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Richard E. Prael, and Riclard J. Becliman2
.YTM, MS F?26

Los Ahmos i~ational Labomtory
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ABSTRACT

MCNPThf has three different, but correlated, estimators for calculating k,jj in nu-
clear criticality calculations: collision, absorption, and track length estimators. The

combination of these three estimators, the three-combined kcjj estimator, is shown
to be the best kcjj estimator available in MChTP for estimating kctj confidence

intervals. Theoretically, the Gauss- Markov Theorem provides a solid foundation for

MCNP’S three-combined estimator. Analytically, a statistical study. where the es-
timates are drawn using a known covariance niatrix, shows that the three-combined

estimator is superior to the individual estimator with the smallest variance. The

importance of MCNI?’S batch statistics is demonstrated by an investigation of the

effects of individ~al estimator variance bias on the combination of estimators, both

heuristically with the analytical study and empirically with MCNP.

INTRODUCTION

In criticality calculatioils, MCNPTi[ 3 has
three types of individual k,jf estimators: col-

~sion, i.; absorption, i.; and track length,
At [1]. .“it each cycle, or computational fis-
sion gerleration, MC’NP produces a. k~jj esti-
mate of each type. The final I+jj estimator of
each type is the average of several cycle kcjj
estimates. MCNP’s best estimator is a com-
l]ination [’.?,3j, in least squares fashion, of all
three estimators, that takes intu account vari-
ances and covariances between the individual
estimators. T!lis work examines the theory of
the three-combined estimator and its behavior
mrl performance in both an analytical study

and in an MCNP study. It is emphasized lha(

tlw final rmult from an M(’NP criticality (-al-
culation is not a point rstimatc of k.jj. but
rathm a cotIfI&nre interval,
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THREE-COMBINED A,jf
ESTIMATOR

The t.hrec-combined k,jf estimator is a.ppcal-
ing because it uses all the available inforl~a-
tion. It is essentially the least squares solution
of a multivariate linear regression of the cycle
k,jj estimates of one estimator type on those
of the other two types and is based mainly on
a paper by Al. Halperin [4]. The three indi-
vidual kfjf estimators (collision. absorption,
and track length) have a. population co-:ari-
ancc matrix, X,

The three-combinrxl k~jj cst.iruator. ~.. in nla-
I rix and rcdnccd fornl [2,3] is as follows:

(3)



and

(9)

(10)

w~lere ~ indicates a particular partial permu-
tation of i, j. and J-, with l~collision, 2=ab-
sorption, and 3 strack length.

The three-combined estimator va.riancc, o;

in matrix and reduced form [2,3] is as follows:

where n is tl:c number of krjj cycles used; ( n -
3) is the correct number of degrms
of freedom; q is the sum of all Ihrec ~~’s; .tncl

(13)

The C;auss-Markov Theorem states that,
when the variance- covariance matrix is known,
the least squares solution of the linear regres-
sion parameters is unbiased and hat minimum
variance; it is the best possible. Here, the
variance-covariance matrix is not known and
must be estimated from the data. The three-
combined IJcjt estimator uses the estimated
variance-covariance matrix and is therefore al-
most optimal. Statistical studies show that
this almost optimal estimator is very good
[2,3].

CONFIDENCE INTERVALS

A confidence interval is a range of values that
is expected to contain the precise value with
some specified confidence. The precise value is
the expected value, that obtained from an infi-
nite number of histories. Confidence intervals
are constructed by including some multiple
of the estimated standard deviation (square
root of the variance) above and below the av-
erage value. This multiplier is the Student’s
t-percentile and depends on the desired confi-
dence level and the degrees of freedom avail-
able in the estimation of the standard devi-
ation [3]. I’o increase the probability that a
k,jf confidence interval contains the precise
kejj, the interval must be made la.rge~; to de-
crease the size of a given confidenc-. Interval,
more histories need to be run.

Understanding confidence intervals is es-
pecially important in criticality safety. To
present a 68% confidence interval implies that
there is a 3270 chance that the interval does
not include the precise value. The (M70 confi-
dence intervals for the three-combined mtima-
t.or arc sho~vn in Figure 1 for each of onc hun-
dred inclrpendent h;lC!NP rllns [2.3] for a [T-
233/light Ivater system. The horizontal lines
domark the W4(%confidence interval for the av-
erage over all 100 runs. which is the Iwst mti-
mai.e of (Iw prw-isc valur. of Ilw olle-hllndred
(j$!~, confidence intervals. 7(Icross the nlean

and 3(I do Ilot, ‘1’llc !’)!)%confidcnm illtrrvals
(nut shown) all cross Ihc I]lcan, Since Ihr ron-
!idunrr intervals illclu(lr Ihp l)rvris~ lIICa II [ IIP

(lX])CCI (YI 11ulnlwr of times, I110rovcriigc rillw
in IIlis rxainplc arc good.
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Figure 1: The 68% confidence intervals from
100 independent runs (vertical lines ) shown
with the 687o confidence interval of the overall

mean (horizontal lines ).

AN 3XAMPLE OF THE BEHAVIOR
OF THE THREE-COMBINED

ESTIMATOR

one property of the three-combined esti-
mator is that,, for hig!lly positively correlated
estimators, it may lie outside the range of the
three individual estimators. This is correct,
as shown in a statistical study, where [he ex-
pected value of each of three highly correlated
estimators is unity. The estimators are drawn
from the following population covariance ma-
trix:

()

122

z = (0.02)2 2 5 8 . (16)
2R21

The first estimator has the smallest popula-
t ion standard dwiation (0.02 j, and the t bird

estimator has the largest population standard

deviation (wO.09), The correlation cocflicients

arr

pl~ = ON)

PI:J = 0.44 (17)

P2:I = (lmil?.

All t IIWW mt. imalors arc highly posiliwl, v wr-

rdatd.

‘1’hi~ Iwhavinr Study silnulald 100 indc-

pwdmt hl(.’N P rum. [iarh with 10(? art iw ry -

rlcs. “1’IIc I.llrcc-roflll)illc(l w+tilllalor is calc!l-

Iatd using not ~hc kmwu wvarial~ws, hut III(I

Covari;lncw wit imalrd fronl I ho data, just like

hlOiP does. Figure 2 shows that. of 100 sam-
ples, 64 have estimator ranges that do not in-
clude unity. Of those, 55 have three-combined
estimators that lie outside the individual estim-
ator range and closer to the expected value.
The three-combined kel~ estimator performs
better than the simple average and the in-
dividual estimator ,vith the smallest variance
[3]. The latter is evident in that the it is clus-
tered closer to unity than the inside edge of
the range bars in Figure 2.
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Figure 2: The range of three individual esti-
mators, connected by vertical lines. and the

three-combined estimator for 100 samples.

EFFECT OF VARIANCE BIAS

A good quality of the three-combined esti-
mator is that it uses all [he available infor-
mation. If the individua! estimator variances
are underestimated due to a bias, their cov-
erage rates may be in~dequ~te. Moreover,
this bias may propagate to the estimated stan-
dard deviation of the three-combined estima-
tor. WC investigate l.his cf~cct by int.rocluc-
ing various artificial biases to the individual
estimator variances in the previous section’s
analytic study.

Table 1 si,ows how introducing dilrcrcnl
artificial, individual estimator variance I)iascs
aflrcls thr rslimalml slandard deviation of the
1hrue-romhinml kr~~ (*stimator. For a single
run. or sanlplr. ronlailling IO() ryrlcs, I hcrr
is a rcportml varianrr 0[ t hc mmn for carh
of t 11Pt hrm’ intlivi(lllill os(imators. Norlllally.
I11(’sc variancwi arr ronw’rl w! 10 population
Vi)ri;lllr[%, I hon plllggwl into I’hlllat ions 2 and

I 2 10 wlimalc I II(’ t Ilr(’c-rt]llll)il:f’(1 WI imalor
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and its variance. In this bias study. we convert
the individual variances to population vari-
ances, and then add biases be~om plugging
them into Equations 2 and 12. Therefore the
combination perceives the based variances w
the actual variances. So, if there is a nega-
tive bias on a variance, the combination will
think it is smaller than it actually is. Note
that if a negative bias on the individual es-
timator variance was real, its coverage rates
would be less than expected. Thi~ study ex-
amines how these biaaes would p~~pagate to
the thr~combined estimator %ariance and af-
fect its coverage rates.

In general, the standard deviatior of the
mean from one run is the population standard
deviation one could expe~t if scvcrrd runs, or
replicas, were made. Therefore, to check the
validity of the calculated standard deviation
from one run, we make 100 independent runs.
The spread of the 100 values of the three-
comt ined estimator is represented as uadUal.
A value of uk/ent,u.l less than one indicates an
underestimation, or negative bias. The biaa
typically seen in criticality calculations is neq-
ativc.

Row 1 is the control run, where no artifi-
cial biases are introduced. The three-combin-
ed estimated standard deviation shows no un.
derestimation. If the biases on the individual
variances and ccwariances are equal (rows 2
and 3). Oartllal is unaffected, since the biases

explicitly cancel out in the expression for L.
III Row 2, the standard deviation, and hence
the confidence interval, on the fii~t estimator
is ovcmwtima[od by a factor of

(.0004 + .0002 )/.0004= 1.’22.

The eqtimatml ~tandard dwiation of the t hrcc-
rombincd e~tirnmtor, with it.~2,43 overestima-
tion, rrmwwalivrly overmt.imatcs the positivr
hia~ ill t.ho individual mtimator ktirianm bias
.

1’110rmults in I{ow 3 arc mpccially notP-
worthy, AH t Iw vnrianmw and rovarianrc~ arc
llllrlcrr~l.illlal.cfl by Iho mmc additivo amount.
Again. the variallrc/rr]va rinliro hirmw explic-
itly Canrd out in 1.11Pexprwmion of ~., Ilrrc.
though. tlw WJtim:ktwl Wamlard deviation fl~
ot!rnwt imatm 1ho art Ilal Ht.andard drviat ion
Iwcallw I.ho (Irvial inm 1)01wmw I110imlivid-
ual mtimalor~ thmnwlvwi iiro Higllilirnlll. RII(I

accounted for in the expression for Uk. Equa-
tions 12, 14 ar,d 15.

Row 4 is an attempt to fool the combina-
tion into thinking that the first estimator is
bet ter than it actually is. After 100 cycles. or
samples, the combination thinks that

U1l//iim= / .0004 - .0002/10 = 0.0014

instead of its actual nominal ~alue of

-/10 = 0.002.

The population covariances u~z and a~3 are
al~o halved, Halving a variance translates into
a

1-?/%=.29

reduction in the standard devial ion. Row 4
shows a 19% u!,derestimation propagathg to
the three-combined standard deviatinn. The
actual variance of the three-combined estima-
tor doesn’t show the gains as in the unbiased
case because the correlation between the first
estimator and the other two was artificially
weakened. In fact, the three-combined vari-
ance tends to look like the actual }ariance of
the first estimator.

Row 5 shows the result when the second-
best individual variance and its associated co
variance are underestimated, Again, the cor-
relation between the first and seco~d estima-
tors is weakened, and the three-combined vari-
ance tends to emulate that of the Iir.,t (still the
best ) estimator.

Row 6 shows that an underestimat.iou in
i k variance 01 the individual ~.wtirnator with
Ihe hig:lest variance has a smali~r cfkct, on the
Ihrcc-rombincd variance. The gain is a Iitt.lc
Iww. but tiwrc is Iio llll(lcrc~tinlatioil.

Typically, 1.Iwcaum of tlw varia]wr in onr
individual cstimatar will cause a similar hiss
in the ot hcr ost imators. Therefore, we red ucc
all individual mtimator variancm find crwari-
allcm by 50(% in l~ow 7, ‘~his biaR dimrtly
pmpagatm 1.hrough to givc a FJO% IImlrrwd.i-
mation in !k thrmvombinml vnrianrm which
rorrtwpomlR tiJ a. 29A umlrmwt imatinn in Iho
Hlandaitl dcvintion. ‘1’110valllc of t.hml.hrcp
combined slalld;lrd dcvialirm is small mmugh
m that 2!)(%flmw not amml. to murh.

\\rr Ilav(’ HIIIIWII a rallgo or PIli(l H011th(’
Illrf’t’-c(Jllll]iti(*fl0s1imalor varianrr duv Io a
hiss ill t ho individual wlimntor varkurm. An



I absolute artificial bias in

2 .0002
3 -.0002
4 -.0002
5 0
6 0
7 -.0002

o
.0002

-.0002
-.0004
-.0004

0
-.0004

2
dz2L

o
.0002
-.0002

0
-.001

0
-.001

3
.0002

-.0002
-.0004

0
-.0004
-.0004

.0002 .0002
-.0002 -.0002

0 0
-.0016 0
-.0016 -.0042
-.0016 -.0042

k
1.0001
1.0001
1.0001
1.0019
1.0019
1.0010
1.0001

A
mimi
.0016
.0013
.001.5
.0022
.0013
.0005—.

‘acluul

.0006

.0006

.0006

.0018

.0024

.0012

.0007

2 4.s
2.00
0.81
0.91
1.07
0.71——

Table 1: Bias effects on the estimated standard deviation oft he three-combined estimator.

equal negative absolute biaa across the board
(Row 3) results in an overestimation of the
three-combined variance. An equal negative
multiplicative biaa across the board (Row i’)
demonstrates a direct propagation of the bias.
We now look at realistic situations where vari-
ance biaa rears its ugly head and a way to
detect and squelch it.

MCNP EXAMPLE

As we did in the analytic study, performing
several Independent replicas of a run is the
best way io verify amy standard deviation of a
mean. For a Monte Carlo criticality calcula-
tion, the replication examination should have
the number of replicas statistically similar to
the number of active cycles in each run [3],
Then the quantites compared will be similady
distributed.

The coverage rates of the three-combined
k,~, confidence intervals in MCNP were ver-
ified for several systems [2,3], We present
an interesting caae involving a Godiva sphere
aud Jezebel Bphere. separated 80 cm cent.er-
to-center. Systems like this, with weak neu-
t ron communication between distant regions,
have high dominance rat;os (ratio of the .wc-
ond eigenvalue to the dominant cigenvalue)
am-l t.cnrl to have undcrcstimatcd individual
J+ff variaficcR. Tlw came of this umlerestima-
t.ion is the serial, or cycle-tocyclc, corrclat.ion
of the fis~ion source. Running 100 indqJcn-
dont M(.’NP runs d~inr)[istratd that thr in-
dividual mt.imator varianrm wmc slight Iy un-
dmeRl imntd and. 1Iwrrforr. so, too. waR t hc
t hrw’-rombill~d kclf ost inlntor vnrianm. Thi~
,mlcrwd.imal ion Cilll!i(% inadoquato crwerago

mhw at tho 6H% and ~!i(ti)ronfidrncr h?vdR,

as shown in Table 2, Note that the variance
underestimations for each individual estima-
tor are multiplicatively similar, so this real
situation is like the sitliation in Row 7 of Ta-
ble 1 Fortunately, the batching statistics in
MCNP can help detect a variance underesti-
mat ion. Batching groups of cycles together
diminishes some of the cyck+to-cycle correla-
tion and reduces any existing \ariance under-
estimating. Figure 3 shows how batching can
detect an underestimation in the estimated
standard deviation, Llsing the variance irom
40 batches of 20 cycles each, Table 3 shows
much improved coverage rates.

Ilmlrhiq }:lkw m k.,, S1nmlmd Bwntrnn

1.3

1.2

1.1

ah 1.0
m

(I.U

11.rr

[1 r

1 , m 1 m

(32)
“ fnun~r ti hnlr}m) (40)

(W)

Iml)

.MMflhlmlwi+ryrh

mu ~ I

o .-l 10 l-i ‘xl 2s
i-yrk pm hnlrh

Figure 3: For 800 active cycle~ and 100 irlde-
pendent runs. MCNP”S hatch data show an
un(!erestimation in the talc ulated s!andard
deviation for too few cycles per batrh. The
mror bars represent the observed variation in
Hi at the 6R% Conrldcllrn IPVPI.



k,fj coverage rates

estimator kc,, Oobaerued ~.akulated (~~ ) 68% 95% 99’%

collision 1.01249 0.000.55 0.00040 (0.00002) 52 86 94
absorption 1.01249 0,00055 0.00041 (0.90002) 51 86 94

track lengih I 1.012.52 0.00037 o.0003Ll (0.!)00001 57 90 98
col/abs/trkl 1 1.01252 000038 0.00030 (0.00001) .54 88 98

Table 2: kcf~ estimates for tho two-component system, Godiva and Jezebei reactor mock-up

and their associated standard deviations and coverage rates for 100 independent runs.

kefj coverage rates

estimator i,,, ‘observed ~calcuht,d (%) 68% 9.5% 99%

collision 1.01249 omooo5a5 C.00050 (0.00007) 63 93 97
absorption 1.01249 0.00055 0.0005; (0.00007) 62 94 97

track length 1.01252 0.00037 0.00039 (0.00005) 71 97 100

col/abs/trkl 1.01252 0.00039 omoao40 (0.00005) 70 95 99

Table 3: kc~~ estimates for the two-component system, C;odiva and Jezebel reactor mock-up
and their associated standard deviations and coverage rates for 100 independent runs, where
the 800 active cycles have been batckd \nto 40

CONCLUSION

The three-combined ke~~ estimator has been
derived and verified, both theoretically and
empirically (for the cases studied), to be the
best available estimator in MCNP. It has been
shown to be superior to other estimators such
as the simple average and the individual es-
timator with the smal!est, variance. Analytic
studies have verified its behavior and proper-
ties.

For high dominance ratio systems, the in-
dividual estimators may have underestimated
variances, which may propagate ts the vari-
ance of the three-combined estimator. The
afor~mentioned analytic study was heuristi-
cally used to examine the effects of ind~vidu~l
variance bias on the combination. An equal
addi:ive bias on all individual variances and
covari antes conservatively overest imatcs the
three-ccrmbincd variance, whereas an equal mul-

tiplicative bias on all individual variances and

covarianccs prcqmgalrs IIN’ san]c nlultiplica-
Iivc bias to the lllr(’o-rf~llll)ill(’il Vilriallce. Ill
MCNP, batch stalistirs provide au assessmcmt
and a!levifition of any existing varianre hiss.

The three-combinml A,jj mtimatur, Iikc
any Mcmtc Carlo estimator, should be pre-
scllt cd as a con fidonrc intmrval. ‘rhp th roc-
rombincd kr~~ con fidctlce ii]terals in M(.!NP

batches of 20 cycles each.

have been shown tc have the correct
rates for several realistic problems.

1.

2.

3!.
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