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ABSTRACT

MCNPTM has three different, but correlated, estimators for calculating keys in nu-
clear criticality calculations: collision, ahsorption, and track length estimators. The
combination of these three estimators, the three-combined ks, estimator, is shown
to be the best k.;s estimator available in MCNP for estimating k.s; confidence
intervals. Theoretically, the Gauss-Markov Theorem provides a solid foundation for
MCNP’s three-combined estimator. Analytically, a statistical study. where the es-
timates are drawn using a known covariance niatrix, shows that the three-combined
estimator is superior to the individual estimator with the smallest variance. The
importance of MCNP’s batch statistics is demonstrated by an investigation of the
effects of individ.al estimator variance bias on the combination of estimators, both
heuristically with the analytical study and emprically with MCNP.

INTRODUCTION

In criticality calculations, MCNPTM 3 pjag
three types of individual k.s¢ estimators: col-
lision, k.; absorption, ks; and track length,
ke [1]. .1t each cycle, or computational fis-
sion generation, MCNP produces a k.y; esti-
mate of each type. The final k.;; estimator of
cach type is the average of several cycle k.yy
estimates. MCNP’s best estimator is a com-
bination [2,3], in least squares fashion, of all
three estimators, that takes into arcount vari-
ances and covariances between the individual
estimators. This work examines the theory of
the three-combined estimator and its behavior
ind performance in both an analytical study
and in an MCNP study. It is emphasized that
the final result from an MCNP criticality cal-
culation is not a point estimate of k.sy. but
rather a confidence interval.
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THREE-COMBINED k.,
ESTIMATOR

The three-combined k. estimator is appeal-
ing because it uses all the available inforima-
tion. It is essentially the least squares solution
of a multivariate linear regression of the cycle
kess estimates of one estimator type on those
of the other two types and is based mainly on
a paper by M. Halperin [4]. The three indi-
vidual k.s; estimators (collision. absorption,
and track length) have a population covari-
ance matrix, X,
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The three-combined k., estimator, k.in ma-
trix and reduced form [2,3] is as follows:
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where £ indicates a particular partial permu-
tation of ¢, j. and ¥, with 1=collision, 2=ab-
sorption, and 3 =track length.

The three-combined estimator variance, ag

in niatrix and reduced form [2,3] is as follows:
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where n is the number of k. sy cycles used; (n—
3) is the correct number of degrees
of freedom; g is the sum of all three f¢'s; and
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The Gauss-Markov Theorem states that.
when the variance-rcovariance matrix is known,
the least squares solution of the linear regres-
sion parameters is unbiased and has minimum
variance; it is the best possible. Here, the
variance-covariance matrix is not known and
must be estimated from the data. The three-
combined k.y; estimator uses the estimated
variance-covariance matrix and is therefore al-
most optimal. Statistical studies show that
this almost optimal estimator is very guod
[2,3].

CONFIDENCE INTERVALS

A confidence interval is a range of values that
is expected to contain the precise value with
some specified confidence. The precise value is
the expected value, that obtained from an infi-
nite number of histories. Confidence intervals
are constructed by including some multiple
of the estimated standard deviation (square
root of the variance) above and below the av-
erage value. This multiplier is the Student’s
t-percentile and depends on the desired confi-
dence level and the degrees of freedom avail-
able in the estimation of the standard devi-
ation [3]. To increase the probability that a
kers confidence interval contains the precise
kess, the interval must be made larger; to de-
crease the size of a given confidenc:. interval,
more histories need to be run.

Understanding confidence intervals is es-
pecially important in criticality safety. To
present a 68% confidence interval implies that
there is a 32% chance that the interval does
not include the precise value. The G8% confi-
dence intervals for the three-combined estima-
tor are shown in Figure 1 for cach of one hun-
dred independent MCNP runs [2.3] for a U-
233/light water system. The horizontal lines
demark the 68% confidence interval for the av-
crage over all 100 runs, which is the best esti-
mate of the precise value. Of the one-hundred
68% conlidence intervals, 70 cross the mean
and 30 do not. The 99% confidence intervals
(not shown) all cross the mean. Since Lthe con-
fidence intervals include the precise mean the
expected number of times, the coverage rates
in this example are good.
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Figure 1: The 68% confidence intervals from
100 independent runs (vertical lines) shown
with the 68% confidence interval of the overall
mean (horizontal lines).

AN EXAMPLE OF THE BEHAVIOR
OF THE THREE-COMBINED
ESTIMATOR

One property of the three-combined esti-
mator is that, for highly positively correlated
estimators, it may lie outside the range of the
three individual rstimators. This is correct,
as shown in a statistical study, where the ex-
pected value of each of three hizhly correlated
estimators is unity. The estimators are drawn
from the following population covariance ma-
trix:

20 N

1
T = (0.02)2] 2 (16)
2

20 v N
)
[—

The first estimator has the smallest popula-
tion standard deviation (0.02), and the third
estimator has the largest population standard
deviation (~0.09). The correlation coeflicients
are

r2 = 0.89
ria = 0.14 (17)
f23 = 0.78.

All these estimators are highly positively cor-
related.

This behiavior study simulated 100 inde-
pendent MCNP runs. each with 100 active cy-
cles. The three-combined estimator is caleu-
lated using not the known covariances, but the
covariances estimated from the data, just like

MCNP does. Figure 2 shows that, of 100 sam-
ples, 64 have estimator ranges that do not in-
clude unity. Of those, 55 have three-combined
estimators that lie outside the individual esti-
mator range and closer to the expected value.
The three-combined k.s; estimator performs
better than the simple average and the in-
dividual estimator vith the smallest variance
[3). The latter is evident in that the it is clus-
tered closer to unity than the inside edge of
the range bars in Figure 2.

Three-Combined Estimator and Rauge of Individual Cstimators
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Tigure 2: The range of three individual esti-
mators, connected by vertical lines. and the
three-combined estimator for 100 samples.

EFFECT OF VARIANCE BIAS

A good quality of the three-combined esti-
mator is that it uses all the available infor-
mation. If the individua' estimator variances
are underestimated due to a bias. their cov-
erage rates may be ineodequate. Moreover,
this bias may propagate to the estimated stan-
dard deviation of the three-combined estima-
tor. We investigate this cffect by introduc-
ing various artificial biases to the individual
estilnator variances in the previous section’s
analytic study.

Table 1 si.ows how introducing different
artificial, individual estimator variance biases
affects the estimated standard deviation of the
three-combined k.g; estimator. For a single
run, or sample, containing 100 cycles, there
is a reported variance of the mean for cach
of the three individual estimators. Normally,
these variances are converted to population
variances, then plugged info Fquations 2 and
12 1o estimate the three-combined estimator



and its variance. In this bias study. we convert
the individual variances to population vari-
ances, and then add biases before plugging
them into Equations 2 and 12. Therefore the
combination perceives the biased variances as
the actual variances. So, if there is a nega-
tive bias on a variance, the combination will
think it is smaller than it actually is. Note
that if a negative bias on the individual es-
timator variance was real, its coverage rates
would be less than expected. Thiz study ex-
amines how these biases would propagate to
the three-combined estimator variance and af-
fect its coverage rates.

In general, the staudard deviatior of the
mean from one run is the population standard
deviation one could expect if scveral runs, or
replicas, were made. Therefore, to check the
validity of the calculated standard deviation
from one run, we make 100 independent runs.
The spread of the 100 values of the three-
comkined estimator is represented as &gcqyql-
A value of a,-r/rr,,c,.,,,, less than one indicates an
underestimation. or negative hias. The bias
typically seen in criticality calculations is ner-
ative.

Row 1 is the control run, where no artifi-
cial biases are introduced. The three-combin-
ed estimated standard deviation shows no un
derestimation. If the biases or: the individual
variances and covariances are equal (rows 2
and 3). ogctuat is unaflected, since the biases
explicitly cancel out in the cxpression for &.
Ir Row 2, the standard deviation, and hence
the confidence interval, on the first rstimator
is overestimated by a factor of

/(0001 + .0002)/.0004 = 1.22 .

The estimated standard deviation of the three-
rombined estimator, with its 2.435 overestima-
tion, conservatively overestimates the positive
bias in the individual estimator variance bias

The results in Row 3 are especially note-
worthy. All the variances and covariances are
underestimiated by the same additive amount.
Again, the variance/covariance hiases explic-
itly cancel out in the expression of k. Here,
though, the estimated standard deviation a;,
overestimates the actual standard deviation
because the deviations between the individ-
ual estimators Lhemselves are signilicant and

accounted for in the expression for 0. Equa-
tions 12, 14 arnd 15.

Row 4 is an attempt to fool the combina-
tion into thinking that the first estimator is
better than it actually is. After 100 cycles, or
samples, the combination thinks that

011/v'100 = v.0004 — .0002/10 = 0.0014

instead of its actual nominal value of
v/0.0004/10 = 0.002 .

The population covariances o?, and o?%; are
also halved. Halving 2 variance translates into
a

1-vV5=.29

reduction in the standard devialion. Row 4
shows a 19% urnderestimation propagatiag to
the three-combined standard deviation. The
actual variance of the three-combined estima-
tor doesn’t show the gains as in the unbiased
case because the correlation between the first
estimator and the other two was artificially
weakened. In fact, the three-combined vari-
ance tends to look like the actual variance of
the first estimator.

Row 5 shows the result when the second-
best individual variance and its associated co-
variance are underestimated. Again, the cor-
relation between the first and secord estima-
tors is weakened, and the three-combined vari-
ance tends to eraulate that of the fir.t {still the
best) estimator.

Row 6 shows that an underestimation in
the variance ol the individual stimator with
the highest variance has a smalier effect on the
three-combined variance. The gain is a little
less, but there is no underestimation.

Typically, the cause of the variance in one
individual estimator will cause a similar bias
in the other estimators. Therefore, we reduce
all individual estimator variances and covari-
ances by 50% in Row 7. This bias directly
propagates through to give a H0% underesti-
mation in {ne three-combined variance, which
corresponds to a 294 underestimation in the
standard deviation. T'he value of the three-
combined standard deviation is small enough
so that 29% docs not amout to much.

We have shown a range of ellects on the
three-combined estimator variance due to a
bias in the individual estimator variances. An



absolute artificial bias in o —|
row | o2, | o3, o3, ol, o3 ol k o Oactual | Tactual
1 0 0 0 0 0 0 1.0001 | .0006 | .0006 1.00
2 .0002 | .0002 | .0002 | .0002 | .0002 | .0002 | 1.0001 | .0016 | .0006 215
3 | -.0002 | -.0002 | -.0002 | -.0002 | -.0002 | -.0002 | 1.0001 | .0013 | .0006 2.00
4 | -.0002 | -.0004 0 -.0004 0 0 1.0019 | .0015 | .0018 0.81
9 0 -.0004 | -.001 0 -.0016 0 1.0019 | .0022 | .0024 0.91
6 0 0 0 -.0004 | -.0016 | -.0042 | 1.0010 | .0013 | .0012 1.07
7 | -.0002 | -.0004 | -.001 | -.0004 | -.0016 | -.0042 { 1.0001 | .0005 | .0007 0.71

Table 1: Bias =ffects on the estimated standard deviation of the three-combined estimator.

equal negative absolute bias across the board
(Row Q) results in an overestimation of the
three-combined variance. An equal negative
multiplicative bias across the hoard (Row 7)
demonstrates a direct propagation of the bias.
We now look at realistic situations where vari-
ance bias rears its ugly head and a way to
detect and squelch it.

MCNP EXAMPLE

As we did in the analytic study, performing
several independent replicas of a run is the
best way io verify any standard deviation of a
mean. For a Monte Carlo criticality calcula-
tion, the replication examination should have
the number of replicas statistically similar to
the number of active cycles in each run [3].
Then the quantites compared will be similarly
distributed.

The coverage rates of the three-combined S0 T
kes; confidence intervals in MCNP were ver- iy} ]

ified for several systems [2,3]. We present
an interesting case involving a Godiva sphere
and Jezebel sphere. separated B0 cm center-
to-center. Systems like this, with weak neu-
tron communication between distant regions,
have high dominance ratios (ratio of the scc-
ond eigenvalue to the dominant cigenvalue)
and tend to have underestimated individual
kess variances. The cause of this underestima-
tion is the serial, or cycle-to-cycle, correlation
of the fission source. Running 100 indepen-
dent MCONP runs deinonstrated that the in-
dividual estimator variances were slightly un-
derestimated and. thercfore, 8o, too, was the
three-combined ko5 y estimator variance. This
«nderestimation causes inadequate coverage
rater at the 68% and 95% confidence levels,

as shown in Table 2. Note that the variance
underestimations for each individual estima-
tor are multiplicatively similar, so this real
situation is like the situation in Row 7 of Ta-
ble 1 Fortunately, the batching statistics in
MCNP can help detect a variance underesti-
mation. Batching groups of cycles together
diminishes some of the cycle-to-cycle correla-
tion and reduces any existing variance under-
estimation. Figure 3 shows how batching can
detect an underestimation in the estimated
standard deviation. Using ‘he variance irom
40 batches of 20 cycles each, Table 3 shows
much improved roverage rates.

Batching Effecta on k.y; Standard Deviation
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Figure 3: For 800 active cycles and 100 inde-
pendent runs. MCNP's batch data show an
underestimation in the calculated standard
deviation for too few cycles per batch. The
error bars represent the observed variation in
& at the 68% confidence level.



T calculated (GE )

coverage rates

68% [ 95% | 99%

kess i
estimator ki[f Oobserved
collision 1.01249 | 0.00055
absorption | 1.01249 | 0.00055
track leng:h | 1.01252 | 0.00037
col/abs/trkl | 1.01252 | 0.00038

0.00040 (0.00002)
0.00041 (0.90002)
0.00030 (0.90000)
0.00030 (0.00001)

52 l 86 94
51 86 94
57 90 98
54 88 98

Table 2: ks estimates for thr two-component system, Godiva and Jezebel reactor mock-up
and their associated standard deviations and coverage rates for 100 independent runs.

kegy coverage rates
estimator Ec_” Oobserved O calculated (O3) 68% l 95% J 99%
collision 1.01249 | 0.00055 | 0.00050 (0.00007) | 63 | 93 | 97
absorption | 1.01249 | 0.00055 | 0.00053 (0.00007) | 62 | 94 [ 97
track length | 1.01252 | 0.00037 | 0.00039 (0.00005) } 71 97 | 100
col/abs/trkl | 1.01252 | 0.00039 | 0.00040 (0.00005) | 70 | 95 | 99

Table 3: k.sy estimates for the two-component system, Godiva and Jezebel reactor mock-up
and their associated standard deviations and coverage rates for 100 independent runs, where
the 800 active cycles have been batchcd into 40 batches of 20 cycles each.

CONCLUSION

The three-combined k.y; estimator has bean
derived and verified, both theoretically and
empirically (for the cases studied), to be the
best available estimator in MCNP. It has been
shown to be superior to other estimators such
as the simple average and the individual es-
timator with the smallest variance. Analytic
studies have verified its behavior and proper-
ties.

For high dominance ratio systems, the in-
dividual estimators may have vnderestimated
variances, which may propagate to the vari-
ance of the three-combined estimator. The
alorementioned analytic stndy was heuristi-
cally used to examine the effects of individunl
variance bias on the combination. An equal
additive bias on all individual variances and
covariances conservatively overestimates the
three-cembined variance, whereas an equal mul-
tiplicative bias on all individual variances and
covariances propagales the same multiplica-
tive hias to the three-combined variance. In
MCNP, batch statistics provide an assessment
and alleviation of any existing variance bias.

The three-combined keyy estimator, like
any Monte Carlo estimator, should be pre-
sented as a conlidence interval. The three-
rombined k.sy confidence interals in MCNP

have been shown tc have the correct coverage
rates for several realistic problems.
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