled particle path has significantly affected the tally result
and relative error estimate. In this case, the confidence intervals may not
be correct the fraction of the time that statistical theory would indicate.
Examine the problem to determine what path is causing the large scores and
try to redefine the problem to sample that path much more frequently.

After each tally, an analysis is done and additional useful information
is printed about the TFC tally bin result. The nonzero scoring efficiency,
the zero and nonzero score components of the relative error, number and
magnitude of negative history scores, if any, and the effect on the result if
the largest observed history score in the TFC were to occur again on the
very next history are given. A table just before the TFCs summarizes the
results of these checks for all tallies in the problem. Ten statistical checks
are made and summarized in table 160 after each tally, with a pass yes/no
criterion. The empirical history score probability density function (PDF) for
the TFC bin of each tally is calculated and displayed in printed plots.

The TFCs at the end of the problem include the variance of the variance
(an estimate of the error of the relative error), and the slope (the estimated
exponent of the PDF large score behavior) as a function of the number of
particles started.

All this information provides the user with statistical information to aid
in forming valid confidence intervals for Monte Carlo results. There is no
GUARANTEE, however. The possibility always exists that some as yet
unsampled portion of the problem may change the confidence interval if
more histories were calculated. Chapter 2 contains more information about
estimation of Monte Carlo precision.

E. Variance Reduction

As noted in the previous section, R (the estimated relative error) is
proportional to 1/\/.7V, where N is the number of histories. For a given
MCNP run, the computer time T consumed is proportional to N. Thus
R = C/\/T, where C' is a positive constant. There are two ways to reduce
R: (1) increase T and/or (2) decrease C. Computer budgets often limit the
utility of the first approach. For example, if it has taken 2 hours to obtain
R = 0.10, then 200 hours will be required to obtain R = 0.01. For this
reason MCNP has special variance reduction techniques for decreasing C'.
(Variance is the square of the standard deviation.) The constant C' depends
on the tally choice and/or the sampling choices.

1. Tally Choice

As an example of the tally choice, note that the fluence in a cell can
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be estimated either by a collision estimate or a track length estimate. The
collision estimate is obtained by tallying 1/3; (¥;=macroscopic total cross
section) at each collision in the cell and the track length estimate is obtained
by tallying the distance the particle moves while inside the cell. Note that
as Y; gets very small, very few particles collide but give enormous tallies
when they do, a high variance situation (see page 2—97). In contrast, the
track length estimate gets a tally from every particle that enters the cell. For
this reason MCNP has track length tallies as standard tallies, whereas the
collision tally is not standard in MCNP, except for estimating k.z.

2. Nonanalog Monte Carlo

Explaining how sampling affects C' requires understanding of the nonana-
log Monte Carlo model.

The simplest Monte Carlo model for particle transport problems is the
analog model that uses the natural probabilities that various events occur (for
example, collision, fission, capture, etc.). Particles are followed from event
to event by a computer, and the next event is always sampled (using the
random number generator) from a number of possible next events according
to the natural event probabilities. This is called the analog Monte Carlo
model because it is directly analogous to the naturally occurring transport.

The analog Monte Carlo model works well when a significant fraction of
the particles contribute to the tally estimate and can be compared to detect-
ing a significant fraction of the particles in the physical situation. There are
many cases for which the fraction of particles detected is very small, less than
107, For these problems analog Monte Carlo fails because few, if any, of the
particles tally, and the statistical uncertainty in the answer is unacceptable.

Although the analog Monte Carlo model is the simplest conceptual prob-
ability model, there are other probability models for particle transport. They
estimate the same average value as the analog Monte Carlo model, while of-
ten making the variance (uncertainty) of the estimate much smaller than
the variance for the analog estimate. Practically, this means that problems
that would be impossible to solve in days of computer time can be solved in
minutes of computer time.

A nonanalog Monte Carlo model attempts to follow “interesting” parti-
cles more often than “uninteresting” ones. An “interesting” particle is one
that contributes a large amount to the quantity (or quantities) that needs to
be estimated. There are many nonanalog techniques, and they all are meant
to increase the odds that a particle scores (contributes). To ensure that the
average score is the same in the nonanalog model as in the analog model,
the score is modified to remove the effect of biasing (changing) the natural
odds. Thus, if a particle is artificially made ¢ times as likely to execute a
given random walk, then the particle’s score is weighted by (multiplied by)
1/q. The average score is thus preserved because the average score is the
sum, over all random walks, of the probability of a random walk multiplied
by the score resulting from that random walk.

A nonanalog Monte Carlo technique will have the same expected tallies as
an analog technique if the expected weight executing any given random walk
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is preserved. For example, a particle can be split into two identical pieces and
the tallies of each piece are weighted by 1/2 of what the tallies would have
been without the split. Such nonanalog, or variance reduction, techniques
can often decrease the relative error by sampling naturally rare events with
an unnaturally high frequency and weighting the tallies appropriately.

3. Variance Reduction Tools in MCNP

There are four classes of variance reduction techniques® that range from

the trivial to the esoteric.

Truncation Methods are the simplest of variance reduction methods.
They speed up calculations by truncating parts of phase space that do not
contribute significantly to the solution. The simplest example is geometry
truncation in which unimportant parts of the geometry are simply not mod-
eled. Specific truncation methods available in MCNP are energy cutoff and
time cutoff.

Population Control Methods use particle splitting and Russian roulette
to control the number of samples taken in various regions of phase space. In
important regions many samples of low weight are tracked, while in unimpor-
tant regions few samples of high weight are tracked. A weight adjustment is
made to ensure that the problem solution remains unbiased. Specific popula-
tion control methods available in MCNP are geometry splitting and Russian
roulette, energy splitting/roulette, weight cutoff, and weight windows.

Modified Sampling Methods alter the statistical sampling of a problem to
increase the number of tallies per particle. For any Monte Carlo event it is
possible to sample from any arbitrary distribution rather than the physical
probability as long as the particle weights are then adjusted to compensate.
Thus with modified sampling methods, sampling is done from distributions
that send particles in desired directions or into other desired regions of phase
space such as time or energy, or change the location or type of collisions.
Modified sampling methods in MCNP include the exponential transform,
implicit capture, forced collisions, source biasing, and neutron-induced pho-
ton production biasing.

Partially- Deterministic Methods are the most complicated class of vari-
ance reduction methods. They circumvent the normal random walk process
by using deterministic-like techniques, such as next event estimators, or by
controlling of the random number sequence. In MCNP these methods include
point detectors, DXTRAN, and correlated sampling.

Variance reduction techniques, used correctly, can greatly help the user
to produce a more efficient calculation. Used poorly, they can result in
a wrong answer with good statistics and few clues that anything is amiss.
Some variance reduction methods have general application and are not easily
misused. Others are more specialized and attempts to use them carry high
risk. The use of weight windows tends to be more powerful than the use of
importances but typically requires more input data and more insight into the
problem. The exponential transform for thick shields is not recommended for
the inexperienced user; rather, use many cells with increasing importances
(or decreasing weight windows) through the shield. Forced collisions are used
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to increase the frequency of random walk collisions within optically thin cells
but should be used only by an experienced user. The point detector estimator
should be used with caution, as should DXTRAN.

For many problems, variance reduction is not just a way to speed up the
problem but is absolutely necessary to get any answer at all. Deep penetra-
tion problems and pipe detector problems, for example, will run too slowly
by factors of trillions without adequate variance reduction. Consequently,
users have to become skilled in using the variance reduction techniques in
MCNP. Most of the following techniques can not be used with the pulse
height tally.

The following summarizes briefly the main MCNP variance reduction
techniques. Detailed discussion is in Chapter 2, page 2—114.

a. Energy cutoff: Particles whose energy is out of the range of interest are
terminated so that computation time is not spent following them.

b. Time cutoff: Like the energy cutoff but based on time.

c. Geometry splitting with Russian roulette: Particles transported from a
region of higher importance to a region of lower importance (where they
will probably contribute little to the desired problem result) undergo
Russian roulette; that is, some of those particles will be killed a certain
fraction of the time, but survivors will be counted more by increasing
their weight the remaining fraction of the time. In this way, unimpor-
tant particles are followed less often, yet the problem solution remains
undistorted. On the other hand, if a particle is transported to a region of
higher importance (where it will likely contribute to the desired problem
result ), it may be split into two or more particles (or tracks), each with
less weight and therefore counting less. In this way, important parti-
cles are followed more often, yet the solution is undistorted because on
average total weight is conserved.

d. Energy splitting/Russian roulette: Particles can be split or rouletted upon
entering various user-supplied energy ranges. Thus important energy
ranges can be sampled more frequently by splitting the weight among
several particles and less important energy ranges can be sampled less
frequently by rouletting particles.

c. Weight cutoff/Russian roulette: If a particle weight becomes so low that
the particle becomes insignificant, it undergoes Russian roulette. Most
particles are killed, and some particles survive with increased weight. The
solution is unbiased because total weight is conserved, but computer time
is not wasted on insignificant particles.

f. Wewght window: As a function of energy, geometrical location, or both,
low-weighted particles are eliminated by Russian roulette and high-weighted
particles are split. This technique helps keep the weight dispersion within
reasonable bounds throughout the problem. An importance generator is
available that estimates the optimal limits for a weight window.

9. FEzponential transformation: To transport particles long distances, the
distance between collisions in a preferred direction is artificially increased
and the weight i1s correspondingly artifically decreased. Because large
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weight fluctuations often result, it is highly recommended that the weight
window be used with the exponential transform.

h. Implicit capture: When a particle collides, there is a probability that it
is captured by the nucleus. In analog capture, the particle is killed with
that probability. In implicit capture, also known as survival biasing, the
particle is never killed by capture; instead, its weight is reduced by the
capture probability at each collision. Important particles are permitted
to survive by not being lost to capture. On the other hand, if particles
are no longer considered useful after undergoing a few collisions, analog
capture efliciently gets rid of them.

1. Forced collisions: A particle can be forced to undergo a collision each
time it enters a designated cell that is almost transparent to it. The par-
ticle and its weight are appropriately split into a collided and uncollided
part. Forced collisions are often used to generate contributions to point
detectors, ring detectors, or DXTRAN spheres.

J. Source variable biasing: Source particles with phase space variables of
more importance are emitted with a higher frequency but with a com-
pensating lower weight than are less important source particles. This
technique can be used with pulse height tallies.

k. Point and ring detectors: When the user wishes to tally a flux-related
quantity at a point in space, the probability of transporting a particle
precisely to that point is vanishingly small. Therefore, pseudoparticles
are directed to the point instead. Every time a particle history is born
in the source or undergoes a collision, the user may require that a pseu-
doparticle be tallied at a specified point in space. In this way, many
pseudoparticles of low weight reach the detector, which is the point of
interest, even though no particle histories could ever reach the detector.
For problems with rotational symmetry, the point may be represented
by a ring to enhance the efficiency of the calculation.

[. DXTRAN: DXTRAN, which stands for deterministic transport, improves
sampling in the vicinity of detectors or other tallies. It involves determin-
istically transporting particles on collision to some arbitrary, user-defined
sphere in the neighborhood of a tally and then calculating contributions
to the tally from these particles. Contributions to the detectors or to the
DXTRAN spheres can be controlled as a function of geometric cell or as
a function of the relative magnitude of the contribution to the detector
or DXTRAN sphere.

The DXTRAN method is a way of obtaining large numbers of particles
on user-specified “DXTRAN spheres.” DXTRAN makes it possible to
obtain many particles in a small region of interest that would otherwise
be difficult to sample. Upon sampling a collision or source density func-
tion, DXTRAN estimates the correct weight fraction that should scatter
toward, and arrive without collision at, the surface of the sphere. The
DXTRAN method then puts this correct weight on the sphere. The
source or collision event is sampled in the usual manner, except that
the particle is killed if it tries to enter the sphere because all particles
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entering the sphere have already been accounted for deterministically.

m. Correlated sampling: The sequence of random numbers in the Monte
Carlo process is chosen so that statistical fluctuations in the problem
solution will not mask small variations in that solution resulting from
slight changes in the problem specification. The it* history will always
start at the same point in the random number sequence no matter what
the previous ¢« — 1 particles did in their random walks.

1II. MCNP GEOMETRY

We will present here only basic information about geometry setup, sur-
face specification, and cell and surface card input. Areas of further interest
would be the complement operator, use of parentheses, and repeated struc-
ture and lattice definitions, found in Chapter 2. Chapter 4 contains geometry
examples and is recommended as a next step. Chapter 3 has detailed infor-
mation about the format and entries on cell and surface cards.

The geometry of MCNP treats an arbitrary three-dimensional config-
uration of user-defined materials in geometric cells bounded by first- and
second-degree surfaces and fourth-degree elliptical tori. The cells are defined
by the intersections, unions, and complements of the regions bounded by the
surfaces. Surfaces are defined by supplying coeflicients to the analytic surface
equations or, for certain types of surfaces, known points on the surfaces.

MCNP has a more general geometry than is available in most combinato-
rial geometry codes. Rather than combining several predefined geometrical
bodies as in a combinatorial geometry scheme, MCNP gives the user the
added flexibility of defining geometrical regions from all the first and second
degree surfaces of analytical geometry and elliptical tori and then of combin-
ing them with Boolcan opcrators. The code does extensive internal checking
to find input errors. In addition, the geometry-plotting capability in MCNP
helps the user check for geometry errors.

MCNP treats geometric cells in a Cartesian coordinate system. The sur-
face equations recognized by MCNP are listed in Table 3.1 on page 3—14.
The particular Cartesian coordinate system used is arbitrary and user de-
fined, but the right-handed system shown in Figure 1.2 is often chosen.

z

Figure 1.2

Using the bounding surfaces specified on cell cards, MCNP tracks parti-
cles through the geometry, calculates the intersection of a track’s trajectory
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with each bounding surface, and finds the minimum positive distance to an
intersection. If the distance to the next collision is greater than this mini-
mum distance and there are no DXTRAN spheres along the track, the par-
ticle leaves the current cell. At the appropriate surface intersection, MCNP
finds the correct cell that the particle will enter by checking the sense of
the intersection point for each surface listed for the cell. When a complete
match is found, MCNP has found the correct cell on the other side and the
transport continues.

A. Cells

When cells are defined, an important concept is that of the semse of
all points in a cell with respect to a bounding surface. Suppose that s =
f(z,y,2z) = 0 is the equation of a surface in the problem. For any set of
points (x,y,z), if s = 0 the points are on the surface. However, for points
not on the surface, if s is negative the points are said to have a negative sense
with respect to that surface and, conversely, a positive sense if s is positive.
For example, a point at = 3 has a positive sense with respect to the plane
x —2 = 0. That is, the equation t — D =3 —2 = s =1 is positive for + = 3
(where D = constant).

Cells are defined on cells cards. Each cell is described by a cell number,
material number, and material density followed by a list of operators and
signed surfaces that bound the cell. If the sense is positive, the sign can be
omitted. The material number and material density can be replaced by a
single zero to indicate a void cell. The cell number must begin in columns
1-5. The remaining entries follow, separated by blanks. A more complete
description of the cell card format can be found on page 1—22. Each surface
divides all space into two regions, one with positive sense with respect to the
surface and the other with negative sense. The geometry description defines
the cell to be the intersection, union, and/or complement of the listed regions.

The subdivision of the physical space into cells is not necessarily governed
only by the different material regions, but may be affected by problems of
sampling and variance reduction techniques (such as splitting and Russian
roulette), the need to specify an unambiguous geometry, and the tally re-
quirements. The tally segmentation feature may eliminate most of the tally
requirements.

Be cautious about making any one cell very complicated. With the union
operator and disjointed regions, a very large geometry can be set up with
just one cell. The problem is that for each track flight between collisions in
a cell, the intersection of the track with each bounding surface of the cell
is calculated, a calculation that can be costly if a cell has many surfaces.
As an example, consider Figure 1.3a. It is just a lot of parallel cylinders
and is easy to set up. However, the cell containing all the little cylinders is
bounded by fourteen surfaces (counting a top and bottom). A much more
efficient geometry is seen in Figure 1.3b, where the large cell has been broken
up into a number of smaller cells.
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Figure 1.4

1. Cells Defined by Intersections of Regions of Space

The intersection operator in MCNP is implicit; it is simply the blank
space between two surface numbers on the cell card.

If a cell is specified using only intersections, all points in the cell must

have the same sense with respect to a given bounding surface. This means
that, for each bounding surface of a cell, all points in the cell must remain
on only one side of any particular surface. Thus, there can be no concave
corners in a cell specified only by intersections. Figure 1.4, a cell formed
by the intersection of five surfaces (ignore surface 6 for the time being),
illustrates the problem of concave corners by allowing a particle (or point)
to be on two sides of a surface in one cell.
Surfaces 3 and 4 form a concave corner in the cell such that points p; and po
are on the same side of surface 4 (that is, have the same sense with respect
to 4) but point p3 is on the other side of surface 4 (opposite sense). Points
p2 and p3 have the same sense with respect to surface 3, but p; has the
opposite sense. One way to remedy this dilemma (and there are others) is
to add surface 6 between the 3/4 corner and surface 1 to divide the original
cell into two cells.

With surface 6 added to Figure 1.4, the cell to the right of surface 6 is
number 1 (cells indicated by circled numbers); to the left number 2; and the
outside cell number 3. The cell cards (in two dimensions, all cells void) are

1 0 1 -2 -3 6

2 0 1 -6 —4 5
Cell 1 is a void and is formed by the intersection of the region above (posi-
tive sense) surface 1 with the region to the left (negative sense) of surface 2
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intersected with the region below (negative sense) surface 3 and finally in-
tersected with the region to the right (positive sense) of surface 6. Cell 2 is
described similarly.

Cell 3 cannot be specified with the intersection operator. The following
section about the union operator is needed to describe cell 3.

2. Cells Defined by Unions of Regions of Space

The union operator, signified by a colon on the cell cards, allows concave
corners in cells and also cells that are completely disjoint. The intersec-
tion and union operators are binary Boolean operators, so their use follows
Boolean algebra methodology; unions and intersections can be used in com-
bination in any cell description.

Spaces on either side of the union operator are irrelevant, but remember
that a space without the colon signifies an intersection. In the hierarchy of
operations, intersections are performed first and then unions. There is no left
to right ordering. Parentheses can be used to clarify operations and in some
cases are required to force a certain order of operations. Innermost paren-
theses are cleared first. Spaces are optional on either side of a parenthesis.
A parenthesis is equivalent to a space and signifies an intersection.

For example, let A and B be two regions of space. The region containing
points that belong to both A and B is called the intersection of A and B. The
region containing points that belong to A alone or to B alone or to both A
and B is called the union of A and B. The lined area in Figure 1.5a represents
the union of A and B (or A : B), and the lined area in Figure 1.5b represents
the intersection of A and B (or A B). The only way regions of space can
be added is with the union operator. An intersection of two spaces always
results in a region no larger than either of the two spaces. Conversely, the
union of two spaces always results in a region no smaller than either of the
two spaces.

Figure 1.5

A simple example will further illustrate the concept of Figure 1.5 and the
union operator to solidify the concept of adding and intersecting regions of
space to define a cell. See also the second example in Chapter 4. In Figure 1.6
we have two infinite planes that meet to form two cells. Cell 1 is easy to
define; it is everything in the universe to the right of surface 1 (that is, a
positive sense) that is also in common with (or intersected with) everything
in the universe below surface 2 (that is, a negative sense). Therefore, the
surface relation of cell 11s 1 —2.
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Figure 1.6

Cell 2 is everything in the universe to the left (negative sense) of surface
1 plus everything in the universe above (positive sense) surface 2, or —1 : 2,
illustrated in Figure 1.6b by all the shaded regions of space. If cell 2 were
specified as —1 2, that would represent the region of space common to —1
and 2, which is only the cross-hatched region in the figure and is obviously
an improper specification for cell 2.

Returning to Figure 1.4 on page 1—15, if cell 1 is inside the solid black
line and cell 2 is the entire region outside the solid line, then the MCNP cell
cards in two dimensions are (assuming both cells are voids)

10 1 -2 (=3 : —4) 5

2 0 -5 : =1 2 3 4
Cell 1 is defined as the region above surface 1 intersected with the region to
the left of surface 2, intersected with the union of regions below surfaces 3
and 4, and finally intersected with the region to the right of surface 5. Cell
2 contains four concave corners (all but between surfaces 3 and 4), and its
specification is just the converse (or complement) of cell 1. Cell 2 is the space
defined by the region to the left of surface 5 plus the region below 1 plus
the region to the right of 2 plus the space defined by the intersections of the
regions above surfaces 3 and 4.

A simple consistency check can be noted with the two cell cards above.
All intersections for cell 1 become unions for cell 2 and vice versa. The senses
are also reversed.

Note that in this example, all corners less than 180 degrees in a cell are
handled by intersections and all corners greater than 180 degrees are handled
by unions.

To illustrate some of the concepts about parentheses, assume an intersec-
tion is thought of mathematically as multiplication and a union is thought of
mathematically as addition. Parentheses are removed first, with multiplica-
tion being performed before addition. The cell cards for the example cards
above from Figure 1.4 may be written in the form

1 a- b-(c+d)- e

2 e+a+b+c- d
Note that parentheses are required for the first cell but not for the second,
although the second could have been written as e + a4+ b+ (¢-d), (e + a +
)+ (c-d), () + (a) +(b) + (¢ d), ete.
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Several more examples using the union operator are given in Chapter 4.
Study them to get a better understanding of this powerful operator that can
greatly simplify geometry setups.

B. Surface Type Specification

The first- and second-degree surfaces plus the fourth-degree elliptical
and degenerate tori of analytical geometry are all available in MCNP. The
surfaces are designated by mnemonics such as C/Z for a cylinder parallel
to the z-axis. A cylinder at an arbitrary orientation is designated by the
general quadratic GQ) mnemonic. A paraboloid parallel to a coordinate axis
is designated by the special quadratic SQQ mnemonic. The 29 mnemonics
representing various types of surfaces are listed in Table 3.1 on page 3—14.

C. Surface Parameter Specification

There are two ways to specify surface parameters in MCNP: (1) by sup-
plying the appropriate coefficients needed to satisfy the surface equation, and
(2) by specifying known geometrical points on a surface that is rotationally
symmetric about a coordinate axis.

1. Coeflicients for the Surface Equations

The first way to define a surface is to use one of the surface-type mnemon-
ics from Table 3.1 on page 3—14 and to calculate the appropriate coefficients
needed to satisfy the surface equation. For example, a sphere of radius 3.62—
cm with the center located at the point (4,1,—3) is specified by

S 4 1 -3 3.62

An ellipsoid whose axes are not parallel to the coordinate axes is defined
by the GQ mnemonic plus up to 10 coefficients of the general quadratic
equation. Calculating the coeficients can be (and frequently is) nontrivial,
but the task is greatly simplified by defining an auxiliary coordinate system
whose axes coincide with the axes of the ellipsoid. The ellipsoid is easily
defined in terms of the auxiliary coordinate system, and the relationship
between the auxiliary coordinate system and the main coordinate system is
specified on a TRn card, described on page 3—26.

The use of the SQ (special quadratic) and GQ (general quadratic) sur-
faces is determined by the orientation of the axes. One should always use the
simplest possible surface in describing geometries; for example, using a GQ
surface instead of an S to specify a sphere will require more computational

effort for MCNP.
2. Points that Define a Surface

The second way to define a surface is to supply known points on the
surface. This method is convenient if you are setting up a geometry from
something like a blueprint where you know the coordinates of intersections
of surfaces or points on the surfaces. When three or more surfaces intersect
at a point, this second method also produces a more nearly perfect point of
intersection if the common point is used in the surface specification. It is
frequently difficult to get complicated surfaces to meet at one point if the
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surfaces are specified by the equation coefficients. Failure to achieve such a
meeting can result in the unwanted loss of particles.

There are, however, restrictions that must be observed when specifying
surfaces by points that do not exist when specifying surfaces by coefficients.
Surfaces described by points must be either skew planes or surfaces rotation-
ally symmetric about the x, y, or z axes. They must be unique, real, and
continuous. For example, points specified on both sheets of a hyperboloid
are not allowed because the surface is not continuous. However, it is valid to
specify points that are all on one sheet of the hyperboloid. (See the X,Y,Z,
and P input cards description on page 3—16 for additional explanation.)

IV. MCNP INPUT FOR SAMPLE PROBLEM

The main input file for the user is the INP (the default name) file that
contains the input information to describe the problem. We will present here
only the subset of cards required to run the simple fixed source demonstration
problem. All input cards are discussed in Chapter 3 and summarized in
Table 3.6 starting on page 3—132.

MCNP does extensive input checking but is not foolproof. A geometry
should be checked by looking at several different views with the geometry
plotting option. You should also surround the entire geometry with a sphere
and flood the geometry with particles from a source with an inward cosine
distribution on the spherical surface, using a VOID card to remove all mate-
rials specified in the problem. If there are any incorrectly specified places in
your geometry, this procedure will usually find them. Make sure the impor-
tance of the cell just inside the source sphere is not zero. Then run a short
job and study the output to see if you are calculating what you think you
are calculating.

The basic constants used in MCNP are printed in optional print table 98
in the output file. The units used are:

—

lengths in centimeters,

energies in MeV,

times in shakes (10~% sec),

temperatures in MeV (kT),

atomic densities in units of atoms/barn-cm,
mass densities in g/cm?,

cross sections in barns (10_24

),
heating numbers in MeV/collision, and

atomic weight ratio based on a neutron mass of 1.008664967. In these
units, Avogadro’s number is 0.59703109210724,

A simple sample problem illustrated in Figure 1.7 is referred to through-
out the remainder of this chapter. We wish to start 14-MeV neutrons at
a point isotropic source in the center of a small sphere of oxygen that is
embedded in a cube of carbon. A small sphere of iron is also embedded in
the carbon. The carbon is a cube 10 cm on each side; the spheres have a
0.5-cm radius and are centered between the front and back faces of the cube.

R e R o
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We wish to calculate the total and energy-dependent flux in increments of 1
MeV from 14 to 1 MeV

1. on the surface of the iron sphere and

2. averaged in the iron sphere volume.
Bin 1 will be the tally from 0 to 1 MeV.

This geometry has four cells, indicated by circled numbers, and eight
surfaces—six planes and two spheres. Surface numbers are written next to
the appropriate surfaces. Surface 5 comes out from the page in the +x
direction and surface 6 goes back into the page in the —x direction.

, 0

ya
:(©@)
7 Y
®

Figure 1.7

With knowledge of the cell card format, the sense of a surface, and the
union and intersection operators, we can set up the cell cards for the geometry
of our example problem. To simplify this step, assume the cells are void, for
now. Cells 1 and 2 are described by the following cards:

10 —7

2 0 -8
where the negative signs denote the regions inside (negative sense) surfaces
7 and 8. Cell 3 is everything in the universe above surface 1 intersected with
everything below surface 2 intersected with everything to the left of surface 3
and so forth for the remaining three surfaces. The region in common to all six
surfaces is the cube, but we need to exclude the two spheres by intersecting
everything outside surface 7 and outside surface 8. The card for cell 3 is

3 0 1 -2 -3 4 -5 6 7 8

Cell 4 requires the use of the union operator and is similar to the idea illus-
trated in Figure 1.6. Cell 4 is the outside world, has zero importance, and is
defined as everything in the universe below surface 1 plus everything above
surface 2 plus everything to the right of surface 3 and so forth. The cell card
for cell 4 is

4 0 -1:2:3:—-4:5: -6

March 25, 1997 1-20



CHAPTER 1
Input File

A. INP File

An input file has the following form:
Message Block } .
Blank Line Delimiter Optional
One Line Problem Title Card
Cell Cards

Blank Line Delimiter
Surface Cards

Blank Line Delimiter
Data Cards

Blank Line Terminator (optional)

All input lines are limited to 80 columns. Alphabetic characters can
be upper, lower, or mixed case. A § (dollar sign) terminates data entry.
Anything that follows the $ is interpreted as a comment. Blank lines are
used as delimiters and as an optional terminator. Data entries are separated
by one or more blanks.

Comment cards can be used anywhere in the INP file after the problem
title card and before the optional blank terminator card. Comment lines
must have a C somewhere in columns 1-5 followed by at least one blank and
can be a total of 80 columns long.

Cell, surface, and data cards must all begin within the first five columns.
Entries are separated by one or more blanks. Numbers can be integer or
floating point. MCNP makes the appropriate conversion. A data entry item,
e.g., IMP:N or 1.1e2, must be completed on one line.

Blanks filling the first five columns indicate a continuation of the data
from the last named card. An & (ampersand) ending a line indicates data
will continue on the following card, where data on the continuation card can
be in columns 1-80.

The optional message block, discussed in detail on page 3—1, is used to
change file names and specify running options such as a continuation run.
On most systems these options and files may alternatively be specified with
an execution line message (see page 1—29). Message block entries supersede
execution line entries. The blank line delimiter signals the end of the message
block.

The first card in the file after the optional message block is the required
problem title card. If there is no message block, this must be the first card
in the INP file. It is limited to one 80—column line and is used as a title
in various places in the MCNP output. It can contain any information you
desire but usually contains information describing the particular problem.
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MCNP makes extensive checks of the input file for user errors. A FATAL
error occurs if a basic constraint of the input specification is violated, and
MCNP will terminate before running any particles. The first fatal error is
real; subsequent error messages may or may not be real because of the nature
of the first fatal message.

B. Cell Cards

The cell number is the first entry and must begin in the first five columns.

The next entry is the cell material number, which is arbitrarily assigned
by the user. The material is described on a material card (Mn) that has the
same material number (see page 1—27). If the cell is a void, a zero is entered
for the material number. The cell and material numbers can not exceed 5
digits.

Next is the cell material density. A positive entry is interpreted as atom
density in units of 10** atoms/cm?. A negative entry is interpreted as mass
density in units of g/cm?®. No density is entered for a void cell.

A complete specification of the geometry of the cell follows. This spec-
ification includes a list of the signed surfaces bounding the cell where the
sign denotes the sense of the regions defined by the surfaces. The regions
are combined with the Boolean intersection and union operators. A space
indicates an intersection and a colon indicates a union.

Optionally, after the geometry description, cell parameters can be en-
tered. The form is keyword=value. The following line illustrates the cell
card format:

1 1 —-0.0014 -7 IMP:N=1
Cell 1 contains material 1 with density 0.0014 g/cm?, is bounded by only
one surface (7), and has an importance of 1. If cell 1 were a void, the cell
card would be
1 0 —7 IMP:N=1
The complete cell card input for this problem (with 2 comment cards) is
¢ cell cards for sample problem

1 1 —-0.0014 -7

2 2 —7.86 -8
3 3 —1.60 1 -2-34-567S8
4 0 —1:2:3:—4:5:—6

¢ end of cell cards for sample problem
blank line delimiter
The blank line terminates the cell card section of the INP file. We
strongly suggest that the cells be numbered sequentially starting with one.
A complete explanation of the cell card input is found in Chapter 3, page
3-9.

C. Surface Cards

The surface number is the first entry. It must begin in columns 1-5 and
not exceed 5 digits. The next entry is an alphabetic mnemonic indicating the
surface type. Following the surface mnemonic are the numerical coefficients
of the equation of the surface in the proper order. This simplified description
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enables us to proceed with the example problem. For a full description of
the surface card see page 3—12.

Our problem uses planes normal to the x, y, and z axes and two general
spheres. The respective mnemonics are PX, PY, PZ, and S. Table 1.2 shows
the equations that determine the sense of the surface for the cell cards and
the entries required for the surface cards. A complete list of available surface
equations is contained in Table 3.1 on page 3—14.

Table 1.2

Surface Equations

Mnemonic Equation Card Entries
PX r—D=0 D
PY y—D=0 D
PZ z—D=0 D
S (=2 +(y—9y) +(»—2*-R*=0 2zyzR

For the planes, D is the point where the plane intersects the axis. If we
place the origin in the center of the 10-cm cube shown in Figure 1.7, the
planes will be at + = —5, * = 5, etc. The two spheres are not centered at
the origin or on an axis, so we must give the x,y,z of their center as well as
their radii. The complete surface card input for this problem is shown below.
A blank line terminates the surface card portion of the input.

C  Beginning of surfaces for cube

1 PZ -5
2 PZ 5
3 PY 5
4 PY -5
5) PX 5
6 PX -5

C  End of cube surfaces
7 S 0 —4 =25 $ oxygen sphere

D
8 S 0 4 4 5 $ iron sphere
blank line delimiter

D. Data Cards

The remaining data input for MCNP follow the second blank card de-
limiter, or third blank card if there is a message block. The card name is
the first entry and must begin in the first five columns. The required entries
follow, separated by one or more blanks.

Several of the data cards require a particle designator to distinguish
between input data for neutrons, data for photons, and data for electrons.
The particle designator consists of the symbol : (colon) and the letter N or
P or E immediately following the name of the card. For example, to enter
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neutron importances, use an IMP:N card; enter photon importances on an
IMP:P card; enter electron importances on an IMP:E card. No data card
can be used more than once with the same mnemonic, that is, M1 and M2
are acceptable, but two M1 cards are not allowed. Defaults have been set for
cards in some categories. A summary starting on page 3—132 shows which
cards are required, which are optional, and whether defaults exist and if so,
what they are. The sample problem will use cards in the following categories:

MCNP card name

1. mode, MODE
2. cell and surface parameters, IMP:N
3. source specification, SDEF

4. tally specification, Fn, En
5. material specification, and Mn

6. problem cutoffs. NPS

A complete description of the data cards is found on page 3—18 in Chapter 3.
1. MODE card

MCNP can be run in several different modes:

Mode N — neutron transport only (default)
N P - neutron and neutron-induced photon transport
P — photon transport only
E — electron transport only
P E - photon and electron transport

N P E - neutron, neutron-induced photon and electron transport

The MODE card consists of the mnemonic MODE followed by either an N,
NP P E PE, or NP E. If the MODE card is omitted, mode N is assumed.

Mode N P does not account for photo-neutrons but only neutron-induced
photons. Photon-production cross sections do not exist for all nuclides. If
they are not available for a Mode N P problem, MCNP will print out warning
messages. To find out whether a particular table for a nuclide has photon-
production cross sections available, check the Appendix G cross-section list.

Mode P or mode N P problems generate bremsstrahlung photons with a
computationally expensive thick—target bremsstrahlung approximation. This
approximation can be turned off with the PHYS:E card.

The sample problem is a neutron-only problem, so the MODE card can

be omitted because MODE N is the default.

2. Cell and surface parameter cards

Most of these cards define values of cell parameters. Entries correspond
in order to the cell or surface cards that appear earlier in the INP file. A
listing of all available cell and surface parameter cards is found on page 3—28.
A few examples are neutron and photon importance cards (IMP:N,IMP:P),
weight window cards (WWE:N, WWE:P, WWNi:N, WWN1:P), etc. Some
method of specifying relative cell importances is required; the majority of
the other cell parameter cards are for optional variance reduction techniques.
The number of entries on a cell or surface parameter card must equal the
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number of cells or surfaces in the problem or MCNP prints out a WARNING
or FATAL error message. In the case of a WARNING, MCNP assumes zeros.

The IMP:N card is used to specify relative cell importances in the sample
problem. There are four cells in the problem, so the IMP:N card will have
four entries. The IMP:N card is used (a) for terminating the particle’s history
if the importance is zero and (b) for geometry splitting and Russian roulette
to help particles move more easily to important regions of the geometry. An
IMP:N card for the sample problem is

IMP:N 1 1 1 0

Cell parameters also can be defined on cell cards using the keyword=value
format. If a cell parameter is specified on any cell card, it must be specified
only on cell cards and not at all in the data card section.

3. Source specification cards

A source definition card SDEF is one of four available methods of defining
starting particles. Chapter 3 has a complete discussion of source specifica-
tion. The SDEF card defines the basic source parameters, some of which
are

POS=xyz default 1s 0 0 0;
CEL = starting cell number

ERG = starting energy default 1s 14 MeV;
WGT= starting weight default is 1;
TME= time default 1s 0;

PAR = source particle type N for N, N P, N P E; P for P, P E; E for E.

MCNP will determine the starting cell number for a point isotropic source,
so the CEL entry is not always required. The default starting direction for
source particles is isotropic.

For the example problem, a fully specified source card is

SDEF POS=0 —4 —-2.5 CEL=1 ERG=14 WGT=1 TME=0 PAR=N
Neutron particles will start at the center of the oxygen sphere (0 —4 —2.5),
in cell 1, with an energy of 14 MeV, and with weight 1 at time 0. All these
source parameters except the starting position are the default values, so the
most concise source card is

SDEF POS=0 —4 -2.5

If all the default conditions were satisfactory for the problem, only the
mnemonic SDEF would be required.

4. Tally specification cards

The tally cards are used to specify what you want to learn from the Monte
Carlo calculation, perhaps current across a surface, flux at a point, etc. You
request this information with one or more tally cards. Tally specification
cards are not required, but if none is supplied, no tallies will be printed
when the problem is run and a warning message is issued. Many of the tally
specification cards describe tally “bins.” A few examples are energy (En),
time (Tn), and cosine (Cn) cards.
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MCNP provides six standard neutron, six standard photon, and four
standard electron tallies, all normalized to be per starting particle. Some
tallies in criticality calculations are normalized differently. Chapter 2, page
2—68, discusses tallies more completely and Chapter 3, page 3—62, lists all
the tally cards and fully describes each one.

Tally Mnemonic Description

FI:N or F1:P or F1:E Surface current
F2:N or F2:P or F2:E Surface flux
F4:N or F4&P or F4&E Track length estimate of cell flux

F5a:N or F5a:P Flux at a point (point detector)
F6:N or F6:N.,P Track length estimate of energy deposition
or F6:P
F7:N Track length estimate of fission energy deposition
F8:P or F8:E Energy distribution of pulses created
or F&:P.E in a detector

The tallies are identified by tally type and particle type. Tallies are given
the numbers 1, 2, 4, 5, 6, 7, 8, or increments of 10 thereof, and are given the
particle designator :N or :P or :E (or :N,P only in the case of tally type 6 or
P.E only for tally type 8). Thus you may have as many of any basic tally as
you need, each with different energy bins or flagging or anything else. F4:N,
F14:N, F104:N, and F234:N are all legitimate neutron cell flux tallies; they
could all be for the same cell(s) but with different energy or multiplier bins,
for example. Similarly F5:P, F15:P, and F305:P are all photon point detector
tallies. Having both an F1:N card and an F1:P card in the same INP file is
not allowed. The tally number may not exceed three digits.

For our sample problem we will use Fn cards (Tally type) and En cards
(Tally energy).

a. Tally (Fn) Cards: The sample problem has a surface flux tally and
a track length cell flux tally. Thus, the tally cards for the sample problem
shown in Figure 1.7 are

F2:N 8 § flux across surface 8
F4:N 2§ track length in cell 2
Printed out with each tally bin is the relative error of the tally corre-

sponding to one estimated standard deviation. Read page 1—6 for an expla-
nation of the relative error. Results are not reliable until they become stable
as a function of the number of histories run. Much information is provided
for one bin of each tally in the tally fluctuation charts at the end of the
output file to help determine tally stability. The user is strongly encouraged
to look at this information carefully.

b. Tally Energy (En) Card: We wish to calculate flux in increments
of 1 MeV from 14 to 1 MeV. Another tally specification card in the sample
input deck establishes these energy bins.

The entries on the En card are the upper bounds in MeV of the energy
bins for tally n. The entries must be given in order of increasing magnitude.
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If a particle has an energy greater than the last entry, it will not be tallied,
and a warning is issued. MCNP automatically provides the total over all
specified energy bins unless inhibited by putting the symbol NT as the last
entry on the selected En card.

The following cards will create energy bins for the sample problem:

E2 1234567891011 12 13 14
E4 1121 14
If no En card exists for tally n, a single bin over all energy will be used.
To change this default, an EO (zero) card may be used to set up a default
energy bin structure for all tallies. A specific En card will override the default
structure for tally n. We could replace the E2 and E4 cards with one EO
card for the sample problem, thus setting up identical bins for both tallies.

5. Materials specification

The cards in this section specify both the isotopic composition of the
materials and the cross-section evaluations to be used in the cells. For a
comprehensive discussion of materials specification, see page 3—95.

a. Material (Mm) Card: The following card is used to specify a ma-
terial for all cells containing material m, where m can not exceed 5 digits:

Mm ZAID, fractiony ZAID, fractions

The m on a material card corresponds to the material number on the cell card
(see page 1—22). The consecutive pairs of entries on the material card consist
of the identification number (ZAID) of the constituent element or nuclide
followed by the atomic fraction (or weight fraction if entered as a negative
number) of that element or nuclide, until all the elements and nuclides needed
to define the material have been listed.

i. Nuclide Identification Number (ZAID). This number is used
to identify the element or nuclide desired. The form of the number is

Z7Z7ZAAA nnX, where

7277  is the atomic number of the element or nuclide,

AAA is the mass number of the nuclide, ignored for photons
and electrons,

nn is the cross-section evaluation identifier; if blank or zero,

a default cross-section evaluation will be used, and
X is the class of data: C is continuous energy; D is discrete
reaction; T is thermal; Y is dosimetry; P is photon;
E is electron; and M is multigroup.
For naturally occurring elements, AAA=000. Thus ZAID=74182 represents

the isotope ¥*W, and ZAID=74000 represents the element tungsten.

1. Nuclide Fraction. The nuclide fractions may be normalized to
1 or left unnormalized. For example, if the material is HoO the fractions can
be entered as .667 and .333 or as 2 and 1 for H and O respectively. If the

fractions are entered with negative signs, they are weight fractions; otherwise

they are atomic fractions. Weight fractions and atomic fractions cannot be
mixed on the same Mm card.

1-27 March 25, 1997



CHAPTER 1
Input File

The material cards for the sample problem are

M1 8016 1 $ oxygen 16
M2 26000 1 $ natural iron
M3 6000 1 $ carbon

b. VOID Card: The VOID card removes all materials and cross sec-
tions in a problem and sets all nonzero importances to unity. It is very

effective for finding errors in the geometry description because many parti-
cles can be run in a short time. Flooding the geometry with many particles
increases the chance of particles going to most parts of the geometry—in par-
ticular, to an incorrectly specified part of the geometry—and getting lost.
The history of a lost particle often helps locate the geometry error. The
other actions of and uses for the VOID card are discussed on page 3—100.
The sample input deck could have a VOID card while testing the geome-
try for errors. When you are satisfied that the geometry is error-free, remove

the VOID card.
6. Problem Cutoffs

Problem cutoff cards are used to specify parameters for some of the
ways to terminate execution of MCNP. The full list of available cards and
a complete discussion of problem cutoffs is found on page 3—110. For our
problem we will use only the history cutoff (NPS) card. The mnemonic
NPS is followed by a single entry that specifies the number of histories to
transport. MCNP will terminate after NPS histories unless it has terminated
earlier for some other reason.

7. Sample Problem Summary

The entire input deck for the sample problem follows. Recall that the
input can be upper, lower, or mixed case.

Sample Problem Input Deck
cell cards for sample problem
1 -0.0014 -7
2 -7.86 -8
3 -1.60 1-2-34-56738
0 -1:2:3:-4:5:-6
end of cell cards for sample problem
lank line delimiter
Beginning of surfaces for cube
PZ -5
PZ 5
PY 5
PY -5
PX b
PX -5
End of cube surfaces
S 0 -4 -2.5 .5 $ oxygen sphere
S 0 4 4 .5 $ iron sphere
blank line delimiter

0O ~NQO o WNDEFE,E QT O B WNDEO
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IMP:N 1110

SDEF P0S=0 -4 -2.5

F2:N 8 ¢ flux across surface 8
F4:N 2 $ track length in cell 2

EO 1 121 14

M1 8016 1 $ oxygen 16

M2 26000 1 $ natural iron
M3 6000 1 $ carbon

NPS 100000

blank line delimiter (optional)
V. HOW TO RUN MCNP

This section assumes a basic knowledge of UNIX. Lines the user will type
are shown in lower case typewriter style type. Press the RETURN key
after each input line. MCNP is the executable binary file and XSDIR is the
cross-section directory. If XSDIR is not in your current directory, you may
need to set the environmental variable:

setenv DATAPATH /ab/cd

where /ab/cd is the directory containing both XSDIR and the data libraries.

A. Ezecution Line
The MCNP execution line has the following form:
mcnp Files Options
Files and Options are described below. Their order on the execution line

is irrelevant. If there are no changes in default file names, nothing need be
entered for Files and Options.

1. Files

MCNP uses several files for input and output. The file names cannot be
longer than eight characters. The files pertinent to the sample problem are
shown in Table 1.3. File INP must be present as a local file. MCNP will
create OUTP and RUNTPE.

Table 1.3
MCNP Files
Default File Name Description
INP Problem input specification
OouTP BCD output for printing
RUNTPE Binary start-restart data
XSDIR Cross-section directory

The default name of any of the files in Table 1.3 can be changed on the
MCNP execution line by entering

default_file_name=newname
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For example, if you have an input file called MCIN and want the output file
to be MCOUT and the runtpe to be MCRUNTPE, the execution line is

mcnp inp=mcin outp=mcout runtpe=mcruntpe

Only enough letters of the default name are required to uniquely identify it.
For example,
mcnp i=mcin o=mcout ru=mcrntpe

also works. If a file in your local file space has the same name as a file MCNP
needs to create, the file is created with a different unique name by changing
the last letter of the name of the new file to the next letter in the alphabet.
For example, if you already have an OUTP, MCNP will create OUTQ.

Sometimes it is useful for all files from one run to have similar names. If
your input file is called JOBI, the following line

mcnp name=jobl
will create an QUTP file called JOB10O and a RUNTPE file called JOB1R.

If these files already exist, MCNP will NOT overwrite them, but will issue a
message that JOB1O already exists and then will terminate.

2. Options

There are two kinds of options: program module execution options and
other options. Execution options are discussed next.

MCNP consists of five distinct execution operations, each given a module
name. These operations, their corresponding module names, and a one-letter
mnemonic for each operation are listed in Table 1.4.

Table 1.4
Execution Options

Mnemonic Module Operation

i IMCN Process problem input file

p PLOT Plot geometry

X XACT Process cross sections

r MCRUN Particle transport

zZ MCPLOT Plot tally results or cross section data

When Options are omitted, the default is ixr. The execution of the
modules is controlled by entering the proper mnemonic on the execution
line. If more than one operation is desired, combine the single characters (in
any order) to form a string. Examples of use are: i to look for input errors,
ip to debug a geometry by plotting, ixz to plot cross-section data, and z to
plot tally results from the RUNTPE file.

After a job has been run, the BCD print file OUTP can be examined
with an editor on the computer and/or sent to a printer. Numerous mes-
sages about the problem execution and statistical quality of the results are
displayed at the terminal.
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The “other” options add more flexibility when running MCNP and are
shown in Table 1.5.

Table 1.5
Other Options
Mnemonic Operation
C m Continue a run starting with m* dump. If m is omitted,

last dump is used. See page 3—2.
CN Like C, but dumps are written immediately after the fixed part
of the RUNTPE, rather than at the end. See page 3—2.
DBUG n Write debug information every n particles. See DBCN
card, page 3—115.
NOTEK Indicates that your terminal has no graphics capability.
PLOT output is in PLOTM.PS. Equivalent to TERM=0. See

page B—3.

FATAL  Transport particles and calculate volumes even if fatal errors
are found.

PRINT  Create the full output file; equivalent to PRINT card. See
page 3—120.

TASKS n Invokes multiprocessing on common or distributed memory
systems. n=number of processors to be used. —n is allowed
only on distributed memory systems to disable load

balancing and fault tolerance, increasing system efficiency.

The TASK option must be used to invoke multiprocessing on common
or distributed memory computer systems and is followed by the number of
tasks or CPUs to be used for particle tracking. The multiprocessing capa-
bility must be invoked at the time of compilation to create a compatible
executable. Two compilation options exist: common memory systems (UNI-
COS, etc.) and distributed memory systems (workstation clusters, Cray
T3D, etc.) While multiprocessing on common memory systems is invoked
and handled by the compiler with compiler directives, on distributed mem-
ory systems it is performed by the software communications package Parallel
Virtual Machine® (PVM). Thus, using this capability on distributed memory
systems requires the installation and execution of PVM.1? On such systems,
a negative entry following the TASKS option will maximize efficiency for ho-
mogeneous dedicated systems (e.g., workstation with multiple CPUs). For
heterogeneous or multiuser systems, a positive entry should be used, in which
case load balancing and fault tolerance are enabled.!’ In either case, the ab-
solute value of this entry indicates the number of hosts (or CPUs) available
for use during particle tracking. On both common and distributed mem-
ory systems, a table is provided in the output file that lists the number of
particles tracked by each host.
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Examples: mcnp i=input o=output tasks 8

Indicates eight processors are to be used for particle tracking. On a
common memory system, eight tasks are initiated (if fewer processors are
actually available, multiple tasks are run on each processor.) On a distributed
memory system, the master task and one subtask are initiated on the primary
host (i.e., machine from which the execution is initiated), and a subtask is
initiated on each of the seven secondary hosts.

mcnp name=inp tasks —4

A negative entry following the TASKS option is allowed only on a dis-
tributed memory system and is recommended for homogeneous dedicated
systems. As in the previous example, the master task and one subtask are
initiated on the primary host, and a subtask is initiated on each of the three
secondary hosts. The negative entry disables load balancing and fault toler-
ance, increasing system efficiency.

B. Interrupts

MCNP allows four interactive interrupts while it is running:

(ctrl ¢)<cr> (default) MCNP status

(ctrl ¢)s MCNP status

(ctrl ¢)m Make interactive plots of tallies

(ctrl ¢)q Terminate MCNP normally after current history
(ctrl )k Kill MCNP immediately

The (ctrl ¢)s interrupt prints the computer time used so far, the number
of particles run so far, and the number of collisions. In the IMCN module,
it prints the input line being processed. In the XACT module, it prints the
cross section being processed.

The (ctrl ¢)q interrupt has no effect until MCRUN is executed. (Ctrl ¢)q
causes the code to stop after the current particle history, to terminate “grace-
fully,” and to produce a final print output file and RUNTPE file.

The (ctrl ¢)k interrupt kills MCNP immediately, without normal termi-
nation. If (ctrl ¢)k fails, enter (ctrl ¢) three or more times in a row.

C. Running MCNP

To run the example problem, have the input file in your current directory.
For illustration, assume the file is called SAMPLE. Type
mcnp n=sample
where n uniquely identifies NAME. MCNP will produce an output file SAM-
PLEO that you can examine at your terminal, send to a printer, or both. To
look at the geometry with the PLOT module using an interactive graphics
terminal, type in

mcnp 1ip n=sample
After the plot prompt plot> appears, type in

px=0 ex=20
This plot will show an intersection of the surfaces of the problem by the
plane X=0 with an extent in the x-direction of 20 cm on either side of the
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If you want to do more with PLOT, see the instructions on page

B—1. Otherwise type end after the next prompt to terminate the session.

VI. TIPS FOR CORRECT AND EFFICIENT PROBLEMS

This section has a brief checklist of helpful hints that apply to three
phases of your calculation: defining and setting up the problem, preparing

for the long computer runs that you may require, and making the runs that
will give you results. Not everything mentioned in the checklist has been
covered in this chapter, but the list can serve as a springboard for further
reading in preparation for tackling more difficult problems.

A.

e

e

e BRI S e

Problem Setup

Model the geometry and source distribution accurately.

Use the best problem cutoffs.

Use zero (default) for the neutron energy cutoff (MODE N P).
Do not use too many variance reduction techniques.

Use the most conservative variance reduction techniques.

Do not use cells with many mean free paths.

Use simple cells.

Use the simplest surfaces.

Study warning messages.

Always plot the geometry.

. Use the VOID card when checking geometry.

Use separate tallies for the fluctuation chart.

Generate the best output (consider PRINT card).

RECHECK the INP file (materials, densities, masses, sources, ete.).
GARBAGE into code = GARBAGE out of code.

Preproduction

Run some short jobs.

Examine the outputs carefully.

Study the summary tables.

Study the statistical checks on tally quality and the sources of vari-
ance.

Compare the figures of merit and variance of the variance.

Consider the collisions per source particle.

Examine the track populations by cell.

Scan the mean free path column.

Check detector diagnostic tables.

. Understand large detector contributions.
11.
12.
13.
14.

Strive to eliminate unimportant tracks.

Check MODE N P photon production.

Do a back-of-the-envelope check of the results.
DO NOT USE MCNP AS A BLACK BOX.
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C. Production

1.

Gl W

Save RUNTPE for expanded output printing, continue run, tally
plotting.

Look at figure of merit stability.

Make sure answers seem reasonable.

Make continue runs if necessary.

See if stable errors decrease by 1/vN (that is, be careful of the brute
force approach).

Remember, accuracy is only as good as the nuclear data, modeling,
MCNP sampling approximations, etc.
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CHAPTER 2
GEOMETRY, DATA, PHYSICS, AND MATHEMATICS

I. INTRODUCTION

Chapter 2 discusses the mathematics and physics of MCNP, includ-
ing geometry, cross-section libraries, sources, variance reduction schemes,
Monte Carlo simulation of neutron and photon transport, and tallies. This
discussion is not meant to be exhaustive; many details of the particular
techniques and of the Monte Carlo method itself will be found elsewhere.
Carter and Cashwell’s book Particle- Transport Simulation with the Monte
Carlo Method,! a good general reference on radiation transport by Monte
Carlo, is based upon what is in MCNP. A more recent reference is Lux and
Koblinger’s book, Monte Carlo Particle Transport Methods: Neutron and
Photon Calculations.? Methods of sampling from standard probability den-
sities are discussed in the Monte Carlo samplers by Everett and Cashwell.?

MCNP was originally developed by the Monte Carlo Group, currently
the Transport Methods Group, (Group XTM) in the Applied Theoretical
and Computational Physics Division (X Division) at the Los Alamos National
Laboratory. Group XTM improves MCNP (releasing a new version every two
to three years), maintains it at Los Alamos and at other laboratories where
we have collaborators or sponsors, and provides limited free consulting and
support for MCNP users. MCNP is distributed to other users through the
Radiation Safety Information Computational Center (RSICC) at Oak Ridge,
Tennessee, and the OECD/NEA data bank in Paris, France.

MCNP has approximately 44,000 lines of FORTRAN and 1000 lines of
C source coding, including comments and with the COMMON blocks listed
only once and not in every subroutine. There are about 360 subroutines.
There is only one source code; it is used for all systems. At Los Alamos,
there are about 250 active users. Worldwide, there are about 3000 active
users at about 200 installations.

MCNP takes advantage of parallel computer architectures. It is sup-
ported in multitasking mode on some mainframes and in multiprocessing
mode on a cluster of workstations where the distributed processing uses the
Parallel Virtual Machine (PVM) software from Oak Ridge.

MCNP has not been successfully vectorized because the overhead re-
quired to set up and break apart vector queues at random decision points is
greater than the savings from vectorizing the simple arithmetic between the
decision points. MCNP (and any general Monte Carlo code) is little more
than a collection of random decision points with some simple arithmetic in
between. Because MCNP does not take advantage of vectorization, it is
fairly inefficient on vectorized computers. In particular, many workstations
run MCNP as fast or faster than the Cray-YMP.*

MCNP has been made as system independent as possible to enhance its
portability, and has been written to comply with the ANSI FORTRAN 77

standard. With one source code, MCNP is maintained on many platforms.
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A. History

The Monte Carlo method is generally attributed to scientists working
on the development of nuclear weapons in Los Alamos during the 1940s.
However, its roots go back much farther.

Perhaps the earliest documented use of random sampling to solve a math-
ematical problem was that of Compte de Buffon in 1772.> A century later
people performed experiments in which they threw a needle in a haphaz-
ard manner onto a board ruled with parallel straight lines and inferred the
value of 7 from observations of the number of intersections between needle
and lines.®T Laplace suggested in 1786 that = could be evaluated by random
sampling.® Lord Kelvin appears to have used random sampling to aid in eval-
uating some time integrals of the kinetic energy that appear in the kinetic
theory of gasses” and acknowledged his secretary for performing calculations
for more than 5000 collisions.!”

According to Emilio Segre, Enrico Fermi’s student and collaborator,
Fermi invented a form of the Monte Carlo method when he was studying
the moderation of neutrons in Rome.!®!! Though Fermi did not publish
anything, he amazed his colleagues with his predictions of experimental re-
sults. After indulging himself, he would reveal that his “guesses” were really
derived from the statistical sampling techniques that he performed in his
head when he couldn’t fall asleep.

During World War II at Los Alamos, Fermi joined many other eminent
scientists to develop the first atomic bomb. It was here that Stan Ulam be-
came impressed with electromechanical computers used for implosion studies.
Ulam realized that statistical sampling techniques were considered impracti-
cal because they were long and tedious, but with the development of comput-
ers they could become practical. Ulam discussed his ideas with others like
John von Neumann and Nicholas Metropolis. Statistical sampling techniques
reminded everyone of games of chance, where randomness would statistically
become resolved in predictable probabilities. It was Nicholas Metropolis who
noted that Stan had an uncle who would borrow money from relatives be-
cause he “just had to go to Monte Carlo” and thus named the mathematical
method “Monte Carlo.”!!

Meanwhile, a team of wartime scientists headed by John Mauchly was
working to develop the first electronic computer at the University of Penn-
sylvania in Philadelphia. Mauchly realized that if Geiger counters in physics
laboratories could count, then they could also do arithmetic and solve mathe-
matical problems. When he saw a seemingly limitless array of women crank-
ing out firing tables with desk calculators at the Ballistic Research Labo-
ratory at Aberdeen, he proposed!! that an electronic computer be built to
deal with these calculations. The result was ENIAC (Electronic Numerical
Integrator and Computer), the world’s first computer, built for Aberdeen at
the University of Pennsylvania. It had 18,000 double triode vacuum tubes
in a system with 500,000 solder joints.!!

John von Neumann was a consultant to both Aberdeen and Los Alamos.

When he heard about ENIAC, he convinced the authorities at Aberdeen
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that he could provide a more exhaustive test of the computer than mere
firing-table computations. In 1945 John von Neumann, Stan Frankel, and
Nicholas Metropolis visited the Moore School of Electrical Engineering at
the University of Pennsylvania to explore using ENTAC for thermonuclear
weapon calculations with Edward Teller at Los Alamos.' After the success-
ful testing and dropping of the first atomic bombs a few months later, work
began in earnest to calculate a thermonuclear weapon. On March 11, 1947,
John von Neumann sent a letter to Robert Richtmyer, leader of the Theo-
retical Division at Los Alamos, proposing use of the statistical method to
solve neutron diffusion and multiplication problems in fission devices.'' His
letter was the first formulation of a Monte Carlo computation for an elec-
tronic computing machine. In 1947, while in Los Alamos, Fermi invented a
mechanical device called FERMIAC!? to trace neutron movements through
fissionable materials by the Monte Carlo Method.

By 1948 Stan Ulam was able to report to the Atomic Energy Commis-
sion that not only was the Monte Carlo method being successfully used on
problems pertaining to thermonuclear as well as fission devices, but also it
was being applied to cosmic ray showers and the study of partial differential
equations.!! In the late 1940s and early 1950s, there was a surge of papers
describing the Monte Carlo method and how it could solve problems in ra-
diation or particle transport and other areas.!>1%1% Many of the methods
described in these papers are still used in Monte Carlo today, including the
method of generating random numbers!' used in MCNP. Much of the interest
was based on continued development of computers such as the Los Alamos
MANIAC (Mechanical Analyzer, Numerical Integrator, and Computer) in
March, 1952.

The Atomic Energy Act of 1946 created the Atomic Energy Commission
to succeed the Manhattan Project. In 1953 the United States embarked upon
the “Atoms for Peace” program with the intent of developing nuclear energy
for peaceful applications such as nuclear power generation. Meanwhile, com-
puters were advancing rapidly. These factors led to greater interest in the
Monte Carlo method. In 1954 the first comprehensive review of the Monte
Carlo method was published by Herman Kahn'" and the first book was pub-
lished by Cashwell and Everett!'® in 1959.

At Los Alamos, Monte Carlo computer codes developed along with com-
puters. The first Monte Carlo code was the simple 19-step computing sheet
in John von Neumann’s letter to Richtmyer. But as computers became
more sophisticated, so did the codes. At first the codes were written in
machine language and each code would solve a specific problem. In the
early 1960s, better computers and the standardization of programming lan-
guages such as FORTRAN made possible more general codes. The first Los
Alamos general-purpose particle transport Monte Carlo code was MCS,!?
written in 1963. Scientists who were not necessarily experts in comput-
ers and Monte Carlo mathematical techniques now could take advantage of
the Monte Carlo method for radiation transport. They could run the MCS
code to solve modest problems without having to do either the programming
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or the mathematical analysis themselves. MCS was followed by MCN?? in
1965. MCN could solve the problem of neutrons interacting with matter
in a three-dimensional geometry and used physics data stored in separate,
highly-developed libraries.

In 1973 MCN was merged with MCG,?! a Monte Carlo gamma code that
treated higher energy photons, to form MCNG, a coupled neutron-gamma
code. In 1977 MCNG was merged with MCP,?! a Monte Carlo Photon
code with detailed physics treatment down to 1 keV, to accurately model
neutron-photon interactions. The code has been known as MCNP ever since.
Though at first MCNP stood for Monte Carlo Neutron Photon, now it stands
for Monte Carlo N-Particle. Other major advances in the 70s included the
present generalized tally structure, automatic calculation of volumes, and a
Monte Carlo eigenvalue algorithm to determine k.ss for nuclear criticality
(KCODE).

In 1983 MCNP3 was released, entirely rewritten in ANSI standard FOR-
TRAN 77. MCNP3 was the first MCNP version internationally distributed
through the Radiation Shielding and Information Center at Oak Ridge, Ten-
nessee. Other 1980s versions of MCNP were MCNP3A (1986) and MCNP3B
(1988), that included tally plotting graphics (MCPLOT), the present gen-
eralized source, surface sources, repeated structures/lattice geometries, and
multigroup /adjoint transport.

MCNP4 was released in 1990 and was the first UNIX version of the
code. It accommodated N-particle transport and multitasking on parallel
computer architectures. MCNP4 added electron transport (patterned after
the Integrated TIGER Series (ITS) continuous-slowing-down approximation
physics),?? the pulse height tally (FS8), a thick-target bremsstrahlung ap-
proximation for photon transport, enabled detectors and DXTRAN with the
S(a, ) thermal treatment, provided greater random number control, and
allowed plotting of tally results while the code was running.

MCNP4A, released in 1993, featured enhanced statistical analysis, dis-
tributed processor multitasking for running in parallel on a cluster of sci-
entific workstations, new photon libraries, ENDF/B-VI capabilities, color
X-Windows graphics, dynamic memory allocation, expanded criticality out-
put, periodic boundaries, plotting of particle tracks via SABRINA, improved
tallies in repeated structures, and many smaller improvements.

MCNP4B, released in 1997, features differential operator perturbations,
enhanced photon physics equivalent to ITS3.0, PVM load balance and fault
tolerance, cross section plotting, postscript file plotting, 64-bit workstation
upgrades, PC X—windows, inclusion of LAHET HMCNP, lattice universe
mapping, enhanced neutron lifetimes, coincident—surface lattice capability,
and many smaller features and improvements.

Large production codes such as MCNP have revolutionized science —
not only in the way it is done, but also by becoming the repositories for
physics knowledge. MCNP represents about 500 person-years of sustained
effort. The knowledge and expertise contained in MCNP is formidable.

Current MCNP development is characterized by a strong emphasis on
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quality control, documentation, and research. New features continue to be
added to the code to reflect new advances in computer architecture, improve-
ments in Monte Carlo methodology, and better physics models. MCNP has
a proud history and a promising future.

B. MCNP Structure

MCNP is written in the style of Dr. Thomas N. K. Godfrey, the princi-
pal MCNP programmer from 1975 - 1989. Variable dimensions for arrays are
achieved by massive use of EQUIVALENCE statements and offset indexing.
All variables local to a routine are no more than two characters in length, and
all COMMON variables are between three and six characters in length. The
code strictly complies with the ANSI FORTRAN 77 standard. The principal
characteristic of Tom Godfrey’s style is its terseness. Everything is accom-
plished in as few lines of code as possible. Thus MCNP does more than some
other codes that are more than ten times larger. It was Godfrey’s philosophy
that anyone can understand code at the highest level by making a flow chart
and anyone can understand code at the lowest level (one FORTRAN line);
it is the intermediate level that is most difficult. Consequently, by using a
terse programming style, subroutines could fit within a few pages and be
most easily understood. Tom Godfrey’s style is clearly counter to modern
computer science programming philosophies, but it has served MCNP well
and is preserved to provide stylistic consistency throughout.

The general structure of MCNP is as follows:

Initiation (IMCN):
e Read input file (INP) to get dimensions (PASS1);
Set up variable dimensions or dynamically allocated storage (SETDAS);
Re-read input file (INP) to load input (RDPROB);
Process source (ISOURC);
Process tallies (ITALLY);
Process materials specifications (STUFF) including masses but without
loading in the data files;
e Calculate cell volumes and surface areas (VOLUME).

Interactive Geometry Plot (PLOT).

Cross Section Processing (XACT):

e Load libraries (GETXST);

e Eliminate excess neutron data outside problem energy range (EXPUNG);

e Doppler broaden elastic and total cross sections to the proper tempera-
ture if the problem temperature is higher than the library temperature
(BROADN);

e Process multigroup libraries (MGXSPT);

e Process electron libraries (XSGEN) including calculation of range tables,
straggling tables, scattering angle distributions, and bremsstrahlung.

MCRUN sets up multitasking and multiprocessing, runs histories (by calling
TRNSPT, which calls HSTORY), and returns to OUTPUT to print, write
RUNTPE dumps, or process another criticality (KCODE) cycle.
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Under MCRUN, MCNP runs neutron, photon, or electron histories (HSTORY),
calling ELECTR for electron tracks:
e Start a source particle (STARTP);
e Find the distance to the next boundary (TRACK), cross the surface
(SURFAC) and enter the next cell (NEWCEL);
e Find the total neutron cross section (ACETOT) and process neutron
collisions (COLIDN) producing photons as appropriate (ACEGAM);
e Find the total photon cross section (PHOTOT) and process photon col-
lisions (COLIDP) producing electrons as appropriate (EMAKER);
e Use the optional thick-target bremsstrahlung approximation if no elec-
tron transport (TTBR);
e Follow electron tracks (ELECTR);
e Process optional multigroup collisions (MGCOLN, MGCOLP, MGA-
COL);
e Process detector tallies (TALLYD) or DXTRAN;
e Process surface, cell, and pulse height tallies (TALLY).

Periodically write output file, restart dumps, update to next criticality (KCODE)
cycle, rendezvous for multitasking and updating detector and DXTRAN Rus-
sian roulette criteria, etc. (OUTPUT):

e Go to the next criticality cycle (KCALC);
Print output file summary tables (SUMARY, ACTION);
Print tallies (TALLYP);
Generate weight windows (OUTWWG).

Plot tallies, cross sections, and other data (MCPLOT).

GKS graphics simulation routines.
PVM distributed processor multiprocessing routines.
Random number generator and control (RANDOM).

Mathematics, character manipulation, and other slave routines.
C. History Flow

The basic flow of a particle history for a coupled neutron/photon/electron
problem is handled in subroutine HSTORY. HSTORY is called from TRN-
SPT after the random number sequence is set up and the number of the
history, NPS, is incremented. The flow of HSTORY is then as follows.

First, STARTP is called. The flag IPT is set for the type of particle being
run: 1 for a neutron, 2 for a photon, and 3 for an electron. Some arrays and
variables (such as NBNK, the number of particles in the bank) are initialized
to zero. The starting random number is saved (RANB, RANS, RNRTCO0),
and the branch of the history, NODE, is set to 1.

Next, the appropriate source routine is called. Source options are the
standard fixed sources (SOURCB), the surface source (SURSRC), the KCODE
criticality source (SOURCK), or a user-provided source (SOURCE). All of
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the parameters describing the particle are set in these source routines, in-
cluding position, direction of flight, energy, weight, time, and starting cell
(and possibly surface), by sampling the various distributions described on the
source input control cards. Several checks are made at this time to verify
that the particle is in the correct cell or on the correct surface, and directed
toward the correct cell; then control is returned to STARTP.

Next in STARTP, the initial parameters of the first fifty particle histo-
ries are printed. Then some of the summary information is incremented (see
Appendix E for an explanation of these arrays). Energy, time, and weight
are checked against cutoffs. A number of error checks are made. TALLYD
is called to score any detector contributions, and then DXTRAN is called
(if used in the problem) to create particles on the spheres. The particles
are saved with BANKIT for later tracking. TALPH is called to start the
bookkeeping for the pulse height cell tally energy balance. The weight win-
dow game is played, with any additional particles from splitting put into the
bank and any losses to Russian roulette terminated. Control is returned to

HSTORY.

Back in HSTORY, the actual particle transport is started. For an elec-
tron source, ELECTR is called and electrons are run separately. For a neu-
tron or photon source, TRACK 1is called to calculate the intersection of the
particle trajectory with each bounding surface of the cell. The minimum
positive distance DLS to the cell boundary indicates the next surface JSU
the particle is heading toward. The distance to the nearest DXTRAN sphere
DXL is calculated, as is the distance to time cutoff DTC, and energy bound-
ary for multigroup charged particles DEB. The cross sections for cell ICL
are calculated using a binary table lookup in ACETOT for neutrons and in
PHOTOT for photons. The total cross section is modified in EXTRAN by
the exponential transformation if necessary. The distance PMF to the next
collision is determined (if a forced collision is required, FORCOL is called and
the uncollided part is banked). The track length D of the particle in the cell
is found as the minimum of the distance PMF to collision, the distance DLS
to the surface JSU, the distance DXL to a DXTRAN sphere, the distance
DTC to time cutoff, or the distance DEB to energy boundary. TALLY then
is called to increment any track length cell tallies. Some summary informa-
tion is incremented. The particle’s parameters (time, position, and energy)
are then updated. If the particle’s distance DXL to a DXTRAN sphere (of
the same type as the current particle) is equal to the minimum track length
D, the particle is terminated because particles reaching the DXTRAN sphere
are already accounted for by the DXTRAN particles from each collision. If
the particle exceeds the time cutoff, the track is terminated. If the particle
was detected leaving a DXTRAN sphere, the DXTRAN flag IDX 1s set to
zero and the weight cutoff game is played. The particle is either terminated
to weight cutoff or survives with an increased weight. Weight adjustments
then are made for the exponential transformation.

If the minimum track length D is equal to the distance-to-surface crossing

DLS, the particle is transported distance D to surface JSU and SURFAC is
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called to cross the surface and do any surface tallies (by calling TALLY)
and to process the particle across the surface into the next cell by calling
NEWCEL. It is in SURFAC that reflecting surfaces, periodic boundaries,
geometry splitting, Russian roulette from importance sampling, and loss to
escape are treated. For splitting, one bank entry of NPA particle tracks
is made in BANKIT for an (NPA+1)-for-1 split. The bank is the IBNK
array, and entries or retrievals are made with the GPBLCM and JPBLCM
arrays (the bank operates strictly on a last-in, first-out basis). The history
is continued by going back to HSTORY and calling TRACK.

If the distance to collision PMF is less than the distance to surface DLS,
or if a multigroup charged particle reaches the distance to energy boundary
DEB, the particle undergoes a collision. Everything about the collision is
determined in COLIDN for neutrons and COLIDP for photons. COLIDN
determines which nuclide is involved in the collision, samples the target ve-
locity of the collision nuclide by calling TGTVEL for the free gas thermal
treatment, generates and banks any photons (ACEGAM), handles analog
capture or capture by weight reduction, plays the weight cutoff game, han-
dles S(a, ) thermal collisions (SABCOL) and elastic or inelastic scattering
(ACECOL). For criticality problems, COLIDK is called to store fission sites
for subsequent generations. Any additional tracks generated in the collision
are put in the bank. ACECAS and ACECOS determine the energies and di-
rections of particles exiting the collision. Multigroup and multigroup/adjoint
collisions are treated separately in MGCOLN and MGACOL that are called
from COLIDN. The collision process and thermal treatments are described
in more detail later in this chapter (see page 2—27).

COLIDP for photons is similar to COLIDN, and it covers the simple or
the detailed physics treatments. The simple physics treatment is better for
free electrons; the detailed treatment is the default and includes form factors
for electron binding effects, coherent (Thomson) scatter, and fluorescence
from photoelectric capture (see page 2—50). COLIDP samples for the col-
lision nuclide, treats photoelectric absorption, or capture (with fluorescence
in the detailed physics treatment), incoherent (Compton) scatter (with form
factors in the detailed physics treatment to account for electron binding),
coherent (Thomson) scatter for the detailed physics treatment only (again
with form factors), and pair production. Electrons are generated (EMAKER)
for incoherent scatter, pair production, and photoelectric absorption. These
electrons may be assumed to instantly deposit all their energy if IDES=1
on the PHYS:P card, or they may produce electrons with the thick-target
bremsstrahlung approximation (default for MODE P problems, IDES=0 on
the PHYS:P card), or they may undergo full electron transport (default for
MODE P E problems, IDES=0 on the PHYS:P card.) Multigroup or multi-
group/adjoint photons are treated separately in MGCOLP or MGACOL.

After the surface crossing or collision is processed, control returns to
HSTORY and transport continues by calling TRACK, where the distance to
cell boundary is calculated. Or if the particle involved in the collision was
killed by capture or variance reduction, the bank is checked for any remaining
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progeny, and if none exists, the history is terminated. Appropriate summary
information is incremented, the tallies of this particular history are added to
the total tally data by TALSHF, and a return is made to TRNSPT.

In TRNSPT, checks are made to see if output is required or if the job
should be terminated because enough histories have been run or too little
time remains to continue. For continuation, HSTORY 1is called again. Oth-
erwise a return is made to MCRUN. MCRUN calls OUTPUT, which calls
SUMARY to print the summary information. Then SUMARY calls TALLYP
to print the tally data. Appendix E defines all of the MCNP variables that
are iIn COMMON as well as detailed descriptions of some important arrays.

II. GEOMETRY

The basic MCNP geometry concepts, discussed in Chapter 1, include the
sense of a cell, the intersection and union operators, and surface specification.
Covered in this section are the complement operator; the repeated structure
capability; an explanation of two surfaces, the cone and the torus; and a
description of ambiguity, reflecting, white, and periodic boundary surfaces.

A. Complement Operator

This operator provides no new capability over the intersection and union
operators; it is just a shorthand cell-specifying method that implicitly uses
the intersection and union operators.

The symbol # is the complement operator and can be thought of as
standing for not in. There are two basic uses of the operator:

#n means that the description of the current cell is the com-
plement of the description of cell n.

#(...) means complement the portion of the cell description
in the parentheses (usually just a list of surfaces describing
another cell).

In the first of the two above forms, MCNP performs five operations:
(1) the symbol # is removed, (2) parentheses are placed around n, (3) any
intersections in n become unions, (4) any unions in n are replaced by back-
to-back parentheses )( which is an intersection, and (5) the senses of the
surfaces defining n are reversed.

A simple example is a cube. We define a two-cell geometry with six
surfaces, where cell 1 is the cube and cell 2 is the outside world:

1 0-1 2-3 4-5 6
2 0 1:.-2: 3:—4: 5:—6

Note that cell 2 is everything in the universe that is not in cell 1, or
2 0 #1

The form #(n ) is not allowed; it is functionally available as the equivalent
of —n.
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CAUTION: Using the complement operator can destroy some of the
necessary conditions for some cell volume and surface area calculations by
MCNP. See page 4—14 for an example.

The complement operator can be easily abused if it is used indiscrimi-
nately. A simple example can best illustrate the problems. Fig. 2.1 consists
of two concentric spheres inside a box. Cell 4 can be described using the
complement operator as

4 0 #3 #2 #1

Although cells 1 and 2 do not touch cell 4, to omit them would be incor-
rect. If they were omitted, the description of cell 4 would be everything in
the universe that is not in cell 3. Since cells 1 and 2 are not part of cell 3,
they would be included in cell 4. Even though surfaces 1 and 2 do not phys-
ically bound cell 4, using the complement operator as in this example causes
MCNP to think that all surfaces involved with the complement do bound
the cell. Even though this specification is correct and required by MCNP,
the disadvantage is that when a particle enters cell 4 or has a collision in cell
4, MCNP must calculate the intersection of the particle’s trajectory with all
real bounding surfaces of cell 4 plus any extraneous ones brought in by the
complement operator. This intersection calculation is very expensive and
can add significantly to the required computer time.

®|®
@

Figure 2.1

A better description of cell 4 would be to complement the description of
cell 3 (omitting surface 2) by reversing the senses and interchanging union
and intersection operators as illustrated in the cell cards that describe the
simple cube in the preceding paragraphs.

B. Repeated Structure Geometry

The repeated structure geometry feature is explained in detail starting on
page 3—21. The capabilities are only introduced here. Examples are shown
in Chapter 4. The cards associated with the repeated structure feature are
U (universe), FILL, TRCL, and LAT (lattice) and cell cards with LIKE m
BUT.

The repeated structure feature makes it possible to describe only once
the cells and surfaces of any structure that appears more than once in a
geometry. This unit then can be replicated at other xyz locations by using
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the “LIKE m BUT” construct on a cell card. The user specifies that a cell is
filled with something called a universe. The U card identifies the universe,
if any, to which a cell belongs. The FILL card specifies with which universe
a cell is to be filled. A universe is either a lattice or an arbitrary collection
of cells. The two types of lattice shapes, hexagonal prisms and hexahedra,
need not be rectangular nor regular, but they must fill space exactly. Several
concepts and cards combine in order to use this capability.

C. Surfaces

1. Explanation of Cone and Torus

Two surfaces, the cone and torus, require more explanation. The quadratic
equation for a cone describes a cone of two sheets (just like a hyperboloid
of two sheets)—one sheet is a cone of positive slope, and the other has a
negative slope. A cell whose description contains a two-sheeted cone may
require an ambiguity surface to distinguish between the two sheets. MCNP
provides the option to select either of the two sheets; this option frequently
simplifies geometry setups and eliminates any ambiguity. The +1 or the —1
entry on the cone surface card causes the one sheet cone treatment to be
used. If the sign of the entry is positive, the specified sheet is the one that
extends to infinity in the positive direction of the coordinate axis to which
the cone axis is parallel. The converse is true for a negative entry. This
feature is available only for cones whose axes are parallel to the coordinate
axes of the problem.

The treatment of fourth degree surfaces in Monte Carlo calculations has
always been difficult because of the resulting fourth order polynomial (“quar-
tic”) equations. These equations must be solved to find the intersection of
a line of flight of a particle with a toroidal surface. In MCNP these equa-
tions must also be solved to find the intersection of surfaces to compute the
volumes and surface areas of geometric regions of a given problem. In either
case, the quartic equation,

2 4+ B+ O+ D+ E=0

is difficult to solve on a computer because of roundoff errors. For many
years the MCNP toroidal treatment required 30 decimal digits (CDC double-
precision) accuracy to solve quartic equations. Even then there were roundoff
errors that had to be corrected by Newton-Raphson iterations. Schemes
using a single-precision quartic formula solver followed by a Newton-Raphson
iteration were inadequate because if the initial guess of roots supplied to the
Newton-Raphson iteration is too inaccurate, the iteration will often diverge
when the roots are close together.

The single-precision quartic algorithm in MCNP basically follows the
quartic solution of Cashwell and Everett.?? When roots of the quartic equa-
tion are well separated, a modified Newton-Raphson iteration quickly achieves
convergence. But the key to this method is that if the roots are double roots
or very close together, they are simply thrown out because a double root
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corresponds to a particle’s trajectory being tangent to a toroidal surface,
and 1t 1s a very good approximation to assume that the particle then has no
contact with the toroidal surface. In extraordinarily rare cases where this is
not a good assumption, the particle would become “lost.” Additional refine-
ments to the quartic solver include a carefully selected finite size of zero, the
use of a cubic rather than a quartic equation solver whenever a particle is
transported from the surface of a torus, and a gross quartic coefficient check
to ascertain the existence of any real positive roots. As a result, the single-
precision quartic solver is substantially faster than double-precision schemes,
portable, and also somewhat more accurate.

In MCNP, elliptical tori symmetric about any axis parallel to a coordi-
nate axis may be specified. The volume and surface area of various tallying
segments of a torus usually will be calculated automatically.

2. Ambiguity Surfaces

The description of the geometry of a cell must eliminate any ambiguities
as to which region of space is included in the cell. That is, a particle entering
a cell should be able to uniquely determine which cell it is in from the senses
of the bounding surfaces. This is not possible in a a geometry such as shown
in Fig. 2.2 unless an ambiguity surface is specified. Suppose the figure is
rotationally symmetric about the y-axis.

Z
a

N—

® . ©)

Figure 2.2

A particle entering cell 2 from the inner spherical region might think it was
entering cell 1 because a test of the senses of its coordinates would satisfy
the description of cell 1 as well as that of cell 2. In such cases, an ambiguity
surface 1s introduced such as a, the plane y = 0. An ambiguity surface need
not be a bounding surface of a cell, but it may be and frequently is. It can
also be the bounding surface of some cell other than the one in question.
However, the surface must be listed among those in the problem and must
not be a reflecting surface (see page 2—13). The description of cells 1 and
2 in Fig. 2.2 is augmented by listing for each its sense relative to surface a
as well as that of each of its other bounding surfaces. A particle in cell 1
cannot have the same sense relative to surface ¢ as does a particle in cell 2.
More than one ambiguity surface may be required to define a particular cell.

A second example may help to clarify the significance of ambiguity sur-
faces. We would like to describe the geometry of Fig. 2.3a. Without the
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use of an ambiguity surface, the result will be Fig. 2.3b. Surfaces 1 and 3
are spheres about the origin, and surface 2 is a cylinder around the y-axis.
Cell 1 is both the center and outside world of the geometry connected by the
region interior to surface 2.

@) @)
@) @)
(a)

(b)
Figure 2.3

At first glance it may appear that cell 1 can easily be specified by —1 :
—2: 3 whereas cell 2 is simply #1. This results in Figure 2.3b, in which cell
1 is everything in the universe interior to surface 1 plus everything in the
universe interior to surface 2 (remember the cylinder goes to plus and minus
infinity) plus everything in the universe exterior to surface 3.

An ambiguity surface (a plane at y=0) will solve the problem. Every-
thing in the universe to the right of the ambiguity surface (call it surface 4)
intersected with everything in the universe interior to the cylinder is a cylin-
drical region that goes to plus infinity but terminates at y=0. Therefore, —1
: (4 =2) : 3 defines cell 1 as desired in Figure 2.3a. The parentheses in this
last expression are not required because intersections are done before unions.
Another expression for cell 2 rather than #1 is 1 —3 #(4 —2).

For the user, ambiguity surfaces are specified the same way as any other
surface—simply list the signed surface number as an entry on the cell card.
For MCNP, if a particular ambiguity surface appears on cell cards with only
one sense, it is treated as a true ambiguity surface. Otherwise, it still func-
tions as an ambiguity surface but the TRACK subroutine will try to find
intersections with it, thereby using a little more computer time.

3. Reflecting Surfaces

A surface can be designated a reflecting surface by preceding its number
on the surface card with an asterisk. Any particle hitting a reflecting surface
is specularly (mirror) reflected. Reflecting planes are valuable because they
can simplify a geometry setup (and also tracking) in a problem. They can,
however, make it difficult (or even impossible) to get the correct answer.
The user is cautioned to check the source weight and tallies to ensure that
the desired result is achieved. Any tally in a problem with reflecting planes
should have the same expected result as the tally in the same problem with-
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out reflecting planes. Detectors or DXTRAN used with reflecting surfaces
give wrong answers (see page 2—81).

The following example illustrates the above points and hopefully makes
you very cautious in the use of reflecting surfaces; they should never be used
in any situation without a lot of thought.

Consider a cube of carbon 10 cm on a side sitting on top of a 5-MeV
neutron source distributed uniformly in volume. The source cell is a 1-cm-
thick void completely covering the bottom of the carbon cube and no more.
The average neutron flux across any one of the sides (but not top or bottom)
is calculated to be 0.150 (£0.5%) per em? per starting neutron from an
MCNP F2 tally, and the flux at a point at the center of the same side is
1.55E—03 n/cm? (£1%) from an MCNP F5 tally.

The cube can be modeled by half a cube and a reflecting surface. All
dimensions remain the same except the distance from the tally surface to the
opposite surface (which becomes the reflecting surface) is 5 cm. The source
cell is cut in half also. Without any source normalization, the flux across
the surface is now 0.302 (£0.5%), which is twice the flux in the nonreflecting
geometry. The detector flux is 2.58 E—03 (+1%), which is less than twice the
point detector flux in the nonreflecting problem.

The problem is that for the surface tally to be correct, the starting weight
of the source particles has to be normalized; it should be half the weight of
the nonreflected source particles. The detector results will always be wrong
(and lower) for the reason discussed on page 2—81.

In this particular example, the normalization factor for the starting
weight of source particles should be 0.5 because the source volume is half
of the original volume. Without the normalization, the full weight of source
particles is started in only half the volume. These normalization factors are
problem dependent and should be derived very carefully.

Another way to view this problem is that the tally surface has dou-
bled because of the reflecting surface; two scores are being made across the
tally surface when one is made across each of two opposite surfaces in the
nonreflecting problem. The detector has doubled, too—except that the con-
tributions to it from beyond the reflecting surface are not being made, as
explained on page 2—81.

4. White Boundaries

A surface can be designated a white boundary surface by preceding its
number on the surface card with a plus. A particle hitting a white bound-
ary is reflected with a cosine distribution, p(p) = p, relative to the surface
normal; that is, y = /£, where ¢ is a random number. White boundary
surfaces are useful for comparing MCNP results with other codes that have
white boundary conditions. They also can be used to approximate a bound-
ary with an infinite scatterer. They make absolutely no sense in problems
with next event estimators such as detectors or DXTRAN (see page 2—81)
and should always be used with caution.
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5. Periodic Boundaries

Periodic boundary conditions can be applied to pairs of planes to sim-
ulate an infinite lattice. Although the same effect can be achieved with an
infinite lattice, the periodic boundary is easier to use, simplifies compari-
son with other codes having periodic boundaries, and can save considerable
computation time. There is approximately a 55% run time penalty associ-
ated with repeated structures and lattices that can be avoided with periodic
boundaries. However, collisions and other aspects of the Monte Carlo ran-
dom walk usually dominate running time, so the savings realized by using
periodic boundaries are usually much smaller. A simple periodic boundary
problem is illustrated in Figure 2.3c.

\ 3
Figure 2.3(c¢)

It consists of a square reactor lattice infinite in the z direction and 10 cm
on a side in the x and y directions with an off-center 1-cm-radius cylindrical

fuel pin. The MCNP surface cards are:

1 -2 px -5
2 -1 px 5
3 -4 py -5
4 -3 py b
5 c/z -2 41

The negative entries before the surface mnemonics specify periodic bound-
aries. Card one says that surface 1 is periodic with surface 2 and is a px
plane. Card two says that surface 2 is periodic with surface 1 and is a px
plane. Card three says that surface 3 is periodic with surface 4 and is a py
plane. Card four says that surface 4 is periodic with surface 3 and is a py
planc. Card five says that surfacc 5 is an infinitc cylinder parallel to the
z—axis. A particle leaving the lattice out the left side (surface 1) re-enters
on the right side (surface 2). If the surfaces were reflecting, the re-entering
particle would miss the cylinder, shown by the dotted line. In a fully speci-
fied lattice and in the periodic geometry, the re-entering particle will hit the
cylinder as it should.

Much more complicated examples are possible, particularly hexagonal
prism lattices. In all cases;, MCNP checks that the periodic surface pair
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matches properly and performs all the necessary surface rotations and trans-
lations to put the particle in the proper place on the corresponding periodic
plane.

The following limitations apply:
Periodic boundaries cannot be used with next event estimators such as de-
tectors or DXTRAN (see page 2—81);
e All periodic surfaces must be planes;
e Periodic planes cannot also have a surface transformation;
e The periodic cells may be infinite or bounded by planes on the top or bottom
that must be reflecting or white boundaries but not periodic;
Periodic planes can only bound other periodic planes or top and bottom
planes;
o A single zero-importance cell must be on one side of each periodic plane;
e All periodic planes must have a common rotational vector normal to the
geometry top and bottom.

III. CROSS SECTIONS

The MCNP code package is incomplete without the associated nuclear
data tables. The kinds of tables available and their general features are
outlined in this section. The manner in which information contained on
nuclear data tables is used in MCNP is described in Sec. IV of this chapter.

There are two broad objectives in preparing nuclear data tables for
MCNP. First, it is our responsibility to ensure that the data available to
MCNP reproduce the original evaluated data as much as is practical. Sec-
ond, new data should be brought into the MCNP package in a timely fashion,
thereby giving users access to the most recent evaluations.

Eight classes of nuclear data tables exist for MCNP. They are: (1)
continuous-energy neutron interaction data, (2) discrete reaction neutron
interaction data, (3) photon interaction data, (4) neutron dosimetry cross
sections, (5) neutron S(«, ) thermal data (6) multigroup neutron, coupled
neutron/photon, and charged particles masquerading as neutrons, (7) multi-
group photon, and (8) electron interaction data. It is understood that photon
and electron data are atomic rather than nuclear. In Mode N problems, one
continuous-energy or discrete-reaction neutron interaction table is required
for each isotope or element in the problem. Likewise, one photon interaction
table is required for each element in a Mode P problem, and one electron
interaction table is required for each element in a Mode E problem. Dosime-
try and thermal data are optional. Cross sections from dosimetry tables can
be used as response functions with the FM card to determine reaction rates.
Thermal S(«, ) tables are appropriate if the neutrons are transported at
sufficiently low energies where molecular binding effects are important.

MCNP can read from data tables in two formats. Data tables are trans-
mitted between computer installations in 80-column card-image BCD for-
mat (Type-1 format). An auxiliary processing code, MAKXSF, converts the
BCD files to standard unformatted binary files (Type-2 format), allowing
more economical access during execution of MCNP. The data contained on
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a table for a specific ZAID (10-character name for a nuclear data table) are
independent of the format of the table.

The format of nuclear data tables is given in considerable detail in Ap-
pendix F. This appendix may be useful for users making extensive modifica-
tions to MCNP involving cross sections or for users debugging MCNP at a
fairly high level.

The available nuclear data tables are listed in Appendix G. Each nu-
clear data table is identified by a ZAID. The general form of a ZAID is
ZZZAAA nnX, where ZZ7 is the atomic number, AAA is the atomic weight,
nn is the evaluation identifier, and X indicates the class of data. For elemen-
tal evaluations AAA=000. Nuclear data tables are selected by the user with
the Mn and MTn cards.

In the remainder of this section we describe several characteristics of each
class of data such as evaluated sources, processing tools, and any differences
between data on the original evaluation and on the MCNP data tables. The
means of accessing each class of data through MCNP input will be detailed
and some hints will be provided on how to select the appropriate data tables.

A. Neutron Interaction Data: Continvous-Energy and Discrete Reaction

In neutron problems, one neutron interaction table is required for each
isotope or element in the problem. The form of the ZAIDs is ZZZAAA . anC
for a continuous-energy table and ZZZAAA nnD for a discrete reaction table.
The neutron interaction tables available to MCNP are listed in Table G.2 of
Appendix G. (It should be noted that although all nuclear data tables in
Appendix G are available to users at Los Alamos, users at other installations
will generally have only a subset of the tables available.)

For most materials there are many cross-section sets available (repre-
sented by different values of nn in the ZAIDs) because of multiple sources
of evaluated data and different parameters used in processing the data. An
evaluated nuclear data set is produced by analyzing experimentally measured
cross sections and combining those data with the predictions of nuclear model
calculations in an attempt to extract the most accurate cross-section infor-
mation. Preparing evaluated cross-section sets has become a discipline in
itself and has developed since the early 1960s. People in most of the national
laboratories and several of the commercial reactor design firms are involved
in such work. American evaluators joined forces in the mid-1960s to create
the national ENDF system.?* The ENDF contributors collaborate through
the Cross Section Evaluation Working Group (CSEWG).

In recent years the primary evaluated source of neutron interaction data
for MCNP has been the ENDF/B system. Recently evaluated neutron inter-
action data tables are also extracted from two other sources: Lawrence Liv-
ermore National Laboratory’s Evaluated Nuclear Data Library (ENDL),?5
and supplemental evaluations performed in the Nuclear Theory and Appli-
cations Group at Los Alamos.?62"2% Older evaluations come from previous
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versions of ENDF/B and ENDL, the Los Alamos Master Data File,?” and
the Atomic Weapons Research Establishment in Great Britain.

MCNP does not access evaluated data directly; these data must first be
processed into ACE format. The very complex processing codes used for
this purpose include NJOY?? for evaluated data in ENDF/B format and
MCPOINT?! for ENDL data.

Data on the MCNP neutron interaction tables include cross sections and
much more. Cross sections for all reactions given in the evaluated data are
specified. For a particular table, the cross sections for each reaction are given
on one energy grid that is sufficiently dense that linear-linear interpolation
between points reproduces the evaluated cross sections within a specified
tolerance that is generally 1% or less. Depending primarily on the number
of resolved resonances for each isotope, the resulting energy grid may contain
as few as ~250 points (for example, H-1) or as many as ~22,500 points (for
example, the ENDF/B-V version of Au-197). Other information, including
the total absorption cross section, the total photon production cross section,
and the average heating number (for energy deposition calculations), is also
tabulated on the same energy grid.

Angular distributions of scattered neutrons are included in the neutron
interaction tables for all reactions emitting neutrons. The distributions are
given in the center-of-mass system for elastic scattering, discrete-level inelas-
tic scattering, and for some ENDF/B-VI scattering laws, and in the labora-
tory system for all other inelastic reactions. Angular distributions are given
on a reaction-dependent grid of incident neutron energies. These tables are
sampled to conserve energy for many collisions but will not necessarily con-
serve energy for a single collision; that is, energy is conserved on average.

The sampled angle of scattering uniquely determines the secondary en-
ergy for elastic scattering and discrete-level inelastic scattering. For other
inelastic reactions, energy distributions of the scattered neutrons are pro-
vided in the neutron interaction tables. As with angular distributions, the
energy distributions are given on a reaction-dependent grid of incident neu-
tron energies.

When evaluations contain data about secondary photon production, that
information appears in the MCNP neutron interaction tables. Many pro-
cessed data sets contain photon production cross sections, photon angular
distributions, and photon energy distributions for each neutron reaction that
produces secondary photons. The information is given in a manner similar
to that described in the last few paragraphs for neutron cross sections and
secondary neutron distributions.

Other miscellaneous information on the neutron interaction tables in-
cludes the atomic weight ratio of the target nucleus, the Q-values of each
reaction, and nubar, 7, data (the average number of neutrons per fission)
for fissionable isotopes. In many cases both prompt and total 7 are given.
Prompt 7 is the default for all but KCODE criticality problems and total v
is the default for KCODE criticality problems. The TOTNU input card can
be used to change the default.
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Approximations must be made when processing an evaluated data set
into ACE format. As mentioned above, cross sections are reproduced only
within a certain tolerance, generally < 1%; to decrease it further would re-
sult in excessively large data tables. For many nuclides, a “thinned” neutron
interaction table is available with a coarse tolerance, > 1%, that greatly
reduces the library size. Smaller library sizes also can be obtained by us-
ing discrete reaction tables or higher temperature data. Evaluated angu-
lar distributions for secondary neutrons and photons are approximated on
MCNP data tables by 32 equally probable cosine bins. This approximation
is clearly necessary when contrasted to the alternative that might involve
sampling from a 20th-order Legendre polynomial distribution. Secondary
neutron energy distributions given in tabular form by evaluators are some-
times approximated on MCNP data tables by 32 equally probable energy
bins. Older cross-section tables include a 30x20 matrix approximation of the
secondary photon energy spectra (described on page 2—33). On the whole,
the approximations are small, and MCNP neutron interaction data tables
are extremely faithful representations of evaluated data.

Discrete-reaction tables are identical to continuous-energy tables except
that in the discrete reaction tables all cross sections have been averaged into
262 groups. The averaging is done with a flat weighting function. This
is not a multigroup representation; the cross sections are simply given as
histograms rather than as continuous curves. The remaining data (angular
distributions, energy distributions, 7, etc.) are identical in discrete-reaction
and continuous-energy tables. Discrete-reaction tables are provided primar-
ily as a method of shrinking the required data storage to enhance the ability
to run MCNP on small machines or in a time-sharing environment. The
tables may also be useful for preliminary scoping studies or for isotopes that
exist only in trace quantities in a problem. They are not, however, recom-
mended as a substitute for the continuous-energy tables when performing
final calculations, particularly for problems involving transport through the
resonance region.

The matter of how to select the appropriate neutron interaction tables
for your calculation is now discussed. Multiple tables for the same isotope
are differentiated by the “nn” portion of the ZAID. The easiest choice for
the user, although by no means the recommended one, is not to enter the nn
at all. MCNP will select the first match found in the directory file XSDIR.
The default nnX can be changed for all isotopes of a material by the NLIB
keyword entry on the Mm card. The default will be overridden by fully
specifying the ZATD. Default continuous-energy neutron interaction tables
are accessed by entering ZZZAAA for the ZAID. Including a DRXS card in
the input file will force MCNP to choose the default discrete reaction tables.

Careful users will want to think about what neutron interaction tables
to choose. There is, unfortunately, no strict formula for guidance in choosing
the tables. The following guidelines and observations are the best that can

be offered:

1. Users should be aware of the differences between the “.50C” series of
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data tables and the “.51C” series. Both are derived from ENDF/B-V. The
“.50C” series is the most faithful reproduction of the evaluated data. The
“.51C7 series, also called the “thinned” series, has been processed with a less
rigid tolerance than the “.50C” series. As with discrete reaction data tables,
although by no means to the same extent, users should be careful when using
the “thinned” data for transport through the resonance region.

2. Consider differences in evaluators’ philosophies. The Physical Data
Group at Livermore is justly proud of its extensive cross-section efforts; their
evaluations manifest a philosophy of reproducing the data with the fewest
number of points. Livermore evaluations are available mainly in the “.40C”
series. We at Los Alamos are particularly proud of the evaluation work being
carried out in the Nuclear Theory and Applications Group T-2; generally,
these evaluations are the most complex because they are the most thorough.
Recent evaluations from Los Alamos are available in the “.55C” series.

3. Be aware of the neutron energy spectrum in your problem. For high-
energy problems, the “thinned” and discrete reaction data are probably not
bad approximations. Conversely, it is essential to use the most detailed
continuous-energy set available for problems influenced strongly by transport
through the resonance region.

4. Check the temperature at which various data tables have been pro-
cessed. Do not use a set that is Doppler broadened to 12000000 °K for a
room temperature calculation.

5. Consider checking the sensitivity of the results to various sets of
nuclear data. Try, for example, a calculation with ENDF/B-V cross sections,
and then another with ENDL cross sections. If the results of a problem are
extremely sensitive to the choice of nuclear data, it is advisable to find out
why.

6. For a coupled neutron/photon problem, be careful that the tables you
choose have photon production data available. If possible, use the more-
recent sets that have been processed into expanded photon production for-
mat.

7. Usually, use the best data you can afford. It is understood that
the latest evaluations tend to be more complex and therefore require more
memory and longer execution times. If you are limited by available memory,
try to use smaller data tables such as thinned or discrete reaction for the
minor isotopes in the calculation. Discrete reaction data tables might be
used for a parameter study, followed by a calculation with the full continuous-
energy data tables for confirmation.

To select the neutron interaction data tables, the nn portion of the ZAIDs
must be entered on the Mn card(s). For a continuous-energy set, ZZZAAA nn
is equivalent to ZZZAAA .nnC. To use a discrete reaction table (unless there
is a DRXS card in the input) the full ZAID, ZZZAAA nnD, must be entered.

If only the integer portion of the ZAID is entered (ZZZAAA), MCNP will
choose the cross—section table that it will use. Based on other cards (i.e.,
MODE, MGOPT, DRXS), MCNP knows which class of data is required.
The code then “reads” the cross-sesction directory file (XSDIR) and selects

March 25, 1997 2—-20



CHAPTER 2

Cross Sections

the first table it finds that meets the ZZZAAA and class criteria. Thus,
default cross sections are based entirely on the ordering of the entries in the
XSDIR file you are using at your installation.

In conclusion, the additional time necessary to choose appropriate neu-
tron interaction data tables rather than simply to accept the defaults often
will be well worth it in gaining understanding of your calculation.

B. Photon Interaction Data

Photon interaction cross sections are required for all photon problems.
The form of the ZAID is ZZZ000.nnP. There are two photon interaction
data libraries: nn = 01 and nn = 02.

For the ZAID=ZZZ000.01P library, the photon interaction tables for
Z=84, 85, 87, 88, 89, 91, and 93 are based on the compilation of Storm and
Israel®? from 1 keV to 15 MeV. For all other elements from Z=1 through Z=94
the photon interaction tables are based on evaluated data from ENDF33 from
1 keV to 100 MeV. Fluorescence data are taken from work by Everett and
Cashwell.>* Energy grids are tailored specifically for each element and contain
~40-60 points.

The ZAID = ZZ7000.02P library is a superset of the ZAID = ZZZ000.01P
library with pair production thresholds added for the Storm-Israel data.
Data above 15 MeV for the Storm-Israel data and above 100 MeV for the
ENDF data come from adaptation of the Livermore Evaluated Photon Data
Library (EPDL)%® and go up to 100 GeV. However, it usually is impractical
to run above 1 GeV with MCNP because electron data only go to 1 GeV.
The energy grid for the ZAID=Z77000.02P library contains ~100 points.

For each nuclide the photon interaction libraries contain an energy grid
(logarithms of energies), including the photoelectric edges and the pair pro-
duction threshold. These energies are tailored specifically for each element.
The logarithmic energies are followed by tables of incoherent form factors
and coherent form factors that are tabulated as a function of momentum
transfer. The next tables are logarithms of the incoherent scattering, coher-
ent scattering, photoelectric, and pair production cross sections, followed by
the photon heating numbers. The total cross section is not stored, but rather
summed from the other cross sections during transport.

The determination of directions and energies of scattered photons re-
quires information different from the sets of angular and energy distributions
found on neutron interaction tables. Angular distributions of secondary pho-
tons are isotropic for photoelectric effect, fluorescence, and pair production,
and come from sampling the well-known Thomson and Klein-Nishina formu-
las for coherent and incoherent scattering. The energy of an incoherently
scattered photon is calculated from the sampled scattering angle. Values of
the integrated coherent form factor are tabulated on the photon interaction
tables for use with next event estimators such as point detectors.

Very few approximations are made in the various processing codes used
to transfer photon data from ENDF into the format of MCNP photon inter-
action tables. Cross sections are reproduced exactly as given. Form factors
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and scattering functions are reproduced as given; however, the momentum
transfer grid on which they are tabulated may be different from that of the
original evaluation. Heating numbers are calculated values, not given in eval-
uated sets, but inferred from them. Fluorescence data are not provided in
ENDF; therefore the data for MCNP are extracted from a variety of sources
as described in Ref. 32.

To select photon interaction data, specific ZAID identifiers can be used,
such as ZAID=ZZ7000.02P, or selections from a library can be used by spec-
ifying PLIB=nnP on the M card. The PLIB=specification on the M card is
the preferred method because the ZAID entries may already be used to spec-
ify neutron libraries and, unlike neutrons, it usually is desirable to pick all
photon data from the same library. A specification on the Mn card for a neu-
tron interaction table with ZAID=ZZZAAA nnC or ZAID=ZZ7ZAAA nnD
immediately causes a photon interaction table with ZAID=ZZ7000.nnP to
be accessed as well, where nn is the first photon data encountered for ZZZ000
on the XSDIR cross section directory file or nn comes from PLIB=nn. The
data table required for ZAID=ZZZAAA nnD is identical to that required for
ZAID=777000.nnP; however, the atomic weight used in the calculation will
likely be different.

C. Electron Interaction Data

Electron interaction data tables are required both for problems in which
electrons are actually transported, and for photon problems in which the
thick-target bremsstrahlung model is used. Electron data tables are identi-
fied by ZAIDs of the form ZZZ000.nnE, and are selected by default when
the problem mode requires them. There is only one electron interaction data
library: nn = 01.

The electron library contains data on an element-by-element basis for
atomic numbers Z = 1-94. As is the case with photons, there is no distinc-
tion between isotopes for a given element. The data contain energies for tab-
ulation, bremsstrahlung production cross sections, bremsstrahlung energy
distributions, X-ray production probabilities, K-edge energies and fluores-
cent probabilities, electron stopping powers and ranges, and parameters for
the evaluation of the Goudsmit-Saunderson theory for angular deflections
and the Landau-Blunck-Leisegang theory of energy-loss fluctuations. Dis-
cussions of the theoretical basis for these data and references to the relevant
literature are presented in Section IV-E of this chapter.

Only the nn = 01 library is currently available, but to support the use
of alternate libraries in the future, MCNP implements a hierarchy of rules
identical to that for photons. Thus, one may select a specific ZAID, such
as Z7Z7000.01E, and that choice will override any defaults. Alternatively,
a default electron library for a given material may be chosen by specifying
ELIB = nnE on the M card. In the absence of either of these specifications,
MCNP will use the first electron data table listed in the XSDIR cross section
directory file for the relevant element.
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D. Neutron Dosimetry Cross Sections

Dosimetry cross-section tables cannot be used for transport through ma-
terial. These incomplete cross-section sets provide energy-dependent neutron
cross sections to MCNP for use as response functions with the FM tally fea-
ture. ZAIDs of dosimetry tables are of the form ZZZAAA.nnY. Remember,
dosimetry cross-section tables have no effect on the particle transport of a
problem.

The available dosimetry cross sections are from three sources: ENDF/B-
V Dosimetry Tape 531, ENDF/B-V Activation Tape 532, and ACTL*%—an
evaluated neutron activation cross-section library from the Lawrence Liver-
more National Laboratory. Various codes have been used to process evalu-
ated dosimetry data into the format of MCNP dosimetry tables.

Data on dosimetry tables are simply energy-cross-section pairs for one
or more reactions. The energy grids for all reactions are independent of each
other. Interpolation between adjacent energy points can be specified as his-
togram, linear-linear, linear-log, log-linear, or log-log. With the exception of
the tolerance involved in any reconstruction of pointwise cross sections from
resonance parameters, evaluated dosimetry cross sections can be reproduced
on the MCNP data tables with no approximation.

ZAIDs for dosimetry tables must be entered on material cards that are
referenced by FM cards, not on Mm cards referenced by cell cards. The
complete ZAID, ZZZAAA.nnY, must be given; there are no defaults for
dosimetry tables.

E. Neutron Thermal S(«, 3) Tables

Thermal S(«, 3) tables are not required, but they are absolutely essen-
tial to get correct answers in problems involving neutron thermalization.
Thermal tables have ZAIDs of the form XXXXXX.nnT, where XXXXXX is
a mnemonic character string. The data on these tables encompass those
required for a complete representation of thermal neutron scattering by
molecules and crystalline solids. The source of S(«, ) data is a special
set of ENDF tapes.?” The THERMR and ACER modules of the NJOY3°
system have been used to process the evaluated thermal data into a format
appropriate for MCNP.

Data are for neutron energies generally less than 4 eV. Cross sections are
tabulated on table-dependent energy grids; inelastic scattering cross sections
are always given and elastic scattering cross sections are sometimes given.
Correlated energy-angle distributions are provided for inelastically scattered
neutrons. A set of equally probable final energies is tabulated for each of
several initial energies. Further, a set of equally probable cosines or cosine
bins is tabulated for each combination of initial and final energies. Elastic
scattering data can be derived from either an incoherent or a coherent ap-
proximation. In the incoherent case, equally probable cosines or cosine bins
are tabulated for each of several incident neutron energies. In the coherent
case, scattering cosines are determined from a set of Bragg energies derived
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from the lattice parameters. During processing, approximations to the eval-
uated data are made when constructing equally probable energy and cosine
distributions.

ZAIDs for the thermal tables are entered on an MTn card that is associ-
ated with an existing Mn card. The thermal table generally will provide data
for one component of a material; for example, hydrogen in light water. Ther-
mal ZAIDs may be entered on the MTn card(s) as XXXXXX, XXXXXX.nn,
or XXXXXX.nnT.

F. Multigroup Tables

Multigroup cross section libraries are the only libraries allowed in multi-
group/adjoint problems. Neutron multigroup problems cannot be supple-
mented with S(a, #) thermal libraries; the thermal effects must be included
in the multigroup neutron library. Photon problems cannot be supplemented
with electron libraries; the electrons must be part of the multigroup photon
library. The form of the ZAID is ZZZAAA.nnM or ZZZAAA nnG for pho-
tons only.

Although continuous-energy data are more accurate than multigroup
data, the multigroup option is useful for a number of important applica-
tions: (1) comparison of deterministic (5,) transport codes to Monte Carlo;
(2) use of adjoint calculations in problems where the adjoint method is more
efficient; (3) generation of adjoint importance functions; (4) cross section sen-
sitivity studies; (5) solution of problems for which continuous-cross sections
are unavailable; and (6) charged particle transport using the Boltzmann—
Fokker—Planck algorithm in which charged particles masquerade as neutrons.

Multigroup cross sections are very problem dependent. Some multigroup
libraries are available from the Transport Methods Group at Los Alamos but
must be used with caution. Users are encouraged to generate or get their
own multigroup libraries and then use the supplementary code CRSRD?® to
convert them to MCNP format. Reference 38 describes the conversion proce-
dure. This report also describes how to use both the multigroup and adjoint
methods in MCNP and presents several benchmark calculations demonstrat-
ing the validity and effectiveness of the multigroup/adjoint method.

To generate cross—section tables for electron/photon transport problems
that will use the multigroup Boltzmann-Fokker-Planck algorithm,?” the
CEPXS* code developed by Sandia National Laboratory and available from
RSICC can be used. The CEPXS manuals describe the algorithms and
physics database upon which the code is based; the physics package is es-
sentially the same as ITS version 2.1. The keyword “MONTE-CARLO” is
needed in the CEPXS input file to generate a cross—section library suitable
for input into CRSRD; this undocumented feature of the CEPXS code should

be approached with caution.
IV. PHYSICS

The physics of neutron, photon, and electron interactions is the very
essence of MCNP. This section may be considered a software requirements
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document in that it describes the equations MCNP 1is intended to solve.
All the sampling schemes essential to the random walk are presented or
referenced. But first, particle weight and particle tracks, two concepts that
are important for setting up the input and for understanding the output, are
discussed in the following sections.

A. Particle Weight

If MCNP were used only to simulate exactly physical transport, then
each MCNP particle would represent one physical particle and would have
unit weight. However, for computational efficiency, MCNP allows many
techniques that do not exactly simulate physical transport. For instance,
each MCNP particle might represent a number w of particles emitted from
a source. This number w is the initial weight of the MCNP particle. The w
physical particles all would have different random walks, but the one MCNP
particle representing these w physical particles will only have one random
walk. Clearly this is not an exact simulation; however, the true number of
physical particles is preserved in MCNP in the sense of statistical averages
and therefore in the limit of large particle numbers (of course including parti-
cle production or loss if they occur). Each MCNP particle result is multiplied
by the weight so that the full results of the w physical particles represented
by each MCNP particle are exhibited in the final results (tallies). This proce-
dure allows users to normalize their calculations to whatever source strength
they desire. The default normalization is to weight one per MCNP particle.
A second normalization to the number of Monte Carlo histories is made in
the results so that the expected means will be independent of the number of
source particles actually initiated in the MCND calculation.

The utility of particle weight, however, goes far beyond simply normaliz-
ing the source. Every Monte Carlo biasing technique alters the probabilities
of random walks executed by the particles. The purpose of such biasing tech-
niques is to increase the number of particles that sample some part of the
problem of special interest (1) without increasing (sometimes actually de-
creasing) the sampling of less interesting parts of the problem, and (2) with-
out erroneously affecting the expected mean physical result (tally). This pro-
cedure, properly applied, increases precision in the desired result compared
to an unbiased calculation taking the same computing time. For example,
if an event is made v/2 times as likely to occur (as it would occur without
biasing), the tally ought to be multiplied by 1/v/2 so that the expected av-
erage tally is unaffected. This tally multiplication can be accomplished by
multiplying the particle weight by 1/v/2 because the tally contribution by
a particle is always multiplied by the particle weight in MCNP. Note that
weights need not be integers.

In short, particle weight is a number carried along with each MCNP
particle, representing that particle’s relative contribution to the final tallies.
Its magnitude is determined to ensure that whenever MCNP deviates from
an exact simulation of the physics, the expected physical result nonetheless
is preserved in the sense of statistical averages, and therefore in the limit
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of large MCNP particle numbers. Its utility is in the manipulation of the
number of particles, sampling just a part of the problem to improve the
precision of selected results obviating a full unbiased calculation—with its
added cost in computing time—to achieve the same results and precision.

B. Particle Tracks

When a particle starts out from a source, a particle track is created. If
that track is split 2 for 1 at a splitting surface, a second track is created and
there are now two tracks from the original source particle, each with half the
single track weight. If one of the tracks has an (n,2n) reaction, one more
track is started for a total of three. A track refers to each component of a
source particle during its history. Track length tallies use the length of a
track in a given cell to determine a quantity of interest, such as fluence, flux,
or energy deposition. Tracks crossing surfaces are used to calculate fluence,
flux, or pulse-height energy deposition (surface estimators). Tracks under-
going collisions are used to calculate multiplication and criticality (collision
estimators).

Within a given cell of fixed composition, the method of sampling a colli-
sion along the track is determined using the following theory. The probability
of a first collision for a particle between [ and [ + dl along its line of flight is
given by

p(1)dl = e~ =%, dl,

where Y4 is the macroscopic total cross section of the medium and is inter-
preted as the probability per unit length of a collision. Setting ¢ the random
number on [0,1), to be

l
£ = / eTESNds =1 — e
0

it follows that
1
= ——1In(1l-¢).
(-

But, because 1 — ¢ is distributed in the same manner as ¢ and hence may
be replaced by £, we obtain the well-known expression for the distance to
collision,
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C. Neutron Interactions

When a particle (representing any number of neutrons, depending upon
the particle weight) collides with a nucleus, the following sequence occurs:
1. the collision nuclide is identified;
2. either the S(a, ) treatment is used or the velocity of the target
nucleus is sampled for low—energy neutrons;

photons are optionally generated for later transport;

4. neutron capture (that is, neutron disappearance by any process) is
modeled;

5. unless the S(«, ) treatment is used, either elastic scattering or an
inelastic reaction is selected, and the new energy and direction of the
outgoing track(s) are determined,;

6. if the energy of the neutron is low enough and an appropriate S(«, /)
table is present, the collision is modeled by the S(«, ) treatment
instead of by step 5.

b

1. Selection of Collision Nuclide

If there are n different nuclides forming the material in which the collision
occurred, and if ¢ is a random number on the unit interval [0,1), then the
k" nuclide is chosen as the collision nuclide if

k—1 n k
Zzti < fZEtz’ < Zztiv
=1 =1 =1

where Y4 1s the macroscopic total cross section of nuclide :. If the energy of
the neutron is low enough (below about 4 €V) and the appropriate S(a, 3)
table is present, the total cross section is the sum of the capture cross section
from the regular cross-section table and the elastic and inelastic scattering
cross sections from the S(«, #) table. Otherwise, the total cross section is
taken from the regular cross-section table and is adjusted for thermal effects
as described below.

2. Free Gas Thermal Treatment

A collision between a neutron and an atom is affected by the thermal
motion of the atom, and in most cases, the collision is also affected by the
presence of other atoms nearby. The thermal motion cannot be ignored in
many applications of MCNP without serious error. The effects of nearby
atoms are also important in some applications. MCNP uses a thermal treat-
ment based on the free gas approximation to account for the thermal motion.
It also has an explicit S(«, ) capability that takes into account the effects
of chemical binding and crystal structure for incident neutron energies below
about 4 eV, but is available for only a limited number of substances and
temperatures. The S(a, 3) capability is described later on page 2—49.

The free gas thermal treatment in MCNP assumes that the medium is
a free gas and also that, in the range of atomic weight and neutron energy
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where thermal effects are significant, the elastic scattering cross section at
zero temperature is nearly independent of the energy of the neutron, and that
the reaction cross sections are nearly independent of temperature. These
assumptions allow MCNP to have a thermal treatment of neutron collisions
that runs almost as fast as a completely nonthermal treatment and that is
adequate for most practical problems.

With the above assumptions, the free gas thermal treatment consists of
adjusting the elastic cross section and taking into account the velocity of the
target nucleus when the kinematics of a collision are being calculated. Note
that Doppler broadening of the inelastic cross sections is assumed to have
already been done in the processing of the cross section libraries. The free
gas thermal treatment effectively applies to elastic scattering only.

a. Adjusting the Elastic Cross Section: The first aspect of the free
gas thermal treatment is to adjust the zero-temperature elastic cross section
by raising it by the factor

F=(140.5/a%)erf(a)+ exp(—a*)/(av/) ,

where a = \/AE/ET, A = atomic weight, E = neutron energy, and T =
temperature. For speed, F is approximated by F =14 0.5/a® when a > 2
and by linear interpolation in a table of 51 values of aF when a < 2. Both
approximations have relative errors less than 0.0001. The total cross section
also is increased by the amount of the increase in the elastic cross section.

The adjustment to the elastic and total cross sections is done partly in
the setup of a problem and partly during the actual transport calculation. No
adjustment is made if the elastic cross section in the data library was already
processed to the temperature that is needed in the problem. If all of the
cells that contain a particular nuclide have the same temperature, constant
in time, that is different from the temperature of the library, the elastic and
total cross sections for that nuclide are adjusted to that temperature during
the setup so that the transport will run a little faster. Otherwise, these
cross sections are reduced, if necessary, to zero temperature during the setup
and the thermal adjustment is made when the cross sections are used. For
speed, the thermal adjustment is omitted if the neutron energy is greater
than 500 kT /A. At that energy the adjustment of the elastic cross section
would be less than 0.1%.

b. Sampling the Velocity of the Target Nucleus: The second aspect
of the free gas thermal treatment consists of taking into account the velocity
of the target nucleus when the kinematics of a collision are being calculated.
The target velocity is sampled and subtracted from the velocity of the neu-
tron to get the relative velocity. The collision is sampled in the target-at-rest
frame and the outgoing velocities are transformed to the laboratory frame
by adding the target velocity.

There are different schools of thought as to whether the relative energy
between the neutron and target, E,, or the laboratory frame incident neu-
tron energy (target-at-rest), E,, should be used for all the kinematics of the

March 25, 1997 2—28



CHAPTER 2

Neutrons

collision. F, is used in MCNP to obtain the distance-to-collision, select the
collision nuclide, determine energy cutoffs, generate photons, generate fission
sites for the next generation of a KCODE criticality problem, for S(e«, /)
scattering, and for capture. FE;, is used for everything else in the collision
process, namely elastic and inelastic scattering, including fission and (n,xn)
reactions. It is shown in Eqn. 2.1 that E, is based upon v, that is based
upon the elastic scattering cross section, and, therefore, E, is truly valid
only for elastic scatter. However, the only significant thermal reactions for
stable isotopes are absorption, elastic scattering, and fission. '®'Ta has a 6
keV threshold inelastic reaction; all other stable isotopes have higher inelas-
tic thresholds. Metastable nuclides like ?*?™Am have inelastic reactions all
the way down to zero, but these inelastic reaction cross sections are neither
constant nor 1/v cross sections and these nuclides are generally too massive
to be affected by the thermal treatment anyway. Furthermore, fission is very
insensitive to incident neutron energy at low energies. The fission secondary
energy and angle distributions are nearly flat or constant for incident en-
ergies below about 500 keV. Therefore, it makes no significant difference if
E, is used only for elastic scatter or for other inelastic collisions as well. At
thermal energies, whether E, or E, is used only makes a difference for elastic
scattering.

If the energy of the neutron is greater than 400 kT and the target is not
'H, the velocity of the target is set to zero. Otherwise, the target velocity is
sampled as follows.

The free-gas kernel is a thermal interaction model that results in a good
approximation to the thermal flux spectrum in a variety of applications and
can be sampled without tables. The effective scattering cross section in the
laboratory system for a neutron of kinetic energy E is

a:ff(E) = %// as(vrel)vrelp(V)dV%. (2.1)

Here, v,.; is the relative velocity between a neutron moving with a scalar
velocity v, and a target nucleus moving with a scalar velocity V, and py is
the cosine of the angle between the neutron and the target direction-of-flight
vectors. The equation for v, is

Vypel = (vz +V? - QUnV/,LT)%.

The scattering cross section at the relative velocity is denoted by os(v,¢),
and p(V) is the probability density function for the Maxwellian distribution
of target velocities,

4: 2772
V) = 3172~V
p( ) 7{_1/26 €

AM, 1/2
b= <2kT> ’
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where A is the mass of a target nucleus in units of the neutron mass, M, is
the neutron mass in MeV-sh?/cm?, and T is the equilibrium temperature
of the target nuclei in MeV.

The most probable scalar velocity V' of the target nuclei is 1/, which
corresponds to a kinetic energy of kT for the target nuclei. This is not the
average kinetic energy of the nuclei, which is 3k7/2. The quantity that
MCNP expects on the TMPn input card is k7 and not just T (see page
3—108). Note that kT is not a function of the particle mass and is therefore
the kinetic energy at the most probable velocity for particles of any mass.

Equation (2.1) implies that the probability distribution for a target ve-
locity V' and cosine fiy is

Us(vrel)vrelp(v)
20§ff(E)vn

It is assumed that the variation of o4(v,.;) with target velocity can be
ignored. The justification for this approximation is that (1) for light nu-
clei, o4(vyep) is slowly varying with velocity, and (2) for heavy nuclei, where
0s(Vrer) can vary rapidly, the moderating effect of scattering is small so that
the consequences of the approximation will be negligible. As a result of the
approximation, the probability distribution actually used is

P(V7 Mf) =

P(V, py) o< \Jvi + V2 =2V, V2€_62v2

Note that the above expression can be written as

\/v,% + V2 2V o, 1y
vy, +V

P(V, ) (‘/36_62‘/2 + vnv2€—ﬁ‘2V2)
As a consequence, the following algorithm is used to sample the target ve-
locity.

1. With probability o = 1/(1 + (/7Bva/2)), the target velocity V is
sampled from the distribution Pj(V) = 2541/36—52‘/2. The transfor-
mation V' = /y/B reduces this distribution to the sampling distri-
bution for P(y) = ye™Y. MCNP actually codes 1-a.

2. With probability 1 — «, the target velocity is sampled from the dis-
tribution P(V) = (4ﬂ3/ﬁ)V26_62v2. Substituting V' = y/3 re-
duces the distribution to the sampling distribution for y: P(y) =
(4//m)yPe V.

3. The cosine of the angle between the neutron velocity and the target
velocity is sampled uniformly on the interval —1 < py < 41.

4. The rejection function R(V, 114) is computed using

B \/v,% + V2 -2V, -

R(V7 /’Lt) - v _I_ V — 1

With probability R(V, y1), the sampling is accepted; otherwise, the
sampling is rejected and the procedure is repeated. The minimum
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efficiency of this rejection algorithm averaged over pu; is 68% and
approaches 100% as either the incident neutron energy approaches
zero or becomes much larger than kT

3. Optional Generation of Photons

Photons are generated if the problem is a combined neutron/photon run
and if the collision nuclide has a nonzero photon production cross section.
The number of photons produced is a function of neutron weight, neutron
source weight, photon weight limits (entries on the PWT card), photon pro-
duction cross section, neutron total cross section, cell importance, and the
importance of the neutron source cell. No more than 10 photons may be
born from any neutron collision. In a KCODE calculation, secondary pho-
ton production from neutrons is turned off during the inactive cycles.

Because of the many low-weight photons typically created by neutron col-
lisions, Russian roulette is played for particles with weight below the bounds
specified on the PWT card, resulting in fewer particles, each having a larger
weight. The created photon weight before Russian roulette is

Whoy
ar

W, =

Y

where W, = photon weight
W,, = neutron weight
o, = photon production cross section
or = total neutron cross section.

Both o, and o7 are evaluated at the incoming neutron energy without
the effects of the thermal free gas treatment because nonelastic cross sections
are assumed independent of temperature.

The Russian roulette game is played according to neutron cell impor-
tances for the collision and source cell. For a photon produced in cell 2
where the minimum weight set on the PWT card is Wl»mm, let I; be the neu-
tron importance in cell ¢ and let I be the neutron importance in the source
cell. If W, > Wimm * I/ I;, one or more photons will be produced. The num-
ber of photons created is N,, where N, = (W, * I;)/(5 « W™ x I;) + 1.
N, < 10. Each photon is stored in the bank with weight W,/N,. If
W, < W™ x I,;/I;, Russian roulette is played and the photon survives
with probability W, * Ii/(Wlmm « I3) and is given the weight WZ"”" « I/ 1.

If weight windows are not used and if the weight of the starting neutrons
is not unity, setting all the Wimm on the PWT card to negative values will
make the photon minimum weight relative to the neutron source weight.
This will make the number of photons being created roughly proportional to
the biased collision rate of neutrons. It is recommended for most applications
that negative numbers be used and be chosen to produce from one to four
photons per source neutron. The default values for Wimm on the PWT card
are —1, which should be adequate for most problems using cell importances.

If energy—independent weight windows are used, the entries on the PWT

card should be the same as on the WWNI1:P card. If energy-dependent
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photon weight windows are used, the entries on the PWT card should be the
minimum WWN:P entry for each cell, where n refers to the photon weight
window energy group. This will cause most photons to be born within the
weight window bounds.

Any photons generated at neutron collision sites are temporarily stored
in the bank. There are two methods for determining the exiting energies and
directions, depending on the form in which the processed photon production
data are stored in a library. The first method has the evaluated photon pro-
duction data processed into an “expanded format.”*! In this format, energy-
dependent cross sections, energy distributions, and angular distributions are
explicitly provided for every photon—producing neutron interaction. In the
second method, used with data processed from older evaluations, the evalu-
ated photon production data have been collapsed so that the only information
about secondary photons is in a matrix of 20 equally probable photon ener-
gies for each of 30 incident neutron energy groups. The sampling techniques
used in each method are now described.

a. Expanded Photon Production Method: In the expanded photon
production method, the reaction n responsible for producing the photon is
sampled from

n—1 N n
Zai < 5201' < Zcm
1=1 1=1 1=1

where ¢ is a random number on the interval [0,1), N is the number of pho-
ton production reactions, and o; is the photon production cross section for
reaction ¢ at the incident neutron energy. Note that there is no correlation
between the sampling of the type of photon production reaction and the
sampling of the type of neutron reaction described on page 2—34.

Just as every neutron reaction (for example, (n,2n)) has associated
energy-dependent angular and energy distributions for the secondary neu-
trons, every photon production reaction (for example, (n,py)) has associ-
ated energy-dependent angular and energy distributions for the secondary
photons. The photon distributions are sampled in much the same manner
as their counterpart neutron distributions.

All nonisotropic secondary photon angular distributions are represented
by 32 equiprobable cosine bins. The distributions are given at a number of
incident neutron energies. All photon-scattering cosines are sampled in the
laboratory system. The sampling procedure is identical to that described for
secondary neutrons on page 2—35.

Secondary photon energy distributions are also a function of incident
neutron energy. There are two representations of secondary photon energy
distributions allowed in ENDF/B format: tabulated spectra and discrete
(line) photons. Correspondingly, there are three laws used in MCNP for the
determination of secondary photon energies. Law 4 is an exact representation
of tabulated photon spectra. Law 2 is used for discrete photons. Law 44 is
for discrete photon lines with a continuous background. These laws are
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described beginning on page 2—39.

The expanded photon production method has clear advantages over the
original 30 x 20 matrix method described below. In coupled neutron/photon
problems, users should attempt to specify data sets that contain photon
production data in expanded format. Such data sets are identified by “YES
P(E)” entries in the GPD column in Table G.2 in Appendix G.

b. 30 x 20 Photon Production Method: For lack of better terminol-
ogy, we will refer to the photon production data contained on older libraries
as “30 x 20 photon production” data. In contrast to expanded photon pro-
duction data, there is no information about individual photon production
reactions in the 30 x 20 data.

The only secondary photon data are a 30 x 20 matrix of photon energies:
that is, for each of 30 incident neutron energy groups there are 20 equally
probable exiting photon energies. There is no information regarding sec-
ondary photon angular distributions; therefore, all photons are taken to be
produced isotropically in the laboratory system.

There are several problems associated with 30 x 20 photon production
data. The 30 x 20 matrix is an inadequate representation of the actual
spectrum of photons produced. In particular, discrete photon lines are not
well represented, and the high-energy tail of a photon continuum energy
distribution is not well sampled. Also, the multigroup representation is not
consistent with the continuous-energy nature of MCNP. Finally, not all
photons should be produced isotropically. None of these problems exists for
data processed into the expanded photon production format.

4. Capture

Capture is treated in one of two ways: analog or implicit. Either way,
the incident incoming neutron energy does not include the relative velocity
of the target nucleus from the free gas thermal treatment because nonelastic
reaction cross sections are assumed to be nearly independent of temperature.
That 1s, only the scattering cross section is affected by the free gas thermal
treatment. In MCNP, “absorption” and “capture” are used interchangeably,
both meaning (n,0n), and o, and o, are used interchangeably also.

a. Analog Capture: In analog capture, the particle is killed with

probability o, /o7, where o, and o7 are the absorption and total cross sec-
tions of the collision nuclide at the incoming neutron energy. The absorp-
tion cross section is specially defined for MCNP as the sum of all (n,x)
cross sections, where ¢ is anything except neutrons. Thus o, is the sum of
Tnyys Tnyas Ond, --- etc. For all particles killed by analog capture, the entire
particle energy and weight are deposited in the collision cell.

b. Implicit Capture: For implicit capture, the neutron weight W, is

reduced to W) as follows:
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If the new weight, W), is below the problem weight cutoff (specified on the
CUT card), Russian roulette is played, resulting overall in fewer particles
with larger weight.

For implicit capture, a fraction o, /o7 of the incident particle weight and
energy is deposited in the collision cell corresponding to that portion of the
particle that was captured. Implicit capture is the default method of neutron

capture in MCNP.

c. Implicit Capture Along a Flight Path: Implicit capture also can
be done continuously along the flight path of a particle trajectory as is the
common practice in astrophysics. In this case, the distance to scatter, rather
than the distance to collision, is sampled. The distance to scatter is

I = _lenu —6).

S

The particle weight at the scattering point is reduced by the capture loss,

! -2l
W'=We ,

where W' = reduced weight after capture loss,
W = weight before capture along flight path,

Oq

absorption cross section,
scattering cross section,

O-S
o1 = 05 + 04 = total cross section,
[ = distance to scatter, and
¢ = random number.

Implicit capture along a flight path is a special form of the exponen-
tial transformation coupled with implicit capture at collisions. (See the de-
scription of the exponential transform on page 2—128.) The path length is
stretched in the direction of the particle, g = 1, and the stretching parame-
ter is p = X, /3. Using these values the exponential transform and implicit
capture at collisions yield the identical equations as does implicit capture
along a flight path.

Implicit capture along a flight path is invoked in MCNP as a special
option of the exponential transform variance reduction method. It is most
useful in highly absorbing media, that is, ¥,/%; approaches 1. When almost
every collision results in capture, it is very inefficient to sample distance to
collision. However, implicit capture along a flight path is discouraged. In
highly absorbing media, there is usually a superior set of exponential trans-
form parameters. In relatively nonabsorbing media, it is better to sample
the distance to collision than the distance to scatter.

5. Elastic and Inelastic Scattering

If the conditions for the S(a,3) treatment are not met, the particle
undergoes either an elastic or inelastic collision. The selection of an elastic
collision is made with probability
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Oel Oel

Oin + 0l 0T — 0q

oe; 1s the elastic scattering cross section.

oin 18 the inelastic cross section; includes any neutron-out process—
(n,n').(n, f),(n,np),ete.

o, is the absorption cross section; Yo(n,x),# n, that is, all neutron
disappearing reactions.

o is the total cross section, o7 = 0o + T4p + 04.

Both o.; and o7 are adjusted for the free gas thermal treatment at thermal
energies.
The selection of an inelastic collision is made with the remaining proba-
bility
Tin
oT — 04

If the collision is determined to be inelastic, the type of inelastic reaction,
n, is sampled from

n—1 N n
o<ty o<y o,
1=1 1=1 1=1

where £ is a random number on the interval [0,1), N is the number of inelastic
reactions, and the o;’s are the inelastic reaction cross sections at the incident
neutron energy.

For both elastic and inelastic scattering, the direction of exiting parti-
cles usually is determined by sampling angular distribution tables from the
cross-section files. This process is described shortly. For elastic collisions and
discrete inelastic scattering from levels, the exiting particle energy is deter-
mined from two body kinematics based upon the center-of-mass cosine of the
scattering angle. For other inelastic processes, the energy of exiting particles
is determined from secondary energy distribution laws from the cross-section
files, which vary according to the particular inelastic collision modeled.

a. Sampling of Angular Distributions: The direction of emitted par-
ticles is sampled in the same way for most elastic and inelastic collisions. The
cosine of the angle between incident and exiting particle directions, p, is sam-
pled from angular distribution tables in the collision nuclide’s cross-section
library. The angular distribution tables consist of 32 equiprobable cosine
bins and are given at a number of different incident neutron energies. The
cosines are either in the center-of-mass or target-at-rest system, depending
on the type of reaction. If E is the incident neutron energy, if E, is the
energy of table n, and if E, ;1 is the energy of table n 4+ 1, then a value of g
is sampled from table n 4 1 with probability (E — Ey,)/(Ent1 — Ey) and from
table n with probability (Ey4+1 — E)/(Ep+1 — Ey). A random number ¢ on
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the interval [0,1) is then used to select the ith cosine bin such that i = 32 41.
The value of p is then computed as

o= pi + (328 — ) (i1 — i)

If, for some incident neutron energy, the emitted angular distribution
is isotropic, g is chosen from p = &', where £ is a random number on the
interval [-1,1). (Strictly, in MCNP random numbers are always furnished on
the interval [0,1). Thus, to compute £ on [-1,1) we calculate ¢’ = 2 — 1.,
where £ is a random number on [0,1).)

For elastic scattering, inelastic level scattering, and some ENDF/B-VI
inelastic reactions, the scattering cosine is chosen in the center-of-mass sys-
tem. Conversion must then be made to ., the cosine in the target-at-rest
system. For other inelastic reactions, the scattering cosine is sampled directly
in the target-at-rest system.

The incident particle direction cosines, (uq,v,,w,), are rotated to new
outgoing target-at-rest system cosines, (u, v, w), through a polar angle whose
cosine 1s fiqp, and through an azimuthal angle sampled uniformly. For

random numbers & and & on the interval [-1,1) with rejection criterion
£ + €2 < 1, the rotation scheme is (Ref. 2, pg. 54):

M(fluowo — &av,)
V& +8)1-wd)
1= 1w, + Exu,)
JE+8)0 - wd)
G/ (1= )1 = w)

(& +¢2)

M(&uwo + E2w,)
JE+E)1-)
G/ (1= i3 )(1 = 02)
(&2 +¢2)
L= il Ewor, — Eouo)
V(& +E)(1 -2

If the scattering distribution is isotropic in the target-at-rest system, it
is possible to use an even simpler formulation that takes advantage of the

U = UgUlgh +

U = Volhlab +

W = Wolllgh —

If 1 —w? ~ 0, then

U = Ugtlab +

U = Volhlab —

W = Wolllgp +
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exiting direction cosines, (u, v, w), being independent of the incident direction
cosines, (Ug, Vo, W, ). In this case,

w =26 +26 — 1

1 — w2
M V=

¢ 1 — w2
w = - ,
Nere

where £1 and & are rejected if €7 + €5 > 1.

b. Elastic Scattering: The particle direction is sampled from the ap-
propriate angular distribution tables, and the exiting energy, E, ., is dictated
by two-body kinematics:

1
E, .= §Em [(1—)ptem + 1+ a]
o [T+ AT 24,
where E;, = incident neutron energy

ltem = center-of-mass cosine of the angle between incident and
exiting particle directions

A-1\?
a=|——
A4+1
and A = mass of collision nuclide in units of the mass of a neutron
(atomic weight ratio)

c. Inelastic Scattering: The treatment of inelastic scattering depends
upon the particular inelastic reaction chosen. Inelastic reactions are defined
as (n,y) reactions such as (n,n’), (n,2n), (n, f), (n,n’a) in which y includes
at least one neutron.

For many inelastic reactions, such as (n, 2n), more than one neutron can
be emitted for each incident neutron. The weight of each exiting particle
is always the same as the weight of the incident particle minus any implicit
capture. The energy of exiting particles is governed by various scattering
laws that are sampled independently from the cross-section files for each ex-
iting particle. Which law is used is prescribed by the particular cross-section
evaluation used. In fact, more than one law can be specified, and the partic-
ular one used at a particular time is decided with a random number. In an
(n,2n) reaction, for example, the first particle emitted may have an energy
sampled from one or more laws, but the second particle emitted may have
an energy sampled from one or more different laws, depending upon specifi-
cations in the nuclear data library. Because emerging energy and scattering
angle is sampled independently for each particle, there is no correlation be-
tween the emerging particles. Hence energy is not conserved in an individual
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reaction because, for example, a 14-MeV particle could conceivably produce
two 12-MeV particles in a single reaction. But the net effect of many particle
histories is unbiased because on the average the correct amount of energy
is emitted. Results are biased only when quantities that depend upon the
correlation between the emerging particles are being estimated.

Users should note that MCNP follows a very particular convention. The
exiting particle energy and direction are always given in the target-at-rest
(laboratory) coordinate system. For the kinematical calculations in MCNP
to be performed correctly, the angular distributions for elastic, discrete in-
elastic level scattering, and some ENDF/B-VI inelastic reactions must be
given in the center-of-mass system, and the angular distributions for all other
reactions must be given in the target-at-rest system. MCNP does not stop
if this convention is not adhered to, but the results will be erroneous. In the
checking of the cross-section libraries prepared for MCNP at Los Alamos,
however, careful attention has been paid to ensure that these conventions
are followed.

The exiting particle energy and direction in the target—at—rest (labora-
tory) coordinate system are related to the center—of-mass energy and direc-
tion as follows:!

! ! E"'QMCW