

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

LA-12887

6.3

Edited by Patricia W. Mendius, Group CIC-1 Prepared by M. Ann Nagy, Group X-6

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof.

LA-12887

UC-700 Issued: December 1994

MCNP™ ENDF/B-VI Validation: Infinite Media Comparisons of ENDF/B-VI and ENDF/B-V

John D. Court John S. Hendricks Stephanie C. Frankle

ERRATA

LA--12887: MCNP[™] ENDF/B-VI Validation Infinite Media Comparisons of ENDF/B-VI and ENDF/B-V

and

LA--12891: ENDF/B-VI Data for MCNP

{ CORRECTIONS ARE INDICATED BY A *}

Material	ZAID	Filename	Evaluation	Release	Туре	Photon
¹ H	1001.60c	h1001	LANL	6.1 ^a	New ^b	Yes°
² H	1002.60c	d1002	LANL, AWRE	-	New	-
°Н	1003.60c	t1003	LANL	-	-	No
°Не	2003.60c	he2003	LANL	6.1	New	No
⁴He	2004.60c	he2004	LANL	-	-	No
⁶ Li	3006.60c	li3006	LANL	6.1	New	-
⁷ Li	3007.60c	li3007	LANL	-	New	-
⁰Be	4009.60c	be4009	LLNL	-	New	-
¹⁰ B	5010.60c	b5010	LANL	6.1	New	-
¹¹ B	5011.60c	b5011	LANL	-	New	-
С	6000.60c	c6000	ORNL	6.1	New	-
¹⁴ N	7014.60c	n7014	LANL	LANL	New	-
¹⁵ N	7015.60c	n7015	LANL	-	New	-
¹⁶ O	8016.60c	o8016	LANL	-	New	-
¹⁷ O	8017.60c	o8017	BNL	-	-	No
¹⁹ F	9019.60c	f9019	ORNL	-	New	-
²³ Na	11023.60c	na11023	ORNL	6.1	-	-
Mg	12000.60c	mg12000	ORNL	-	-	-
²⁷ ĂI	13027.60c	al13027	LANL	-	-	-
Si	14000.60c	si14000	ORNL	-	-	-
³¹ P	15031.60c	p15031	LLNL	-	-	-
S	16000.60c	s16000	BNL	-	-	-
³² S	16032.60c	s16032	LLNL	-	-	-
CI	17000.60c	cl17000	GGA	-	-	-
К	19000.60c	k19000	GGA	-	-	-
Ca	20000.60c	ca20000	ORNL	-	New*	-
⁴⁵ Sc	21045.60c	sc21045	BNL	6.2	New*	-
Ti	22000.60c	ti22000	BRC. ANL	-	-	-
V	23000.60c	v23000	ANL. LLNL. +	-	New	-
⁵⁰ Cr	24050.60c	cr24050	ORNL	6.1	New	-

Table 1. The MCNP ENDF60 Library

All releases are release 6.0 of ENDF/B-VI unless otherwise noted. LANL indicates modifications were performed. All types are translations from ENDF/B-V Release 0, unless otherwise noted. а

b

с All nuclides have photon production, unless otherwise noted.

<u>Material</u>	ZAID	Filename	Evaluation	Release	Туре	Photon
50 -			_			
⁵² Cr	24052.60c	cr24052	ORNL	6.1	New	-
⁵³ Cr	24053.60c	cr24053	ORNL	6.1	New	-
⁵⁴ Cr	24054.60c	cr24054	ORNL	6.1	New	-
⁵⁵Mn	25055.60c	mn25055	ORNL	-	New	-
⁵⁴ Fe	26054.60c	fe26054	ORNL	6.1	New	-
⁵⁶ Fe	26056.60c	fe26056	ORNL	6.1	New	-
⁵⁷ Fe	26057.60c	fe26057	ORNL	6.1	New	-
⁵⁸ Fe	26058.60c	fe26058	ORNL	6.1	New	-
⁵⁹ Co	27059.60c	co27059	ANL	6.2	New	-
⁵⁸ Ni	28058.60c	ni28058	ORNL	6.1	New	-
⁶⁰ Ni	28060.60c	ni28060	ORNL	6.1	New	-
⁶¹ Ni	28061.60c	ni28061	ORNL	6.1	New	-
⁶² Ni	28062.60c	ni28062	ORNL	6.1	New	-
⁶⁴ Ni	28064.60c	ni28062	ORNL	6.1	New	-
⁶³ Cu	29063.60c	cu29063	ORNL	6.2	New	-
⁶⁵ Cu	29065.60c	cu29065	ORNL	6.2	New	-
Ga	31000.60c	ga31000	LLNL, LANL	-	-	-
⁸⁹ Y	39089.60c	y39089	ANL, LLNL	-	New*	-
Zr	40000.60c	zr40000	SAI, BNL	6.1	-	No
⁹³ Nb	41093.60c	nb41093	ANL, LLNL	6.1	New	-
Мо	42000.60c	mo42000	LLNL, HEDL	-	-	-
⁹⁹ Tc	43099.60c	tc43099	HEDL, BAW	-	-	No
¹⁰⁷ Ag	47107.60c	ag47107	BNL, HEDL	-	New*	No
¹⁰⁹ Ag	47109.60c	ag47109	BNL, HEDL	-	New*	No
In	49000.60c	in49000	ANL	-	New	-
¹²⁷	53127.60c	i53127	HEDL, RCN	LANL	New*	-
129	53129.60c	i53129	HEDL, RCN	-	-	No
¹³³ Cs	55133.60c	cs55133	HEDL, BNL, +	-	-	No
¹³⁴ Cs	55134.60c	cs55134	ORNL, HEDL	-	New	No
¹³⁵ Cs	55135.60c	cs55135	HEDL	-	-	No
¹³⁶ Cs	55136.60c	cs55136	HEDL	-	-	No
¹³⁷ Cs	55137.60c	cs55137	HEDL	-	-	No

Table 1 (cont.) The MCNP ENDF60 Library

^a All releases are release 6.0 of ENDF/B-VI unless otherwise noted. LANL indicates modifications were performed.

^b All types are translations from ENDF/B-V Release 0, unless otherwise noted.

^c All nuclides have photon production, unless otherwise noted.

Material	ZAID	Filename	Evaluation	Release	Туре	Photon
¹³⁸ Ba	56138.60c	ba56138	ORNL, HEDL	-	-	-
¹⁵¹ Eu	63151.60c	eu63151	LANL	-	New	-
¹⁵³ Eu	63153.60c	eu63153	LANL	-	New	-
¹⁵² Gd	64152.60c	gd64152	BNL	-	-	No
¹⁵⁴ Gd	64154.60c	gd64154	BNL	-	-	No
¹⁵⁵ Gd	64155.60c	gd64155	BNL	-	-	No
¹⁵⁶ Gd	64156.60c	gd64156	BNL	-	-	No
¹⁵⁷ Gd	64157.60c	gd64157	BNL	-	-	No
¹⁵⁸ Gd	64158.60c	gd64158	BNL	-	-	No
¹⁶⁰ Gd	64160.60c	gd64160	BNL	-	-	No
¹⁶⁵ Ho	67165.60c	ho67165	LANL	-	New	-
Hf	72000.60c	hf72000	SAI	-	-	No
¹⁸¹ Ta	73181.60c	ta73181	LLNL	-	-	-
¹⁸² Ta	73182.60c	ta73182	AI	-	-	No
^{182}W	74182.60c	w74182	LANL, ANL, +	-	New*	-
¹⁸³ W	74183.60c	w74183	LANL, ANL, +	-	New*	-
¹⁸⁴ W	74184.60c	w74184	LANL, ANL, +	-	New*	-
¹⁸⁶ W	74186.60c	w74186	LANL, ANL, +	-	New*	-
¹⁸⁵ Re	75185.60c	re75185	ORNL, LANL	-	New	No
¹⁸⁷ Re	75187.60c	re75187	ORNL, LANL	-	New	No
¹⁹⁷ Au	79197.60c	au79197	LANL	6.1	New	-
²⁰⁶ Pb	82206.60c	pb82206	ORNL	-	New	-
²⁰⁷ Pb	82207.60c	pb82207	ORNL	6.1	New	-
²⁰⁸ Pb	82208.60c	pb82208	ORNL	-	New	-
²⁰⁹ Bi	83209.60c	bi83209	ANL	-	New	-
²³⁰ Th	90230.60c	th90230	HEDL	-	-	No
²³² Th	90232.60c	th90232	BNL, ANL, +	-	-	-
²³¹ Pa	91231.60c	pa91231	HEDL	-	-	No
²³² U	92232.60c	u92232	HEDL	-	-	No
²³³ U	92233.60c	u92233	LANL, ORNL	-	-	-
²³⁴ U	92234.60c	u92234	BNL, GGA	-	-	No

Table 1 (cont.) The MCNP ENDF60 Library

All releases are release 6.0 of ENDF/B-VI unless otherwise noted. LANL а indicates modifications were performed. All types are translations from ENDF/B-V Release 0, unless otherwise noted.

b

All nuclides have photon production, unless otherwise noted. С

<u>Material</u>	ZAID	Filename	Evaluation	Release	Туре	Photon
225				.		
235	92235.60c	u92235	ORNL, LANL	6.2*	New	-
²³⁰ U	92236.60c	u92236	HEDL	-	New	No
²³⁸ U	92238.60c	u92238	ORNL, LANL, +	6.2	New	-
²³⁷ Np	93237.60c	np93237	LANL	6.1	New	-
²³⁸ Np ^d	93238.60c	np93238	SRL	6.2*	New	No
²³⁹ Np	93239.60c	np93239	ORNL	-	New	No
²³⁶ Pu	94236.60c	pu94236	HEDL, SRL	-	-*	No
²³⁷ Pu	94237.60c	pu94237	HEDL	-	-*	No
²³⁸ Pu	94238.60c	pu94238	HEDL, AI, +	-	-	No
²³⁹ Pu	94239.60c	pu94239	LANL	6.2	New	-
²⁴⁰ Pu	94240.60c	pu94240	ORNL	6.2*	New	-
²⁴¹ Pu	94241.60c	pu94241	ORNL	6.1	New	-
²⁴² Pu	94242.60c	pu94242	HEDL, SRL, +	-	-	-
²⁴³ Pu	94243.60c	pu94243	BNL, SRL, +	6.2*	-	-
²⁴⁴ Pu	94244.60c	pu94244	HEDL, SRL	-	-	No
²⁴¹ Am	95241.60c	am95241	CNDC	LANL	New	-
²⁴² Am ^d	95242.60c	am95242	SRL	6.1	-	No
²⁴³ Am	95243.60c	am95243	ORNL, HEDL, +	-	New	-
²⁴¹ Cm	96241.60c	cm96241	HEDL	-	-	No
²⁴² Cm	96242.60c	cm96242	HEDL, SRL, +	-	-	-
²⁴³ Cm	96243.60c	cm96243	HEDL, SRL, +	-	-	-
²⁴⁴ Cm	96244.60c	cm96244	HEDL, SRL, +	-	-	-
²⁴⁵ Cm	96245.60c	cm96245	SRL, LLNL	6.2	-	-
²⁴⁶ Cm	96246.60c	cm96246	BNL, SRL, +	6.2	-	-
²⁴⁷ Cm	96247.60c	cm96247	BNL, SRL, +	6.2	-	-
²⁴⁸ Cm	96248.60c	cm96248	HEDL. SRL. +	-	-	-
²⁴⁹ Bk	97249.60c	bk97249	CNDC	-	New	No
²⁴⁹ Cf	98249.60c	cf98249	CNDC	LANL	New	No
²⁵⁰ Cf	98250.60c	cf98250	BNL SRL +	6.2	-	-
²⁵¹ Cf	98251.60c	cf98251	BNL, SRI +	6.2	-	-
²⁵² Cf	98252.60c	cf98252	BNL, SRL, +	6.2*	-	-
	33202.000	0.00202	2.12, 0.12, 1			

Table 1 (cont.) The MCNP ENDF60 Library

^a All releases are release 6.0 of ENDF/B-VI unless otherwise noted. LANL indicates modifications were performed.

^b All types are translations from ENDF/B-V Release 0, unless otherwise noted.

^c All nuclides have photon production, unless otherwise noted.

^d These data files are not recommended for use due to the evaluations being incomplete, and are currently being removed from distribution. Additionally, 95242.60c represents the ground state of ²⁴²Am, <u>not</u> the metastable state.

MCNP[™] ENDF/B-VI VALIDATION: INFINITE MEDIA COMPARISONS OF ENDF/B-VI AND ENDF/B-V

by

John D. Court, John S. Hendricks, and Stephanie C. Frankle

ABSTRACT

Infinite media calculations have been performed to validate the new MCNP ENDF/B-VI Library, ENDF60. All 124 nuclides have neutron flux and heating tallies compared against ENDF/B-V, as well as the MCNP Recommended Data Sets when these were not ENDF/B-V. For nuclides with photon production, photon flux and heating tallies have also been compared. All significant differences between the new ENDF60 results and those obtained with other data sets are discussed. This report provides a method for data comparison so that a better decision can be made as to the best data set to be used for a particular problem.

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.

I. INTRODUCTION

Although ENDF/B-VI has been available for approximately four years,¹ with Release 2 issued in June of 1993, the ability to utilize this data set is only now available for MCNP. The new ENDF/B-VI evaluations could not be utilized to their full extent until the release of MCNP4A in October 1993, which included new sampling schemes for the new ENDF/B-VI representations of angular scattering.² The ENDF/B-VI library for MCNP has been released as the ENDF60 library^{3,4} and is identified by the .60c designation.

The ENDF60 data library was processed from the ENDF/B-VI evaluations using the NJOY code⁵ by the Nuclear Theory and Applications Group (T-2) at Los Alamos National Laboratory (LANL). Approximately 52% of the data are translations from ENDF/B-V to ENDF/B-VI, which should be only slightly different due to modifications in the NJOY code. The remaining 48% are new evaluations which have sometimes changed significantly.

In order to release the ENDF60 library in a timely fashion, the testing and validation phase was radically changed from that used in the past. The average size of each nuclide file in the ENDF60 library is 1.5 Mbytes with the largest being 8.1 Mbytes. Due to the enormous size of the individual data files for each nuclide, the former manual checking methods used in validating the MCNP ENDF/B-V libraries were not possible. Therefore, a new set of quality assurance tests was established for NJOY by T-2. In addition to these tests, the Radiation Transport Group (X-6) subjected the data to a number of customized checks and experimental benchmark comparisons. The customized checks included a detailed photon production assessment,⁶ the infinite medium comparisons described in this report, and experimental benchmarks including criticality,⁴ iron benchmarks,⁷ and Livermore Pulsed Spheres.⁸

We report here a series of infinite media calculations that were undertaken for each nuclide in the ENDF60 library. Each nuclide was compared to the corresponding ENDF/B-V nuclide and/or the MCNP Recommended Data Set, and the differences were fully explored.

II. THE ENDF60 LIBRARY

The organizational structure of the ENDF60 data library has been modified from that of previous libraries. The library now consists of an individual data file for each nuclide. Table I provides a synopsis of the ENDF60 data library including the ZAID, corresponding file name, where the ENDF/B-VI evaluation was performed, the evaluation's revision number, and the availability of photon production. The type of evaluation, whether new or translated, is also indicated.

Of the 124 nuclides in the ENDF60 library, 31 have not been generally available to MCNP users until now. These previously unavailable data are listed in Table II. Four of these are new evaluations which were unavailable until ENDF/B-VI. Ten newly available nuclides are translations of ENDF/B-V data that have not been available previously in the MCNP data libraries. These 14 nuclides are listed in Table II under "No Previous Evaluation" as authorized versions have never been available for use with MCNP. Seventeen more nuclides are now available for which there were no previous MCNP Recommended Evaluations and were generally not distributed. These nuclides are listed under "No Previous MCNP Recommended Evaluations" and include 4 new ENDF/B-VI evaluations and 13 translations from

ENDF/B-V. The previous evaluations for these nuclides were mostly from obsolete sources and were only available locally at LANL and to some X-6 customers.

III. INFINITE MEDIA PROBLEM SETUP

The infinite media calculations consisted of a 20-MeV neutron source in a psuedo-infinite media (a sphere of 100 meter radius) of the nuclide. For light materials, this was sufficient to downscatter throughout the entire energy range. As materials got heavier, the source was modified so that for the heaviest elements, the source spanned the entire energy range so as to sample collisions over the entire energy range. The neutron flux and heating were then tallied along with the induced photon flux and heating, and coplots were made against the ENDF/B-V and/or the MCNP Recommended Library. Each coplot is presented here so that the user can determine the best data set to be used for a particular problem.

IV. RESULTS

Figures 1 through 364 contain the plots for the 124 evaluations contained in ENDF60. For each nuclide there are plots for the neutron flux and the neutron heating. The units for the flux tallies are $1/\text{cm}^2$, and the units for the heating tallies are MeV/gm. If the nuclide has photon production, then the photon flux and photon heating are also plotted.

In the figures, the ENDF60 library is referenced by "ENDF/B-6." The MCNP Recommended Library is referenced as "T-2" if it is an evaluation by the LANL Nuclear Theory and Applications Group (T-2) and "ENDF/B-5" if it is an ENDF/B-V based data set. There are some instances where an evaluation was available, but was not contained in the MCNP Recommended Library. In these instances, ENDF/B-VI was coplotted against the best available evaluation. Some of these evaluations are from the Lawrence Livermore National Laboratory Evaluated Nuclear Data Library (ENDL). These are labeled as "ENDL-85" or "ENDL-90" depending upon which version was used.

In several cases, the neutron heating tallies are greater at lower energies. The larger ENDF/B-VI heating at lower energies results from the improved NJOY ability to include nucleus recoil effects and is evident in many nuclides. A number of examples are listed in Table III.

Two of these translated evaluations, Cl and K, show significant changes in neutron heating due to the improvements in NJOY and are illustrated in Figs. 86 and 90, respectively.

Several evaluations now include photon production which caused a large decrease in the neutron heating tallies. When no photon production is available, all energy is deposited as neutron heating. Nuclides where the neutron heating is lower because photon production has been added are ¹¹B, ⁴⁵Sc, ⁸⁹Y, ¹⁹⁷Au, and ²³⁷Np, Figs. 32, 98, 138, 236, and 274, respectively. Photon production was also added to ²³³U (Fig. 258), but the neutron heating decrease is small because photon heating is very small compared to the fission heating. There are other evaluations (such as ENDL-85) which include photon production where ENDF/B-VI does not. For these, the ENDF60 neutron heating tallies are greater as shown in Fig. 350 for ²⁴⁹Bk.

Material	ZAID	Filename	Evaluation	Revision	Type	Photon	
¹ H	1001.60c	h1001	LANL	^a 6.1	^b New	^c Yes	
² H	1002.60c	d1002	LANL, AWRE	-	New	-	
зН	1003.60c	t1003	LANL	-	-	No	
³ He	2003.60c	he2003	LANL	6.1	New	No	
⁴He	2004.60c	he2004	LANL	-	-	No	
6Li	3006.60c	li3006	LANL	6.1	New	-	
⁷ Li	3007.60c	li3007	LANL	-	New	-	
⁹ Be	4009.60c	be4009	LLNL	-	New	-	
¹⁰ B	5010.60c	b5010	LANL	6.1	New	-	
¹¹ B	5011.60c	b5011	LANL	-	New	-	
C	6000.60c	c6000	ORNL	6.1	New	-	
¹⁴ N	7014.60c	n7014	LANL	LANL	New	-	
¹⁵ N	7015.60c	n7015	LANL	-	New	-	
¹⁶ O	8016.60c	o8016	LANL	-	New	-	
¹⁷ 0	8017.60c	o8017	BNL	- -	-	No	
¹⁹ F	9019.60c	f9019	ORNL	-	New	-	
²³ Na	11023.60c	na11023	ORNL	6.1	-	-	
Mg	12000.60c	mg12000	ORNL	-	-	-	
²⁷ Al	13027.60c	al13027	LANL	-	-	-	
Si	14000.60c	si14000	ORNL	-	-	-	
³¹ P	15031.60c	p15031	LLNL		-	-	
S	16000.60c	s16000	BNL	-	-	-	
³² S	16032.60c	s16032	LLNL	-	-	-	
Cl	17000.60c	cl17000	GGA	-	-	-	
K	19000.60c	k19000	GGA	-	- 1	-	
Ca	20000.60c	ca20000	ORNL	-	-	-	
⁴⁵ Sc	21045.60c	sc21045	BNL	6.2	-	-	
Ti	22000.60c	ti22000	BRC, ANL	-	-	-	
V	23000.60c	v23000	ANL, LLNL, +	-	New	-	
⁵⁰ Cr	24050.60c	cr24050	ORNL	6.1	New	<u> </u>	
^a All revis	ions are revi	sion 6.0 of	ENDF/B-VI unles	s otherwise	e noted.	LANL	
indica	tes modificat	tions were p	erformed.				
^b All types	^b All types are translations from ENDF/B-V, unless otherwise noted.						

TABLE I. The MCNP ENDF60 Library.

^cAll nuclides have photon production, unless otherwise noted.

Material	ZAID	Filename	Evaluation	Revision	Туре	Photon
⁵² Cr	24052.60c	cr24052	ORNL	6.1	New	-
⁵³ Cr	24053.60c	cr24053	ORNL	6.1	New	-
⁵⁴ Cr	24054.60c	cr24054	ORNL	6.1	New	-
⁵⁵ Mn	25055.60c	mn25055	ORNL	-	New	-
⁵⁴ Fe	26054.60c	fe26054	ORNL	6.1	New	-
⁵⁶ Fe	26056.60c	fe26056	ORNL	6.1	New	-
⁵⁷ Fe	26057.60c	fe26057	ORNL	6.1	New	-
⁵⁸ Fe	26058.60c	fe26058	ORNL	6.1	New	-
⁵⁹ Co	27059.60c	co27059	ANL	6.2	New	-
⁵⁸ Ni	28058.60c	ni28058	ORNL	6.1	New	-
⁶⁰ Ni	28060.60c	ni28060	ORNL	6.1	New	-
⁶¹ Ni	28061.60c	ni28061	ORNL	6.1	New	-
⁶² Ni	28062.60c	ni28062	ORNL	6.1	New	-
⁶⁴ Ni	28064.60c	ni28062	ORNL	6.1	New	-
⁶³ Cu	29063.60c	cu29063	ORNL	6.2	New	-
⁶⁵ Cu	29065.60c	cu29065	ORNL	6.2	New	-
Ga	31000.60c	ga31000	LLNL, LANL	-	-	-
⁸⁹ Y	39089.60c	y39089	ANL, LLNL	-	-	-
Zr	40000.60c	zr40000	SAI, BNL	6.1	-	No
⁹³ Nb	41093.60c	nb41093	ANL, LLNL	6.1	New	-
Mo	42000.60c	mo42000	LLNL, HEDL	-	-	-
⁹⁹ Tc	43099.60c	tc43099	HEDL, BAW	-	-	No
¹⁰⁷ Ag	47107.60c	ag47107	BNL, HEDL	-	-	No
¹⁰⁹ Ag	47109.60c	ag47109	BNL, HEDL	-	-	No
In	49000.60c	in49000	ANL	-	New	-
127I	53127.60c	i53127	HEDL, RCN	LANL	-	-
129I	53129.60c	i53129	HEDL, RCN	-	-	No
¹³³ Cs	55133.60c	cs55133	HEDL, BNL, +	-	-	No
¹³⁴ Cs	55134.60c	cs55134	ORNL, HEDL	-	New	No
¹³⁵ Cs	55135.60c	cs55135	HEDL	-	-	No
¹³⁶ Cs	55136.60c	cs55136	HEDL	-	-	No
¹³⁷ Cs	55137.60c	cs55137	HEDL	-	-	No
All revisi	ons are revis	sion 6.0 of F	NDF/B-VI unless	otherwise	noted.	LANL
indica	tes modifica	tions were p	performed.			

TABLE I (cont.) The MCNP ENDF60 Library.

All types are translations from ENDF/B-V, unless otherwise noted.

All nuclides have photon production, unless otherwise noted.

Material	ZAID	Filename	Evaluation	Revision	Туре	Photon
¹³⁸ Ba	56138.60c	ba56138	ORNL, HEDL	-	-	-
¹⁵¹ Eu	63151.60c	eu63151	LANL	-	New	-
¹⁵³ Eu	63153.60c	eu63153	LANL	-	New	-
¹⁵² Gd	64152.60c	gd64152	BNL	-	-	No
¹⁵⁴ Gd	64154.60c	gd64154	BNL	-	-	No
¹⁵⁵ Gd	64155.60c	gd64155	BNL	-	_	No
¹⁵⁶ Gd	64156.60c	gd64156	BNL	-	-	No
¹⁵⁷ Gd	64157.60c	gd64157	BNL	-	-	No
¹⁵⁸ Gd	64158.60c	gd64158	BNL	-	-	No
¹⁶⁰ Gd	64160.60c	gd64160	BNL	-	-	No
¹⁶⁵ Ho	67165.60c	ho67165	LANL	-	New	-
Hf	72000.60c	hf72000	SAI	-	-	No
¹⁸¹ Ta	73181.60c	ta73181	LLNL	-	-	-
¹⁸² Ta	73182.60c	ta73182	AI	-	-	No
¹⁸² W	74182.60c	w74182	LANL, ANL, +	-	-	-
¹⁸³ W	74183.60c	w74183	LANL, ANL, +	-	-	-
¹⁸⁴ W	74184.60c	w74184	LANL, ANL, +	-	-	-
¹⁸⁶ W	74186.60c	w74186	LANL, ANL, +	-	-	-
¹⁸⁵ Re	75185.60c	re75185	ORNL, LANL	-	New	No
¹⁸⁷ Re	75187.60c	re75187	ORNL, LANL	-	New	No
¹⁹⁷ Au	79197.60c	au79197	LANL	6.1	New	-
²⁰⁶ Pb	82206.60c	pb82206	ORNL	-	New	-
²⁰⁷ Pb	82207.60c	pb82207	ORNL	6.1	New	-
²⁰⁸ Pb	82208.60c	pb82208	ORNL	-	New	-
²⁰⁹ Bi	83209.60c	bi83209	ANL	-	New	-
²³⁰ Th	90230.60c	th90230	HEDL	-	-	No
232Th	90232.60c	th90232	BNL, ANL, +	-	-	-
²³¹ Pa	91231.60c	pa91231	HEDL	-	-	No
²³² U	92232.60c	u92232	HEDL	- .	-	No
²³³ U	92233.60c	u92233	LANL, ORNL	-	-	-
²³⁴ U	92234.60c	u92234	BNL, GGA	-	-	No
All revision	ons are revis	sion 6.0 of E	NDF/B-VI unless	otherwise	noted.	LANL
indica	tes modifica	tions were p	performed.			
All types	are translat	ions from E	NDF/B-V, unless	otherwise	noted.	
All nuclic	les have pho	ton product	tion unless otherw	vise noted		

TABLE I (cont.) The MCNP ENDF60 Library.

Material	ZAID	Filename	e Evaluation Revision Type H		Photon	
²³⁵ U	92235.60c	u92235	ORNL, LANL	LANL	New	-
236 U	92236.60c	u92236	HEDL	-	New	No
²³⁸ U	92238.60c	u92238	ORNL, LANL, +	6.2	New	-
²³⁷ Np	93237.60c	np93237	LANL	6.1	New	-
²³⁸ Np	93238.60c	np93238	SRL	LANL	New	No
²³⁹ Np	93239.60c	пр93239	ORNL	-	New	No
²³⁶ Pu	94236.60c	pu94236	HEDL, SRL	-	New	No
²³⁷ Pu	94237.60c	pu94237	HEDL	-	New	No
²³⁸ Pu	94238.60c	pu94238	HEDL, AI, +	-	-	No
²³⁹ Pu	94239.60c	pu94239	LANL	6.2	New	-
²⁴⁰ Pu	94240.60c	pu94240	ORNL	LANL	New	-
²⁴¹ Pu	94241.60c	pu94241	ORNL	6.1	New	-
²⁴² Pu	94242.60c	pu94242	HEDL, SRL, +	-	-	-
²⁴³ Pu	94243.60c	pu94243	BNL, SRL, +	LANL	-	-
²⁴⁴ Pu	94244.60c	pu94244	HEDL, SRL	-	-	No
²⁴¹ Am	95241.60c	am95241	CNDC	LANL	New	-
²⁴² Am	95242.60c	am95242	SRL	6.1	-	No
²⁴³ Am	95243.60c	am95243	ORNL, HEDL, +	-	New	-
²⁴¹ Cm	96241.60c	cm96241	HEDL	-	-	No
²⁴² Cm	96242.60c	cm96242	HEDL, SRL, +	-	-	-
²⁴³ Cm	96243.60c	cm96243	HEDL, SRL, +	-	-	-
²⁴⁴ Cm	96244.60c	cm96244	HEDL, SRL, +	-	-	-
²⁴⁵ Cm	96245.60c	cm96245	SRL, LLNL	6.2	-	-
²⁴⁶ Cm	96246.60c	cm96246	BNL, SRL, +	6.2	-	-
²⁴⁷ Cm	96247.60c	cm96247	BNL, SRL, +	6.2	-	-
²⁴⁸ Cm	96248.60c	cm96248	HEDL, SRL, +	-	-	-
²⁴⁹ Bk	97249.60c	bk97249	CNDC	-	New	No
²⁴⁹ Cf	98249.60c	cf98249	CNDC	LANL	New	No
²⁵⁰ Cf	98250.60c	cf98250	BNL, SRL, +	6.2	-	-
²⁵¹ Cf	98251.60c	cf98251	BNL, SRL, +	6.2	-	-
²⁵² Cf	98252.60c	cf98252	BNL, SRL, +	LANL	-	
All revisi	ons are revis	sion 6.0 of H	ENDF/B-VI unless of	otherwise n	oted. L	ANL
indica	tes modifica.	tions were p	performed.			
A 11 trun an	and translat	iona from L	NDE/DV unlage	thomas -	atad	

TABLE I (cont.) The MCNP ENDF60 Library.

All types are translations from ENDF/B-V, unless otherwise noted.

All nuclides have photon production, unless otherwise noted.

No	Previous	No Previous		
Ev	aluation	MCNI	PRec. Eval.	
New	Translation	New	Translation	
In	¹⁷ 0	²³⁸ Np	⁴⁵ Sc	
¹³⁴ Cs	S	²³⁷ Pu	⁹⁹ Тс	
²³⁹ Np	¹²⁹ I	²⁴⁹ Bk	¹²⁷ I	
²³⁶ Pu	¹³⁶ Cs	²⁴⁹ Cf	¹³⁵ Cs	
	¹³⁷ Cs		²³¹ Pa	
	¹⁸² Ta		²⁴³ Pu	
	²³⁰ Th		²⁴³ Cm	
·	²³² U		²⁴⁶ Cm	
	²⁴⁴ Pu		²⁴⁷ Cm	
	²⁴¹ Cm		²⁴⁸ Cm	
			²⁵⁰ Cf	
			²⁵¹ Cf	
			²⁵² Cf	

TABLE II. New ENDF/B-VI Evaluations.

TABLE III. Some examples of evaluations that showed higher neutron heating at lower energies from the improvement in the treatment of nucleus recoil effects in NJOY.

New	Trans	lations
Evaluations		
¹ H	²³ Na	Zr
⁷ Li	Mg	^{183}W
¹⁶ O	²⁷ Al	^{184}W
C	Si	¹⁸⁶ W
⁵⁹ Co	³¹ P	²³⁸ Pu
Ni	Ti	²³¹ Pa
²⁴³ Am		

Fig. 1. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹H sphere.

Fig. 2. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹H sphere.

Fig. 3. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹H sphere.

Fig. 4. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹H sphere.

Fig. 5. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²H sphere.

Fig. 6. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ²H sphere.

Fig. 7. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ²H sphere.

Fig. 8. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ²H sphere.

Fig. 9. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 3 H sphere.

Fig. 10. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ³H sphere.

Fig. 11. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ³He sphere.

Fig. 12. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ³He sphere.

Fig. 13. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁴He sphere.

Fig. 14. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁴He sphere.

Fig. 15. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁶Li sphere.

Fig. 16. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁶Li sphere.

Fig. 17. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ⁶Li sphere.

Fig. 18. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ⁶Li sphere.

Fig. 19. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁷Li sphere.

Fig. 20. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ⁷Li sphere.

Fig. 21. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ⁷Li sphere.

Fig. 22. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ⁷Li sphere.

Fig. 23. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁹Be sphere.

Fig. 24. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁹Be sphere.

Fig. 25. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ⁹Be sphere.

Fig. 26. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ⁹Be sphere.

Fig. 27. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁰B sphere.

Fig. 28. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁰B sphere.

Fig. 29. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹⁰B sphere.

Fig. 30. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹⁰B sphere.

Fig. 31. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹¹B sphere.

Fig. 32. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹¹B sphere.

Fig. 33. Plot of MCNP Recommended and ENDF/B-VI calculated photon flux for the ¹¹B sphere.

Fig. 34. Plot of MCNP Recommended and ENDF/B-VI calculated photon heating for the ¹¹B sphere.

Fig. 35. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius carbon sphere.

Fig. 36. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the carbon sphere.

Fig. 37. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the carbon sphere.

Fig. 38. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the carbon sphere.

Fig. 39. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁴N sphere.

Fig. 40. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁴N sphere.

Fig. 41. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹⁴N sphere.

Fig. 42. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹⁴N sphere.

Fig. 43. Plot of MCNP Recommended and ENDF/B-VI calculated neutron flux for a 10000 cm radius $^{15}\mathrm{N}$ sphere.

Fig. 44. Plot of MCNP Recommended and ENDF/B-VI calculated neutron heating for the ¹⁵N sphere.

Fig. 45. Plot of MCNP Recommended and ENDF/B-VI calculated photon flux for the ¹⁵N sphere.

Fig. 46. Plot of MCNP Recommended and ENDF/B-VI calculated photon heating for the 15 N sphere.

Fig. 47. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁶O sphere.

Fig. 48. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁶O sphere.

Fig. 49. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹⁶O sphere.

Fig. 50. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹⁶O sphere.

Fig. 51. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁷O sphere.

Fig. 52. Plot of ENDF/B-VI calculated neutron heating for the ¹⁷O sphere.

Fig. 53. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 19 F sphere.

Fig. 54. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁹F sphere.

Fig. 55. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹⁹F sphere.

Fig. 56. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹⁹F sphere.

Fig. 57. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³Na sphere.

Fig. 58. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³Na sphere.

Fig. 59. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²³Na sphere.

Fig. 60. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²³Na sphere.

Fig. 61. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius magnesium sphere.

Fig. 62. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the magnesium sphere.

Fig. 63. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the magnesium sphere.

Fig. 64. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the magnesium sphere.

Fig. 65. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁷Al sphere.

Fig. 66. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁷Al sphere.

Fig. 67. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁷Al sphere.

Fig. 68. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁷Al sphere.

Fig. 69. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius silicon sphere.

Fig. 70. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the silicon sphere.

Fig. 71. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the silicon sphere.

Fig. 72. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the silicon sphere.

Fig. 73. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ³¹P sphere.

Fig. 74. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ³¹P sphere.

Fig. 75. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ³¹P sphere.

Fig. 76. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ³¹P sphere.

Fig. 77. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius sulfur sphere.

Fig. 78. Plot of ENDF/B-VI calculated neutron heating for the sulfur sphere.

Fig. 79. Plot of ENDF/B-VI calculated photon flux for the sulfur sphere.

Fig. 80. Plot of ENDF/B-VI calculated photon heating for the sulfur sphere.

Fig. 81. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ³²S sphere.

Fig. 82. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ³²S sphere.

Fig. 83. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ³²S sphere.

Fig. 84. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ³²S sphere.

Fig. 85. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius chlorine sphere.

Fig. 86. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the chlorine sphere.

Fig. 87. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the chlorine sphere.

Fig. 88. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the chlorine sphere.

Fig. 89. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius potassium sphere.

Fig. 90. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the potassium sphere.

Fig. 91. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the potassium sphere.

Fig. 92. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the potassium sphere.

Fig. 93. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius calcium sphere.

Fig. 94. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the calcium sphere.

Fig. 95. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the calcium sphere.

Fig. 96. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the calcium sphere.

Fig. 97. Plot of a T-2 evaluation and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁴⁵Sc sphere. The T-2 evaluation is not the MCNP Recommended Evaluation for this isotope. MCNP does not have a recommended evaluation for this isotope.

Fig. 98. Plot of a T-2 evaluation and ENDF/B-VI calculated neutron heating for the ⁴⁵Sc sphere. The T-2 evaluation is not the MCNP recommended Evaluation for this isotope. MCNP does not have a recommended evaluation for this isotope.

Fig. 99. Plot of ENDF/B-VI calculated photon flux for the ⁴⁵Sc sphere.

Fig. 100. Plot of ENDF/B-VI calculated photon heating for the ⁴⁵Sc sphere.

Fig. 101. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius titanium sphere.

Fig. 102. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the titanium sphere.

Fig. 103. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the titanium sphere.

Fig. 104. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the titanium sphere.

Fig. 105. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius vanadium sphere.

Fig. 106. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the vanadium sphere.

Fig. 107. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the vanadium sphere.

Fig. 108. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the vanadium sphere.

00

Fig. 109. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron flux for a 10000 cm radius chromium sphere. The atom percent of isotopic ENDF/B-VI was: ${}^{50}Cr-4.345\%$, ${}^{52}Cr-83.79\%$, ${}^{53}Cr-9.5\%$, and ${}^{54}Cr-2.365\%$.

Fig. 110. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron heating for the chromium sphere.

Fig. 111. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon flux for the chromium sphere.

Fig. 112. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon heating for the chromium sphere.

Fig. 113. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 55 Mn sphere.

Fig. 114. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁵⁵Mn sphere.

Fig. 115. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ⁵⁵Mn sphere.

Fig. 116. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ⁵⁵Mn sphere.

Fig. 117. Plot of elemental ENDF/B-V, elemental MCNP Recommended, and isotopic ENDF/B-VI calculated neutron flux for a 10000 cm radius iron sphere. The atom percent of isotopic ENDF/B-VI was: ⁵⁴Fe-5.9%, ⁵⁶Fe-91.72%, ⁵⁷Fe-2.1%, and ⁵⁸Fe-0.28%.

Fig. 118. Plot of elemental ENDF/B-V, elemental MCNP Recommended, and isotopic ENDF/B-VI calculated neutron heating for the iron sphere.

Fig. 119. Plot of elemental ENDF/B-V, elemental MCNP Recommended, and isotopic ENDF/B-VI calculated photon flux for the iron sphere.

Fig. 120. Plot of elemental ENDF/B-V, elemental MCNP Recommended, and isotopic ENDF/B-VI calculated photon heating for the iron sphere.

Fig. 121. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 59 Co sphere.

Fig. 122. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁵⁹Co sphere.

Fig. 123. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ⁵⁹Co sphere.

Fig. 124. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ⁵⁹Co sphere.

Fig. 125. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron flux for a 10000 cm radius nickel sphere. The atom percent of isotopic ENDF/B-VI was: ⁵⁸Ni-68.27%, ⁶⁰Ni-26.1%, ⁶¹Ni-1.13%, ⁶²Ni-3.59%, and ⁶⁴Ni-0.91%.

Fig. 126. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron heating for the nickel sphere.

Fig. 127. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon flux for the nickel sphere.

Fig. 128. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon heating for the nickel sphere.

Fig. 129. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron flux for a 10000 cm radius copper sphere. The atom percent of isotopic ENDF/B-VI was: 63 Cu-69.17% and 65 Cu-30.83%.

Fig. 130. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron heating for the copper sphere.

Fig. 131. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon flux for the copper sphere.

Fig. 132. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon heating for the copper sphere.

Fig. 133. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius gallium sphere.

Fig. 134. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the gallium sphere.

Fig. 135. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the gallium sphere.

Fig. 136. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the gallium sphere.

Fig. 137. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 89 Y sphere.

Fig. 138. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁸⁹Y sphere.

Fig. 139. Plot of ENDF/B-VI calculated photon flux for the ⁸⁹Y sphere.

Fig. 140. Plot of ENDF/B-VI calculated photon heating for the ⁸⁹Y sphere.

Fig. 141. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius zirconium sphere.

Fig. 142. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the zirconium sphere.

Fig. 143. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁹³Nb sphere.

Fig. 144. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁹³Nb sphere.

Fig. 145. Plot of ENDF/B-VI calculated photon flux for the ⁹³Nb sphere.

Fig. 146. Plot of ENDF/B-VI calculated photon heating for the ⁹³Nb sphere.

Fig. 147. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius molybdenum sphere.

Fig. 148. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the molybdenum sphere.

Fig. 149. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the molybdenum sphere.

Fig. 150. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the molybdenum sphere.

Fig. 151. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ⁹⁹Tc sphere. The ENDF/B-V evaluation is not the recommended evaluation for this isotope. The MCNP library does not contain a recommended evaluation for this isotope.

Fig. 152. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ⁹⁹Tc sphere. The ENDF/B-V evaluation is not the recommended evaluation for this isotope. The MCNP library does not contain a recommended evaluation for this isotope.

Q A

Fig. 153. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 107 Ag sphere.

Fig. 154. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁰⁷Ag sphere.

Fig. 155. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 109 Ag sphere.

Fig. 156. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁰⁹Ag sphere.

Fig. 157. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius indium sphere.

Fig. 158. Plot of ENDF/B-VI calculated neutron heating for the indium sphere.

Fig. 159. Plot of ENDF/B-VI calculated photon flux for the indium sphere.

Fig. 160. Plot of ENDF/B-VI calculated photon heating for the indium sphere.

Fig. 161. Plot of a T-2 evaluation and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹²⁷I sphere. The T-2 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 162. Plot of ENDF/B-VI calculated neutron heating for the ¹²⁷I sphere.

Fig. 163. Plot of ENDF/B-VI calculated photon flux for the ¹²⁷I sphere.

Fig. 164. Plot of ENDF/B-VI calculated photon heating for the ¹²⁷I sphere.

Fig. 165. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹²⁹I sphere.

Fig. 166. Plot of ENDF/B-VI calculated neutron heating for the ¹²⁹I sphere.

Fig. 167. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 133 Cs sphere.

Fig. 168. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹³³Cs sphere.

Fig. 169. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹³⁴Cs sphere.

Fig. 170. Plot of ENDF/B-VI calculated neutron heating for the ¹³⁴Cs sphere.

Fig. 171. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹³⁵Cs sphere. The ENDF/B-V evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 172. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹³⁵Cs sphere. The ENDF/B-V evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 173. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹³⁶Cs sphere.

Fig. 174. Plot of ENDF/B-VI calculated neutron heating for the ¹³⁶Cs sphere.

Fig. 175. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹³⁷Cs sphere.

Fig. 176. Plot of ENDF/B-VI calculated neutron heating for the ¹³⁷Cs sphere.

Fig. 177. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹³⁸Ba sphere.

Fig. 178. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹³⁸Ba sphere.

Fig. 179. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹³⁸Ba sphere.

Fig. 180. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹³⁸Ba sphere.

Fig. 181. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁵¹Eu sphere.

Fig. 182. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁵¹Eu sphere.

Fig. 183. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ¹⁵¹Eu sphere.

Fig. 184. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ¹⁵¹Eu sphere.

Fig. 185. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁵³Eu sphere.

Fig. 186. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁵³Eu sphere.

Fig. 187. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ¹⁵³Eu sphere.

Fig. 188. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ¹⁵³Eu sphere.

Fig. 189. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 152 Gd sphere.

Fig. 190. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁵²Gd sphere.

Fig. 191. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 154 Gd sphere.

Fig. 192. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁵⁴Gd sphere.

Fig. 193. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius $^{155}\mathrm{Gd}$ sphere.

Fig. 194. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁵⁵Gd sphere.

Fig. 195. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 156 Gd sphere.

Fig. 196. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁵⁶Gd sphere.

Fig. 197. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 157 Gd sphere.

Fig. 198. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁵⁷Gd sphere.

Fig. 199. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 158 Gd sphere.

Fig. 200. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁵⁸Gd sphere.

Fig. 201. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 160 Gd sphere.

Fig. 202. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁶⁰Gd sphere.

Fig. 203. Plot of MCNP Recommended and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁶⁵Ho sphere.

Fig. 204. Plot of MCNP Recommended and ENDF/B-VI calculated neutron heating for the ¹⁶⁵Ho sphere.

Fig. 205. Plot of MCNP Recommended and ENDF/B-VI calculated photon flux for the ¹⁶⁵Ho sphere.

Fig. 206. Plot of MCNP Recommended and ENDF/B-VI calculated photon heating for the ¹⁶⁵Ho sphere.

Fig. 207. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius hafnium sphere.

Fig. 208. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the hafnium sphere.

Fig. 209. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸¹Ta sphere.

Fig. 210. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁸¹Ta sphere.

Fig. 211. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ¹⁸¹Ta sphere.

Fig. 212. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ¹⁸¹Ta sphere.

Fig. 213. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸²Ta sphere.

Fig. 214. Plot of ENDF/B-VI calculated neutron heating for the ¹⁸²Ta sphere.

Fig. 215. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸²W sphere.

Fig. 216. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁸²W sphere.

Fig. 217. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ¹⁸²W sphere.

Fig. 218. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ¹⁸²W sphere.

Fig. 219. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸³W sphere.

Fig. 220. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁸³W sphere.

Fig. 221. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ¹⁸³W sphere.

Fig. 222. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ¹⁸³W sphere.

Fig. 223. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸⁴W sphere.

Fig. 224. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁸⁴W sphere.

Fig. 225. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ¹⁸⁴W sphere.

Fig. 226. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ¹⁸⁴W sphere.

Fig. 227. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸⁶W sphere.

Fig. 228. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁸⁶W sphere.

Fig. 229. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon flux for the ¹⁸⁶W sphere.

Fig. 230. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated photon heating for the ¹⁸⁶W sphere.

Fig. 231. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 185 Re sphere.

Fig. 232. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁸⁵Re sphere.

Fig. 233. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁸⁷Re sphere.

Fig. 234. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ¹⁸⁷Re sphere.

Fig. 235. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ¹⁹⁷Au sphere.

Fig. 236. Plot of ENDF/B-V, MCNP Recommended, and ENDF/B-VI calculated neutron heating for the ¹⁹⁷Au sphere.

Fig. 237. Plot of MCNP Recommended and ENDF/B-VI calculated photon flux for the ¹⁹⁷Au sphere.

Fig. 238. Plot of MCNP Recommended and ENDF/B-VI calculated photon heating for the $^{197}\mathrm{Au}$ sphere.

Fig. 239. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron flux for a 10000 cm radius lead sphere. The atom percent of isotopic ENDF/B-VI was: ²⁰⁶Pb-24.1%, ²⁰⁷Pb-22.1%, and ²⁰⁸Pb-52.4%.

Fig. 240. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated neutron heating for the lead sphere.

Fig. 241. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon flux for the lead sphere.

Fig. 242. Plot of elemental ENDF/B-V and isotopic ENDF/B-VI calculated photon heating for the lead sphere.

Fig. 243. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁰⁹Bi sphere.

Fig. 244. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁰⁹Bi sphere.

Fig. 245. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁰⁹Bi sphere.

Fig. 246. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁰⁹Bi sphere.

Fig. 247. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁰Th sphere.

Fig. 248. Plot of ENDF/B-VI calculated neutron heating for the ²³⁰Th sphere.

Fig. 249. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 232 Th sphere.

Fig. 250. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³²Th sphere.

Fig. 251. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²³²Th sphere.

Fig. 252. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²³²Th sphere.

Fig. 253. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³¹Pa sphere. The ENDF/B-V evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 254. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³¹Pa sphere. The ENDF/B-V evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 255. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³²U sphere.

Fig. 256. Plot of ENDF/B-VI calculated neutron heating for the ²³²U sphere.

Fig. 257. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 233 U sphere.

Fig. 258. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the 233 U sphere.

Fig. 259. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²³³U sphere.

Fig. 260. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²³³U sphere.

Fig. 261. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁴U sphere.

Fig. 262. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the 234 U sphere.

Fig. 263. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 235 U sphere.

Fig. 264. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³⁵U sphere.

Fig. 265. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²³⁵U sphere.

Fig. 266. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the 235 U sphere.

Fig. 267. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 236 U sphere.

Fig. 268. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³⁶U sphere.

Fig. 269. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 238 U sphere.

Fig. 270. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³⁸U sphere.

Fig. 271. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²³⁸U sphere.

Fig. 272. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²³⁸U sphere.

Fig. 273. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁷Np sphere.

Fig. 274. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³⁷Np sphere.

Fig. 275. Plot of ENDF/B-VI calculated photon flux for the ²³⁷Np sphere.

Fig. 276. Plot of ENDF/B-VI calculated photon heating for the ²³⁷Np sphere.

Fig. 277. Plot of ENDL-85 and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁸Np sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 278. Plot of ENDL-85 and ENDF/B-VI calculated neutron heating for the ²³⁸Np sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 279. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁹Np sphere.

Fig. 280. Plot of ENDF/B-VI calculated neutron heating for the ²³⁹Np sphere.

Fig. 281. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁶Pu sphere.

Fig. 282. Plot of ENDF/B-VI calculated neutron heating for the ²³⁶Pu sphere.

Fig. 283. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁷Pu sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 284. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron heating for the ²³⁷Pu sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

150

Fig. 285. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁸Pu sphere.

Fig. 286. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³⁸Pu sphere.

Fig. 287. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²³⁹Pu sphere.

Fig. 288. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²³⁹Pu sphere.

Fig. 289. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²³⁹Pu sphere.

Fig. 290. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²³⁹Pu sphere.

Fig. 291. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 240 Pu sphere.

Fig. 292. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴⁰Pu sphere.

Fig. 293. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴⁰Pu sphere.

Fig. 294. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴⁰Pu sphere.

Fig. 295. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 241 Pu sphere.

Fig. 296. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴¹Pu sphere.

Fig. 297. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴¹Pu sphere.

Fig. 298. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴¹Pu sphere.

Fig. 299. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 242 Pu sphere.

Fig. 300. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴²Pu sphere.

Fig. 301. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴²Pu sphere.

Fig. 302. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴²Pu sphere.

Fig. 303. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴³Pu sphere.

Fig. 304. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron heating for the 243 Pu sphere.

Fig. 305. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon flux for the ²⁴³Pu sphere.

Fig. 306. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon heating for the 243 Pu sphere.

Fig. 307. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴⁴Pu sphere.

Fig. 308. Plot of ENDF/B-VI calculated neutron heating for the ²⁴⁴Pu sphere.

Fig. 309. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 241 Am sphere.

Fig. 310. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴¹Am sphere.

Fig. 311. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴¹Am sphere.

Fig. 312. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴¹Am sphere.

Fig. 313. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 242 Am sphere.

Fig. 314. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴²Am sphere.

Fig. 315. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 243 Am sphere.

Fig. 316. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴³Am sphere.

Fig. 317. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴³Am sphere.

Fig. 318. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴³Am sphere.

Fig. 319. Plot of ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴¹Cm sphere.

Fig. 320. Plot of ENDF/B-VI calculated neutron heating for the ²⁴¹Cm sphere.

Fig. 321. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴²Cm sphere.

Fig. 322. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴²Cm sphere.

Fig. 323. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴²Cm sphere.

Fig. 324. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴²Cm sphere.

Fig. 325. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴³Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 326. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron heating for the ²⁴³Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 327. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon flux for the ²⁴³Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 328. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon heating for the ²⁴³Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 329. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 244 Cm sphere.

Fig. 330. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴⁴Cm sphere.

Fig. 331. Plot of ENDF/B-V and ENDF/B-VI calculated photon flux for the ²⁴⁴Cm sphere.

Fig. 332. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴⁴Cm sphere.

Fig. 333. Plot of ENDF/B-V and ENDF/B-VI calculated neutron flux for a 10000 cm radius 245 Cm sphere.

Fig. 334. Plot of ENDF/B-V and ENDF/B-VI calculated neutron heating for the ²⁴⁵Cm sphere.

Fig. 336. Plot of ENDF/B-V and ENDF/B-VI calculated photon heating for the ²⁴⁵Cm sphere.

Fig. 337. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴⁶Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 338. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron heating for the ²⁴⁶Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 339. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon flux for the ²⁴⁶Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 340. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon heating for the ²⁴⁶Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 341. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴⁷Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 342. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron heating for the ²⁴⁷Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 343. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon flux for the ²⁴⁷Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 344. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon heating for the ²⁴⁷Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 345. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴⁸Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 346. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated neutron heating for the ²⁴⁸Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 347. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon flux for the ²⁴⁸Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 348. Plot of ENDL-85, ENDL-90, and ENDF/B-VI calculated photon heating for the ²⁴⁸Cm sphere. Neither ENDL evaluation is the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library does not contain a recommended evaluation for this isotope.

Fig. 349. Plot of ENDL-85 and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴⁹Bk sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 350. Plot of ENDL-85 and ENDF/B-VI calculated neutron heating for the ²⁴⁹Bk sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 351. Plot of ENDL-85 and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁴⁹Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 352. Plot of ENDL-85 and ENDF/B-VI calculated neutron heating for the ²⁴⁹Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 353. Plot of ENDL-85 and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁵⁰Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 354. Plot of ENDL-85 and ENDF/B-VI calculated neutron heating for the ²⁵⁰Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 355. Plot of ENDL-85 and ENDF/B-VI calculated photon flux for the ²⁵⁰Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 356. Plot of ENDL-85 and ENDF/B-VI calculated photon heating for the ²⁵⁰Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 357. Plot of ENDL-85 and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁵¹Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 358. Plot of ENDL-85 and ENDF/B-VI calculated neutron heating for the ²⁵¹Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 359. Plot of ENDL-85 and ENDF/B-VI calculated photon flux for the ²⁵¹Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 360. Plot of ENDL-85 and ENDF/B-VI calculated photon heating for the ²⁵¹Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 361. Plot of ENDL-85 and ENDF/B-VI calculated neutron flux for a 10000 cm radius ²⁵²Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 362. Plot of ENDL-85 and ENDF/B-VI calculated neutron heating for the ²⁵²Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 363. Plot of ENDL-85 and ENDF/B-VI calculated photon flux for the ²⁵²Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

Fig. 364. Plot of ENDL-85 and ENDF/B-VI calculated photon heating for the ²⁵²Cf sphere. The ENDL-85 evaluation is not the MCNP Recommended Evaluation for this isotope. The MCNP Recommended Library contains no recommended evaluation for this isotope.

V. CONCLUSIONS

The new MCNP ENDF60 library contains 124 nuclides, 14 of which have been previously unavailable for MCNP. Each nuclide has a ZAID identifier of .60c. All nuclides have been subjected to pseudo-infinite media calculations, and compared to the MCNP Recommended Data Set, or against the best possible evaluation, with the exception of these 14 new nuclides. The advances in NJOY processing have been utilized, as in the improvement of nucleus recoil effects, altering the low-energy neutron heating results such as in ¹H, ⁵⁹Co, Mg, Ti, and others (Table II). Other evaluations now include photon production, as in ¹¹B, ⁴⁵Sc, ⁸⁹Y, ¹⁹⁷Au, and ²³⁷Np.

Overall, 48% of the evaluations in the ENDF60 data set are new evaluations, and can usually be considered improvements on older data sets, but this decision must be left to the individual user. This report is meant to provide the comparisons for an informed choice as to the proper data set to be utilized in specific applications. Other reports^{4,8,7} document the testing performed for the ENDF60 library which benchmarked it against experimental data or other libraries. However, these cover only 47 of the 124 ZAIDs, which are listed in Table IV showing which ZAIDs are in which report. This report, in addition to a forthcoming report comparing photon production for the MCNP data libraries,⁶ is intended to provide additional information to the user for nuclides which were not compared to experimental data.

TABLE IV. MCNP ENDF60 Library Experimental Benchmark Coverage.

	Livermore	Iron	Critical
ZAID	Ref. ⁸	Ref. ⁷	Ref. ⁴
¹Н	\checkmark	\checkmark	\checkmark
² H	\checkmark		
⁶ Li	\checkmark	\checkmark	
⁷ Li	\checkmark	\checkmark	
⁹ Be	\checkmark		
¹⁰ B		\checkmark	\checkmark
¹¹ B		\checkmark	\checkmark
C	\checkmark	\checkmark	\checkmark
¹⁴ N	\checkmark	\checkmark	\checkmark
¹⁶ 0	\checkmark		\checkmark
¹⁹ F	\checkmark		\checkmark
²³ Na	\checkmark	\checkmark	\checkmark
Mg	\checkmark	\checkmark	\checkmark
²⁷ Al	\checkmark	$\overline{\checkmark}$	\checkmark
Si	\checkmark	\checkmark	\checkmark
³¹ P	\checkmark	\checkmark	
³² S	\checkmark		\checkmark
K			
Ca	\checkmark	\checkmark	L
Ti	\checkmark		\checkmark
⁵⁰ Cr	\checkmark	$ $ \checkmark	\checkmark
⁵² Cr	\checkmark		\checkmark
⁵³ Cr	\checkmark	\checkmark	\checkmark
⁵⁴ Cr			$\overline{}$

	Livermore	Iron	Critical
ZAID	Ref. ⁸	Ref. ⁷	Ref. ⁴
⁵⁵ Mn	\checkmark	\checkmark	\checkmark
⁵⁴ Fe	\checkmark	\checkmark	\checkmark
⁵⁶ Fe	\checkmark	\checkmark	\checkmark
⁵⁷ Fe	\checkmark	\checkmark	$\overline{\checkmark}$
⁵⁸ Fe	\checkmark	\checkmark	\checkmark
⁵⁸ Ni	\checkmark	\checkmark	
⁶⁰ Ni	\checkmark	\checkmark	
⁶¹ Ni	\checkmark	\checkmark	
⁶² Ni	\checkmark	\checkmark	
⁶⁴ Ni	\checkmark	\checkmark	
⁶³ Cu			\checkmark
⁶⁵ Cu			\checkmark
²⁰⁶ Pb	\checkmark		
²⁰⁷ Pb	\checkmark		
²⁰⁸ Pb	\checkmark		
²³⁴ U			\checkmark
²³⁵ U			\checkmark
²³⁶ U			\checkmark
²³⁸ U			\checkmark
²³⁹ Pu			\checkmark
²⁴⁰ Pu			\checkmark
²⁴¹ Pu			\checkmark
²⁴² Pu			\checkmark

TABLE IV (cont.) MCNP ENDF60 Library Experimental Benchmark Coverage.

References

- 1. P. F. Rose and C. L. Dunford, Editors, "ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6," Brookhaven National Laboratory report BNL-NCS-44945 (July 1990).
- 2. J. F. Briesmeister, Ed. "MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A," Los Alamos National Laboratory report LA-12625-M (November 1993).
- 3. J. S. Hendricks, S. C. Frankle, and J. D. Court, "New Data for MCNP," Trans. Am. Nuc. Soc. 71, (1994).
- 4. J. S. Hendricks, S. C. Frankle, and J. D. Court, "ENDF/B-VI Data for MCNP," Los Alamos National Laboratory report LA-12891 (December 1994).
- 5. R. E. MacFarlane, D. W. Muir, and R. M. Boicourt, "The NJOY Nuclear Data Processing System, Volume 1: User's Manual," Los Alamos National Laboratory report LA-9303-M, Vol. I (ENDF-324) (May 1982).
- 6. S. C. Frankle, "Photon Production Assessment for the MCNP ENDF/B-VI Data Library," Los Alamos National Laboratory report, to be published.
- J. D. Court and J. S. Hendricks, "Benchmark Analysis of MCNP ENDF/B-VI Iron," Los Alamos National Laboratory report LA-12884 (December 1994).
- J. D. Court, R. C. Brockhoff, and J. S. Hendricks, "Lawrence Livermore Pulsed Sphere Benchmark Analysis of ENDF/B-VI," Los Alamos National Laboratory report LA-12885 (December 1994).

Appendix: MCNP Input Decks

A. Introduction

The following input decks were used to produce the previous results. The major difference between input decks is the source definition. In most cases, the input decks are similar enough to list only representative examples. In the cases were the results are similar, a table will follow giving the similar input decks. When the differences are major, either the differences will be delineated, or a new input deck will be fully listed.

B. ¹H Input Deck

```
H-1 Infinite medium ENDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg∓di
si1 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
ap1 0 0
           0 0 0 0 0 0 1
nps 5000
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
       5.e-4 1.e-3 5.e-3 .01
                             .05
                                   .1
                                         .5
                                            1
                        20
         5
            10
                 15
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15
                        20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 1001.60c 1
prdmp 2j -1
```

¹H Similar Input Decks.

²H ³H

C. ³He Input Deck

```
Re-3 Infinite medium ENDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
sil 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
nps 100000
e4
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 2003.60c 1
prdmp 2j -1
```

³He Similar Input Decks.

⁴He

D. ⁶Li Input Deck

```
Li-6 Infinite medium EMDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1

      Bil 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20

      spl 0
      2
      2
      1
      1
      1
      1

nps 1000000
e4
         1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
         5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
          5 10 15
                              20
e6
         1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
         5.e-4 1.e-3 5.e-3 .01
                                    .05 .1 .5 1
5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 3006.60c 1
prdmp 2j -1
```

⁶Li Similar Input Decks.

⁷ Li	¹⁴ N	¹⁹ F	Silicon	Calcium
⁹ Be	^{15}N	²³ Na	³¹ P	⁴⁵ Sc
¹¹ B	¹⁶ O	Magnesium	Sulfur	Zirconium
Carbon	¹⁷ 0	²⁷ Al	^{32}S	⁹⁹ Tc

E. ¹⁰B Input Deck

```
B-10 Infinite medium ENDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
sil 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp10 4 4 4 2 2 2 1 1 1 1 1 1 1
nps 100000
e4
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
        5.e-4 1.e-3 5.e-3 .01
                               .05 .1 .5 1
         5 10 15
                           20
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
        5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
                          20
         5 10 15
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 5010.60c 1
prdmp 2j -1
```

¹⁰B Similar Input Decks.

Chlorine	⁸⁹ Y	¹²⁹ I	¹⁵¹ Eu	¹⁵⁸ Gd	¹⁸³ W
Potassium	⁹³ Nb	¹³³ Cs	¹⁵³ Eu	¹⁶⁰ Gd	^{184}W
Titanium	Molybdenum	¹³⁴ Cs	$^{152}\mathrm{Gd}$	¹⁶⁵ Ho	¹⁸⁶ W
Vanadium	¹⁰⁷ Ag	¹³⁵ Cs	154 Gd	Hafnium	185 Re
⁵⁵ Mn	¹⁰⁹ Ag	^{136}Cs	155 Gd	¹⁸¹ Ta	187 Re
⁵⁹ Co	Indium	^{137}Cs	¹⁵⁶ Gd	¹⁸² Ta	¹⁹⁷ Au
Gallium	¹²⁷ I	¹³⁸ Ba	157 Gd	^{182}W	²⁰⁹ Bi

F. Chromium Input Deck

```
Cr Infinite medium EWDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
si1 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
         4 4 4 2 2 2 1 1 1 1 1 1 1
sp1 O
nps 10000
cut:n j 1.e-10
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
                        20
        5
           10 15
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 24050.60c .04345
    24052.60c .83790
    24053.60c .09500
    24054.60c .02365
prdmp 2j 1
```

G. Iron Input Deck

```
Fe Infinite medium EMDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
sil 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp1 0
         2
              2 2 1 1 1 1 1 1 1
nps 50000
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15
                        20
e6
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
                                                                       ----
f16:p 1
m1 26054.60c .059
    26056.60c .9172
    26057.60c .021
    26058.60c .0028
prdmp 2j -1
```

H. Nickel Input Deck

```
Wi Infinite medium EMDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
sil 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp10 4 4 4 2 2 2 1 1 1 1 1 1 1
nps 50000
cut:n j 1.e-10
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15
                        20
e6
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 28058.60c .6827
    28060.60c .2610
    28061.60c .0113
    28062.60c .0359
    28064.60c .0091
prdmp 2j -1
```

I. Copper Input Deck

```
Cu Infinite medium EMDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
sil 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp1 0 4
             4 4 2 2 2 1 1 1 1 1 1
nps 50000
cut:n j 1.e-10
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15
                        20
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01
                            .05 .1 .5 1
           10 15
                        20
        5
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 29063.60c .6917
    29065.60c .3083
prdmp 2j 1
```

J. ²⁰⁶Pb Input Deck

```
Pb Infinite medium ENDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
si1 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp1 0 2 2 2 2 2 2 2 2 2 2 2
nps 10000
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
•4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 82206.60c .241
    82207.60c .221
   82208.60c .524
prdmp 2j -1
```

K. ²³⁰Th Input Deck

```
Th-230 Infinite medium ENDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
si1 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp10 4 4 4 2 2 2 1 1 1 1 1 1 1
nps 50000
cut:n j 1.e-10
e4
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
       5 10 15
                        20
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 90230.60c 1
nonu
prdmp 2j 1
```

²³⁰Th Similar Input Decks.

²³² Th	²³⁵ U	²³⁹ Np	²⁴¹ Pu	²⁴² Am	²⁴⁹ Cf
²³¹ Pa	²³⁶ U	²³⁶ Pu	²⁴² Pu	²⁴³ Am	²⁵⁰ Cf
$^{232}\mathrm{U}$	$^{238}\mathrm{U}$	²³⁷ Pu	²⁴³ Pu	²⁴¹ Cm	
²³³ U	²³⁷ Np	²³⁸ Pu	²⁴⁴ Pu	²⁴² Cm	
^{234}U	²³⁸ Np	²⁴⁰ Pu	²⁴¹ Am	²⁴⁹ Bk	

L. ²³⁹Pu Input Deck

```
Pu-239 Infinite medium EWDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n,p 1 0
vol 1 1
mode n p
sdef erg=d1
si1 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
nps 50000
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
        5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
         5 10 15
                           20
        1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
        5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
         5 10 15
                          20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 94239.60c 1
nonu
prdmp 2j -1
```

M. ²⁴³Cm Input Deck

```
Cm-243 Infinite medium ENDF/B-VI
1 1 1 -1
201
1 so 10000
imp:n 1 0
vol 1 1
mode n p
phys:p j 1
sdef erg=d1
sil 1.e-9 1.e-8 1.e-7 1.e-6 1.e-5 1.e-4 1.e-3 .01 .1 1 5 10 15 20
sp1 0
      4 4 4 2 2 2 1 1 1 1 1 1
nps 50000
cut:n j 1.e-10
      1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e4
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15 20
       1.e-9 1.e-8 1.e-7 1.e-6 5.e-6 1.e-5 5.e-5 1.e-4
e6
       5.e-4 1.e-3 5.e-3 .01 .05 .1 .5 1
        5 10 15
                        20
e14 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
e16 1.e-3 3.33e-3 6.67e-3 .01 .0333 .0667 .1 .333 .667 1 3.33 6.67 10 15 20
f4:n 1
f14:p 1
f6:n 1
f16:p 1
m1 96243.60c 1
nonu
prdmp 2j 1
```

²⁴³Cm Similar Input Decks.

²⁴⁴ Cm	²⁴⁷ Cm	²⁵¹ Cf
²⁴⁵ Cm	²⁴⁸ Cm	²⁵² Cf
²⁴⁶ Cm		

This report has been reproduced directly from the best available copy.

It is available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Prices are available from (615) 576-8401.

It is available to the public from the National Technical Information Service, US Department of Commerce, 5285 Port Royal Rd. Springfield, VA 22161.

'95 JAN 9 PM 1 21

-