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ABSTRACT 

Quantities  that  depend on the collective effects of groups 
of particles  cannot  be  obtained  from  the  standard  Boltz- 
mann  transport  equation. Monte  Carlo estimates of these 
quantities  are called non-Boltzmann  tallies  and have beconme 
increasingly important recently. Standard  Monte  Carlo vari- 
ance  reduction  techniques were designed for tallies based on 
individual  particles  rather  than  groups of particles.  Expe- 
rience with  non-Boltzmann tallies and analog Monte  Carlo 
has  demonstrated  the severe  limitations of analog  Monte 
Carlo for many  non-Boltzmann tallies. In fact,  many cal- 
culations  absolutely  require  variance  reduction  methods to 
achieve practical  conlputation  times. 

Three different  approaches to  variance reduction for non- 
Boltzlnann  tallies  are  described  and shown to be  unbiased. 
The advantages  and  disadvantages of each of the approachels 
are discussed. 

I. INTRODUCTION 

Variance reduction techniques have been tremendously successful  when applied 
to Monte Carlo  radiation  transport codes-so successful, in  fact,  that ever:y major 
Monte Carlo  radiation  transport code contains numerous variance reduction tech- 
niques. However, these techniques only apply to estimates depending on a single 
particle. As a  result,  estimates (like pulse height spectra)  that depend on the collec- 
tive effects of several particles are restricted to analog Monte Carlo. This restriction 
is so severe that many calculations a.rc not even attempted. 

Many scientific experiments depend on the collective trans:port of several parti- 
cles.  For exa.mple, there  are lxge nunlbers of neutron coincidence experiments  in 

1 



which a  neutron  can only be  counted if it is detected in coincidence with  another 
neutron.  Another exa.mple  is pulse height spectra experiments.  In  these experi- 
ments the  detector  has  a number of channels, each covering a different range of 
total deposited energy. If two neutrons from the same fission each deposit .5 MeV, 
then  the  detector must count 1 in the 1 MeV channel and n o t  2 in the .5 MeV 
channel. Current Monte Carlo codes  have extreme difficulty trying  to  calculate 
some of these  experiments because no theoretical basds exists for applying variance 
reduction techniques and  thus  the calculations must be done with analog Monte 
Carlo. 

This  report describes three a.pproaches to variance reduction for non-Boltzmann 
tallies: 

1. the deconvolution approach (Section 11) 
2. the corrected single particle  approach (Section JII) 
3. the  supertrack  approach  (Section IV) 

The deconvolution approach applies single particle variance reduction  methods to 
each pa.rticle of a collection and then analyzes (deco~nvolutes) how the  distribution 
of the collection of particles has been modified and weights the tallies appropriately. 
The  supertrack  approach a.pplies  va.riance reduction to collections of tracks  (super- 
tracks)  and requires redefinition of standard Monte Carlo  terms. For example, the 
individual  particle  tracks would no longer carry any weight; the variance reduction 
is applied to  the  supertracks,  and  thus  the weights ;ue associa.ted with the  super- 
tracks. The corrected single particle  approach is perhaps the most difficult. In this 
approach, the tracks  are first treated  as single particles with the  traditional single 
particle weights, and  then  the collective  effects are introduced by estimating  the 
difference between transporting  the particles as  a collection and  transporting  the 
particles individually. 

Before proceeding to non-Boltzmann tallies, it is probably useful to review an 
analog random walk with  a  non-Boltzmann tally. A pulse height tally will be chosen 
as a.n example. Figure 1 shows an analog random walk with four physical branch 
nodes. Each of these physical branch nodes will be called a physical   spl i t  and 
labeled with a P. Each Ek listed beside a  branch i:j the energy the photon loses 
in  the  detector between the  upper  and lower  nodes of the branch. For example, 
E8 is the energy the right brmch photon of node 4 loses in the  detector between 
node 4 and  the  termination of the right branch. A pulse height detector  responds 
to  the  total energy lost (per source particle) in the  detector by all photons  in  a 
history. In  Fig. 1, the  total energy lost is E1 t p t Elo. Note that  there may 
be many scatterings between branch nodes. The straight lines between nodes do 
no t  indicate a collisionless  free-flight between nodes. Scatterings are n o t  explicitly 
shown in Fig. 1. This  means, for example, that E8 rnay be  the  total energy lost in 
the  detector between node 4 and termination in t e 7 ~  collisions. 
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11. NON-BOLTZMANN  TALLIES  WITH  SPLITTING  USING THE 
DECONVOLUTION  APPROACH 

One natural variance reduction  approach for non-Eloltzmann tallies is to keep the 
same  random walk sampling procedure used  for Boltzmann tallies and simply ask 
what the correct non-Boltzmann tallies are for any given completed random walk. 
For simplicity, this section considers a,pplying simple integer splitting  (no Russian 
roulette) techniques to a single photon pulse height tally corresponding to a single 
detector. 

Consider a pulse height tally with integer splitting. A typical random walk is 
shown in Fig. 2. The photon starts  at  the  top of the figure and has various branches 
below it. These branches are labeled with sequential integers in the order in which 
the branches occur in the random walk.  Some of the branches are physical branches 
(e.g., pair production gammas or double fluorescence’) and some are variance reduc- 
tion branches. The physical branches are labeled wit11 P and  the variance reduction 
branches are labeled with V. 

Note that a variance reduction split is a mathematical  artifice and not a physical 
reality. That is, it is physically impossible for a  particle to take more than one 
branch of a variance reduction  split. A variance reduction split should be thought 
of as a set of possibilities for what might occur subsequent to the  split. In reality, 
a physical particle will take exactly one branch.  Thus, physically possible random 
walks can  be produced from Fig. 2 by sampling one branch of each variance re- 
duction split in the tree. In fact, this sampling essentially “undoes” the variance 
reduction  splits,  and  thus a physically realizable random walk is produced. 

For example, choosing the middle branch at node 2, the right branch at node 5, 
and  the left branch at node 8 would occur with probability 443 = 4 and would 
result in the physically realizable tree of Fig. 3. Th.at is, an energy of El + E2 -t 
E6 + E7 + E8 + El0 + E14 t E15 t Els + E18 is deposited  in the  detector (from the  tree 
of Fig. 2) with  probability A. Thus, if the variance reduction branches of Fig. 2 
are  randomly  sampled,  then a tally of 1 will be posted in the energy bin containing 
El t E:! + E6 + E7 + E8 + El0 + El4 + El5 + E16 + El8 with  probability A. Note that 
rather  than randomly sampling for the tree of Fig. 3 to occur,  one  can always have 
the tree occur with  probability 1 and assign a  statistical weight w of 

true probability E I 1  - 
sampled  probability 1 12 

W =  - -  - - - 

In fact, this  can be done with every possible  physical tree that might occur by 
sampling Fig. 2. That is, make each of the possible physical trees occur with 
probability 1 and weight each of them  appropriately. This  approach will be used 
below and p can be interpreted  either as the probability that a given tally occurs in 
an analog game or as the weight assigned to a tally in  the deconvolution procedure. 

For simple trees it is easy to  enumerate all possible physical random walks existing 
in the trees,  but some thought is required to design a computer  algorithm that works 
for  all trees. The algorithm will  now be applied to t’he  tree of Fig. 2. The process 
starts with the highest numbered node; in this case node 8. Node 8 is a variance 
reduction split so the energy deposited below node 8 is either 
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or 

These choices are shown in Fig. 4. (The big  circles  indicake that  the possible 
values for energy deposited below that node have  been enunnerated.) Node 7 is 
a physical split so both branches  occur together with  probability 1. That is, the 
energy deposited below node 7 is E15 t E18 t Enode8. There  are two  choices for Enode8 
(using Eqs. (2.1) and  (2.2)) so the energy deposited below node 7 is either 

or 

These choices are shown in Fig. 5. Node 6 is a physical split and  thus  both 
branches  occur  together so the energy deposited below node 6; is 

These choices are shown in Fig. 6. Node 5 is a variance reduction split, so the 
energy deposited below node 5 is either 

or 

Using Eq. (2.5) in Eq. (2.6) and Eqs. (2.3-2.4) in Eq. (2.7) ,yields 

These choices are shown in Fig. 7. Node 4 is a physical split and  thus  both 
branches  occur  together so the energy deposited below node 4 is 
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These choices are shown in Fig. 8. Node 3 is a variance reduction  split so the 
energy deposited below node 3 is either 

or 
(2.12) 

(2.13) 

These choices are shown in Fig. 9. Node 2 is a variance reduction  split so the 
energy deposited below node 2 is either 

or 

or 

or 

(2.14) 

(2.15) 

Using Eqs. (2.12-2.13) in Eq. (2.14) yields 

Using Eq. (2.11) in Eq. (2.15) yields 

1 
Enode2 = E6 + E7 t E8 p = 3 

(2.17) 

(2.18) 

(2.19) 

Repeating Eq. (2.16) for convenience 

These choices are shown in Fig. 10. Node 1 is a physical split and  thus  both 
branches occur together so the energy deposited below node 1 is 
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From Eqs. (2.8-2.10) it follows that 

or 

Substitut,iug Eq. (2.17) into Eqs. (2.22-2.24) 

Substituting Eq. (2.19) into Eqs. (2.22-2.24) 

Substituting Eq. (2.20) into Eqs. (2.22-2.24) 

or 
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Equations (2.25-2.36) are shown  on Fig. 11. The energy delposited  below node 0 
is the same as below node 1 except that E1 must be  added to  the node 0 energy 
deposited. Thus, using Eqs. (2.25-2.36)  yields 

or 

or 

These node 0 choices are shown in Fig. 12. 
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A.  Proof  of  Unbiasedness  of  Deconvolution Approach to Splitting 

Although  it is probably obvious why the deconvolution approach produces an 
unbiased mean from the examples, a simple proof  is  $given here for completeness. 
The proof  shows the intuitive notion that sampling m random walks and randomly 
discarding all but one is simply another way  of sampling the original random walk. 
Before proceeding, note that  the random number sequence completely determines 
the  random walk so that showing that a  random number sequence occurs with the 
same density in two  cases  shows that  the corresponding random walks occur with 
the same density. 

The proof proceeds in two steps.  First,  it is  shown that  splitting  and randomly 
selecting one of the split branches results  in the same  density of random walks as 
the analog case. Second, the sampling of the tree is replaced by an expected value 
technique. 

Consider any point in the random walk where an m : 1 split has  occurred. Let u(r) 
be the probability density function for the random sequence r that would be used 
subsequent to this point (in an analog calculation), and let the m split branches 
use random sequences ri = ( T ; ~ ,  ~ i 2 ,  ~ i 3 ,  - a )  ( i  = 1, - , m.) drawn  independently from 
u(q). If the i th split branch is selected with probability $, then  the probability 
(ps(r)dr in  the “split and sample” case) that  the random sequence that would be 
used subsequent to this point is  in dr about r is: 

The right side is the sum of the probabilities, over all possible ways, that the selected 
branch will use r in its random walk. Note that 5 is  thle probability of selecting the 
kth branch,  and  there is a  sum over all possible choices for IC. Further  note  that: 

u(ri)dQ = probability that ri is in dri 

u(rk)drk&(rk - r)dr = probability that rk is in drk and in dr 

The integrations  sum over all possible values of the 1:i. Performing the indicated 
integrations: 

so that, 

ps(r)dr = u(r)dr 
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Thus,  the  distribution of “split and sample” random walks  is identical to  the dis- 
tribution of analog random walks. 

Rather  than sample each of the split branches to determine which tree occurs, 
one can look at all possible trees  and tally the ezpected tally. That is, suppose that 
tree i occurs with  probability q; and produces a tally t ; j  in :bin j .  The expected 
tally in bin j over all possible trees is: 

B. Deconvolution of a Typical Tree 

Note that when there is a physical split,  the number of choices  is the product 
of the number of choices on each of the physical branches. Thus,  in a complicated 
tree  with m a n y  physical and variance reduction  splits the number of choices may 
become  overwhelmingly large. A solution to this problem will be proposed later. 
For now, a more typical random walk tree is  discussed to show that  the number of 
choices usually does not become  overwhelming. 

The  tree of Fig. 2 was done with a.n arbitrary  set of E k  to  demonstrate  the de- 
convolution technique. In most cases that require splitting, most of the E k  axe zero. 
Furthermore,  the nonzero Ek tend  to  be  at  the  bottom of the trees because photons 
depositing energy in the  detector  are usually the photons that have undergone the 
most splitting.  The tree of Fig. 13 is not an atypical example of such trees. Note 
that most branches do  not have an energy deposited listed adjiacent to them;  there 
is zero energy deposited when no energy is listed. 

The analysis proceeds from the highest numbered node as in the previous case. 
Figures 13-30 show the deconvolution for this case. In the previous case, node 1 
was a physical split and resulted in the product of the choic.es from the left and 
right branches. Unlike the previous case (Fig. 2), there is no  product of choices 
that can cause relatively large numbers of choices. Here, for example,  node 1 is a 
variance reduction node and  thus  the number of choices at node 1 is equal to  the 
sum of the choices from the left and right branches. 
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C .  Thinning  Large Trees 

Although  rare (for pulse height tallies), it is possible in  a complicated tree with 
many physical and variance reduction  splits that  the number of choices may become 
overwhelmingly large. For example, if there is a three-branch physical split below 
the  current node and if each of the branches has 100 possible choices for energy 
deposited, then  there will be a million choices at  the current physical node. In 
these cases the choices can be “thinned” in a numbe:: of possible ways. 

As an example of one possible thinning procedure, consider the deconvolution in 
Fig. 10. Suppose that one decides that  there will be no more than 10 choices at each 
node. Note that  the deconvolution provides 3 . 4  = 12 choices (Fig.  11). Suppose 
that before deconvoluting Fig. 10, a  random  number decides  which of the first two 
choices of node 2 will survive with doubled weight and which  will die. For example, 
with  probability $ Fig. 10 is converted into Fig. 31 2nd with  probability 4 Fig. 10 
is converted into Fig. 32. The deconvolution process proceeds as before except that 
the number of choices at node 1 will  now be 3 - 3  = 9, whether the conversion  is into 
Fig. 31 or Fig. 32. The expected choices at node 1 will be  the same as without the 
thinning. All the choices that involve neither E3 + E4 nor E3 + E5 are unaffected by 
the  thinning,  and  the choices associated with E3 + E,, will occur only half the time 
but  with twice the weight (p)  and similarly for E3 + E5. 

D. Summary  of Splitting  Using  the  Deconvolution  Approach 

Non-Boltzmann tallies (such as pulse height tallies) can be correctly done using 
the  standard track  splitting game typically applied to standard tallies like  flux or 
current.  The primary  advantage of this approach is that  it allows non-Boltzmann 
tallies to  be obtained  with the same tracking procedure that is currently applied to 
tallies like  flux and  current.  The  approach  permits  standard Monte Carlo codes to 
get non-Boltzmann tallies using the same particle  tracking  algorithms as employed 
for tallies such as flux. There  are two disadvantages to this  approach, one practical 
and one philosophical. As a practical matter, there is significant extra bookkeeping 
required, and  this bookkeeping is likely to get more onerous as  other  standard  track- 
based variance reduction techniques are used at the:  sa.me time as splitting.  The 
deconvolution approach is also unappealing from a philosophical viewpoint because 
the physics is buried in the deconvolution rather tha:n being explicitly expressed in 
the  transport algorithm. Effective  use of variance reduction techniques is usually 
guided by the Monte Carlo  practitioner’s  intuitive  understanding of the  natural 
transport process and  the information supplied by s’hort scoping calculations  with 
the Monte Carlo code. The more divorced the natu.ra1 transport process becomes 
from the Monte Carlo  algorithm, the more difficult it becomes  for the practitioner 
to use  his intuition  and to interpret the information supplied by short scoping 
calculations. 
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111. NON-BOLTZMANN TALLIES WITH  THE  CORRECTED SIN- 
GLE PARTICLE APPROACH 

The corrected single particle a.pproach treats  the tracks as if they were all inde- 
pendent  entities and tallies the tracks independently without  regard to their rela- 
tionships to other  tracks. That is, the approach treats  the ,tracks as if the tally were 
a standard Boltzmann-type  tally and  then  later corrects fo:r this  mistreatment.  The 
approach  can  be  motivated by inspecting the tallies made  with the deconvolution 
approach on the random walk of Fig. 13. The tallies from the final deconvolution 
are shown in  Fig. 30. Note from Fig. 13 that these are ezactiy the same tallies 
that would have been made if each track were tallied independently from all other 
tracks. That is, the energy deposited from one track is not added to  the energy 
deposited  from any other  tracks to determine the energy bin in which to tally. This 
procedure would be  the normal way to post Boltzmann tallies, treating each track 
as an independent  entity  with  its own weight. For example, if the track  on the left 
branch of node 16 were treated as a separate  entity,  its weigllt  would be 1/64=3/192 
because of the six 21 splits  tracing  its way  back to the source. The  total energy 
deposited along its  path back to  the source is 1.8, and  thus  the  Boltzmann  tally 
would be 1/64 in the energy bin conta.ining 1.8. If the cleconvolution approach 
usually produces the same tally as the  standard Boltzmann tally  technique, then 
much time will be wasted doing the deconvolution only to find out  that  the tallies 
were identical. Considerable time might be saved by doing the full deconvolution 
on a fraction of the histories, say lo%, and doing the  standard Boltzmann  tally on 
90% of the histories. The corrected tally would then  be t:he standard Boltzmann 
tally on 100% of the histories plus 10 times the diflerence between the deconvolu- 
tion approach and  the  standard Boltzmann approach  on the 10% that are tallied 
both ways. A proof that this  method is unbiased will be presented after a specific 
example is given to clarify the method. 

To illustrate how the difference between the deconvolution approach and  the 
standard  Boltzmmn approach is obtained, consider the random walk of Fig. 2 and 
its deconvolution, Fig. 12. The  standard Boltzmann approabch (which is not correct 
here) would treat  the tracks as independent entities and. make no allowance for 
whether  a split is a variance reduction split or a. physical split. The  total energy 
deposited would be  the  sum of all the energy deposited along the traceback  route 
to  the source. For example, in Fig. 2 starting from left to right the Boltzmann 
approach would score: 

1 E4 + E3 + E2 +- E1 with  tally =: - 
6 

1 E5 +- E3 +- E2 +- El with  tally == - 
6 

1 
E7 + E6 +- E2 +- E1 with  tally == - 

3 (3.3) 
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1 Eg + E2 + El with  tally = - 
3 (3.5) 

1 
E13 + Ell + El0 + El with  tally = - 

2 (3.7) 

E16 + E15 + E14 + El0 + El with  tally = - 1 
4 

1 
E17 + E15 + E14 + El0 + El. with  tally = - 

4 

(3.8) 

(3.9) 

1 
E18 + E14 + El0 + El with tally = - 

2 
(3.10) 

Now consider the typical case in which most, of the E; are zero. These figures are 
redrawn  here  (Figs. 33 and 34) with only the nonzero E; listed. The nonzero scores 
from the above (Boltzmann approa.ch) equations  are: 

1 E3 + E2 with  tally = - 
6 

(3.11) 

1 E3 -+ E2 with  tally = - 
6 

(3.12) 

E7 + E6 + E2 with  tally = - 
3 
1 

(3.13) 

Es + E6 + E2 with  tally = - 
3 
1 

(3.14) 

1 Eg + E2 with  tally = - 
3 

(3.15) 

The general deconvolution tallies are given in Fig. 12 and  the specific  case (with 
the zero E;)  of Fig. 34 is derived from  it by explicit’ly inserting 0’s for the E; that 
are zero. The  bottom of Fig. 34 is a condensation (of the  top)  into identical scores. 
That is, for the deconvolution approach: 

1 E2 + E3 with  tally = - 
3 

(3.16) 

1 E2 -t- E6 + E7 + E8 with  tally = - 
3 

(3.17) 
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1 E2 t E9 with  tally = - 
3 (3.18) 

The dzference in tallies (deconvolution minus Boltzmann) is: 

E3 + E2 with  tally difference = 0 

E7 t E6 + E2 with  tally difference = --- 1 
3 

(3.19) 

(3.20) 

1 E8 t E6 t E2 with  tally difference :=: -- 
3 (3.21) 

1 E2 + E6 + E7 t E8 with  tally difference :=: - 
3 

(3.22) 

E9 + E2 with  tally difference :=: 0 (3.23) 

Suppose that with proba.bility q the full deconvolution is clone. That is, if random 
number < > q then  the corrected single particle  approach uses the Boltzmann tallies 
Eqs. (3.11-3.15) (tallies from Eqs. (3.11) and (3.12) have been combined): 

E3 + E2 with  tally = - 1 (3.24) 
3 

1 Et3 + E6 + E2 with  tally = - 
3 (3.26) 

1 
E9 + E2 with  tally = - 

3 
(3.27) 

If 6 < q then one  adds l / q  times  a correct ion term (deconvolution tally minus 
Boltzmann  tally) to  the Boltzmann tallies. The tally for the energy bin containing 
E3 + E2 is obtained from Eqs. (3.11),  (3.12), and (3.19): 

1 1  
3 9  

E3 + E2 with  tally = - t - - 0 (3.28) 
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The tally for the energy bin containing E7 + E6 + E;, is obtained  from Eqs. (3.13) 
and (3.20): 

E7 + E6 t E2 with  tally = - + -(-) 1 1  -1 
3 9 3  

(3.29) 

The tally for the energy bin containing E8 + E6 + E; is obtained from Eqs. (3.14) 
and (3.21): 

E8 t E6 + E2 with  tally = - + -(-) 1 1 -1 
3 9 3  

(3.30) 

The tally for the energy bin containing E2 + E6 + E7 + E8 is obtained  from Eq. (3.22) 
(the Boltzmann tally in this bin is  zero): 

1 1  
9 3  

E2 + E6 + E7 + E8 with  tally = 0 + -- (3.31) 

The tally for the energy bin containing E9 t E2 is obtained from Eqs. (3.15) and 
(3.23) 

E9 + E2 with  tally = - + -- 0 1 I. 
3 q 

(3.32) 

A. Proof of Unbiasedness  with the Corrected Single Particle Approach 

To prove unbiasedness (in any particular tally bin) a few definitions are required. 
Define: 

r = ( q ,  7-2, ~ 3 , .  - .), a  random number sequence from the  random number 
generator 

S b ( r )  = Boltzmann score on random walk  specified  by r 
sd(r) = deconvolution score on  random walk specified by r 
s(r) = corrected single particle score on random w,alk specified by r 

g = probability for doing deconvolution 

Note that s(r) is randomly assigned one of the following  two  values: 

s(r) = S b ( r )  with px,obability 1 - g (3.33) 

1 
9 

s(r) = S b ( r )  t -(sd(r) - Sb(l)) with px,obability q (3.34) 

The expected tally for the corrected single particle  approach is: 
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B. Summary of Splitting  and  the  Corrected  Single  Particle Approach 

This approach  shares many of the good and  bad  features of the deconvolution 
approach. Like the deconvolution approach,  this approach can correctly estimate 
non-Boltzmann tallies (such as pulse height tallies) using tlhe standard track  split- 
ting game typically applied to standard tallies like  flux or current.  This  approach 
permits  standard Monte Carlo codes to get non-Boltzmann tallies using the same 
particle  tracking  algorithms  as employed for tallies such as flux.  Like the deconvo- 
lution  approach,  this  approach is also unappealing from a philosophical viewpoint 
because the physics is buried in the deconvolution rather t:han being explicitly ex- 
pressed in  the  transport algorithm. Effective use of variance reduction techniques 
is usually guided by the Monte Carlo  practitioner’s  intuitive  understanding of the 
natural  transport process and  the information supplied by short scoping calcula- 
tions with the Monte Carlo code. The more divorced the  natural  transport process 
becomes from the Monte Carlo  algorithm, the more difficult it becomes for the 
practitioner  to use his intuition  and to interpret the inform.ation supplied by short 
scoping calculations. 

The corrected single particle  approach  has  advantages over the deconvolution ap- 
proach because the amount of bookkeeping is significantly reduced since the book- 
keeping is only done a small fraction ( q  above) of the  time.  This  approach should 
reduce the computer  time  per source particle compared to  the deconvolution ap- 
proa.ch. However, the optimal q will  likely be problem-dependent, and some q’s 
will increase the history variance faster tha.n the computer  time per particle is de- 
creased, resulting in a less  efficient calculation when compared to  the deconvolution 
approach  (i.e., q = 1). 

This  approach is  likely to be beneficial only when the tally correction terms  are 
small compared to  the tally, but  the  computer coding required is essentially that 
of the deconvolution method. The corrected single particle  approach  can  be used 
with the deconvolution approach becoming a  subset ( q  = 1.:) of the corrected single 
particle  approach. 

IV. THE  SUPERTRACK  APPROACH FOR NON-BOLTZMANN 
TALLIES 

A supertrack  represents a physical collection of particles that could be observed 
(at least hypothetically) in nature. An analog supertrack  can  be  produced by 
a Monte Carlo code if each possible event is sampled with the  natural physical 
probabilities so that  the Monte Carlo code exactly simu:lates nature. Figure 1 
shows an analog random walk for a supertrack. Using the subscripts  on the E as 
labels,  this  supertrack  history is described. 
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The  supertrack of Fig. 1 starts  at  the  top of the figure as a single source particle. 
The  supertrack randomly walks for awhile and  then undergoes a physical split 
(e.g., pair  production and subsequent annihilation) a t  node 1. The  supertrack now 
consists of particles 2 and 10. Particle 2 randomly walks around for awhile and 
undergoes a physical split at node 2. The  supertrack now consists of particles 3, 6, 
9, and 10. Particle 3 randomly walks around for awiile  and undergoes a physical 
split at node 3. The supertrack now consists of partides 4, 5 ,  6,  9, and 10. Particle 
4 randomly walks around for  awhile and terminates (e.g., by absorption).  The 
supertrack now consists of particles 5 ,  6,  9, and 10.  Particle 5 randomly walks 
around for awhile and terminates.  The  supertrack now consists of particles 6, 9, 
and 10. Particle 6 randomly walks around for  awhile  .and undergoes a physical split 
at node 4. The supertrack now consists of particles 7, 8, 9, and 10. Particle 7 
randomly walks around for  awhile and  terminates. The  supertrack now consists of 
particles 8, 9, and 10. Particle 8 randomly walks around for awhile and terminates. 
The  supertrack now consists of particles 9 and 10. Particle 9 randomly walks around 
for awhile and terminates. The supertrack now cons:lsts of particle 10. Particle 10 
randomly walks around for awhile and  terminates.  This  terminates the supertrack 
history. If the E; are  the energies deposited in a detector  (between  nodes),  then for 
a pulse height detector,  the  history would score 1 in the energy channel containing 
El t t Elo. 

The  supertrack approach applies variance reduction to physical collections of 
tracks  (“supertracks” or simply “stracks”)  and requires redefinition of sta.ndard 
Monte Carlo concepts. For example, a multiplying process (e.g., (n,2n)) does not 
create  a new strack,  but  instead includes the new track  in the current  strack. 
Physical events can never make new stracks. Variance reduction  methods  are the 
only way to make more stracks. The individual particle  tracks would no longer 
carry  any weight: the variance reduction is applied to the  supertracks,  and  thus 
the weights are associated with the supertracks.  Termination of a  strack requires 
termination of every track in the strack. 

There  are two implications of this  fact.  First, if a  track is terminated by a 
physical event such as capture or escape, then  the rl2st  of the tracks  in the strack 
continue their transport,  just  as happens in nature. s second, strack  termination by 
variance reduction  methods always terminates the  entire  strack. It is not possible 
to  terminate  just one track of a  strack  with variancc: reduction because the strack 
must represent a possible physical outcome. 

This  report considers generalizations of four nonandog techniques used in MCNP: 

1. Russian roulette 
2. implicit capture 
3. splitting 
4. dxtran 
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A. Russian  Roulette  with  the Supertrack Approach 

Consider a Russian roulette game with  a survival probability p .  Suppose that 
the strack (weight w) consists of five tracks. The possible o'utcomes of this  roulette 
game are: 

1. a  strack of weight w / p  consisting of five tracks , or 
2. a strack of weight 0 consisting of five tracks (;.e., termination by roulette). 

Russian roulctte  can  thus be played  when the strack is no longer interesting enough 
to follow at low weight. Russian roulette must be played on the  entire  strack 
because it  is the strack that is the physical quantity  and  it is the strack that carries 
the weight. Individual  tracks of a  strack  do  not have individual weights. Only the 
collection has a weight. The  entire strack  either survives or dies. 

Considcr what would happen if this were not so. If roulette were played on only 
one track (of the strack above), it could result in  a  strack that consists of four 
tracks.  This result is impossible because no physical termination  has  occurred. 
Thus,  there  must  still  be five tracks. 

B. Implicit vs. Analog  Capture with  the Supertrack Approach 

One  can generalize implicit capture from tracks to stra,cks,  but it is not clear 
whether  this generalization is  useful. Part of the problem is that  capture does not 
happen to a strack in the same sense that  capture happens to a track. In track- 
based Monte Carlo, an analog sampling for survival versus a,bsorption either  results 
in one  track or in zero tracks. Now consider a  strack consisting of E tracks. Only 
one track of the strack collides at a time. An analog sampling for survival versus 
absorption  either  results in one strack  with k tracks  or  one  strack  with k - 1 tracks. 
Thus, (except when k = 1) the analog capture sampling does' not  result  in the loss of 
the  strack.  Thus,  an implicit capture technique may not hwe the same usefulness 
as in  track based Monte Carlo. 

Suppose that  an implicit capture technique is desired. There are a number of 
ways that  the technique might be specified. This  paper considers three possible 
specifications (this is not an exhaustive  list) 

1. Play implicit capture only if k = 1 
2. Wait until all tracks of the strack have entered  collisim (or have terminated) 

and use implicit capture  to ensure that at least one track survives. 
3. When a track of a strack collides, the strack is divided into two stracks: one 

strack in which the track survives the collision and one strack  in which the 
colliding track is absorbed. 

The first case can  be treated exactly  as  currently done because the implicit cap- 
ture is only being applied when the track and  the  strack am the same. 

In the second case suppose that  the k tracks in the strack have absorption  prob- 
abilities p i .  The probability that all tracks of the strack would be absorbed is 
p1p2  .pk. Thus, if the strack  has weight w immediately before the collision then 
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the implicitly captured  strack weight  is wp1p2 - - - p k  and  the surviving strack weight 
is w(1 - plp2 ‘ p k ) .  The surviving strack is then  sampled  from the conditional 
density that excludes all  tracks being absorbed.  (This density can easily be sam- 
pled by rejecting the surviving strack sampling if all tracks are absorbed  and then 
resampling.) 

In the  third case suppose that  the i th track has  just collided. The strack is the 
split into two stracks. The “implicitly absorbed”  strack will then consist of tracks 
1,2 - , i - 1, i + 1 , .  . . , k with weight wp; and  the “surviving” strack will have the full 
k tracks  but  with  its weight reduced to w(1 - p i ) .  

These  are  but  three of the many possibilities. These  methods are all unbiased, 
but  their usefulness is unclear. 

A variance reduction  termination is equivalent to sletting the weight equal to zero 
because a sample of weight 0 cannot contribute  to any tally and  thus  the sample’s 
tallies are known without continuing its random walk. In standard track-based 
Monte Carlo, the weight  is associated with a track, and  thus a track is terminated 
when it’s weight  is  zero. In strack-based Monte Carlcb, the weight is associated with 
a strack,  and  thus  an entire  strack is terminated when its weight  is  zero. 

C. Splitting  with  the Supertrack Approach 

A supertrack  represents  a physical collection of particles that can collectively 
contribute  to a tally. As such, any supertrack consists of a collection of n particles 
that have phase-space coordinates 

where (rk,vk, t k )  is the kth  particle’s position, velocity, and  time. An rn : 1 split 
means replacing a supertrack of weight wo at P b,y rn supertracks  with weights 
wo/m at P. For example, a 2 : 1 split results in: 

L 

Figure 35 shows a 2 : 1 split pictorially for a  strack consisting of three tracks. 
Suppose that  at  the time of the split the  total energy deposited  in the  detector 

so far was Eo, and suppose that  the simulation was analog except for this single 
split. Suppose that split  strack i subsequently deposits Ei in  the  detector.  Thus, 
the  total energy deposited by strack i is EO + E; with. weight w0/2. The pulse height 
tally  associated  with the history is: 

- wo in the energy bin containing Eo -I- E1 
2 
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D. Proof  that  the  Expected Tally is Preserved with  Splitting 

Proving that  the expected tally is preserved with  splitting requires showing that 
integrations (over all scores) of the score pdf times the score (i.e., the means)  in both 
the split and no-split are  the same. To do  this,  the proof writes the pdf  for the split 
case in terms of the pdf  for the no-split case. Note that  the pdf for the no-split case 
is n o t  necessarily an analog pdf. There may be m a n y  nonanalog samplings following 
the split/no-split decision. The no-split pdf  is simply the density of scores produced 
(in  the absence of a split at  the current  point) by whatever sampling procedure is 
subsequently applied. 

To prove that  the  splitting technique provides ur.biased estimates  note  that (if 
no weight-dependent ga.mes are played): 

where 

p(s ,w)ds = probability that an strack of weight w contributes a score in ds about s (4.5) 

That is,  a  strack of weight w1 must produce a score in d(swl) about s w l  with the 
same  probability that a strack of weight 1 produces a score in ds about s. If no 
weight-dependent games are played, then  this condition is satisfied. This  fact can 
be understood by noting that if no weight-dependent games are played, then  the 
random walks are independent of weight. Thus, two otherwise identical stracks  with 
different weights will execute esac t ly   the   same random walk (;.e., they will “track”) 
for any given random  number sequence, and  the scoI’es produced will  always be  the 
same except for a  constant weight factor. 

Suppose that one is considering whether a single 2:l split preserves the mean or 
not. Let p ( s , w )  be  the score  pdf (for the score produced after  the split/no-split 
decision) for the strack in the absence of the  split,  but  with any arbitrary collection 
of weight-independent variance reduction techniques employed after the decision. 
The score pdf  for each of the split stracks is p ( s , v : ~  where v = w/2. Because the 
split  stracks  are sampled independently, p(s1 ,  v)p(s2, v)dslds2 is the probability that 
s1 is in dsl and s2 is in ds2. Thus,  the probability that  the collective score (for  two 
stracks of weight v) is in ds about s is 

where the 6 function  constrains the sum of the scores from both split  stracks to be 
s in ds .  The expected score in the split case is 
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Now using the  fact  that p(s , v )  is a pdf, Eq. (4.8) yields 

Esplit = 2 P ( S ,  v)sds I 
Changing variables s = i/2, recalling that v = w/2, and usi:ng the equation  in the 
preceding paragraph yields 

(4.10) 

where E is the expected score in  the no split case. 
In the general case of an n : 1 split let: 

p,(s,  q)ds =probability  that n stracks each of weight q collectively  score 
in ds about s (4.11) 

E = /p(s,tu)sds = the  expected  tally in the  no  split  case (4.12) 

E,  = /pn(s, q)sds = the expected  tally in the split case (4.13) 

Changing variables s = wy and using Eq. (4.4) 

(4.14) 

Because the split  stracks  are sampled independently, 

n IT p ( s j ,  q)dsj = probability  that s j  is in dsj  about sj for j = 1,2,. . . ,n. (4.15) 
j=1 

Thus,  the  probability that  the score from all split  stracks  together is in ds about s 
is (the 6 function  constrains the sum to be s in ds): 

55 



Substituting Eq. (4.16) into Eq. (4.13) above 

Performing the indicated  integration over s 

Interchanging  sum and integrals 

n .  

Because the p's are probabilit,y densities: 

/ p(sj ,q)dsj  = 1, 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Changing variables y = qs 

En = n p(s ,  1)qsds = w P ( S ,  1)sds = E J J (4.23) 
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E. A Dxtran  Method  with  the Supertrack Approach 

The  dxtran  method is one of the most complicated variance reduction  methods 
in major Monte Carlo  transport codes. In addition,  the clxtran method is one of 
the most  useful methods for getting  particles to  an isolated pulse height detector 
region. For these reasons, a mathematical analysis and practical  demonstration of 
a dxtran  method with the supertrack  approach is extremely important. Not  only 
will the demonstration  indicate that complicated variance reduction techniques can 
be generalized for the  supertrack approach, it also provides a practical means for 
getting  particles to  the detector region. 

The  standard  dxtran method' partitions  the space of possible next events, 52, 
A and B such that A U B =: 52. Set B is associated 
and set A is associated with sampling stracks that 
Let x be a possible next event and let p(x) be its 

into two mutually exclusive sets 
with sampling the  dxtran sphere 
do not reach the  dxtran sphere. 
analog pdf. That is, 

Let, y(x) be an arbitrary nonzero 

la p(x)dx = 1 

pdf on set B such that 

q(x) =o x E A 

I,, q(x)dx = 1 

(4.24) 

(4.25) 

Typically, l3 will be sampled very rarely, and  it is desired to sample B more fre- 
quently. To solve this problem, two samples are taken  instead of one. First,  the 
dxtran  method samples an event x E B from q ( x )  (the dxltran sample)  and  then 
weights this  sample by 

true probability p(x)dx -- 
wd(x) = sampled  probability q(x)dx' 

- (4.26) 

Second, the  dxtran  method samples an event x E 0 from p(x) (the  nondxtran 
sample) and accepts the sample if x 4 B (;.e., x E A )  and kills the sample if x E B .  

The  dxtran  method preserves the expected weight execut:ing any next event. To 
see this, note that  the expected weight in dx about x due  to .the dxtran sample plus 
the expected weight in dx about x due  to  the  nondxtran sample is 

wowd(x)q(x)dx t 0 = wop(x)dx for x E B (4.27) 

But wop(x)dx is the expected analog weight  in dx about x, so the  method is unbiased. 
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Although it is possible to get more than one photon.  coming out of a collision (with 
pair production and double fluorescence), the simplest way to explain supertrack 
dxtran is to consider a single photon emerging from a collision. After the single 
photon emerging case has been explained, then  dxtran with  pair  production and 
with  double fluorescence  will be explained. 

Suppose that one of k photons of a strack  has  a collision in which dxtran is 
employed. Label this  photon  with  a 1. Note that applying dxtran  at #l’s collision 
changes #l’s phase-space coordinates,  but the  other k - 1 photons do not change 
their phase-space coordinates. Thus,  the possible ou1;coInes differ  only in  the phase- 
space coordinates of the first photon. The  partition of’ the space of possible next 
events (for the first photon) is  shown in Fig. 36. There  are  three possible types of 
physical next events: 

1. The photon  can escape the system, see PI in Fig. 36. 
2. The  photon can collide anywhere inside the escape surface (except in the 

forbidden zone behind the  dxtran sphere): see and P2b in  Fig. 36. 
3. The photon  can reach the front dxtran surface without collision,  see P3 

in Fig. 36. 

Set A contains all possible escape points that can occur as a next event (type 1) 
and all possible collision points that can occur as a nLext event (type 2). Set B 
contains all possible crossings of the front dxtran surface that can occur  as a next 
event (type 3). Note that events cannot occur (to photon #1) in the “forbidden 
zone” unless the photon first crosses the  dxtran sphere. Thus,  it is impossible for 
any nezt events to occur in the forbidden zone. 

In the case of a single emerging photon,  the  dxtran method  thus proceeds as 
follows: 

1. A dxtran  photon (x E B )  is sampled from the set of photons that have next 
events that cross the front surface of the  dxtran sphere  without collision. (This 
sampling is from an  arbitrary  and easily sampled density; a two-step histogram 
is used in MCNP) After the event has been sampled, the  true density for that 
event is calculated and  the dztrun  struck is  wei,ght’ed as in Eq. (4.26). 

2. A nondxtran  photon (X E SZ) is sampled in the nornlal manner and  transported 
to  its next  event. That is, the  nondxtran  photon :is sampled from ezuctly the 
same density, p ( x ) ,  that  the original photon wou1.d have been sampled from 
if dxtran were not used. The nondxtran  struck is  killed if the photon’s next 
event is a crossing of the  dxtran sphere because th.is result is in  set B and  has 
been accounted for in  step 1. 

A simple example  with the full strack shown  may  clarify the process. Figures 37 
and 38 show a strack of weight wo consisting of thlree tracks. The leftmost track 
has  had a collision and is currently being followed i o  its next collision point. The 
top frames of the two figures show the possible options for an analog sampling of 
the  strack  (without  dxtran).  That is, the leftmost track  either does or does not reach 
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the  dxtran sphere before its next event. In the  top frames the current collision 
sampling is analog, and  the  dxtran sphere is  shown for reference only; whereas in 
the  bottom frames the  dxtran sphere is  used to produce dxtran tracks and kill  some 
nondxtran tracks. The  bottom frames of both figures show the supertrack dxtran 
sampling. The original strack is split into a nondxtran  strack  and  a  dxtran  strack. 
The  dxtran strack represents the number of physical collections of photons that 
had the leftmost photon reach the  dxtran sphere without collision. The  nondxtran 
strack  represents the number of physical collections of photons that  had  the leftmost 
photon not reach the  dxtran sphere. Note (Fig. 38) that if the leftmost photon of 
the  nondxtran  strack crosses the  dxtran sphere,  then the entire strack is killed. The 
dxtran strack includes the rightmost two photons. 

Another way to  understand why the entire  nondxtran  strack is killed  when its 
leftmost photon crosses the  dxtran sphere is to consider the physical possibilities as 
depicted  in the  top (analog) frames of Figs. 37 and 38. Note that  in  both figures 
the physical system consists of three  photons.  There is no physical possibility of just 
killing the leftmost photon and leaving only  two photons. Killing the  entire  strack 
when the  nondxtran photon crosses the  dxtran sphere is compensated by crea.ting 
an  entire strack  in the  dxtran process. 

F. Dxtran  with Pair  Production  Photons 

The  dxtran  method with two pair production  photons is similar to  the single 
photon emerging case except that  there  are two  ways that one photon can arrive 
at  the  dxtran sphere. Label the photons from a pair production 1 and 2. There 
are  three mutually exclusive possible physical occurrences for this  pair  production 
event: 

1. Photon 1 arrives at  the  dxtran sphere  and  photon 2 does not. 
2. Photon 2 arrives at  the  dxtran sphere  and  photon 1 does not. 
3. Neither photon arrives at  the  dxtran sphere. 

Note that  the pair  production  photons exit the collision site  in  opposite directions 
so that  it is impossible for both photons to arrive at  the  dxtran sphere. 

The  top frames of Figs. 39 and 40 show a pair production sampling without 
dxtran  and  the  bottom frames show the pair production  with dxtran.  In Fig. 39 
the  nondxtran pair misses the  dxtran sphere and  thus is not killed. (Note that 
because of items 1 and 2 above, there  are two physical possibilities that  put weight 
on  the  dxtran sphere. The two photons from the pair  production are identical, so 
that  the probability density that one of the pair of photons makes it  to a point on 
the  dxtran sphere is simply double the probability density  from a single photon.) 
In Fig. 40 one of the  nondxtran pair hits  the  dxtran sphere and  thus  the strack is 
killed. 

In terms of the  dxtran discussion of the previous section, let x = (y,z) be  the set 
of possible next events for the pair of photons. That is, 

p(x)dx = probability that photon  pair has its next (pair) event in dx about x . 
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Note that  this density is independent of order;  photons 1!,2 could be at ( y , ~ )  or 
photons 2,l could be  at ( y , z )  and  the pair would be  at x. 

Suppose that one of k photons of a strack  has a collision in which dxtran is 
employed. Label this  photon  with a 1. Note that applying dxtran  at #l’s collision 
changes #l’s phase-space coordinates,  but the  other k - 1 ;photons do not change 
their phase-space coordinates.  Thus, the possible outcomes for the strack  differ 
only in  the outcomes for photon #I, 

Set A contains all possible photon pair samplings in which neither photon  has a 
crossing of the  dxtran sphere  as  its next event. Set B contains all possible photon 
pair samplings in  which one photon  has  a crossing of the dx:tran  sphere as its next 
event. 

In the pair  production case, the  dxtran method thus proceeds as follows: 

1. A dxtran photon  pair (x E B )  is sampled from the set of pairs that  has one 
photon crossing the front surface of the  dxtran sphere  without collision as 
its next event. This sampling is  from the  arbitrary density q(x) .  After the 
event has been sampled, the  true density, p ( x ) ,  for that event is calculated, 
and  the d&an struck is  weighted as  in Eq. (4.26). 

2. A nondxtran  photon  pair (x E A )  is sampled in the normal  manner and 
transported  to their next events. That is, the  nondxtran  photon pair is 
sampled from ezactly the same density, p ( x ) ,  that  the original photon  pair 
would have been sampled from if dxtran were not used. The nondxtran 
strack is killed if one of the pair’s next events is a crossing of the  dxtran 
sphere  because  this result is in set B and  has  been accounted for in  step 
1. 

With  the above definitions of x, set A ,  and  set B ,  the  method is unbiased by the 
proof in the previous section. 

G. Dxtran  with Double  Fluorescence Photons 

The  dxtran  method with double fluorescence photons is  different from the  pair 
production case because the photons are not identical nor are they emitted  in 
opposite  directions.  There are four mutually exclusive events: 

1. Photon 1 arrives at  the  dxtran sphere  and  photon 2 does not. 
2. Photon 2 arrives at  the  dxtran sphere and photon 1 does not. 
3. Both  photons  arrive at  the  dxtran surface. 
4. Neither photon arrives at  the  dxtran sphere. 

These four possibilities are shown in Fig. 41. The set A consists of item 4 above and 
the  sets B1,  B2, and B3 consist of items 1-3, respectively. In  the simple one exiting 
photon case there was only one set ( B )  that was difficult to sample and now there 
are  three sets B1,   B2 ,  and & that  are difficult to sample. The  strack associated 
with the double fluorescence event is thus divided into four possible stracks,  with 
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items 1-3 using dxtran  to bring  photons  from the double fl.uorescence event to  the 
dxtran sphere. Let x = (y,z) represent the next event cocdinates for the pair of 
photons from the double fluorescence, where y and z are  the next  event  coordinates 
for photons 1 and 2 respectively. The double fluorescence photons  are  sampled 
independently so that if f(y) and g(z) are  the original  densities for y and z then 

The  dxtran method  samples  the  four  strack possibilities as follows: 

1. Photon 1 is sampled  from an  arbitrary density q(y) thak is  nonzero only on  the 
front  surface of the  dxtran sphere  and  photon 2 is sampled  from its original 
density g(z). The strack is  weighted by 

as in Eq. (4.26). The  strack is killed if photon 2 enters  the  dxtran sphere 
because this event is  accounted for in  item 3. 

2. Photon 2 is sampled from an  arbitrary density h(z) tha.1; is nonzero only on the 
front  surface of the  dxtran sphere  and  photon 1 is  sa.Inpled from its original 
density f(y). The strack is  weighted by 

as in Eq. (4.26). The strack is  killed if photon 1 enters  the  dxtran sphere 
because this event is accounted for in item 3. 

3. Photon 1 is  sampled from an  arbitrary density q(y) tha.t,  is nonzero only on the 
front  surface of the  dxtran sphere and photon 2 is  sampled  from an  arbitrary 
density h ( z )  that is nonzero only on the front surface of the  dxtran sphere. 
The  strack is  weighted by 

4. Both  photons  are  sampled from their  original  densities f(y) and g(z) and  the 
strack is  killed if either  photon  tries to  enter  the  dxtran sphere as its next 
event.  (These  events  are  accounted for in items 1-3.) 

As in Eq. (4.27) only one of the double fluorescence pai:rs occurs  in  each of the 
four  sets.  Thus,  there  will-be  three 0 contributions and one  nonzero  contribution to 
the expected weight at each point x. The expected weight arriving at any  point x is 
the probability of coming to x times the weight arriving, thus using Eqs. (4.30-4.32) 
for wd(x) yields: 



0 + WOWd(X)f(Y)h(Z) + 0 + 0 = wof(y)g(z) = wop’(x) for x E B2 (4.34) 

0 + 0 + 0 + wof(y)g(z) = wof(y)g(z) = wop(x) for x E A (4.36) 

But wop(x) is the expected analog weight density at x, ($0 the  method is unbiased. 
A modification of the above method is to randomly simple only one of the  three 

dxtran possibilities and multiply its weight by an additional  factor of three because 
it is only sampled one third as often.  This modification makes dxtran for double 
fluorescence similar to  dxtran for single photon  exits  and also saves time by only 
following one dxtran sample rather  than three.  This modified method is  shown in 
Fig. 42. Note that  the “assumed probabilities” of one third  are  arbitrary.  One  can 
choose these  probabilities as p l , p 2 ,  and p3 ,  in which case the weight multiplications 
are pT1,pT1, and pyl instead of the 3 shown in Fig. 42. Test problems were  success- 
fully run with p ;  = 1/3, but I speculate that pl = .4,p2 = .4, and p3 = .2 may be a 
better choice because the physical probability that both emitted  photons reach the 
dxtran sphere is always  less than half the probability t:hat one photon reaches the 
dxtran sphere. Far from the  dxtran sphere the probability that  both photons reach 
the  dxtran sphere is very small. If desired, pl,pz, and p 3  could be  made to depend 
on the collision location,  but  this is beyond the scope of the present investigation. 

H. Summary of Supertrack Approach 

Non-Boltzmann tallies (such as pulse height tallies) can  be done with the super- 
track  approach. The primary advantage of the supertrack  approach is its direct 
connection with the physical transport process. This connection is philosophically 
useful because it mea.ns that new variance reduction techniques can  be implemented 
relatively easily because the physics  is  easily understood. and preserved with the su- 
pertrack  approach. Additionally, effective  use of varialnce reduction techniques is 
usually guided by the Monte Carlo  practitioner’s  intuitive  understanding of the  nat- 
ural  transport process and  the information supplied by short scoping calculations 
with the Monte Carlo code. The supertrack  approach preserves the practitioner’s 
ability to  interpret  the information supplied by Monte Carlo codes. The primary 
disadvantage is that  the current  transport  algorithms all take  a  track-based  ap- 
proach and a supertrack-based  approach will require significant alterations to ex- 
isting Monte Carlo codes. If the current well-developed Monte Carlo codes did 
not exist,  then  there would be  little question that  the supertrack  approach is more 
desirable than modified track-based approaches. 

I have empirically verified that  the  supertrack approach can be implemented 
without excessive bookkeeping and produces unbiased estimates.  In  particular, gen- 
eralizations of two standard Monte Carlo variance reduction techniques, splitting 
and  dxtran, have been applied to supertracks.  These were  chosen as  test variance 
reduction  methods because they  are the two methods that Guy Estes favored most. 
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