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TRANSPORTCALCULATIONSFOR NUCLEARANALYSES:
THEORYAND GUIDELINESFOR EFFECTIVEUSE OF

TRANSPORTCODES

by

R. DouglasOIDelland RaymondE. Alcouffe

ABSTRACT

This report is for the serious user of discrete
ordinates transport computer codesfor performingnuclear
analysis calculations. The first section after the
introduction provides a reasonably thoroughmathematical
descriptionof the analyticBoltzmann transport equation.
Next is a section on the numerical discretizationof the
energy, angle, and space variables in the transport
equation,alongwithan introductionto the sourceiteration
method. The fourthsectionprovidesnumerical details and
features pertinent to discrete ordinates codes. That
sectiondetailsangularquadrature,spatial discretization
methods, iteration acceleration methods, and search
capabilities.The fifthsectionpresentsconsiderationsin
choosiqg a discrete ordinates code for use, and this is
followedby a sectionon typical discrete ordinates codes
available throughout the world. The reportendswith some
guidancefor the user.

This report is a revision of the chapter titled
ff’fransportcalculations for Nuclear Reactors,ffWritten by

the authorsfor Volume1 of the three-volumeCRC Handbookof
NuclearReactorsCalculations,Y. Ronen, Editor, published
by the CRC Press,Boca Raton,Florida(1986).

I. INTRODUCTION

The use of computercodesto performnuclearanalysiscalculationscosts

money. Transportcalculationsare more expensivethandiffusioncalculations.

Althoughcontinuingdevelopmentin computerhardwareand codes (software)have

reduced the expenseof transportcalculationsto more practicaland acceptable
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levelsthan in the past,transportcalculationsare stillmore expensive than

diffusion calculations. Moreover, there arises the question of whethera

transportcalculationmust adequatelydescribethe physicsin a given problem

or whether a diffusion calculation will suffice. To answer thisquestion

intelligentlyand to use a computer code effectively and properly requires

understanding the physics modeled by a computer code and the numerical

techniquesused in the code. The purpose of this report is to provide the

nuclear analyst with information about the use of deterministicparticle

transportcodesfor nuclearanalysiscalculations.

This introduction describes briefly the principaldifferencesbetween

diffusiontheoryand transporttheoryand some of the recentadvancesthathave

reduced the cost of running a transport calculation. Subsequentsections

providea more detaileddescriptionof themathematics,physics,and numerical

methods in deterministictransportcodesand give the readerguidesto the use

of such computercodes.

Any precise description of neutral particle transport must involve

treatment of the migration of particles in phase space (space, energy,

direction, and time)as influencedby interactionswith the underlyingmatter.

Below,the descriptionof particlemigration is as a single linear equation

underthe assumptionsthat the particlesinteractingwith the underlyingmatter

do not affect the matter and that the particles do not interact with

themselves. Stated another way, the descriptive equation is linear if

interactionsbetweenparticlesand materialcan be describedin terms of cross

sections independentof the particledensity. The neutralparticletransport

equationis thendevelopedby performinga mathematicalbalanceon the physical

production and losses of particles. SectionII of thisreportdescribesthis

developmentof the transportequationin some detail. The result is, in its

full generality, an equation with sevenindependentvariables,threespatial

variables, three momentum variables (or equivalently,an energy or speed

variable plus two direction-of–motionvariables), and one time variable.

Although in practical applications the transport equation can be cast in

specialized forms involving fewer independentvariables,the equationstill

providesa ratherelaboratedescriptionof the particlemigrationprocess, and

its computationalsolutionis a fairlyexpensivemethodfor performingreactor

or othernuclearanalyses. It is thusdesirableto discussthe utility of the
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full transport description and to describe some of the simplified

approximationsto it.

The most useful approximationfor performingneutronicanalysesis the

diffusionequation. The diffusionequationis computationallyless expensive

to solve than is the transport equationbecausediffusiontheoryreducesthe

maximumnumber of independent variables from seven to five--three spatial

variables, one momentum variable (energy or speed), and one timevariable.

Mathematically, the diffusion approximation places some rather severe

restrictions on the momentum dependenceof the neutrondensity. Physically,

theserestrictionsconsist of two major requirements. First, the neutron

migration processmust be dominatedby scatteringinteractions,or collisions;

that is, the material must be highly scattering and weakly absorbing for

neutrons. Second, the neutron migration process must be far removedfrom

systeminterfaces- that is, materialdiscontinuities- where large gradients

in the neutron density may occur. In practice, diffusion theoryhas been

appliedextensivelyto reactoranalysesand generallyfound to perform better

than it theoreticallyhas any right to. That is, if propercorrectionsare

made from transporttheory,diffusiontheorycan be used quiteacceptablyfor a

large class of reactor analysis problems. These corrections come from a

transport-basedhomogenizationtheoryand are normallymade in preparingcross-

section data. These transport-basedcorrectionsdo much to fosterthe success

of diffusiontheory-basedreactorneutronicanalysis.

It is natural,then,to ask ‘If diffusiontheory,successfullycorrected

for transporteffects,is computationallylessexpensivethantransporttheory,

why be concernedwith transporttheoryto performnuclearanalyses?”To answer

thisquestion,one must recallthe two basicrequirementsof diffusion theory

which, even with transport-basedcorrections,stilllargelyexist. Diffusion

theoryrelieson the absence of large gradients in the neutron density (or

flux) in any spatial region of the problem. Largegradientsimplya highly

directionalmigrationof neutrons,and diffusiontheory does not include the

direction-of-motionvariables. Also,for an accuratediffusioncoefficientto

be definedfor the material, diffusion theory requires that the migration

process be dominated by scattering collision. Both of these conditions

relate directly to the description of the neutron leakage, and in this

description diffusion theory suffers the most relativeto transporttheory.

Two examplesin reactoranalysiswherelargegradientsare known to exist are

3



1) in thermal reactors near control rods and 2) in fast reactors in the

vicinityof internalblankets. In both cases,unlessspecial,somewhatad hoc,

treatments are applied,the diffusionsolutionwill be inaccurateor, at best,

uncertain,and transportanalysisis needed. Another application requiring

transport analysis is in shieldingcalculationsor in any calculationof deep

penetration.In such applications, the collision (interaction)processes

between particles and material are usually not weakly absorbingand highly

scattering,but are commonlyjust the reverse,and diffusiontheory cannot be

used with any confidence. Also, particleflowor migrationthrougha shield

tendsto be directional,and diffusiontheory treats this situation poorly.

For these reasons, virtually all shieldingand analysesof deeppenetration

are performedwith transporttheory.

Given the experiencewith diffusiontheory,the preponderanceof reactor

core analyses will likely continue to be performed with this simpler,

computationallycheapertool. Severaldevelopmentsin the late 1970sand early

1980s,however,reducedthe expenseof transportcalculationsto levels where

they can be performed much more routinely. One of the developmentsis the

continuingcomputerhardware improvement in computationalspeed, in memory

size, and in data storage availability.The Class–VIcomputersdevelopedin

the early 1980s (CRAY-1 and Control Data Corporation’s Cyber 205), which

perform tens of millionsof floatingpointoperationsper second,have reduced

transportcalculationaltimesinto the secondsand minutesrangeinsteadof the

minutes and hours range of earlier computers. Further, developments in

solution methods for the transport equation have shown that the nuclear

designer/analystcan have at his disposalan enrichedset of transportanalysis

tools completely compatible with the diffusion theory tools he has been

accustomedto using. This is discussedin our sectionon iterationconvergence

of the transportsolutionprocessusingthe very effectivediffusionsynthetic

acceleration (DSA) method.

acceleratethe convergenceof

iteration transport results

is carriedto completion,the

The DSA methodemploysthe diffusionequationto

transportiterationsby using the intermediate-

to correct the diffusion equation. When DSA

correcteddiffusionequationsolutionis the same

as the transport solution within a specified convergencecriterion.Note,

however, that since the iterative process is carried out in stages

(iterations),at each successivestagethe diffusionsolutionbecomesa better

approximationto the transportsolution,so the DSA methodcan be thoughtof as
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a diffusion improvementmethod. Thus,a properlydesignedtransportcomputer

codeoffersthe user a diffusion equation solver that can be consistently

improved by transport theory so any doubts or uncertaintiesabouttransport

effectscan be systematicallyremoved conveniently. Thus, with faster and

larger computer hardware and better, more moderncomputercodes,the use of

transporttheoryas a routinenuclearanalysistool is likelyto increase.

In subsequentsectionsof thisreport,we attemptto providethe nuclear

designer/analystwith a reasonablycompleteoverviewof numerical methods for

deterministicallysolving the transport equation. In Sec. II we presenta

mathematicaldescriptionof transport theory, quickly specializing to some

convenient geometries for the spatialresolutionof the transportdivergence

operatorthatappearsin the transportequation. Next, in Sec. III, we proceed

to numerical descriptionsbasedon the analyticalequations,withemphasison

the discretizationof the independent variables to produce the discrete

ordinatesequations.We also includean introductionto the conceptof solving

the discreteordinatestransport equations by source iteration techniques.

SectionIV is devoted,in somedetail,to many of the numericalproceduresthat

are computationallyeffective and are in use in today’s computer codes.

Section V discusses some considerationsthat are important in choosing a

computercodeas a transportcalculational tool, and this is followed by a

short section on some typical discrete ordinates codes that are readily

availablefor use. This report concludes with Sec. VIII, a brief section

givingsomegeneralguidanceto the discreteordinatescodeuser.

II. MATHEMATICALDESCRIPTION:THE ANALYTICEQUATION

The linear Boltzmann transportequationis an integro-partialdifferen-

tial equation embodying the physics of neutral particle transport. This

equation and boundaryconditionsare requiredfor problemsof finitegeometric

extent. The boundaryconditionsspecifythe distributionof particlesentering

the geometricproblemthroughits exteriorboundaries.The Boltzmannequation,

togetherwith the appropriateboundaryconditions(andan initialconditionfor

time-dependentproblems), constitutes a mathematicallywell-posedproblem

havinga uniquesolution. This solution consists of the complete, that is,

deterministic, distribution of particles throughout the space, energy,

direction–of-motion,and time (fortime–dependentproblems) portions of the
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problem. The linearBoltzmannequation,togetherwith the boundaryconditions

(and initial condition, if required) in discretized form, is solved by

deterministictransportcomputercodes.

In thissection,we presenta briefdevelopmentof the linear Boltzmann

transport equationin its generalanalyticform. Followingthis,we showsome

of the specificforms the equation takes for common geometries - that is,

coordinate systems – encountered in practice. We thendescribethe various

boundaryconditionsthatare appropriatefor use in thesegeometries.Next, we

develop the spherical harmonics expansion forms for the particle source

(production)terms in the Boltzmann equation since these forms are almost

universally used in deterministictransportcodes. We concludethissection

with a presentationof the adjointformof theBoltzmannequation.

A. The BalanceEquation(LinearBoltzmannTransportEquation)

The distribution of particles as a function of the seven variables

COnStitUtiIIg phase space is obtained, in principle, by solving the linear

Boltzmanntransportequation. This equation serves to precisely describe

particlebalancein whichthe rate of accumulationof particlesis equalto the

difference between their rates of production and removal. If

h(~,E,~,t)d~dEd~dtis the numberof particlesin volumed; aboutspacepoint~,

with energyin dE aboutE, movingin directiond; about~, in timeinterval dt

aboutt, thenthe Boltzmanntransportequationcan be writtenas

aN(;,E,i,t)
at = - V; ● tN(;,E,&,t)- vN(~,E,;,t)@,E,;,t)

+ S(;,E,d,t) . (1)

This equationis linearif the macroscopiccrosssectionsof themedium,

such as Zt, are not functions of the particle density. This linearity

conditionis met for virtuallyall practicalapplications.

The termon the left sideof Eq. (1)representsthe rate of accumulation

of particlesat the phasespacepointin question,namely

1~ [N(~,E,~,t + At) - N(~,E,ii,t)] ~ aN(;,E,i,t)
At+O At at . (2)
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The first term on the rightsideof Eq. (l),vi ● ~N(~,E,~,t),representsthe

rate of changeof the particledensityat spatial position ~ resulting from

streaming of the particles with speed v, thatis, motionin a straightline

without collisions. That this term represents streaming can be seen by

considering, without loss of generality,a Cartesian incremental volume

AV = AXAYAZas shownin Fig. 1. In particular,considerthe faceof area AxAy

at z. The rate at which particlesenterthe volumethroughthe face at z is

(vfi”~)N(x,y,z,E,~,t)AxAy,wherevfi=~is simplythe z-componentof the velocity

v;. Similarly, the rate at which particles leave the incremental volume

throughthe face at Z+AZ is (vfio~)N(x,y,z+ Az,E,~,t)AxAy. The difference

between outflowing and inflowing particles is, in the

smallAz,

limitof vanishingly

Fig. 1. Incrementalvolumein Cartesiancoordinates.
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Similarexpressionscan be writtenfor flow (or streaming) in the x- and y-

directionsso that the net rate at whichparticlesare lostfrom the volumeis

where

using

parti

the arguments (x,y,z,E,~,t)have been omitted for simplicity.Thus,

the definitionof the divergence operator fi=~, the net rate at which

cles are lost from an incremental volume because of streaming is

4v~~ N(r,E,~,t)per unit volume.

The second term on the right side of Eq. (1),vN(~,E,~,t)Zt(~,E,~,t),

accountsfor the rate at whichparticlesare lostbecauseof collisionsof any

kind with the nuclei constituting the medium. Here Zt(~,E,~,t) is the

macroscopictotalcrosssection of the medium defined such that Zds is the

probabilityof a collisionin a pathlength,ds.

The thirdtermon the rightsideof Eq. (l),S(~,E,fi,t),represents the

source rate of particles, that is, the rateat whichparticlesare produced.

This sourceincludescontributionsfrom scattering,fission,and inhomogeneous

(fixed)sources.

The scattering source accounts for the rate at which particles are

produced as a result of particleinteractionswith nuclei- otherthan inter-

actionsthatresultin fissioning of the nuclei. The scattering source is

denotedSs(~,E,~,t)and is describedby the equation

x I&E’+E,ii’+fi,t) . (3)

where Zs(~,Et+E,~’+~,t)is the macroscopic differential cross section for

scattering particlesfrom energyE’ and direction~~ to energyE and direction

z. Here we have denotedthe particlespeedas v(E’)for particles of energy,

E’, since particle speed is a function of particle energy. The fission

contributionto the sourceis denotedSF(~,E,~,t)and is givenby

8



x v(E’)N(~,E’,fi’,t) , (4)

where x(~,E~+E) represents the probabilityof particlesappearingat energyE

as a resultof a fissioncausedby a particleof energy E’ at space point ~;

Zf(~,E1 ,~l+~,t) is the macroscopic cross section for fission induced by

neutronswith energy E’ and direction ;’, with emergent neutrons from the

fission having direction ~; and v is the averagenumberof neutronsemerging

from a fission. The above expression for the fission source makes no

distinction between prompt and delayed particles. All particleshave been

assumedto emergesimultaneouslyfromfission. This assumption is valid for

most applications since the vast majorityof transportcalculationsare time

independent, that is, steady state. Only for fission system dynamics

applicationsshoulddelayedparticlesbe explicitlydescribed.

The inhomogeneous(orfixed)sourceis denotedQ(~,E,~,t).It represents

all sources not dependent on the particle densityin the medium. Thus, the

totalsourcerate of particlesin Eq. (1) is

S(~,E,;,t)= Ss(~,E,fi,t)+ SF(~,E,~,t)+ Q(~,E,fi,t). (5)

Up to this point, the time variable has been included in the Boltzmann

transport equation. Since the usual applicationof transportmethodsis to

time-independentproblems,we limitour considerationsin this report to the

time–dependentequation. Accordingly, the remaining development will be

simplifiedto the time-independentBoltzmanntransportequation,

(6)

in whichthe angularparticleflux @(~,E,~) - v(E)N(~,E,~). As before, the

totalsourcerate of particlesS(~,E,~)is written

(7)
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x &E ‘,;)] ,

(8)

(9)

and with Q(~,E,;) denoting the inhomogeneous,or fixed, source rate of

particles.

B. CoordinateSystemsand DivergenceOperatorForms

The streaming term v~o~N(~,E,~) = ~=~@(~,E,~) in Eq. (6) actually

represents the rate of change of the particle angular flux @ along the

streaming path, s, in the direction of particle motion ~. In otherwords,

?i”vm= d@\ds where the arguments of 0, (~,E,~) have been omitted for

simplicity. A descriptionof the path,s, requiresthe specificationof up to

five variables (three spatial variables and two variables to define the

direction ~). The choice of these variables is governed by both the

geometricalcoordinate system to be used and a suitable angular-direction

coordinate system. Thus, the particular form of the divergence operator

;“$ d/dsor, more specifically,the streaming term ~o$@ dQ/ds, requires

specificationof suitablecoordinatesystems.

Shownbeloware the threecommoncoordinatesystemsused in deterministic

transportcodesand the form of the streamingtermfor each. Note that in each

geometrical coordinate system, an angular direction coordinate system is

defined in which the direction variable ; is describedin termsof a polar

angle (or its cosine) measured from a directional coordinate axis and an

azimuthalanglespecifyingthe angleof rotationaboutthataxis.
A

The symbole

denotesdirection.

10

1. Rectangular Cartesian Coordinates (x,Y,z). The three-dimensional

rectangularCartesiancoordinatesystemis shownin Fig. 2, together with the

angular-direction coordinate system used to define the direction fi. In
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I

;
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x

Fig. 2. RectangularCartesiancoordinates.

this system, a space point is described by its (x,y,z) coordinates,an

incrementalspatialvolumedV = dxdydz,and

Q=;Q A A-+efi +eQ
xx YY Zz ‘

where

A

fix= ex ● ii= COSIJJ p ,

(lo)

(ha)

(llb)

(11 C)
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The divergenceoperator; ● $ is written,in general,as

With the rectangular coordinates, dx/ds = U, dy/ds = rI,dz/ds = g, and

dv/ds= d@/ds= O. Thus,

(12)

where O(~,E,~)= O(x,y,z,E,B,@).

For two-dimensionalrectangularCartesian(x,y)geometry,thereis no z-

dependenceof the particleangularflux,and Eq. (12)reducesto

ii.

where@ =

For

neithera

reducesto

h = I& +ng , (13)

@(x,y,E,p,@).

one-dimensionalrectangularCartesian (slab) geometry, thereis

y- nor a z-dependenceof the particle angular flux, and Eq. (12)

(14)

where O = O(X,E,U,$). In many one-dimensionalslabapplications,azimuthal

angular symmetry exists, so the angular flux is a function only of the

variablesx, E, and V.

2. General Cylindrical Coordinates (r,f3,z). The general three-

dimensionalcylindricalcoordinatesystemis shownin Fig. 3, togetherwith an

angular-directioncoordinatessystemused to definethe particle direction ~.

In Fig. 3, the n-g plane is tangentto the cylindricalsurfaceat (r,e). In

this system, a spatial point is defined by its (r,e,z) coordinates, an

incrementalspatialvolumeis givenby dV = rdrdedz,and

12

A . A

Fi=efl
re + ‘eQe+ ‘ZQZ ‘

(15)



z

where

A

Slz= e=

~, r\

(rib

/ - 1’

xi\\ I
If I

“:$1—— —

b

Fig. 3. Generalcylindricalcoordinates.

“5=

“i?=

.;=

(16a)

(16b)

13



The divergenceoperator~ “ + is

With cylindricalcoordinates,dr/ds= p, dO/ds= n/r,dz/ds= ~, d~/ds= 0, and

dm/ds= -q/r. With somemanipulation,

(17)

where O = @(r,8,z,E,~,o).

The selection of the angular directionvariablesG, u for the specifi-

cationof ~ is arbitrary,and the variablesp, @ could just as well be used.

In the lattercase,

(18a)

(18b)

(18c)

Equation(17)remainsunchanged.

In two space dimensions, there are two ratherwidelyused cylindrical

geometries, both subsets of the general (r,13,z)geometry. These are the

finite, or (r,z), cylindrical geometryand the planar,or (r,e),cylindrical

geometry.

In (r,z) two–dimensionalcylindricalgeometry,a spacepointis defined

by the spatialcoordinates(r,z),an incrementalvolumedV is givenby 2rrdrdz,

and Eq. (17)reducesto

(19)

with @ = @(r,z,E,~,u)or @(r,z,E,p,@).The spatialvariable8 doesnot appear.
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In (r,t3)two-dimensionalcylindricalgeometry,a sPace Point iS defined

by the spatial coordinates(r,O),an incrementalvolumedV is givenby rdrd9,

the angularparticleflux is describedby Q(r,O,E,&,m)or @(r,e,E,p,@),and

Eq. (17)reduces‘to

In one-dimensionalcylindricalgeometry,a

its radialposition. An incrementalvolume

reducesto

The angularparticleflux is @(r,E,~,u)or,

spacepointis

dV is givenby

(20)

definedsolelyby r,

2mrdr,and Eq. (17)

(21 )

equivalently,@(r,E,v,$).

3. One-DimensionalSphericalCoordinates.In sphericalcoordinates,the

only geometryfor whichdeterministictransporthas receivedmuch attentionis

the one (space)dimensional sphere. Although a two-dimensionalspherical

geometry computer code has been developed,l its usage has been quite

specializedand limited. Accordingly,this section will be limited to one-

dimensionalsphericalgeometry.

The coordinatesystemfor sphericalgeometryis shownin Fig. 4, together

with the angular direction coordinatesystemused to definethe direction~.

In Fig. 4, the rl-~planeis tangentto the sphericalsurfaceof radius r. For
v oint~!is definedsimplyby its radius~rsone-dimensionalspheres, a space p

and the incrementalvolumedV associatedwith thispointis the sphericalshell

of volume 4mr2dr.
A

The angularvariable~ is definedsolelyby p er ● i with

no dependenceon the azimuthalangle$. Thus, the angularparticle flux O is

describedby the arguments(r,E,u)and

ao dr aa dp
ii “ $@ = g = ij-~ + —— .au ds

For this geometry, drlds = v and dp/ds = (1 – p2)/r so that, with some

rearrangement,

15



ii”

wherethe

4.

I ‘,
I

/’\

Fig. 4. Sphericalgeometrycoordinates.

(22)

argumentof 0 has beenomittedfor simplicity.

AngularRedistributionin Curvilinear Geometries. In curvilinear

geometries such as those described in Figs. 3 and 4, a particletransport

phenomenonoccursthatdoes not occur in rectangularCartesian geometries.

This phenomenon is known as angular redistribution and is defined in

cylindricalgeometriesby the term

1
F

in Eqs.

1
T

16

.
(17), (19), (20),(21),and in sphericalgeometryby the term

ac(l - P2)03
ap



in Eq. (22). To understandthe physicalmeaning of angular redistribution,

recognize that in both cylindrical and spherical geometries the angular

variableu Is proportionalto the cosineof the angleu shownin Figs.3 and 4.

(In cylindrical geometries, the angularvariablen is proportionalto sinu.)

In both geometries, the angle u is measured from the radius vector, r.

As a particle moves withoutcollisionin a straightline from the pointr, to

the point r2, the angle u changes from u, to U2 (Fig. 5). Angular

redistribution is simply the change in the directionalvariablep (and~ in

cylindricalgeometry)as particlesmove fromone radial position to another.

Severalobservationscan be made regardingangularredistribution.

First,therecan be no net gain or loss of particlesbecause of angular

redistribution, that is, if one integrates over all angles, the net

redistributiongain or loss termmust vanish.

Second,thereis no way in whicha particle,movingwithoutcollisionand

with u # O, can acquirea directionu = IT(COSU= -1) by angularredistribution.

Similarly, there is no way for a particle movingwithoutcollisionand with

cosu # 1 to becomeanythingbut a particlewith cosu closerto unitybecauseof

angular redistribution. Restating this second observation, angular

redistributionalwaysservesto increasethe value of directional variable u

(orCOSW)providedu # nm, n = O, 1, 2.

17

Fig. 5. Illustrationof angularredistributionof particlesin
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Third,thereis no angularredistributionfor particleswith cosu = *1,

that is, for particles moving with directions along a radius vector of a

cylinderor sphere.

Finally,angularredistributioninvolvesonly the directionalvariablesp

and q, as shownin Figs. 3 and 4. The value of the directional variable &

is unchangedwith angularredistribution.

c. BoundaryConditions

The Boltzmann transportequationis normallyused to describetransport

of particlesin a finiteregion of space in which cross sections are known

functions of particle energy and position. To effect the solutionto the

transportequationcorrespondingto the physicalsystem being modeled, it is

necessary to specify the appropriate conditionson the particledensity,or

flux, at the external boundaries of the region. Below are described the

boundaryconditionsmost commonlyused in deterministictransportcalculations.

1. VacuumBoundary. If no particlesenterthe region of solution from

external sources and if a particle, once it exits the region across its

externalboundary,cannotreturn

free surfaceor vacuumboundary.

vectorat the boundary surface

boundary, any particle having

to the region,thenthe boundary is called a

Let ~ denotethe outward-directedunitnormal

at spatial position ~O. Then, at a vacuum

~ ● ~ > 0 willbe crossingthe boundaryin an

outwarddirection

inwarddirection.

and any particle having ~ ● ~ < 0 will be crossing in an

The vacuumboundarycondition,then,is

o, if ; “ ‘ii<o.

This boundary condition is the one most commonly applied at the external

surfacesof the regionof solution.

In reality,of course,the vacuumboundaryis an idealization.Particles

leavinga systemwill always have a finite probability of returning to the

system. Nevertheless, the vacuum boundaryconditionis quiteacceptableif

eitherthe probabilityof particlereturnis negligibleor the boundarysurface

is so far removed from the volume of interest that an approximateboundary

conditionis sufficient.

2. Reflecting Boundary. The reflectingboundaryoccurs

symmetryin the systembeinganalyzed. At a reflectingboundary,

18
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the angular flux for incoming directions is set equal to the valueof the

outgoing flux in the direction correspondingto specular (mirror-like)

reflection. For example,in a rectangularCartesiangeometry(seeFig. 2), if

a y-z planeis a reflectingsurface,thenat the surfacethe incomingparticle

flux with directioncosinesp, n, e is set equalto the outgoingparticleflux

with directioncosines-u, n, t. Althoughrigorouslycorrect only for planes

of symmetry,the reflectingboundaryis frequentlyappliedat the radialcenter

line of cylindersand at the origin of spheres. The theoreticallycorrect

boundary conditionsfor thesetwo casesare describedbelow. In practice,the

use of reflectingboundaryconditionsat the radial origin of cylinders and

spheresusuallyyieldssatisfactoryresults.

In cylindrical‘cell~calculations,the reflectingboundarycondition is

also frequently used at the outer radial surface of the cell. Such

calculationsare used to analyzea typicalcylinderin an extended lattice of

cylinders, in which case the cell is usually a fuel rod surrounded by an

annulusof moderatoror coolant. Use of the reflectingboundary condition at

the cell surface is satisfactoryonly if the moderatingannulusis reasonably

thick (aboutone thermalneutronmean freepath or greater).

3. Spherical Origin Boundary Condition. In one-dimensionalspherical

systems,a boundaryconditionis required at the center of the sphere. The

theoretically correct condition is thatthe angularflux be isotropicat the

center. The valueof the angularflux at the centerof the spherecan be found

by first solving the Boltzmann transportequationfor B = -1, that is, for a

straight-indirectedparticleat the origin. Then,@(r=O,E,~)= @(r=O,E,p=-1)

for all other;(P).

4. CylindricalOriginBoundaryConditions.In cylindricalgeometries,a

boundaryconditionis requiredat the radialorigin. The theoreticallycorrect

conditionis thatfor a fixedvalueof the polar angle (or its cosine, g) as

shown in Fig. 3, the flux is azimuthallyisotropicalongthe cylinder’sradial

centerline. The value of the angular flux at r = O can be found by first

solving the Boltzmann transport equation for n = O, v = - ~. Then,

letting; = ~(g,n),@(r=O,E,E,n)= O(r,=O,E,E,n=O).

5. Periodic Boundary Condition. The periodicboundaryconditionsets

the valuesof the incomingangularfluxesat a boundaryequalin detail to the

values of the outgoingangularfluxeson the oppositeboundary. The periodic
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condition is used on the boundaries of an asymmetric “unit” cell, which

represents one of an ~infinitellarrayof such cells. The boundarycondition

can be appliedto x-, y-, or z–dimensionboundariesin Cartesian coordinates,

or to the z-dimension boundariesof (r,z)or (r,9,z)cylindricalgeometries.

It must be used as the EJ-dimensionboundaryconditionwherethe e-dimensionis

used to represent a 360° circular mesh in, for example, (r,O) cylindrical

geometry.

6. White Boundary Condition. With the whiteboundarycondition,the

valuesof the incomingangular boundary fluxes are set equal to a constant

value. In other words, the incoming angular flux is made isotropic. The

constant value used for the incoming angular flux is the average

outgoingangularfluxessuch that the net flow of particlesacrossthe

is zero. For example,in one-dimensionalcylindrical geometry with

boundarycondition

@(R,E,P,O)=

for VE[-l,01.

at radiusR,

00

of the

boundary

a white

This conditionwas designed to be meaningful as an exterior boundary
2,3

condition for cylindrical‘cellMcalculations, but withlimitedsuccess. A

variantof the whiteboundary condition, known as the cylindrical boundary
4

condition, adjusts the incomingangularflux to be azimuthallyisotropicfor

constant values of the polar angle (or its cosine, E). This cylindrical

boundary condition shows evidence of producinggoodresultsfor cylindrical

cell calculations.

7. Albedo Boundary Condition.The albedo,or grey,boundarycondition

is similarto the white boundary

ratioof the incoming(isotropic)

constant,a < 1. For example,in

boundaryconditionat X = R,

condition described above except that the

particlecurrentto the outgoingcurrentis a

one-dimensionalplane geometry with a grey

20



for BE[-1 ,01.

When a = 1, the albedo condition is identical to the white boundary

condition. The albedo conditionis sometimesused to approximatethe effects

of external materials for which a detailed calculation is not required.

Another variant of the albedoconditionpermitsthe applicationof the albedo

fraction,a, to the reflectiveboundaryconditionso the angularincomingflux

is equalto a timesthe outgoingangularflux in the directioncorrespondingto

specular reflection. For example, in spherical geometry with an albedo-

reflectiveboundaryconditionat radiusR,

O(R,E,p)= c@(R,E,-I.1)

for IJE[-l,0].

D. SphericalHarmonicsExpansionof theSourceTerms

Spherical harmonics seriesexpansionsare commonlyused in representing

the angulardependenceof the source

In this section, the use of these

contributionsto the totalsourceof

inhomogeneoussources.

termsin the Boltzmanntransportequation.

expansions is examined for each of the

particles,namelyscattering,fission,and

1. ScatteringSource Expansion. The differential scattering cross

sectionZs(~,E’+E,fi’+~)representsthe probabilitythata particleof energyEt

and direction~’ will emergefrom the scattering collision as a particle of

energy E and direction ;. For mostmaterials,it is satisfactoryto replace

the angularargument5’ + ~ with Po- ~f~~. Then we say that the material is

isotropic,that is, thereis no preferreddirectionin the materialitself. In

otherwords,the scatteringangleor its cosine,PO> is usuallysufficientfor

describingthe angulardependenceof the scatteringcrosssection. Thus,

Zs(~,E’+E,ii’+i)= Z&E’+E,Uo) . (23)
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Since the angular dependence of the differentialscatteringcrosssection

now describedin termsof PO, it is usuallyadvantageousin reactorphysics

representthe crosssectionby a finiteLegendrepolynomialexpansion

L

where

1

z: (;,E’+E 211
f

dpo Zs (r,E’+E,po)Pi(yo) .

-1

is

to

(24)

(25)

The series truncation index, L, should be large enoughto provideadequate

representation of the differential cross section. If the scattering is

isotropic - that is, independentof the scattering angleP. - thenclearly

L = o. If the scattering is linearly varying in P. (linearlyanisotropic

scattering),thenL = 1. For higherdegreesof anisotropyin the differential

scatteringcrosssection,largervalues of L should be selected. Practical

considerations,however,usuallylimitthe valueof L to 3, or perhaps5, even

thoughsuch a limitmay not providean entirelysatisfactory

the trueangularvariationin the differentialcrosssection.

The firstfew Legendrepolynomialsare

Po(x)= 1

PI(X)= x

P2(X)s+ (3X2-1)

P3(X)= + (5x3- 3x)

pu(x)= + (35X4- 30X2+ 3)

P5(X)=+ (63x5- 70x3+ 15X) .

22

approximationto



Since the particle direction of motionfiis definedby the variablesu and @

indicatedin Figs.2–4,

IJo =ii ” ii’ = u~’ + (1 - p )2“2(1- p’2)”2 c~s($- $,) s

and the additiontheoremfor sphericalharmonicscan be used to define PL(BO)

in termsof p, p’, +, and $’ by

!2

‘he‘!tmare the sphericalharmonicswith the definition

(26 )

(27 )

where

d%L(P)
P;(p)= (-l)m(l-p2)m’2

d~m

is the associatedLegendrefunctionof the firstkind,and

‘L,-m(M,o) = (-1)mY;m(ll,$).
9

To representthe scatteringsourceof Eq. (8),we alsoexpandthe angular

flux in termsof the sphericalharmonicsas

where

1 21T

(28)

(29)
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substitut~w Eqs. (24), (26), and (28) intoEq. (8),and evaluating,yields

(30)

This givesthe scatteringsourcein the generalcase in terms of a spherical

harmonic expansion. For some special geometric situations, we can take

advantageof symmetryto simplify this expression so not all the terms are

needed. For example, in one-dimensionalslaband sphericalgeometrieswith

azimuthal($) angularsymmetry,the angularflux in Eq. (29)is a functionof v

only. Thus,

wherewe have used the fact that

Ygo(w$) = m p(,) .
41r !2

Therefore,for one-dimensionalspheresand slabs,Eq. (3) reducesto

(31)

(32)

o !2=0

With two-dimensional symmetry, the flux in Eq. (29 ) as a functionof $ is

symmetricabout@ = m [assumingthe appropriatedefinitionof $ - for example,
.

$ for (r,z) geometrymeasuredaboutthe e. axis,as shownin Fig. 3]. In this

24
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-1 0

and this effectively reduces by half the number of moments that need be

computedfor the scatteringsource. For one-dimensionalcylindricalgeometry,

a IT/2symmetry exists in $ in the angular flux;therefore,reductionin the

numberof momentsis reducedfurther. Thus, in Eq. (33)all momentswith !2+ m

odd are zero for the one-dimensionalcylinders.

We can summarizeall thesespecialcasesby writing the following form

for the scatteringsource:

where

NM = the totalnumberof moments,

Rn(;) = the appropriate spherical harmonic functions indexed by

the simpleindexn, and

~n(~,E’)= the flux moment corresponding to the spherical harmonic

indexedby n.

Equation (34)is a convenientlyprogrammableform of Eq. (30). In Appendix

we showhow to evaluatethe R and @n for both generaland specificcases.n
Table I is the number of requiredsphericalharmonictermsfor each order

scattering. In Table II are the results of our derivation in Appendix

A,

In

of

A,

giving the expansiontermsexplicitlyfor scatteringordersup toL = 3. Note

that the fluxmomentcorrespondingto n = 1 in Eq. (34), ~1, is simply the

scalar flux, as is Q: usingEq. (29). We will normallydenotethe scalarflux

simplyas O..
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TABLEI

NUMBEROF SPHERICALHARMONICS,NM, AS A FUNCTION
OF LEGENDREEXPANSIONORDER,L

Two-AnglePlanes
One-Dimensional and

L StandardPlanes One-Dimensional Two-Dimensional Three-Dimensional
and Spheres Cylinders Geometries Geometries

o 1 1 1 1

1 2 2 3 4

2 3 4 6 9

3 4 6 10 16

4 5 9 15 25

5 6 12 21 36

L L+l (L+2)2/4, (L+l)(L+2)/2 (L+1)2
L even

(L+l)(L+3)i4,
L odd

2. FissionSource. Fissionis normallytreatedas an isotropicprocess.

Accordingly,when the fissionsourcetermof Eq. (9) is expandedin a Legendre

seriesrepresentation,similarto the scatteringsource,only the firstterm in

the expansionis retainedand SF(~,E,~)is written

SF(~,E,;)=
J (35)dE, ~(r,p+E)v@,) @o(:,E’) $

E’

26

where @O(~,E) is the scalar flux as given by Eq. (29) for 1, m = O. 1n

Eq. (35), the fission fraction, x(~,E’+E),is the probabilitythata fission

inducedby a particlewith energyE’ willproducea particlewith energyE. It

is frequently assumed thatthisfissionfractionis independentof the energy



TABLEII

SPHERICALHARMONICS,Rn(;),FORDIFFERENTGEOMETRIES

One-Dimensional Two-AnglePlanes
N StandardPlanes One-DimensionalTwo-DimensionalandThree-Dimensional

andSpheres Cylinders Geometries Geometries
Da
‘5 ‘4 ‘3 ‘3

1 PO(M) PO(B) Po(il) PO(B)

2 PI(P) P;(ll)cos’$ p,(u) P,(u)

3 P2(ll) P2(ll) P;(P)cos.$1 P;(IJ)COS$

4 P3(U)
q P;(,1C0920

P:(P) P](p)sin$

5 P4(IJ) Jil $P:(p)coso~ P3(ll)coso P2(P)

6 P5(ll) + P3(P)COS30 + P:(,)COS2$ + P:(,)cogo
3

7 P4tll) P3(P) $ P;(,lsino

8 g p&1cos2@ q P;(vlcoso $ P;(,)COS20

9 g P;(ll)cos40g P:(P)COS2!++ P~(~)sin2@

10 q P:(.)COS30 P3(!J)

11 &l~ P3(lJ)cos$l

12 $ Pj(y)sin$

13 fi2~ P3(l.l)cos2$

14 J!j P~(p)sln2f$

15 603~ P3(Y)COS3$

16 fi3~ P3(w)sin30

aPLdenotesLth orderLegendreexpansion.
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of the particlethat inducesthe fissionso that x(~,Et+E)is writtensimplyas

x(~,E), the probability that a particleproducedby fissionwill emergewith

energy,E.

3. InhomogeneousSourceExpansion. In a mannersimilarto thatused for

the scatteringsource,the inhomogeneous (or fixed) source Q(~,E,~) can be

represented as a finiteexpansionusingthe sphericalharmonicsRn(~)defined

in TableII. That is, we make the expansion

with

=1 o

This is a generalsphericalharmonicsexpressionfor the inhomogeneous

if we perform the same manipulations as in Appendix A, we can

programmableversionof this in the form

NMQ

Q(~,E,ii)=
x

(2R+ 1) Rn(~)6#~,E) ,

(36)

source;

write a

(37)
n=l

whereRn(~)are the same functions as in Appendix A, and NMQ is the total

number of spherical harmonics(andfixedsourcemoments)requiredfor a given

inhomogeneoussourceLegendre expansion order LQ as shown in Table I. The

index R is the subscript of the Legendre function P;(p) appearing in the

appropriate Rn(~), O ~ L ~ LQ. The Rn(~) are thus spherical harmonics

appropriate to the geometry being used,and the Qn(~,E)are the fixedsource

angularmomentscorrespondingto the Rn(ii). The Rn(~) for typical Legendre

expansionordersare listedin TableII.

Note that the Legendre expansion used for the scattering source is

independentof the Legendreexpansionorderusedfor the inhomogeneoussource.
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For example,onemightuse a P
3
scattering order but only a PO (isotropic)

expansionfor the inhomogeneoussource.

E. The AdjointEquation

Virtuallyall deterministictransportcodescan solveeitherthe forward,

or regular,transportequationdescribedpreviouslyor the adjoint transport

equation. The adjoint solutions,namelythe adjointfluxes,have the special

physicalsignificanceof the ‘importance”of particleswithinthe system being

solved. The solutions to the adjoint transport equation are used in

perturbation theory and variational calculations pertaining to nuclear
5systems. The adjointtime-independenttransportequationcorrespondingto Eq.

(6) iS

where the superscript + denotes the adjoint functions. In Eq. (38), the

adjoint source,S+(~,E,~),can be expressedsimilarlyto the regularsourcein

Eqs. (7)-(9), namely

I

with

S+(:,E,fi)= S:(~,E,~)+ Sj(:,E,d)+ Q+(~,E,;) , (39)

(40 )

(41 )

and Q+(~,E,~)representingthe adjoint inhomogeneous“source.”

With the sphericalharmonicsexpansiontechnique described previously,

the adjointsourcescan be written

(42)
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NMQ

Q+(:, E ,;) =
z

(2L + 1 )Rn(R)6~(F,E ) .

n=1

(43)

(44)

In these three equations,the sphericalharmonics,Rn(~),the adjointangular

fluxmoments,~’_(~,E),and the adjointfixedsourceangularmoments, a:(~,E),

are definedin themannerdescribedin Sec. D.

The completespecificationof the adjointproblemrequiresspecification

of boundaryconditionsfor the adjointparticleflux. The most commonboundary

conditionis the vacuum,or free surface,boundarycondition.For the regular
+

particle flux at a vacuum boundary, ro, @(~o,E,~) = O for all incoming

directions,thatis, for fic h < 0. The vacuum boundary condition for the

adjoint particle flux is @+(~o,E,ii)= O for all

is, for Z ● ; > 0.

III. NUMERICALDESCRIPTION

The numericaldescriptionof the transportof

discretizationof the independentvariablesof the

outgoing directions,that

neutralparticlesinvolves

transportequation. In the

following,we startfrom the linear Boltzmann equation as developed in the

previous section, and we considereachof the independentvariablesin turn.

The generalgoal is to writethe transportdescriptionin a numericalform that

can be efficiently solvedusingmoderncomputingtechniquesand machines. In

this section,we presentmethodsthat,in commonexperience,lead to the most

efficientand most easilyprogrammablecomputationalalgorithms.

To give a clear exposition of the methods used for discretization

purposes and to explicitly define the phase spacecells,it is necessaryto

particularizethe geometries.For nuclearreactoranalysis,methodsbasedupon

orthogonalgeometriesare themost common. In thisexpositionwe willrestrict

ourselvesto geometriesthat can be describedin one, two,or threedimensions
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using rectangular Cartesian or cylindrical coordinatesor in one dimension

usingsphericalcoordinatesas describedin the precedingsection.
*

The basic

reason that numericalmethodsare normailybasedupon orthogonalgeometriesis

that the spatialregionis readilyrepresentedin a rectangulardomain or its

three-dimensional generalization. As such, computationally simple

prescriptionsfor neutralparticlestravelingthrough the rectangular domain

can be established,and this permitsefficientprogrammingin codesbasedupon

suchmethods.

In the following,we treatthe discretizationof each of the independent

variables in turn. We start with the energy variable, then consider the

angular variables,and end with the spatialvariables. Our last consideration

in this section involves the solution of the resultant set of numerical

equationsby a sourceiterationtechnique.

A. The EnerzvVariable- The MultizrounMethod

Note in Eq. (6) thatthe energyvariableappearsonly on the sourceside

of the equationunderan integralover the entire energy range. On the left

side, it appears merely as a parameter. Therefore, themost commonlyused

discretizationmethodis the multigroupmethod,in which the energy domain is

partitioned intoG intervalsof widthE = AE
i3+ - Eg+~ g’g

= 1, 2, ““”,G. By

convention,increasingg representsdecreasingenergyso that El > Es > ● -c >

>E >“”*>E
‘g+ g+ G~” If we integrateEq. (6) overAE , us~g Eq~e (7) and

(8)and assumingfor the moment that scattering and fi~sion processes are

representedby a transfercrosssection,I(~,E’+E,~o~’), we obtain

g=l, ”””,G ,

(45)

*
Some nonorthogonaltriangularmesh methodsare basedupon the orthogonal(x,y)
or (r,z)geometries,and many of the followingconsiderationsapplyto themas
well.
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where

and

CDg(;,ii)

Qg(?,;) J dE Q(;,E,?) .

AE
g

(46)

(47)

(48)

(49)

Here the group flux @g(~,~)definedby Eq. (46) is no longera distributionin

energyor an averagein energybut is the totalflux of particlesin the energy

interval AE Therefore,
g“

energy integrals can be replacedwith the simple

sums. The definitionsof multigroup cross sections, for example, those in

Eq. (47), are formal definitionssincetheyrequireknowingthe particleflux

@(~,E,~) before they can be determined. Since the particle flux energy

distribution is unknown, suitable methods for employingweightingfunctions

thataccuratelyapproximatethe spectraldependenceof the flux are required.

Successful application of the multigroupmethodfor energydiscretizationin

transportcomputercodesdependson accurate determinationof the requisite

multigroup crosssections,and a greatdealof efforthas beendevotedto this

area.

We observe that, numerically, by use of the multigrouptreatmentthe

originaltransportequationhas beenreducedto a set of G equations coupled

through the source term. This suggests a conventionaliterativemethodof

solution;that is, one solvesEq. (45) a group at a time, assuming that the

source is known. The sourceis thenupdated,and the processis repeated. We

can representthisprocedureas follows:
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G

(50)

g’=1

wherek = O, 1, ● o* is an iterationindex.

Thus, oan initial guess, @
!3’

ge l,..., G, is made and the equations

solvedfor 01~> g = 1, ‘“”,G. With thisnew valueof Q, the rightside is re-

evaluated,allowinga new solution02 to be computed. This simpleprocedureis
f3*

repeateduntilconvergenceis obtained.

To further explain the iteration process, it is convenientto modify

Eq. (50) by expanding the transfer term into its fission and scattering

components. We will also separatethe scatteringsourceterm into ‘upscatterH

and ~downscatternportionswhereupscatteringdenotes scattering from lower

energiesto higherenergiesand converselyfor downscattering.We thenhave

gt=l41T

(51)

G

+ Qg(;,i) .

Thus, the downscatterprocessesare writtenat iterationk + 1 and the fission

and upscatter processes are written at iteration k because we start the

solutionof thissystemof equationsat the highestenergyand proceeddown the

groups. In this way, the downscattersourceis knownand utilized. We have

written the fission source in a separable form assuming that the fission

spectrum xg(~) does not dependupon the incidentneutronenergy. If it does,

*
We explainthe convergenceprocedurein detailin Sec. 111.D.
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we wouldhave a matrixx~g,(~),which would then appear under the summation

sign. (Most production computercodesdo not allowfor this,however.) The

iterativeproceduredescribedby Eq. (51)is known as the ‘source iteration”

method. It is almostuniversallyused in productioncodesfor time-independent

calculations.The solution of Eq. (51) beginning with energy group 1 and

proceeding successivelythroughenergygroupG constituteswhat is referredto

as an ‘outerWiteration. Note that in the absenceof fissionand upscatterthe

source iteration method requires only a singlepass,or outeriteration,to

effectthe exact,fullyconverged,solution.

To consider the classicalkeff eigenvalueproblemusingEq. (51),we set

the inhomogeneoussource,Qg(~,fi),to zeroand replaceXg(~) with Xg(~)/k~ff,
kwhere keff is the estimate of the valueof keff at the k-th iteration.This

k eigenvalueis most convenientlysolvedby a ‘power iteration technique
eff
whilethe outeriterationprocedureis beingeffected. That is, afterthe k-th

outeriteration,we definea parameterA‘+1 by

(52)

and then

kk+l ~k+lkk
eff = eff “ (53)

This procedurehas beenshown6to be unconditionallyconvergent for reactor

analysis-typeproblems. This meansthatfor any problem

and

lim kk
k-kn eff = ‘eff “

In computer code applications,
k+l

convergenceis definedwhen A differsfrom
-5unityby less thansomeuser-definedconvergencecriterion,say 10 .
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Thus, in summary, the multigroup discretizationof the energyvariable

leads to a natural iteration strategy in the solution computation of the

transport equation and puts the burden of accuracy on selection of the

multigroupcrosssections.

B. Discretizationof theAngularVariable

In thissection,we brieflydescribetwo discretizationtechniques for

the angular variable: the spherical harmonics method and the discrete

ordinates method. Discretization of the angular variable requires care

because, in general, it appears both in the discretizationof the streaming

operator (ii● ~) and under an angular integral in the source side of the

transportequation.

1. SphericalHarmonicsMethod. To describe the spherical harmonics

method7 for treating the angular variable,we use themultigroupformof the

Boltzmann transport equation with the source terms expanded in spherical

harmonics, as describedin Sec. 11.D. Withoutlossof generality,we use the

nonfissioning,inhomogeneoussourceequation. Using the generalized form of

Eqs. (34)

transport

6“

whereNM,

to be the

and (37) for the scattering and inhomogeneoussource terms,the

equationis written

t$g(;,i) + .xt,g(hog(wi)

GNM

(54)

NM

+
z

(2!2+

n=l

the numberof

same for both

sphericalharmonicsused in the expansions,is assumed

the scatteringand inhomogeneoussources. In Eq. (54),

as in Sec. 11.D,we have definedthe sphericalharmonic angular flux moments

i n g(~) and angularinhomogeneoussourcemoments~n g(;),respectively.Thus,

in’Eq.(54),the sourceside of the equationis expr~ssedin termsof spherical

harmonic flux and inhomogeneoussourcemoments,whereasthe left sideangular

dependenceis as yet unapproximated.The sphericalharmonicsmethod consists
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of also approximatingthe angularflux on the left side in termsof spherical

harmonics,namely

NM

C@i) =z (33+ 1)R@#) , (55)
n=1

where,as describedin Sec. 11.D,NM is the totalnumberof sphericalharmonics

requiredfor a givenexpansionorder,L, as shownin TableI.

InsertingEq. (55)intoEq. (54)and collectingtermsyields

NM

n=1
(56 )

G

-z IS,g,+g (hin,g(z)- iin,g(hl =o .

g’=1

To reduce this to a set of NM equations in the flux moments ~
n,g(:)’ ‘e

multiplythroughby Rm(~)and integrateover all ~. Using the orthogonalityof

the sphericalharmonicsRm(~),the resultis

G
(57 )

for 1 < m < NM. Note thatwe have beenunableto use the orthogonalty of the——
Rn(~) in the streaming term (firstterm)of Eq. (57)sincethe streamingterm

involves
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To write the streaming term in terms of the flux moments, we must invoke

identities for ;Rn(~) specific to the differentgeometriesof interest. For

our purposes, in three dimensions, the streaming term evaluation shows a

coupling of seven flux moments, whereas for two dimensionsfivemomentsare

coupled,and even for ordinaryone-dimensionalslabsand spheres,threemoments

are coupled.7,8 For modern machinearchitecture,suchan extensivecoupling

leadsto impracticalcomputationalalgorithmsfor the fluxes.

Therefore, thereare few production-orientedcodesthatemployspherical

harmonicsas an angulardiscretizationmethod. In the authors’ opinion, the

chief value of the spherical harmonics method is its role as a successful

methodfor treating~rayteffectsarisingfromdiscreteordinates,as discussed

below, and the fact that it is a generalizationof the extensively used

diffusionapproximation.

The diffusion approximation is derived from Eq. (57) by truncating

Eq. (55)at L = 1, whichwe writeas

wherethe scalarflux,

and the currentterm,

(58)

(59)

. (6o)

411

An evaluationof Eq. (57)with @g(;,;)givenby Eq. (58)yields the following

set of equations:

G

v“ jg(;) + ~t,g (hog(:) =z z
S,g’+g %!3’(:)+‘m ‘;) “ ‘6’a)gf=l
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G

+ Voog(:) + ~t,g (W&) =x ‘S,g’+g
(Wg,(;) + (iiIg(;) . (61b)

g’=1

To proceed,we make furtherapproximation.That is,

(62)

where

and 6 is the Diracdeltafunction.
13’g

With thiswe can solve Eq. (61b) for ~

to obtain

:g(;) = -Dg(;)V@) + 1 ~ tlg(~) ,
z
r,g(r)

where

and

(63)

(64)

(65)

CombiningEq. (63) withEq. (61 a), we obtainthe diffusionequation

G

g’ =1
(66)
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In its usual form for fission problems,the self-scatteringtermis movedto

the left sideof the equation and combined with the total cross section to

definea ‘removal~term,

(67)

In addition, it is usuallyassumedthatdlg(~)= O. From Eqs. (58)and (62),

one sees the mathematicalapproximationsneededto derivediffusiontheoryfrom

transport theory. Physically, it can be shown that diffusiontheoryis an

accurateapproximationto transport theory when the physical processes are

scattering or fissiondominated(smallcapturecrosssection);when themedium

is large (ZtL> 10, whereL is a characteristiclength);and when boundary or—
interfaceeffectsare unimportant.We note thatevenwhen all theseconditions

are not met, the diffusionapproximationcan stillbe invaluablein obtaining
*

inexpensivesolutionsto the transportequation.

2. Method of Discrete Ordinates. We have noted that except when

diffusion theory is accurate, the sphericalharmonicsdiscretizationof the

transportequationis impracticalfor arrivingat an efficient computational

algorithmfor moderncomputers.The angulardiscretizationmethodthat is most

usefuland is incorporatedin most production transport codes is that based

upon the method of discrete ordinates.9 In this method,a set of discrete

directionsfor ~ is chosen,and the transportequationis evaluated for these

directions by suitableaveragingprocesses.The choiceof theseordinatesis

not arbitrary;it seeksto satisfythe followingconditions:

1) physicalsymmetriesare preservedupon discretization;

2) the spherical harmonic moments are well approximated to provide

accuraterepresentationfor the sources;and

3) derivatives,with respect to the angular coordinates (in curved

geometries) resulting from the streaming operator, are simply

approximated.
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In geometriesof more thanone dimension,not all of the above conditions can

be met exactly with a single selection of a discreteordinatesset. Thus,

compromises are made, such as relaxing the complete physical symmetry

requirementso more sphericalharmonicsmomentscan be accuratelycalculatedor

so the angular derivative term remains a simple expression with minimum

coupling. These considerationsare discussedmore thoroughlyin Sec.IV.A.

For our purposesnow, we assumethatwe have an appropriatelychosen discrete

set of directions ~m with componentsurn,Vm, and &m, in the directionof the

unit vector ;m as shownin Figs.2, 3, and 4. Each discretedirection ~m can

be visualized as a pointon the surfaceof a unit spherewith whicha surface

areaw is associated.m Thesewm are calledthe weights. The combinationof a

set of discrete direction cosines togetherwith theirrespectiveweightsis

referredto as a ‘quadratureWset. Then,by integratingEq. (54) over ~ wem’
obtain the discrete ordinates form:

GNM

(68)

NM

+z (2E+ 1)Rn(;m)6n g(~) , m= 1, 2, ●00,M .
P

n=l

In Eq. (68) we have used the spherical harmonics expansion forms of the

scattering and inhomogeneoussources as described in Sec. 11.D with the

spherical harmonics evaluated at the discrete direction A We have alsom“
m g(;)asdefinedthe averageangularflux O
s

(69)
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with the weightdefined

w ~
f

dii .
m

;m

*
as

(70)

In addition,we haveused the notationfor the streamingterm,

(71)

This streamingtermhas beenleft in generalform since one needs to specify

the spatial geometry before the term can be evaluated. We illustratethe

considerationsnecessaryto evaluatethe streamingoperator by considering a

specificgeometry,(r,z)cylindrical.

For two-dimensional(r,z)cylindricalcoordinates,the streamingoperator

is givenby Eq. (19)(repeatedbelow),

(19)

The independentvariablesare definedin Sec. II. With this,Eq. (68)becomes,

uponmultiplyingthroughby r,

(72)

= rS
mjg(~) ‘

wherewe have expressedthe sourceon the rightsideas simplySm,g(~). We now

consider, in detail, the discrete ordinatesrepresentationof the streaming

termsin Eq. (72),recallingEq. (71).

*
See Sec. IV.A for a completediscussionon the choiceof weights.
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The firststreamingterm is readilyevaluatedas

and likewisethe thirdterm is writtenas

(73a)

(73b)

Thus, one assumes that for terms involvingspatialderivatives,the angular

flux can be takenas constantwithineachangularinterval. This assumptioniS

made to minimizethe angularcouplingbetweenthe discretedirections.

The secondstreamingterm represents the angular redistribution term

characteristicof curvilineargeometriesdiscussedin Sec. 11.B. Sinceangular

couplingis requiredto properlyrepresentthe discreteordinates form of the

angular redistributionterm,it is inaccurateto assumethatthe angularflux

is angularlyconstant for evaluating in this term. Accordingly, we allow
*4 -b

Og(r,ti)= @g(r,~,u)to varylinearlyover iimand define,with subscriptsm+l/2

and m-1/2,the angularflux at the

from our discussion in Sec. 11.B

only in the angleu shownin Figs.

discreteordinatespointson lines

edgesof an angularcell. Further,we note

thatangularredistributioninvolveschanges

3 and 5; it is thus convenient to choose

of constantCM on the unit sphereso thaton

any givenline,or ~ level,a changein angleinvolveschangingonly the angle

u (o <(l)<2T).* With theseconventions,then,we writethe discreteordinates

form of the angularredistributiontermas the generallinearform,

+

*
This is an example
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In Eq. (73c),theame are,as yet, undefined angular coupling coefficients

that are spatially and energy independent. To define these coupling

coefficients,we note that the analytic angular redistributionterm when

integratedoveru, with ~ held constant,yields

o

since q = O both when u = O and when u = 2n. By analogy,then,if we ‘inte-

grateflthe discretizedform of Eq. (73c) over all points on a given ~ level, we

requirethat

ML

m=1
(74)

= %#ML++,g(;) - a+o+,g(;)=0 ‘

where ML denotes the

tion (74)is satisfied

zero,thatis

number of discrete points on a given & level. Equa-

by requiringthe firstand lasta on each ~ level to be

. (75)

To determine the remaining valuesof the a couplingcoefficients,we observe

that in ‘everywhereconstant”particleflux,~(~,~) = C a constant, in which

~ “ ~0 = O; so usingEqs. (73a)-(73c),

wmpmC+ am~c -a m~c=o ‘

or

This recursion relation, together with the starting conditionof Eq. (75),

completelydeterminesthe valuesof the couplingcoefficientson each g level
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for a given set of discrete ordinatedirections.InsertingEqs. (73a)-(73c)

intoEq. (72)yieldsthe cylindrical(r,z)geometrydiscreteordinatesform

(77)

m m,g(:) “= w rS

No angular redistribution term occurs in Cartesian (x,y,z) geometry; the

angularlydiscretizedform of the multigroupequationis simply

(78)

m t,g(hm,g(a =wmsm,g(3 ,+w~

where~ is representedby the Cartesiancoordinatesx, y, and z.

We can now make severalobservationsaboutangulardiscretizationby the

discreteordinatesmethoddescribedabove.

The procedurefor generatinga discreteordinatesrepresentationof the

streaming operator is to specifythe geometryand to work froma conservative

form of the streaming operator in that geometry. Conservative, in this

context, means that if the streaming operator is integratedovera spatial

region,the resultingquantitiescan be interpreteddirectlyas the net leakage

of particles through the surfaces of the region. This conservativeform is

best because its use greatly enhances accuracy, in an integral sense, of

methodsbasedupon it. We presenta ratherextremeexampleof thispropertyin

the ‘rayeffectnsectionbelow.

Next, discrete directions and weights are selected,and the transport

operatoris evaluatedfor thesediscretedirections.With sucha selection of

discrete directions and weights, the streaming operator in the transport

equationis approximatedin a manner that yields minimal angular coupling,

simply expressed, and is thusamenableto efficientcalculationusingdigital

computers.
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Another feature normally associated with the basicdiscreteordinates

methodis that the sourceis expressedin termsof sphericalharmonics of the

angular flux. The reason is to save computer storage when evaluatingthe

sourcefor neutrontransport,whichis, in general,angularlydependent. The

angular dependence of this source in most reactor applications is due to

angulardependenceof the scatteringinteractions.In Sec. II, for isotropic

media, this angulardependenceis convenientlyand accuratelyrepresentedby a

Legendre expansion in the scattering angle as measured in the laboratory

coordinate system (the same system that particletransportis measuredin).

For eigenvaluecalculationsof reactorsystems,thisexpansioncan usually be

truncatedat L = O or L = 1, stillgivingan accuraterepresentation.For deep

penetration or shielding applications, it may be necessary to represent

scatteringup to L = 5 or L = 7. In TableI, page26, we presentthe numberof

flux momentsrequiredto computethe sourceup to a givenorder. In TableIII,

we show for comparisonthe numberof discretedirectionsin a typicaldiscrete

ordinates,or SN, quadrature.Becauseof accuracyconsiderations,the highest

Legendre expansion order is one less thanthe SN orderused,for example,S8

and P
7“

We see thatfor high-orderscattering,themaximum number of moments

required approaches the number of angles for the correspondingSN set.

However,in practicalapplicationsthe scatteringorder,L, is no larger than

5, or perhapsl’,and for, say, an S12 or S16 quadraturethe numberof Legendre

momentsis considerablyless than the numberof discreteangles. In the final

analysis,the determiningfactorto usinga Legendreexpansionof the sourceis

the flexibilityof the resultantcode. This flexibilityallowsone to minimize

theamount of data needed to computethe angle-dependentsourceas the user?s

accuracyrequirementsdictate.

Thus,havingmade the choiceof usinga sphericalharmonicrepresentation

of the source,we thensee the necessityof requirement 2) (page 39) on the

choice of the discrete ordinates. That is, oncewe have pickeda truncated

sphericalharmonics representationof the source, we seek to minimize any

additional error by restricting the discrete ordinates set to one that

integrates(byquadrature)the sphericalharmonicsexactlyup to the specified

order. How this is done is explainedin Sec. IV.A.
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TABLE III

NUMBEROF TYPICALDISCRETEORDINATES(SN)DIRECTIONS

Spatial Directions

‘2 ‘4 ‘6 ‘8 ’12— — ’16— —
2-D 4 12 24 40 84 144

3-D 8 24 48 80 168 288

Having chosendiscreteordinatesas the methodto discretizethe angular

variable,we offerthe followingobservationsupon its accuracyin two (and by

inference three) dimensions. In problems dominated by

reactoreigenvalueproblems,the discreteordinatesmethod

accurate in integral quantitiesthan is the corresponding

scattering,suchas

is generally more

sphericalharmonics

method.l”

—
These integralquantitiesincludethe eigenvalue,region-integrated

reaction rates, and leakages. A basicreasonfor this is thata conservative

form of the equation has been used, and the accuracy of the solution to

scattering problems depends upon suchconservation.A secondreasonis that

discrete ordinates methods are more compatible with the natural boundary

conditionsof the transportequationthanare the sphericalharmonicsmethods.

On the otherhand, in low scattering,high absorbingproblems or vacuum

regions far from the drivingsource,suchas are encounteredin many shielding

problems,the accuracyof discrete ordinates methods suffers from what are
11called ray effects. An extremeexamplecan be visualizedas a pointsource

radiatingintoa pureabsorber. The exactscalarfluxsolutionof the problem

is sphericallysymmetric.However,a discreteordinatessolutionwill exhibit

maximaand minimacorrespondingto the presenceor absenceof ordinatesin the

directions sampled. In Fig. 6 we showan S16, two-dimensional,(r,z)geometry

calculationof the scalarflux at the surfaceof a purelyabsorbingspherethat

is five mean free paths in radius with a point source at the origin. The

figure dramatically shows that ray effects dominate the solution at this

distance from the source. Despite the nonphysical peaks in the flux,the

averageflux over the surfaceis stillfairlyaccurate(4.59 x 10-5as compared

with 4.34 X 10-5 for the one-dimensionalspheresolutionshown). Thesepeaks

are causedby ray effects;thus,largepointwiseerrorscan be evident in the
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Fig. 6. Flux at the surfaceof an absorbingsphere
(anexampleof the ray effect).

flux. Use of the conservativeform of the transportleakageoperatorcauses

the accuracyin the averageflux. Anybodyinterestedin knowingaccuratelythe

flux pointwise has two alternatives. The first is to add more and more

ordinates(goto a higherSN order),or second,to invokeone of the remedies

that mitigate or eliminate the ray effects.10,11 Theselatterremedieshave

been shownto be computationallyvery expensive if they are effective; they

seek to add a source to the discrete ordinates equationsthatconvertsthe

solution to the spherical harmonic solution. The first remedy is

straightforward but can be expensive because computing time is directly

47



proportionalto the numberof ordinates.A variationon addingmore ordinates

is to add the ordinates where theyare most needed. For shieldingproblems,

thisgenerallymeans adding ordinates in the direction of particle travel.

Such ‘biasedMquadraturesare furtherdescribedin Sec. IV.A. It is generally

thoughtthatthe ray effect problem is still not satisfactorilysolved and

awaitsfurtherresearchand development.

I c. SpatialDiscretization

The final step in discretizing the transport equation involves the

spatialvariables.For illustrativepurposes,we continueour considerationof

(r,z) cylindrical geometry. Discrete spatial mesh cells are generatedby

partitioning,ther dimensionintoIT intervalssuch that

.

‘i-+ < r <‘i++ ‘ i= 1, 2, ●*=,IT

I and the z dimensionintoJT intervalssuchthat

‘J--k<z<‘j++ ‘ J=‘‘2’““”‘‘T“

The i,jmesh cell,with thisnomenclature,is shownin Fig.7. We also define

the widthof the i,j cellas

Ari - ri~‘i++ (79a)2

i,j+l/2
itl/2,j+l/2

~’+’’2’’+”2
idj

i -1/2, j

t Ii+ 1/2, j

i -1 /2, j-1/2 ~i+l/2,j- 1/2

i, j- 1/2

Fig. 7. Typicaltwo–dimensionalspatialdiscretization
mesh cell.
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and the height,Az., as
J

Az.
J
= Zj+

‘- ‘j+ “
(79b)

To generate the fully discretized, conservativeform of the multigroup,

discreteordinatestransport equation, we multiply Eq. (77) by 2mdrdz and

integrate over the i,j mesh cell. Consideringtheseoperationstermby term,

we firsthave

ff

a[ro m,g(r,z)l
2TTwmum &

Azj Ari

= WmUm[A.~ .@.1*,J l++,j,m,g

drdz

-A .@.i-+,Jl-+,j,m,g1,

wherewe have definedthe cell-edgeaverageangularflux

J

and the i-directioncell surfacearea

(8o)

(81)

(82)

The angularredistributiontermof Eq. (77)becomes,when integrated over the

i,j cell,

Jf [~m+@m+,g(r,z) - ~m+om+,g(r,z)12mdrdz

Azj Ari

= ‘~ j ‘+)i[am++oi,j,’n+,g-
s

Here we have definedthe cell-averaged

(83)

a lo.m= l,j,m-+,g1.

fluxas

@.
1

l,j,m+,g = ~ fJ @m&,g(r,z)2mrdrdz ,
1,J Azj Ari

(84)
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and havemade the commonapproximationthat

Az Ari
J

Also, the cellvolumeV+ ~ is

v. = -u 2nrdrdz= m(r2
1$J i++- r~+)Azj .

.

(85)

Az Ari
J

Note that the quantity (l/r)iin Eq. (83) is, as yet,unspecified.Beforeit

is determined,we considerthe last streaming term in Eq. (77), which when

integratedover the i,j cell is written

Ari Az
J

In Eq. (86), we have definedthej–directioncellsurfaceaverageflux

(86)

(87)

and we note thatthe j-directioncellsurfacearea is m[r2 - rf+l. With the1++
threetermsgivenin Eqs. (8o),(83), and (87), the fully discretized streaming

termsfor the i,jmesh cellare specified.To determinethe quantity(l/r)iin

Eq. (83), we formthe discretized streaming operator by summing Eqs. (8o),

(83), and (87) and consider the ‘everywhereconstant”angularfluxcase for

which~ ● ?0 - 0. By setting

‘i++,j(+)i. - ‘i+,jv.
1,J

all fluxesequaland usingEq. (76), we get

. (88)
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Returningto the last two termsof Eq. (77) and integrating Over the i,j

cell,we get

ff
m t g@m,g(r,z)2mrdrdz= wmXt i ~,g@i,j,m,gVi,jWE (89)

9 39
Ari Az.

J

and

[J m m g(Z)2mrdrdz= w SWs v.
9 m i,j,m,gl,j ‘

Ari Az.
J

(90)

where in Eq. (89)we have assumedthat E~ ~(~) is constantwithina givenmesh9
cell;@. and S. are the cell-average angular flux and source,

ltjtm,g l$j,m,g
respectively,definedsimilarlyto Eq. (84).

Thus, for (r,z)cylindricalcoordinates, the fully discretized multi-

group, discreteordinatestransportequationis writtenusingEqs. (8o),(83),

(86),(88),and (9o). In fact,for the standardgeometriesunderconsideration

for nuclear reactor analysis, the fully discretized discrete ordinates

transportequationcan be writtenin generalform as

Wm.Im(AIO. -Ai% l~,j,k,m,g i~”i~,j,k,m,g)AHjk

+ (A -Aii+ )i-+

_ ~m+$i,j,k,m-+$gx (a ~0. )AHjk
m% l,j,k,m~,g

(91a)

+ ‘mCmAcij(oij,k~,m g - ‘i j,k~,m,g)9 9 9

+w~ 0. v. =. w s . v.
m t,i,j,k,gl,j,k,m,gl,j,k m l,j,k,m,gl,j,k ‘

g= 1, ●S*, G; Ill= 1, ●o*, M; i = 1, ●.., 1; j = 1, ..., J; k = 1, ..., K;

the specific coefficients for each of the normal geometries are given in

TableIV.
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Geometry

1-D slab

1-Dcylinder

1-Dsphere

2-Dslab(x,Y)

2-Dcylinder(r,e)

2-Dcylinder(r,z)

3-Dslab(x,Y,z)

3-Dcylinder
(r,e,z)

A~+1/2

1

2“ri+l/2

4xr~+1,2

1

2nri+l/2

-i+llz

1

2~ri+l/2

TABLEIV

AREAANOVOLUMEELEMENTS

5!S
ABik

1 0

1 0

1 0

AY
j ‘%

Af3k o

2 2
‘j r(=i+l/2- ‘i-l/2)

“jUk ‘XIAzk

‘OkAzj
m(r~+1,2- r~_1,2)Aek

Ari

o

‘xiAyj

‘iaj

L&

AXL

r(r~+1,2- r~-1,2)

4r(rf+1,2- r~-1,2)/3

‘xiAyj

i?(rf+1,2- r~-1,2)Aek

2x(r21+1/2- rL-1/2)AzJ

AXiAY~AZk

2
~(r:+l/2 - ‘i-l/2‘AzjAek

NOTE: For2-Dcyllnders(r,z), nmand Cmshouldbe interchangedinEq. (91)forconsistencywiththe

notationusedthroughoutthischapter.

In writing Eq. (91a), we have startedfrom the conservativeform of the

transportoperatorin its discreteordinatesrepresentation[Eq. (77) for r,z

geometry]. We have then integratedovera spatialmesh celland, thus,have

deriveda spatiallydiscretizedformof the operator. Now, if we sumEq. (91a)

over angle,we obtain

(Ai~Ji@-,j,k,g
-A i~Ji~,j,k,g)AH.j,k

+ ABi,k(li,j++,k,g-I.l,j~,k,g
)

+ ACi j‘Ki,j,k@,g - ‘i j,k~,g)$ 9

+ (xTv)i.,J,k%,i,j,k,g
=s O,i,j,k,gvi,j,k‘

(91b)
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where

M

Ji~, j,k,g =z
w ~ 0.m m l+,j,k,m,g ‘

m=l

M

m=l

and

M

K
i,j,k~, g = x

w ~ Q.
m m 1,j,k~, m,g “

m=l

In thisangle-integratedbalanceequation, the first three terms are inter-

preted as leakageout of the i, j, k faces,respectively,of the spatialcell.

The fourthis the totalreactionrate,and lastare the sourcesinto the cell.

Thus, we consider Eq. (91a)to be a fundamentalequationfor all conservative

formsof spatialdifferencingof the transportequation,and we will refer to

it frequently. As we mentioned in the section on discrete ordinates,

satisfyingthe balanceequationhas a large impact upon the accuracy of the

transport solution for integral quantities such as system leakages,

eigenvalues,etc.

We note that Eq. (91a) is a singleequationfor a mesh cell,but there

are more dependentvariables(angularfluxes)thanone involved;that is, there

are more unknownsthanequations.For example,in (rjz)cylindricalgeometry,

Eq. (91) containsa totalof sevenfluxes,0. 0
l,jtm$g’

‘$.
i&,j,m,g’ l$j@9m$g’

and O
i,j,md,g”

Some of these are known from boundary conditionsand the

othersare establishedfromauxiliaryequations.Establishingtheseauxiliary

equations is the distinguishingfeature of the spatialdifferencingmethods

presentedin Sec. IV.B.

Finally, we observe that the designand performanceof sourceiteration

acceleration techniques are influenced by the choice of the spatial dis–

cretization method. For example,if we chooseto discretize

form of the streamingoperator,theniterationaccelerationby

renormalizing algorithm that seeks to force some integral

the conservative

a rebalancingor

balanceupon the
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solutionis a naturalthingto do. If one choosesa nonconservative

then a rebalancing method is not natural. Also, the discrete

representationof the streaming operator suggests a natural direction for

sweeping (solving) the mqsh.
*

Because this operator is firstorder, it is

algorithm,

ordinates

essentialfor algorithmstabilityto difference(discretize)the operator in

the direction of flow.

methodsfor invertingthe

Thus, it is very helpful

in the spatialmesh so a

result. This is rather

above.

This also leads to a simple, noniterativeclassof

matrix representationof the streaming operator.

for computationalefficiencyto minimizethe coupling

clear and efficient mesh sweeping algorithm will

simple to do for the orthogonalgeometriesdescribed

As a summary,we list the followingas desirableattributesfor a spatial

discretizationmethodfor transportproblems:

1)

2)

3)

4)

The method should be strictlyconservativefor purposesof accuracy

and sourceiterationacceleration.

The method should be accurate as comparedto the analyticsolution

for reasonablesizemeshes (<3 mfp).

The method shouldbe non-negative;positiveboundarydataand source

shouldyielda non-negativesolutionfor the angularflux in the cell

and at its outgoingboundaries.

The methodshouldyieldthe diffusionsolutionlimit[~(~,~)= On(;)

+ 3s ● J(~)] independent of spatial mesh size when the phys~cal

conditionsare appropriate.

The last attribute is important to accuracy and to the diffusionsynthetic

accelerationmethod,whichis describedbelow in the iteration acceleration

section. The non-negativerequirementhas a severeimpactupon simple,finite

difference(FD)or finite element (FE) types of methods. This requirement

seemsto be basicallyincompatiblewith the requirementof conservationand the

diffusionlimit;that is, invariablya linearFD or FE methodwith conservation

and the diffusionlimitis positiveonly for restrictedmesh sizes.

*
There is a second-order form of the discrete ordinates operator,the so-
called,even–parityform,whichis a diffusion-likeoperator. Methods based
upon this form are not in general use in reactoranalysis;therefore,they
will not be discussedfurtherhere. For more information,see Ref. 12.
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It may be desirable, becauseof the abovementionedincompatibility,to

relaxthe conservationcondition in favor of strict positivity in a simple

algorithm. For reactor analysis, the deep penetrationprobleminvolvedin

calculatingneutronand gammatransportthroughshieldsmay be sucha desirable

case. What is requiredmathematicallyfor acceptableaccuracyin thesemethods

is a within-groupscattering source that is small. In this case, leakage

effectsdominatethe sourcecontributionto the groupflux,and conservationis

not a strictrequirementfor accuracy. This becomesmore and more the case in

shielding problems as the number of energy groups employedin the analysis

increases. This has been pointed out by Sasamoto and Takeuchi 13 and

incorporated in the PALLAS codes,as discussedbelow. Thus, theapplication

can dictatethe formof spatialdiscretizationthat is desirableand neededfor

a swift,accuratesolution.

The diffusiontheory limit of requirement 4)

restrictionson spatialdiscretizationmethodsalso.

diamonddiscretizationmethodsin which it is assumed

@
i,m

= a@. + (1l~,m - a)~ia,m ,

(page 54) leads to some

For example,in weighted

that

(92)

for a * 1/2, the differenceequations that arise do not have the diffusion

limit.14 We discussthisand its importancein Sec. IV.B.

D. SourceIteration

In Sec. 111.A, we indicated the iteration procedure normallyused to

solvethemultigroupequationbecauseof the groupcouplingin the source. We

term this the outeriteration.In thissection,we treatthe normaliteration

procedureused to solvethe discreteordinatesequationsbecause of the angle

couplingin the source. We termthis the inneriteration.

The considerationsinvolvedin iteratingthe discreteordinates,within-

group source to some convergencecriterionis best explainedby referringto

the multigroup,discreteordinatesequation,writtenas
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(93)
NM

n=l

wherethe superscriptsk and k++ are iteration indexes, and S~ ~(~) is the
9

source-to-groupdefinedas

x (3
s .+m,g(;)eff 5 0

[v~fIg#o,gt(;)
g’=1

(94)
GNM

+ xx (2A+ 1) #~ g,+g(~)Rn(~m)ing,(~) .
9 9

g’=1 n=l
g’#g

We have used the spherical harmonics expansion forms for the source, as

describedin Sec. 11.D. Note thatwe have separatedout the within-group (or

self-scatter) source from the scattering-~rom-other-groupssource. The

scattering-from-other-groupsplus fission source (plus any inhomogeneous

source,if present)constitutesthe ‘sourceto group.”

We see fromEq. (93) that within each energy group g, the source, in

general, depends upon moments of the group g flux. In our remarkson the

solutionof the discreteordinatesflux on a spatialmesh,we indicatedthatwe

strive to make the streamingoperatorrepresentationon thatmesh as simpleas

possibleso the matrixrepresentationof the left side of Eq. (93) is easily

inverted withoutiteration.Becausethe rightside couplesall of the angular

fluxestogether,however,the equation is most easily solved by iteration,

which we have indicated by the superscript k. The iteration involves

determininga startingvaluefor @~=~(~),evaluatingthe sourcefor eachangle,

m, inverting the left-hand side ~f Eq. (93) upon the sourcefor eachangular

~’~(~),evaluatinga new valueof the sourceat k = 1 anddirectionto obtainQ
s

repeatinguntilconvergence.A typicalconvergencecriterionis

56

(95)



where c ~ ~(~) is the scalarflux foris a given convergencecriterionand 0°
in 9

groupg.

The procedure outlined above is the inner iteration or within-group

iteration.It was pointedout aboveby meansof Eq. (50)thatthereis alsoan

outeriterationinvolvedin sweepingthroughall the groups.

Two questionsarise in connection with the properties of this inner

iterationmethod: 1) Does it converge,and 2) if it doesconverge,what is the

convergencerate? It is straightforwardto show thatfor reactor-typeproblems

with positive cross sections the iteration procedureis convergent.For a

modelproblem(infinitemediumwith spatially constant cross sections), the

method converges such that the spectralradiusof convergence*for groupg of

the inneriterationsis

~o
<c = y-g ,‘E!– g t,g

(96)

wherephysicallyZ“
S,g+g~ ‘t,g;Cg

is the scatteringratioand, therefore,O <

<1.
—

Numericalexperiencefor the general,
cg–

nonmodelproblemsencounteredin

reactoranalysisalso confirmsEq. (96). The numberof iterations,p, required

for an order of magnitude reduction in the erroris relatedto the spectral

radiusas follows:

-1
p - logp “
-—

Therefore,as p approachesunity,the numberof iterationsrequiredapproaches

infinity; that is, the problem approachesnonconvergence.Becauseof this,

thereis good incentiveeitherto choose the group structure so that c for
!3

each groupis far fromunityor to findan efficientmethodof acceleratingthe

convergence.The latterapproachis detailedin Sec. IV.C.

A concurrent observation is that the convergencetestof Eq. (95)does

not mean that the solutionis convergentto sin of the infinitely converged,

truesolution. In fact,if convergenceis slow, (cg= 1), the convergencetest

*
The spectralradiusfor the convergenceof the outeriterationis discussedin
Sec. IV.D.
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of Eq. (95), eventhoughsatisfied,couldwell be ordersof magnitudeaway from

this trueconvergence.A fairlygood ruleof thumbis that,givenEq. (95) is

satisfied,then

(97)

This givesfurtherimpetusfor developingan effectiveaccelerationconvergence

methodbecausethenthe ‘falseconvergenceas embodiedin Eq. (97)when c is
g

closeto unitywillnot occur.

In summary,the transportequationis solved by discretizing the inde-

pendent variablessuch that the physicalcontentof the equationis maintained

whilea completelyefficientalgorithmfor machine computation is provided.

These considerationshave led us to choosea sourceiterationmethodbasedupon

discreteordinates.We see two levelsof sourceiteration:an inner iteration

for the within-group scatteringsourceand an outeriterationto convergethe

fissionand upscattersourcesand the associatedeigenvalueof the fissioning

system. The spatial discretizationis based upon a particle conservation

algorithmfor fission(orscattering)dominatedproblems. Further,the spatial

discretizationhas beencombinedwith themethodof discreteordinatesfor the

angularvariableto lead to a non–iterativemethodfor invertingthe streaming

operator matrix. In the next section,we presentsomeof the detailsinvolved

in makingselectionsof a discrete ordinates set, a spatial discretization

method,and a sourceiteration-accelerationmethod.

IV. NUMERICALDETAILSAND FEATURES

The previous section presented a general description of numerical

proceduresused in currentdeterministictransportcodes. In thissection, we

describe details and features relatedto transportcodesusing themethodof

discreteordinates.

A. AngularQuadraturefor DiscreteOrdinatesCodes

As previouslydiscussed,in the method of discrete ordinates, angular

fluxes representing suitableaveragesare evaluatedat discretedirectionsfim

havingcomponentsUrn,nm, and Gm, the directioncosinesof the unitvector,~m.
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Consequently, U: + q: + ~~ = 1. Each discretedirectionfimcan be visualized

as a pointon the surfaceof a unitspherewith which a surface area, w , is

associated.The,wmdenotethe weights. (Thecombinationof discretedire%tion

cosinesand theirrespectiveweightsis calleda quadratureset.) Clearly,the

sum of the weights must equal the area of the unit sphere. ChoosingM total

discretedirectionsand measuringangularareasin unitsof 4Tr,

M

x
w= 1.m

m=l
(98)

Considerablework has beendevotedto developingsuitablequadrature sets for

discrete ordinates codes.15-23 Althoughcharacterizedby the name ‘discrete

ordinatesmethodnand customarilyreferred to as simply the SN method, the

selection of a quadrature set to be used within the method is somewhat

arbitrary.Accordingly,two SN calculations,identicalin all respectsexcept

differingquadraturesets,may yielddifferingresults. For most problems,the

differencesare small,but the usershouldbe awareof the potential for non-

negligible differences. Below,we providesome detailsaboutquadraturesets

and differencesin treatingthe angularvariablewithinthe frameworkof the SN

method.

1. Types of Quadrature Sets. In the development or selection of a

quadrature set one must initiallyconsidernot only the numberand locationof

discrete

satisfy

Legendre

required

pointson the unit sphereof directions but also that the set must

certain mechanical integrationrequirements. For example,in the

expansionsof the sourcetermsin the transportequation, one may be

to calculatethe spherical-harmonicsangularflux moments

21T

@[(~,E)”= ~
f!

d~ d$ @(;,E,ii)Y; @,@) ,
*

-1 0

as definedin Eq. (29).

Usinga mechanicalquadrature in the discrete ordinates method, this

integralis replacedwith
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and one must be assuredthat the quadraturesum reproducesthe integral. Other

conditionsand requirementsexistas constraintson the quadratureset,but for

the presentit sufficesto considerthe integrationrequirements.

It is instructive to consider, in some detail, the generationof the

Gauss–Legendrequadratureset over the interval –1 < B < 1. Recall that in——
ordinary plane geometryand in one-dimensionalsphericalgeometrythe angular

variable,;, is definedsolelyby B sinceazimuthal($) invarianceis assumed.

Thus, in these geometriesthe discreteordinatesare simplyN discretevalues

of v in [-1,1]. Most usersare familiarwith numerical integration schemes

(trapezoidal,Simpson’s, etc.) in whichN-pointintegrationis equivalentto

approximating the integrand by a polynomial of degree N-1 . The Gauss

integration scheme has the extraordinaryproperty of exactlyintegratinga

polynomialof degree2N-1 usingonlyN points,called quadrature points. If

the interval of integration is [-1,11, the quadrature becomes the Gauss–

Legendre,or pN, quadrature,one frequentlyencounteredin discrete ordinates

codes. In some references,15,16theGauss-Legendrequadratureis referredto

- the PN-l quadrature.The subscriptN-1 refers to the fact that N points

define a polynomial of degree N-1. In this paper, the Gauss-Legendre

quadratureis denotedas the PN quadraturewhere N represents the number of

quadrature points in the interval [-1,1]. To derive the Gauss-Legendre

quadrature,consideran arbitrarypolynomialof degree2N-1, say g2N-l(V)$ ‘n

the B interval [-1,11. Now supposeanotherpolynomialof degreeN-1 exists,

say GN-l(V),that satisfiesthe followingconditionsin u & [-1,1]:

(i) (M ) = g2N-1(Pm) , m = 1, 2, ● ●•,N .‘N-1 m

1 1

(ii) $ I ‘N-1
(p) dp = :

J
g2N-@) dv .

-1 -1

From condition(i),g2N-l(U)can be expressedas
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t32n-1(1.1)=GN-lhd + f2N-l(u) ,

‘here‘zN-l(~) is a J)OlytlOIUial of degree2N-1 thatmust

Urn,m = 1, 2, ●-=,N. Becauseof this,f2N-l(v)can be

‘2N-1(u)= (V - lll)(P- 112)“““ (P- I@N-l (p) ,

vanishat each

writtenin the

‘here ‘N-1(u) is a POIYnOIIIialof degree N-1. Applying condition

Eqs. (99) and (100)requiresthat

1

(99)

valueof

form

(loo)

(ii) to

(101)

‘lnceg2N-1(~)is arbitrarY,so iS FN-l(P)~and Eq. (101) requires that each

Powerof u in FN-l(B)must vanishwhen integrated;that is,

1
1
T J (IJ- 1ll)(l.l- U2)● =o (p - ~)~kdp = O ,

=1

(102)

k = O, 1, ●=*,N-1 .

Observing that each I.Ikhas a polynomial of degree N as its coefficient,

Eq. (102)statesthat thiscoefficientpolynomialis orthogonalto polynomials

of lower degree over the interval [-1,11. The Legendrepolynomialssatisfy

thisorthogonalityproperty. Thus, if the interpolationor quadrature points

Pm are the zeros of the Legendre polynomials,pN(P),thenconditions(i)and
(ii)are satisfiedexactly. Now, with N quadrature points in [-1,1], any

polynomial of degree N-1 can be integratedexactlyby mechanicalquadrature,

that is,N uniquecoefficientsWm, calledquadratureweights,can be determined

such that

1 N
1
72! GN-l(d@ =z m N-l(Pm) “WG

-1 m=l
(103a)
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With conditions (i) and (ii), Eq. (103a) can be written in terms of the

polynomialof degree2N-1,namely

1 N
1
T f g2N-lbddV = E (Ilm),‘IIIg2N-l
-1 m=l

(103b)

so the polynomialof degree2N-1 is exactlyintegratedby an N-pointmechanical

quadratureknownas theGaussianquadrature.The weights, Wm, which satisfy

Eq. (103b), are called the Gauss quadratureweights;theseare determinedas

follows. Let the polynomialg
2N-l(V)be written

‘2N-1(v)= a. + alv + ● ● ● + ~-1 UN-l+ ● ● ● + a2N-1u~-’l , (104)

where the ak are arbitraryconstantsfor k = O, 1, ●=-,2N-1. SubstitutingEq.

(104)intoEq. (103b),performingthe integration,and matchingcoefficientsof

like ak for the firstN values

equationsfor the weights,Wm:

N

of k yieldsthe followingset of N simultaneous

9
m=l

N

m=l

N
1 E 2—.
3 WMPM s

m=l

.

.

.

m=1
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For a given N, with Vm being the zerosof theLegendrepolynomialPN(u),the

above equations can be used to determine the Gaussian weights, w Form“
example, if N = 2, there are two quadrature points, the zeros of P2(v)

(Ref.23),

1+ = -0.577 35 ,

P2 = 0.577 35 .

The weightsw, and W2 are thenfoundfrom the two simultaneousequations

1 =Wl +W2 ,

0 = BIW1 + U2W2 ,

whence,

=W
‘1 2 = 0“5 “

Note that the integrationform,

has been chosensuch that theGaussweightswill sum to unity (andnot to 2, as

in Ref. 24) as is customarily done in SN codes. Table V lists theGauss-

Legendrequadraturesets for typicalN. For ordinary plane geometry and for

one–dimensionalspheres,the subscriptN in SN denotesthe numberof quadrature

points,N, to be used.

In ordinary plane geometry where the angular variablefiis described

solelyby the variableU, discontinuitiesin the angular flux for p = O may

occurat spatialinterfaces.Sincethe standardGauss-Legendre,PN, quadrature

assumes continuous polynomial representations over the full range of

v c [-1,1], it cannot properly treatthe discontinuities.A quadratureset,

calledtheGauss-doubleLegendreset, permitstreatmentof discontinuitiesin
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TABLE V

GAUSS-LEGENDREINTEGRATIONQUADRATURESETS24

N = 2:

N - 4:

N = 8:

N - 10:

N = 12:

‘1 - -U2 = -0.57735 ‘1 = ‘2 “ 0“5

111. -V4 - -0.86114 ‘1=‘2 = 0.17393
112“ -lJ3- -0.339!38 ‘2=‘3= 0.32607

u,. -B6 - -0.93247
‘1 “ ‘6 = 0.08566

P2 . -~5 = -0.66121
‘2 “ ‘5 = 0.18038

‘3
. -V4= -0.23861 ‘3=‘4- 0.23396

P, . -y* = -0.96029
‘1 “ ‘8 = 0.05062

112= -V7 = -0.79667
‘2 “ ‘7 = 0.11119

113. -~6 . -0.52553
‘3 = ‘6

= 0.15685

V4 . -P5 = -0.18343 ‘4 “ ‘5 = 0.18134

111- -U,.- -0.97391 ‘1 = ‘lo = 0.03334

112. -P9 - -O.865O6 ‘2 = ‘9 - 0.07473

‘3
. -p8 = -0.67941 ‘3“‘8 -0.10954

V4. -V7 = -0.43340 ‘4=‘7 =0.13463

‘5
. -P6 --0.14887 ‘5-‘6 =0.14776

P, - -1112- -0.98156
‘1 - ’12 = 0.023s9

112= -111,- -0.90412
‘2 = ’11 = 0.05347

‘3= -PIO= -0.76990 ‘3=‘lo=0.08004
V4. -U9 = -0.58732 ‘4“‘9 =0.10158
115. -D8 = -0.36783 ‘5“‘8 -0.l16i’5
~6.-P7 =-0.12523 ‘6=‘7 =0.12457

the angular flux at B = O. The Gauss-doubleLegendre,or DPN, quadratureis

basedon work by Yvon25 and involvesapplicationof the Gauss-Legendremethod

to the two half ranges[-1,0]and [0,1]in p.

Some references15’16 use the notation DP(N/2)-l for the Gauss-double

Legendre quadrature. The subscript (N/2)-lrefersto the fact thatthe N/2

pointsin the half interval [-1,0] or [0,1] define a polynomial of degree

(N/2)-l within the half interval. In this paper,theGauss-doubleLegendre

quadratureis denoted as the DPN quadrature,where N represents the total

number of quadrature points in the full interval [-1,11. For the DPN

quadrature,theN valuesof p, orderedfrommost negativeto most positive,are

definedas
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(105)

where the V’ are the zerosof theLegendrepolynomialsP~,2(v’)orderedas in

‘ablev ‘ith ‘i < ‘> < ““0 < ~/2” ‘he ‘PN ‘eights’ ‘m’ are ‘elated ‘0 ‘he
correspondingweightsin the PN/2 q m, byuadrature,w’

Wf
mw N.— =

m 2 ‘N-m+l ‘ m = 1’ 2’ ““”’~ “ (lo6)

As an example,considerthe DPQ quadrature.From Eq. (105),the DPU quadrature

pointsuse theGauss-Legendrequadraturepointsfor N = 2. From TableV, for N

‘2, ~{ = -0.57735, U; = +0.57735, so thatEq. (105)gives

l+ = + (p; - 1) = -Uq = -0.78868 ,

=+ (v?lJ2 2 - 1) = -V3 = -0.21132 .

Since the weights, w;, for the Gauss-Legendre, N = 2, quadrature are
w? _ w?
1 2 = 0.5, Eq. (106) gives the DP~ quadrature weights w. = 0.25,

i-l, 9*-,4. Table VI lists DPN quadrature sets for N = 4, 6, 8: and 12.

The DpN quadrature is generally very good for ordinaryplanegeometryif the

overall thickness is small, that is, for thin slabs. In thin slabs, the

correct angular representationof the leakageflux is very importantand is

accomplishedby the DPN quadrature,whichpermits a discontinuouspolynomial

representation on each B half range. For thick slabs,however, the PN

quadrature is superior to the DPNq uadrature. This is because particles

traveling in the most outwarddirection(U = fl) are most likelyto leak from

the right and left faces of the slab, and the PNq uadrature sets have a

direction cosine closer to v = *1 than do the correspondingDPN sets;

therefore,the PN sets are more accurate. For spheres,the DPN quadratureset

shows no advantage over the PNq uadrature simply because angular flux

discontinuitiesdo not appear at spherical interfaces as they do at planar

interfaces.
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TABLE VI

DOUBLELEGENDRE DP~ . ~ ~N’8Qu~RATuRE ‘ETS
99$

N - 4:

N = 6:

N - 8:

N = 12:

111. -U4 = -0.78868

W2 . -U3 - -0.21132

l+ . -V6 = -0.88730

V2 . -U5 - -0.50000

‘3 “ -114= -0.11270

111. -p8 = -0.93057

IJ2= -P7 - -0.66999

‘3
. -p6 = -0.33001

114. -P5 w -0.06943

P, - -1112- -0.96623

112- -l+,= -0.83060

‘3 = -11,o- -0.61931

P4 . -Y9 - -0.38069

115. -~8 = -0.16940

~6 . -V7 - -0.03377

= 0.25w, =U25W3-W4

‘1 ‘W6 = 0.13889

‘2 “ ‘5
- 0.22222

‘3 “ ‘4
= 0.13889

‘1 “ ‘8
= 0.08696

‘2 - ‘7
= 0.16304

‘3=‘6
= 0.16304

‘4“‘5- 0.08696

‘1=’12=0.04283

‘2 - ’11 = 0.09019

‘3 - ‘lo
- 0.11698

‘4 “ ‘9 = 0.11698

‘5 “ ‘8
= 0.09019

‘6 “ ‘7 = 0.04283

Thus, evenin one-dimensionalgeometries,thereis no optimal or ~best~

quadrature set. This fact is further compoundedwhen geometriesotherthan

ordinaryplanesand one-dimensionalspheresare considered;thosecaseswill be

discussednext.

In general,discretedirectionsof particlemotion~m, are described by

the three direction cosines pm, ~ , and ~m. Only two of these three are
F2independent,of course,sinceB: + ~m + &m = 1. The weights associated with

the directions ~m sum to unity if the surface area on the unit directional

sphereis measuredin units of 4m, a convention used in most production S
N

codes. That is,Eq. (98) must be satisfied. In curvedgeometries,one or more

of the followingconditionsmust alsobe satisfiedto ensurethatno particles

are lostbecauseof angulardistribution:

M M M

z
Wy=o,mm E

Wll=o,mm z
Wmcm= o . (107)

m-1 m=l m=l
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That this is true is seenby integrating(summing)Eq. (76) over all directions

to get

M

x%+-a+=- ‘IIArl = 0 ‘

‘ince%+ =a+=0‘rem‘q” ’75)“
A further condition arises

diffusiontheorywhen the latteris

exactly a linear function of the

from requiring theSN methodto agreewith

applicable,namelywhen the angularflux is

direction cosines U, n, and ~. In this

circumstance,the angularparticlefluxat spacepoint~ and energyE is

&E,;) = ~ [a(~,E)+ b(~,E)p+ c(~,E)rl+ d(~,E)~] . (108)

In rectangularCartesiangeometry(x,y,z)coordinatesystem, for example, the

net or scalar particle currents in the x-, y-, and z-directions are,

respectively,

0 =1
(109)

and

Using the diffusioncondition,Eq. (108),and performingthe integrationsyield
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and

Jz(;,E) = ~ d(~,E) .

In otherwords,the diffusionconditionrequiresthat

2’lr1.-A. .

and similarly for n and C. Using the discrete ordinates counterpart

Eq. (110)yieldsthe diffusionconditionthat quadraturesetsmust satisfy,

to

M M M

z
Wmu:= ~ ,

z
2

3
WTI=L,mm 3 z

wm~:= ~ .
3

m=l m=l m=l

(111)

Equatfons(98), (107), and (111) compriseconstraintson the selectionOf

quadrature sets. A final,somewhatobvious,constrainton any quadratureset

is thatall quadratureweightsmust be non-negative.

Ensuring that physical symmetries are satisfied imposesfurthercon-

straintson quadraturesets. In otherwords,the direction mesh embodied in

the quadrature set must be made as computationallyinvariantas possiblewith

respect to the geometric orientation of the problem model. For example,

consider a rectangular parallelepipedsin Cartesian(x,Y,z)geometrywith one

face of the parallelepipedsdesignatedfaceA. It is desirable that the same

computational results be obtained independent of the orientation of

parallelepipedsrelativeto the (x,Y,z)or the (P,v,C)coordinateaxes,as shown

in Fig. 2. In otherwords,the angularflux at, say,a pointon faceA should

not dependon whether face A is oriented normal to and intersectedby the

positive x-axis (thus, the positive ~-axis) or is oriented normal to and

intersectedby the negativex-axis(thus,the negativep-axis). This requires

that a positivepm must be the same in magnitudeas the correspondingnegative

Urn;that is, pm must be antisymmetricrelativeto u = O. Similarly,the nm and

Em must be antisymmetricrelativeto theirorigins. In additionto invariance

with respectto this1800geometricrotation,thereshouldbe invariancewith

respect to any 90° geometric rotation so that for eachpm theremust be an
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identicalnm and an identicalem. Accordingly,in three-dimensionalCartesian

geometry, quadraturesetsshouldbe chosenso that the Vm, nm, and cm setsare

the same,witheach set symmetricaboutthe origin. Such quadrature sets are

said to be fully symmetric, and the quadraturepointson the surfaceof the

unit directionalspherelie on latitudesor levels. A typicalfully symmetric

quadrature arrangementis shownin Fig. 8. Note thatalonga ~-level,onlyu
22and q change,and, sinceP + n = 1 - C2, only one variable is independent.

Since two independentangularvariablesare requiredfor all geometriesother

than ordinary one-dimensionalplanes and spheres, this arrangement of

quadrature points on levelsleadsto a decidedcomputationaladvantagesince,

by sweeping along, say, E levels, a two-dimensional quadrature can be

programmed simply with a one-dimensionalprocedure. In one-dimensional

ordinaryplanesand spheres,the quadrature‘points,UPm, representsimply the

u levels (latitudes)of Fig. 8 with the azimuthalintegrationsalongeachu
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levelperformeda priori. For suchone-dimensionalgeometries,thereare only

N quadrature points (V levels)on the unitdirectionalsphere,whereasin all

othergeometries,thereare customarilyN(N + 2) quadraturepointson the unit

sphere. This N is the subscriptused in the termSN commonlyused to describe

the discreteordinatesscheme. It is important to note that, as described

here, N denotesa generalsymmetry-preservingarrangementof quadraturepoints

and not to any specific choice of quadrature values, for although the

requirements of Eqs. (98), (107), and (111),togetherwith the conditionof

full symmetry,are severe constraints, some degrees of freedom remain, and

particular additionalconditionscan be imposedto completethe specification

of a desiredquadratureset. It shouldbe emphasizedhere thatfullysymmetric

quadrature sets are not generallyrequiredexceptfor full three-dimensional

Cartesiangeometry. Relaxingof thisconstraintfor other geometries will be

discussed below. For the present,however,it is usefulto furtherconsider

the fullysymmetricquadraturearrangementas it is commonlyused.

With a fully symmetric SNq uadrature set, there are only N distinct

directioncosines(N differentlevels,or latitudes)even though there are as

many as N(N + 2) pointson the unit sphere. Further,becauseof the symmetry

requirement,thereare onlyN/2 distinctvaluesof the squareof the direction

cosines. This is readilyseen in Fig. 8 where,for N = 6, the valuesof v are

*ul,3W2, and *vS and becauseof the full-symmetrycondition,the values of ~

and & are taken from the sameset of valuesas thatusedfor the valuesof B.

Thus, it is necessaryto consideronlyone octantof the unit sphere (with V,

rl,and ~ all positive),as shownin Fig. 8, to fullydefinethe distributionof

directionson the fullunit sphere. The numberof quadraturepointsper octant

iS N(N + 2)/8. In Fig. 8, the quadraturepointsare arrangedin a triangular

patternoveran octantwithN/2 differentlevelson the octantand withN/2 - i

+ 1 quadrature points on the i
th level. With the concept of levels, a

quadraturepointcan be assignedthreelevelindices, say, i, j, and k, each

with respectto one of the polesof the unit sphere. Then,

i+j+k=;+z, (112)

and
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wherei = 1, 2, ●**, N/2 and j = 1, 2, ●*., N/2 - i + 1. The correlation

between the i and j (hence,the k) subscripts,whichrepresentan orderingof

directioncosine’levels,and the subscriptm, whichrepresentsthe numberingof

pointson the unit sphere,is arbitraryand can be made in any desiredmanner.

For a fullysymmetricquadratureset, then, Eqs. (112) and (113) yield

the relation

for i = 1, 2,

symmetryplaces

2(i-1)(1-3P~)

N-2 (114)

..., N/2. Equation (114)showsthe greatconstraintthatfull

on a quadratureset. The selectionof VI, whichmust be taken

in the range O < U; ~ 1/3, completelydeterminesthe remainingvaluesof Ui.

If p; lies closeto zero,the cosinestendto be clusterednear the endsof the

interval [0,1]whereasif V: lies closeto 1/3, the cosinesare clusterednear

the middleof [0,1]. The freedomof Gaussianquadratureis clearlymissing.

Even though for a fully symmetric quadrature set there is only one

independentvalueof the quadrature point direction, 2
v,, the values of the

weights associated with each pointmust be selectedto completethe specifi-

cation of the quadrature set. The full symmetry condition again places

constraints on the numberof independentpointweightssincethe weightsmust

alsobe invariantundergeometricrotations. For N = 2, that is, for an S2

quadrature, there is onlyone directionand weighton eachoctantof the unit

sphereand all weightsare the same to ensureinvarianceunder90° rotationsof

the (v,n,e)coordinatesystems. For N = 4, the pointweightsare againall the

same. Generally,for U < N < 12, thereare N/2 - 1 independentpoint weights.——
ForN> 12, the number of independentpointweightsgrowsrapidly. With the

independentvalueof v; and the (N/2)- 1 independentpointweights,there are

thus,at most,N/2 free conditionsthatmay be selectedto determinethe V; and

the pointweights. The diffusionconditionof Eq. (111)need not be chosen as

one of the conditions, for it can be shown17 that all fully symmetric

quadraturesetssatisfythiscondition.The conditionsmost commonlyused tend

to be variousformsof ~even-moment”conditions.For example,Table I of Ref.

16 presentsan even-momentquadratureset in which
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1 M
1
f

p2ndp= ~n ; , =
x

2*
T

Wm.lm ,

-1 m=l

(1 15)

for n = O, 1, 2, ●**, N/2 and M = N(N + 2)/8. Table VII lists this set for

N = 2, 4, 6, and 8. Anotherform of an even-momentquadratureis thatusedat

Oak RidgeNationalLaboratory,
26 in whichu 1s selected using the asymptotic

17
prescriptionof Lee,

TABLEVII

FULLYSYMMETRICQUADRATURESETS16SATISFYING
EVEN-MOMENTCONDITIONOF EQ. (115)

‘2:

‘4:

‘6:

‘8:

~ vi
—

1 0.577

1 0.350

2 h
3 0.868

1 0.266

2 111

3 P,
4 0.681

5 Vu

6 0.926

1 0.218

2 v,

3 v,
4 u,

5 0.577

6 115

7 115

8 0.786

9 ~8

10 0.951

a
ll,a

350

021

89o

636

508

181

218

350

796

190

0.577 350

‘3
P,

u,

~.6

114
Lll

P4

111
111

ho
~8

115

P,

V8

115

Y
)15

u,

u,

b
>

1.O

0.333 333

‘1

‘1

0.176 126
0.157 207

‘1

‘2

‘2

‘1

0.120 987 7

0.090 740 7

‘2

‘1

‘8
0.092 592 7

‘2

‘2

‘2

‘1

%alues providedfor principal

bPointweightesun to unityon

octantonly.

anoctantofthe unitsphere.
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.

1 T/ 2 M

(116):~dv ~ d,,kn’=~wm,:n:,
0 0 m=l

where n(p,$)= 1 - P2 COS$,M = N(N + 2)/8and k and 1 are’evenintegerssuch

thatk > !?and k + 1 < N. TableVIII liststhis set for N = 2, 4, 6, and 8.

Numerous other prescriptionsexistfor selectingV, and the weightsfor fully

symmetric quadrature sets. We note that there is no need to consider

satisfying ~odd-moment~conditionssincetheseare automaticallysatisfiedby

TABLEVIII

FULLYSYMMETRICQUADRATURESETS26 SATISFYING
EVEN-MOMENTCONDITIONOF EQ. (116)

‘6’

‘8:

i

‘2:
1

‘Q: ‘
2

3

1
2
3
4
5
6

1
2
3
4
5
6
7
B
9
10

aValuesforprincipal
bPointweightssum to

0.577 350

0.33333
u,

0.881 92

0.258 20

111

P,
0.683 13

11~
0.930 95

0.218 218

P,

P,

P,

0.577 350

IJ5

115
0.786 796

~&3
0.951 190

Ilia—

0.577 350

‘3
P,
v,

ho
U8

‘5
u,

P8

115

P,

%
u,

P,

octantonly.

unityonanoctantof theunitaphere.

b
‘1.

1.0

0.33333

‘1
‘1

0.166 67

‘1
w.
1

‘1

‘1

‘1

0.120988

0.090 741

‘2

‘1

‘2
0.0925 92

‘2

‘2

‘2

‘1
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fully symmetric (hence, odd function)sets. Thus, evenwith the constraints

imposedby fullsymmetry,degreesof freedomremain,and thereappearsto be no

single best fully symmetric quadrature set. Fortunately, the numerical

differencesin resultsobtainedfrom using different quadrature sets of the

sameSN ordernormallytendto be small.

As previouslystated,exceptfor three-dimensionalCartesian geometry,

fully symmetric quadrature sets are not required, and many of the above

constraintscan be relaxedto allowadditionaldegreesof freedomin specifying

the quadraturesets. Additionally,many geometriesdo not requiretreatmentof

the full unit sphere of directions. As has been described earlier, for

example,in one-dimensionalspheresand ordinaryplanegeometry,the quadrature

set needbe definedonlyover the u interval[-1,1],and the quadraturepoints

and weights correspond to P levels and theirweightswith no n or & levels.

Gauss-Legendreor double

geometries.

For one-dimensional

directional sphere need

Legendre quadrature are commonly used for these

cylindricalgeometry,only two octants of the unit

be consideredbecauseof the inherentsymmetriesin q

and C with sucha geometry. In otherwords,only the (U > 0, n > 0, ~ > O) and

the (B < 0, rl> 0, & > O) octants need be considered.Full symmetryis not

required, and the level point arrangement of Fig. 8 can be relaxed. For

example, quadrature points can be arrangedon g-levelsbut not on p- and ~-

levels. In suchgeometry,the pointarrangementshownin Fig. 9 might be used

in place of the fully symmetric arrangement of Fig. 8. For this one-

dimensionalcylindricalgeometrycase, then, one requires a quadrature only

over the n > 0, g > 0 quadrantof the unit sphere;that is,define

(117)

where u is the azimuthal angle as shown in Fig. 3 and B = 1 - cd Cosfl),

n-l - C* sinu. Then

1

(118)
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Lettingy =

1AT.—

a form that

Fig. 9. NonsymmetricS6 pointarrangement.

p/~, .q. (118) becomes

1hd~ dy
9

0 -1 1 - y2

suggestsusinga Gauss-Chebyshevquadrature

integration on each ~-level. The Gauss interpolation,

for a giveng-levelare the zerosof the Chebyshevpolynomials

TL(cosu)~ COS!?,(II,

whichsatisfythe orthogonalityrelation

1

~
{

O, !l*k
TL(Y)Tk(Y)(l - y2)~dy = m,R=k=O ,

-1 IT/2,k= k *O

(119)

for the y, or y, ~,

or quadrature,points

(120)

(121)
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wherey = COSU. Then, for a TL quadrature on a given ~-level, there are E

zerosof COS!?Ufor O < u < IT. Denotingthesezerosas Ui, we have——

The

The

the

quadraturepoints,
V~jt

alonga giveng-levelfor which& = E are
J

.,j = q COsui , f = 1, 2, ●**,E .

number of u quadraturepointson each ~-levelis arbitrary.For example,

samenumber of points can be kept on each ~-level such that for an S
N

quadrature, there are N/2 p valuesper octanton each E-1evelwith,perhaps,

N/2 c-levelsper octant. Alternatively,one couldchoosea differentnumberof

U-pointsfor each ~-level- say N/2 pointsper octanton the first~-level,N/2

- 1 pointsper octanton the second~-level, and so forth, with 1 point per

octanton ~-levelN/2.

For Chebyshevquadrature,the quadratureweightsof all pointson a given

~-levelare the same. The locationof the ~-levelsis alsoarbitrary,although

Eq. (118) suggestschoosingtheGauss-LegendrejPN, or double Legendre, Dp
N’

quadrature pointsfor the ~-levels. Ifs for exampleta pN quadratureiS used,
the ~-valuesare simplythe N/2 PN quadraturevalues,and the totalweight for

all points on a given C-1evel(thelevel-weight)is simplytheGauss-Legendre

weight. With pointweightsequalon each~-level,the pointweightson a given

~-level are simplythe level-weightdividedby the numberof pointson thatg-

level. Since for one-dimensionalcylinders only one quadrant of the unit

sphere need be considered,the pointand levelweightsare commonlynormalized

to sum to unityoverone quadrant. Table IX lists the PN(~)TN(u) quadrature

for an equal number of points on each c-levelfor N = 4, 6, and 8. In this

quadratureset,pN(5)refersto a Gauss-Legendrequadratureon theN/2 ~-levels

required, and TN refers to N Gauss-Chebyshevpointson each ~-level. TableX

liststhe PN(g)TN(p)quadraturefor a different number of points on each g–

level. In these sets, PN refers to Gauss-Legendrequadratureon the N/2 ~-

levelsand TN refersto N + 2 - 2j Gauss-Chebyshevpoints on the jth level,

J = 1, 2, ●O*,N/2.

For two-dimensional(r,z) cylindrical geometry, four octants (one

hemisphere)of the unit sphereof directionsmust be considered,specifically,
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N = 4:

N = 6:

N = 8:

TABLEIX

‘N(~)TN(P)QUADRATURE

i J—

12
22
11
21

13
23
33
12
22
32
11
21
31

14
24
34
44
1 3
23
33
43
12
22
32
42
11
21
31
41

—

EACH

u.
l,j

SETS - SAMEORDERTN SET ON
~-LEVEL”

fO.194 546 4
fo.46g 676 5
+0.359 887 9
fO.868 846 1

YO0093 498 0
*0.255 441 4
fO.348 939 4
+0.194 166 4
+o.530 472 5
tO.724 638 9
fo.251 342 6
*().686680 7
iO.938 023 3

*0.C)54431 0
+0.155 006 5
+0.231 983 6
*0.273 643 3
A0,117 916 3
*().335797 3
Ao.502 556 2
fo.592 805 4
+0.165 977 7
*0.472 664 4
AO.707 392 4
fO.834 426 2
Ao.191 78o 0
+0.546 143 2
+0.817 361 2
*0.964 143 2

aw.
l,j

0.086 963 7
0.086 963 7
0.163 036 3
0.163 036 3

0.028554 08
0.028554 08
0.028554 08
0.060126 93
0.060126 93
0.060126 93
0.077985 66
0.077985 66
0.077985 66

0.012 653 57
0.012 653 57
0.012 653 57
0.012 653 57
0.027 797 63
0.027 797 63
0.027 797 63
0.027 797 63
0.039 213 33
0.039 213 33
0.039 213 33
0.039 213 33
0.045 335 47
0.045 335 47
0.045 335 47
0.045 335 47

aPointweightssum to unityover a quadrantof

the hemispherein whichq > 0. Generally,for

0.861 136 3
0.861 136 3
0.339 981 0
0.339 981 0

0.932 469 5
0.932 469 5
0.932 469 5
0.661 209 4
0.661 209 4
0.661 209 4
0.238 619 2
0.238 619 2
0.238 619 2

0.960 289 9
0.960 289 9
0.960 289 9
0.9602899
0.796 666 5
0.796 666 5
0.796 666 5
0.796 666 5
0.525 532 4
0.525 532 4
0.525 532 4
0.525 532 4
0.183 434 6
0.183 434 6
0.183 434 6
0.183 434 6

the unit sphere.

this geometry quadrature sets

are selected from the fullysymmetric even-momentsetsgivenin TablesVII or

VIII. Alternatively,the PNTN sets of Tables IX or X can be used. In any

event, the point weights should be normalized to sum to unity over one

hemisphereof the unit sphere.
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TABLEX

P.,(c)T.,(N)QUADRATURESETS - DIFFERENTORDERT,,SET ON

N = 4:

N = 6:

N = 8:

i—

1
1
2

1
1
2
1
2
3

1
1
2
1
2
3
1
2
3
4

J

2
1
1

3
2
2
1
1
1

4
3
3
2
2
2
1
1
1
1

EACH ~-LEVEL16

P.1$J

~o.359 474 8
*0.359 887 9
ko.868 846 1

AO.255 441 4
AO.287 089 6
~o.693 o95 7
+0.251 342 6
*0.686 680 7
tO.938 023 3

tO.197 285 8
to.231 301 2
*0.558 410 3
*0.220 196 4
M.601 587 8
to.821 784 2
+0.191 780 0
*0.546 143 2
*0.817 361 2
+0.964 143 2

a
‘itj

0.173 927 4
0.163 036 3
0.163 036 3

0.O85 662 25
0.090 190 39
0.090 190 39
0.077 985 66
0.077 985 66
0.077 985 66

0.050 614 27
0.055 595 26
0.055 595 26
0.052 284 44
0.052 284 44
0.052 284 44
0.045 335 47
0.045 335 47
0.045 335 47
0.045 335 47

0.861 136 3
0.339 981 0
0.339 981 0

0.932 469 5
0.661 209 4
0.661 209 4
0.238 619 2
0.238 619 2
0.238 619 2

0.960 289 9
0.796 666 5
0.796 666 5
0.5255324
0.525 532 4
0.525 532 4
0.183 434 6
0.183 434 6
0.183 434 6
0.183 434 6

aPointweightssum to unityovera quadrantof the unit sphere.

In two-dimensional(x,y)geometry,the flux is symmetricin g, and only

the ~ > 0 hemisphere of the unit sphere need be considered. Eitherfully

symmetric quadrature sets of PN(6)TN(v) sets are satisfactory for this

geometry.

It must

situations.

be emphasizedthatthere is no optimal quadrature set for all

Differentgeometriesand differenttypesof problemsfor a given

geometry lend themselves to differing quadrature types, and for a

specific application one quadrature set might be better than another.

Generally,however,the even-moment,fullysymmetricquadraturesets are used

because of theirgeneralityand othersetsare reservedfor specialsituations

in whichtheyare more accurate. A quadrature set that integrates angular

moments properly is important if anisotropicscatteringis approximatedby a

sphericalharmonics(Legendrepolynomial)expansion,so that the polynomials
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will be integratedcorrectly. For example,if the angularflux is isotropic,

all the Legendremoments,exceptthe zeroth,must vanish;quadraturesets that

properlyintegratepolynomialsguaranteethiscondition.

No matter which quadrature set is used, problem solutions shouldbe

testedfor dependenceon the order of quadrature. This is not to say that

every problem should be calculated several times to test the effects of

quadraturesets and/orquadratureorder. It oftensufficesto performa series

of calculations on a problem typicalof the classof problemswithwhichthe

codeuser is involved. Largereactorswith largehomogeneousregionsare often

quite insensitive to quadratureorder. On the otherhand,smallreactorsand

reactors with local heterogenetiesare likely to be quite sensitive to

quadrature order. An exampleof the latteris shownin TableXI, in whichthe

multiplicationfactor,k is listed as a function of angular quadratureeff’
order for both the P

N
and DP quadraturesets.

N
The problemanalyzedfor this

table is a model of an experimentallycritical sphere of 93.71% enriched

uranium. The modelsphereis uniformand homogeneouswith a radiusof 8.75 cm

and consistsof the isotopesU-235and U-238with atom densities of 0.045009

x 1024
24

and 0.00S’021x 10 , respectively.For the analysis,40 equallyspaced

mesh intervalswere used for spatialdiscretization.Hansen-Roach
27

16 energy-

group, neutron cross sections were used. The table clearly shows the

sensitivityof the calculatedkeff to the orderof angularquadrature and the

lesser sensitivityto typeof quadrature.The resultsindicatethatan S48 or

higherquadratureorderis requiredto achievea fullyconverged(with respect

to quadrature order) valueof keff. The modelproblemused for TableXI is a

relativelyextremecasewith regardto its sensitivityto quadratureorder. It

is a small, high-leakagesystem (57.05% of the neutronsproducedleak from the

system)with the angularflux stronglypeaked in the outward-flowingdirec-

tions. This high degree of angularvariation- that is, anisotropy- in the

angularfluxrequiresa high-orderquadrature.Fortunately,most problems do

not display this level of sensitivity to quadratureorder,and a,low-order

quadrature,perhapsN = 4, 6, or 8, is commonly satisfactory. Even for the

sample problem used for TableXI, a low-orderquadraturecan be usedreliably

for parametricstudiesinvolvingpredicteddifferencescausedby

problem. For example, the spherical model problem of Table

performcalculationsto predictthe change In keff that would

changesin the

XI was used to

result if the
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TABLEXI

k~ff AS A FUNCTIONOF ANGULARQUADRATURE
ENRICHEDURANIUMSPHERE

ORDERFOR AN

AngularQuadratureOrder,N
Quadrature

Type 4 8 16 32 48

‘N 1.oo650 0.99993 0.99806 0.99755 0.99745

DPM 1.oo627 0.99922 0.99786 0.99750 0.99742

uranium enrichment was reduced from93.71%to 91.71%withno otherchangein

the problemspecifications.With Ak definedas keff (93.71%) - keff (91.71%),

all calculationsgave a Ak = 0.0104,independentof SN order. That is, evenan

S4 calculation,in whichthe individualvaluesof keffwerenearly1% in error

relative to the correspondingS48 valuesof keff gavevirtuallythe samevalue

of Ak as did all otherSN orders.

In any event,a personperformingdiscreteordinatescalculationsmust be

aware of and have a feeling for the effects of quadrature order on

calculationalresults.

2. SpecializedQuadrature Sets for Specific Applications. In many

applications, the space-energy dependent angularflux is anisotropicovera

reasonablysmallportionof the totalphasespace, and frequently the quali-

tativenatureof thisanisotropyis knownbeforehand.The applicationsof this

foreknowledgecan oftenbe used to tailorangular quadrature sets to be most

accurate in the phase space domainof flux anisotropyand to be less precise

over the remainder of the domain. Without such a use of specialized, or

tailored, quadrature sets, one is faced with using a detailed and precise

quadratureover the entirephasespace. The latterprocedure,of course,leads

to a much greatercomputationaleffort,much of whichmay be unnecessary.

Since the phasespacedomainordinarilyconsistsof the energy (group),

spatial, and angularvariables(neglectingthe timevariable),procedureshave

been developed for tailoring quadrature with respect to each of these

variables.

a. EnergyGroup-DependentQuadratureSets. The firstand easiest-to-use

manner in which quadraturesetscan be tailoredto specificproblemsinvolves
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the use of energygroup-dependentquadrature.Group–dependentquadrature is

appropriatewhen the angularflux is quiteanisotropicin somegroupsand less

so in other groups. One example of this is a spherical geometry problem

containing a localizedmonoenergeticsourcein a mediumwhich is effectivelya

pure ~absorberltfor sourceparticles;that is, most of the interactionsbetween

sourceparticlesand themediumare capturesor scatters–to-other-groups.Then

the angularflux for sourceparticleswill be highly anisotropic in that it

will be nonzeroonly for directionswith directioncosines(p)near unityaway

from the localizedsource. Low-energy group angular fluxes, however, are

likelyto be much less anisotropicsincethe sourcefor theseparticleswill be

becauseof scatteringfromothergroups and will, therefore, be distributed

throughout the medium. Using group–dependentquadrature,a high-order

quadrature can be used for the anisotropic groups, with a lower-order

quadraturefor the more isotropicgroups.

The energygroup-dependentquadraturecapabilityis easilyimplementedin

discrete ordinates computer codes with only a minor increase in computer

storagerequirements,and severalcurrentcodesprovidethisfeature.28,29

The effective use of group-dependentquadraturerequiresthat the user

have foreknowledgeof the energy-dependentflux anisotropy for the problem

being solved. It is also important that the user have knowledge,basedon

experience,of whichquadratureorderis adequatefor each energy group. In

practice, the group–dependent quadrature feature, with its potential for

significantreductionsin computationtime,is not widelyused.

b. Space-Dependent QuadratureSets. The secondmannerin whichquad-

rature sets can be tailored is to use different quadrature in different

spatial regions of the problem being solved. In some spatialregions,the

angularflux may be quiteanisotropic,for example, near control rods, and a

high order quadraturemightbe necessary. In otherregions,the angularflux

may be muchless,anisotropic,and a low-orderquadratureis adequate.

Only a few computer codes containthe space-dependentquadraturecapa-

bility(mostnotablythe DOT series of codes), for example, DOT-IV.28 The

implementationof a space-dependentquadraturecapabilityrequiresthat the

code containa translationalgorithmfor coupling the angular fluxes across

each boundary between regions of differingquadratureorder. This coupling

necessarilyintroducesa certaindegree of approximation into the solution.

Additionally, a computer run time penalty is incurredwith space-dependent
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quadraturebecauseof the requiredcouplingat interfacesbetweenregions with

differentquadratureorder. However,the use of space-dependentquadraturecan

be effectivewhen properlyapplied. The user is advised to acquire a good

working knowledge of the use of a space-dependentquadrature,however,before

attemptingto use thiscapabilityon productioncalculations.

c. Biased QuadratureSets. The finalform of tailoredquadraturesets

is the biased(asymmetric)quadrature,whichis designedfor problemsin which

the angular flux is known to vary rapidly over a reasonablysmallrangeof

angulardirections.For example,considerthe sphericalgeometryproblem with

a localized source in an effectivelypure-absorbingmediumfor source-energy

particles.At distancesfar removed from the source, the angular flux for

source-energy particles is nonzeroonly for a smallrangeof directionswith

directioncosines,B, nearunity. Anotherexampleinvolvesthe presence of a

penetration through an absorbingshieldin whichthe emergentangularflux of

particlesis highlypeakedin the directioncorrespondingto the streamingpath

throughthe penetration.

With biased,asymmetricquadraturesets,

closely clustered in the directional region

varyingand can be more looselyspacedover the

the quadrature points can be

where the flux is most rapidly

remainingdirectionswhere the

angular flux is varying less. With such an asymmetrical arrangement of

quadraturepoints,the freedomof geometricorientationinvarianceis lost,and

the quadrature set is intimatelytiedto a specificgeometricorientationof

the problem.

Biased quadrature sets can be formedin severalways. Perhapsthemost

consistentway was suggested by Cerbone and Lathrop30 in an analysis of a

spherical geometry localized sourceproblem,suchas thatusedas an example

above. Since the angularflux is highlyforwardpeakednearp = 1, that is, in

the most outgoingdirections,theydividedthe angularinterval-1 < u < 1 into——
two subintervals,-1 < u < 0.95 and 0.95~ u < 1.0. Modified directions and—
weights were obtained fromregularGauss-Legendresetsusingthe relationfor

Gaussianquadratureon an arbitraryinterval(a,b),namely

b-a
GM “ (~ ) pm + (*]
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and

‘m (b-aw= ~) Wm , (123)

wherethe Um and Wm are theGauss-Legendre,pN, quadraturepointsand weights,

respectively,on the interval(-1,1) (seeTableV, page64),and the ~m and ~m

are the corresponding,modifiedquadraturepointsand weights on the interval

(a,b). We note thatEqs. (122)and (12S)are thoseused to generatetheGauss-

double-Legendre,DPN, quadraturerelations of Eqs. (105) and (lo6) defined

previously. Cerboneand Lathropused a modifiedGauss-LegendreP,0 quadrature

over (-1,0.95)and a modifiedGauss-LegendreP6 quadrature over (0.95,1.0).

This procedure gives a total of 16 quadrature points over the full (-1,1)

interval but with 6 points clustered in the (0.95,1.0) interval. If an

ordinary Gauss-LegendreS16q uadraturehad beenused,therewouldstillhave

been 16 totalquadraturepointsin the interval(-1,1) but only one point in

the interval (0.95,1.0). An ordinaryGauss-LegendreS64 set wouldalsohave

given6 quadraturepointsin (0.95,1.0)but, of course,wouldhave used a total

of 64 points over the full interval. Using theirasymmetric’16 quadrature

set,Cerboneand Lathrop found that they could get comparable accuracy in

results as an ordinary S48 Gauss-Legendrequadraturebut in aboutone-fourth

the computingtime.

A different and somewhatless formalprocedurehas beendevelopedat Oak

Ridge National Laboratory (ORNL) for generating biased quadrature sets26

primarily for use in their DOT series of codes. These biased sets are

potentiallyusefulin (x,y)and (r,z)geometries.In the followingdescription

of these ORNL ‘standardWbiasedquadraturesets,theORNL notationof Ref. 26

is used in which,for (r$z)cylindricalgeometry,the n-directionis measured

along the z-axis of the cylinderso that their~- and g-axesare interchanged

relativeto thoseshownin Fig. 3.

The ORNL biased sets available in theirquadratureset libraryare the

100, 166,and 210 directiondownward-biasedsets and the 100, 166, and 210

direction upward-biased sets. Downward is used to denotedirectionsin the

negativen hemisphere.All of thesebiasedquadraturesets are modifications

of what are referred to as half-symmetricsets. In thesehalf-symmetricsets

the u and q quadrature values are chosen as the SIO Gauss-Legendre (PIO)

quadraturepointsshownin TableV. The ~ valuefor each P and q valueis then
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computed from g2 = 1 - 112- T12.Accordingly,the P and v valuesare symmetric

with one another,but theyare not symmetricwith the ~ values.

The ORNL IO&directionbiasedsetscontain65 directionsin the biasedq-

hemisphereof directionsand 35 directionsin the unbiased hemisphere. The

directionsin the unbiasedhemisphereare takenfrom the S1O half-symmetricset

previouslydescribed.Of the 35 directionsIn the unbiasedhemisphere,30 are

actual quadrature directions and 5 are startingdirectionswith zeroweight.

The directionsin the biased hemisphere are also chosen from the SIO half-

symmetric set with the followingmodification.The q-levelfor which lql is

the maximumand whichcontainsthreedirections(twosymmetric-in-pdirections

and one starting direction) is replaced by 11 new n-levels,eachcontaining

threedirections(twosymmetric-in-~directionsand one starting direction).

The 11 replacement levelsare simplythe 11 n-levelsfrom the one-dimensional

’96
Gauss-Legendrequadraturefor which lrllis largest. The procedureby which

the p values and theirweightson thesereplacementlevelsare selectedis not

specifiedin Ref. 26. This form of biasingprovidesclusteringof quadrature

pointsnear the lnl= 1 axis,whichcorrespondsto the z-axisin (r,z)geometry

or the y-axisin (x,Y)geometry. It is designed for problems in which the

angularflux is most stronglypeakedin directionsalongthe axes.

The ORNL 166-directionand 210-directionbiasedsetsare formedsimilarly

and willnot be discussedfurtherhere.

The ORNL biasedquadraturesetshavebeenused with apparent success in

shielding applications.Unfortunately,the procedureused for producingthese

biasedsets appearsto be somewhat‘ad hoc,~ and it is not at all clear how

other biased quadraturesets for two-or three-dimensionalapplicationscould

be generated.The followingoffersa consistentprocedurethatcan be used for

completely and consistentlyproducingbiasedquadraturesets. This procedure

appliesthe approachof Cerboneand Lathroppreviouslydescribedto the Gauss-

Legendre/Gauss-Chebyshev,PNTN, quadrature formulation discussed in Sec.

IV.A.1.

Consider,for example,the (r,z)cylindricalproblemin whichthe angular

flux is expectedto be rapidlyvaryingfor directionswith : near unity (see

Fig. 3) and is expectedto be less rapidlyvaryingfor otherdirections.This

correspondsto a case in whichparticlestreamingin the positive ~-direction

is expected. The angular interval -1 < & < 1 can be divided into two——
subintervals-1 < 5 < E“ and 50~ ~ < 1, whereG. iS SOIYEValUC2close to unity;
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for example, CO = 0.95. More than two subintervals can be selected, if

desired. Modified~-leveldirectionsand ~-level weights are then obtained

from regularGauss-Legendresetsusingthe relationsof Eqs. (122)and (123)to

achievea suitableclusteringof e-levelsnear the & = 1, or positivez, axis.

The distributionof (u,n)pointson eachmodified(biased)~-levelcan thenbe

chosenfroma suitableGauss-Chebyshevquadrature(seeTables IX and X), with

the advantage of having equal point weights on each ~-level. Thus, all

directionsand weightsare completelyand easilydetermined.

The use of biased quadrature sets can be quiteeffectivein providing

accuratedescriptionsof localizedangular flux anisotropics without severe

penalties in computationaltime or computerstorage. As statedrepeatedly,

however,the properand successfulapplication of biased quadrature sets to

transport problems requires an experienced user. Further, of course,any

biasedquadratureset shouldbe thoroughlyvalidatedbeforebeingused.

3. Starting Directions in QuadratureSets. In curvilineargeometries

whereangularredistributionoccurs, it is necessary to invoke an angular

differencing scheme. The diamonddifferenceapproximationin angleis almost

universallyused for angulardiscretization,as discussedin Sec. IV.B. With.
such a discretization,it is necessary to provide an initializingboundary

conditionfor the angularfluxeson

space. Zero-weighted starting

initializingboundary condition.

directions for which there is no

the ‘outerboundarynof angular direction

directions are frequently used for this

Starting directions are those inward

angularredistribution.In one-dimensional

spheres,thereis only one suchdirection,namelythe straight-indirectionfor

which u = -1; that is, angleu = 1800in Fig. 4. For thisstartingdirection

(1 - M<) is zero,and the angularredistributionterm in Eq. (22)vanishes. As

a result, the angularflux in the startingdirectioncan be computeddirectly,

as describedin the next section. For cylindrical geometries, there is one

starting direction for each ~-level(seeFig. 3) correspondingto directions

for whichq = O; that is, angle u = 1800, in which case the particles are

inwardly directed toward the cylindrical axis. For eachof thesestarting

directions,the angularflux can be computeddirectly.

These specialstartingdirectionsappearin quadraturesetsfor computer

codesthatrequirethem. The startingdirections are assigned a quadrature

weight of zero so that they do not contributeto any

means of quadrature. For example, in the preceding

angularintegrationby

discussion on biased
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quadraturesetsformulatedfor use in the DOT seriesof codes, the directions

in a particular quadrature set includebothnormalquadraturedirectionsand

zero-weightedstartingdirections.Quadraturesetsfor codesthatuse starting

directions thereforecontainmore data thanare in quadraturesets thatdo not

containstartingdirections.It is possibleto eliminatethe need for starting

directionsby usinga differentinitializingprocedure.One exampleis the use

of a step functionapproximationfor themost inwarddirectionon each ~-level.

This procedure has been used in the TWOTRAN code3’ and is describedbelow.

Studieshave shownthat the use of this step-startingprocedure results

virtually no loss in computationalaccuracywhencomparedwith computations

whichstartingdirectionsare used.32

in

in

B. SpatialDiscretizationMethods

In the numericaldescriptionsection,we presentedsome general, desir-

able features of spatial discretizationmethods for the discreteordinates

equations. In this section, we describe the commonly used spatial dis-

cretizationmethodsand comparetheirattributeswith thesedesirablefeatures.

We also coversomemethodsnot yet incorporatedintoproductioncodesbut which

have some desirable properties and are likely to be includedin production

codesin the near future. The methods we have chosen are the diamond and

weighteddiamond,lineardiscontinuous,linearnodal,and shortcharacteristics

❑ethods. The firstthreemethodsare based upon particle conservation; the

last is not a conservativemethodbut is strictlypositive.

1. Preliminaries.To displaythe spatialdiscretizationmethods, it is

necessary to specializeto a definitemesh-cellstructureand to a particular

discreteordinatescouplingscheme. In Fig. 10, we show the typicalmesh-cell

structure that will serve as the reference for all the two-dimensional,

orthogonalgeometry, spatial discretizationmethods that follow. We also

depict an angular direction and the assumed known boundary values on the

exteriorof the system‘seenMby thatdirection(indicatedby heavy lines in

Fig. 10). The common assumptions are made for the spatial discretization

methods.
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(i)

(ii)

(iii)

(iv)

(v)

Fig. 10. Typicalmesh for spatialdiscretization.

A regularrectangulargriddefinesmesh cells.

Cell-to-cellcommunicationis t~roughcelledgesor cellvertices.

The grid of cells is ‘swept,N starting from the boundary data

given on the exterior edges or vertices and marching in a

specifiedorderfromcell to cell.

For conservativedifferencingmethods,the basicunknownsare the

cell–averagedangularfluxesand the celledge fluxes.

The angular redistributionterm is treated the same in all the

conservativemethods.

To implement the last point, we take special care in curvilinear

geometriesto treatthe angular directions such that the spatial direction

solution methodscan be performeddirectly(noniteratively).The main ideais
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to recastthe equations and to eliminate one of the unknown fluxes in the

angular direction by a suitableapproximationrelatingthe cell-averagedflux

to the cell-edgeflux in the angulardirection.

We begin by writing the discretized(r,z)cylindricalgeometryequation

for energygroupg in the formof Eq. (91a):

I-&i~“i~,j,m - ‘i~”i~,j,m )Azj+ (Ai~ - Aia)

(124)

i =1, ===,1 ; j=l, =*”,J ; m=l, *=*,M ;

where

and we have dropped the energygroupsubscript,g, for simplicity.The first

approximation,whichis commonto all the following methods, is to make the

diamondapproximationin the angulardirection;that is, we assume

(125)

The cell-averagedflux is thus related to the angle–edge flux by a simple

linearrelationship. Combining Eqs. (124) and (125) yields the following

equation:

(126)
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where

am-i++ama
13m= ~ z .

m
(127)

AS can be seen from the form of Eq. (126),the diamond-in-angleapproximation

leadsto a simpleset of equationscoupled in m. That is, given a starting

value ~. for all i,j, Eq. (126) is solved, in some approximation,for
l,j,~

@i,j,l” Then,fromEq. (125),the @i j,+ term is evaluated for all i and j,

and this process is repeated for a’11angles. Recall that in two and three

dimensions,the anglesare on bandsor levelson the unit sphere. Thus, there
is a nstartingdirection?!at each & levelfor whichthe flux is assumedknown.

We thensweepthroughEq. (126)for eachangleon the & level,using Eq. (125)

to obtain the requisite angular boundary fluxes for the right side of

Eq. (127). This procedureis calledthe space-anglesweep.

The starting angular fluxes are obtained in one of two ways. In the

first, a special starting direction equation is written. To derive this

f2qUatiOn, we returnto Eq. (19)and note thatat w = 180°,q = O (see Fig. 3);

thus,the angularderivativetermvanishesfor thisparticulardirection that

passes through the axis of symmetryof the system. The streamingoperatorin

thiscase is simply

(128)

This is just the two-dimensionalslabstreamingoperator;hence, the starting

directionequationfor & on eachlevelis writtenas

up. 1--7,J,+)AZJ-Q. ~1++,j,+

+ (x v). .0.
t 1,J 1,j,+ = (S~V)ij , for all i,j .

s

(129)

The second method is called the step-start method. In thiscase,we

assume
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(130)

for each starting interval in angle (on each~ level). Thus,for the first

angularinterval,the discretizedtransportequationis

‘1 ‘Ai~@i~,j,l
)Azj- ‘i-+@i+,j,l

+ ‘l(Ai~ - ‘i~)Qi,j,lAzj
(131)

+ 5 AB (Q1 i i,j+,l -Q i j~,l ) + (Z V)t i,j”i,j,l = (Slv)i j ,
t 9

wherewe have usedas = -~lwlfromEqs. (75)and (76).

Equation(lsl)zis solvedfor 4i ~,1. Then,0. is determinedfromEq.
ltjs+

(130). Equation(126)is thenused t: solvefor the remainingangular fluxes

on the ~ level. The advantage of the step-start approach is that fewer

equationsneed to be solvedfor eachangularquadratureset thanwhen starting

directionsare used. The potentialdisadvantageis that the step–startis less

accurate than using Eq. (129) and diamond-in-angledifferencing for the

starting directions. Experience has shown, however, that for reactor

applicationsthe loss in accuracyis quitesmall.

2. The Diamond and Weighted DiamondSpatialDifferencingSchemes. We

now proceedfromEq. (126)with some commonmethods of spatial differencing.

We refer to Fig. 7, where for eachcell thereare fiveunknownangularfluxes

in two dimensions for a given energy group, Oi,j,m, Oi+~,j,m, @
i--k,j$m’

o
i,j~,m’ and ‘i,j+~,m”

[In curvilineargeometries,the additionalunknowns

Q
i$j$m~ and ‘i,j,m~

have been eliminatedthroughthe use of the diamond-in-

angle relationship of Eq. (125) together with the use of specialstarting

relationsfor m= 1/2.] Two of the five quantities are known from boundary

data, for example,4i~,j,m and Q. in the caseof ~m pointingupwardandl,j-_&,m
rightwardin Fig. 7. Equation(126)providesone equation for the remaining

three unknown fluxes. Thus, two more relationsare needed. In the weighted

diamondapproximation,theserelationsare obtained by specifying a general

linearrelationshipamongthe cell-edgeand cell-averagedquantities:
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4. = 0.5(1 + a
l,j,m i,j,m)ai~,j,in

+ 0.5(1- ai,j,m)oi~,j,in$

and

(132a)

a. = 0.5(1 + b
l,j,m i,j,m)o.1,j+,m

(132b)

+ 0.5(1 – bi j,~)oi,j-+,m ‘#

where

-1 < a. < 1 and -1 < b. < 1.— 1,j,m — l,j,m—

In general,the coefficientsa and b in Eqs. (132a)and (132b) are both

cell and angle dependent. Two methods,the diamonddifferencemethodand the

stepdifferencemethod,are specialcasesof Eq. (132):

(i) Diamonddifference:O=a i,j,m=b i,j,m ‘

cm
(ii) Step difference:ai j,m =

9 *’ bi,j,m=-~’ “

(133)

(134)

with Eqs. (lsza) and (132b), we can now solveEq. (126) for the cell-

averagedflux,0. and the outgoing boundary fluxes. Substituting and
l,j,m’

rearrangingleadsto the followingexpressionfor 0.l,j,m:

o
i.,j,m [- ‘Smv)l,j + 6m(Ai~ - ‘i~)Azj4i,j,tn~

(1- a)Ai + (1+ a)A
+ lllml

1A
I*a z Az.O

J IN,i

2AB1
+ Icml ~oIN,j 1

[1
(1-a)Ai + (1+a)A

+ Illm i
I*a *AzJ

+ ‘m(Al++ - ‘i-+)Azj

(135)

2A51

1
+ lcml~ + (~tv)i,j“
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In Eq. (135), we have suppressedthe subscriptson ai -,,m and bi,j,m; and in
~

the terms with 1 i a, one uses 1 + a for urn> 0 and 1 - a for um < 0.

Similarly,one uses 1 + b for cm > 0 and 1 - b for Cm < 0. Additionally, we

‘ave‘efined‘IN,ito be the incoming(known)angularflux @id
~,j,m

for pm > 0

and ‘i~,j,m for Urn< O; similarly,OIN,j is the incoming(known)angular flux

‘I’hUs, Eq. (135) gives the cell-averagedflux,and the remaining unknown

outgoing fluxes are determined from Eqs. (132a)and (132b). Theseoutgoing

fluxesare then used as incoming fluxes for the adjacent cells downstream

relative to the direction ~m so that the entire space-anglemesh can be

systematicallysweptand solved. We now discussthe quality of the solution

effectedby usingthe weighteddiamonddiscretizationmethod.

Experiencehas shownthat theweighteddiamondsolutionfor mesh cellsof

dimension Ar,Az converges O(Ar,Az)* in integral quantities as the mesh is

refined. The diamond method, however, converges O(Ar2,Az2) in integral

quantities.33 This latter property, along with its simplicityis why the

diamondmethodis the most frequentlyemployedspatialdifferencingmethod in

discrete ordinates computer codes. For large meshes (Ar,Az ~ 2 mean free

paths),thesemethodsdo not retainpositlvity,as is discussednext.

Equation (135)givesa positivevaluefor @i J,m for all valuesof a and

b in the range[-1,11for positiveincoming angul~r fluxes and for Positive

sources. However,the outgoingboundaryfluxes,as determinedfromEqs. (132a)
**

and (132b),are guaranteedpositive only for the step method, Eq. (134).

This can be shownby solvingEqs. (132a)and (132b)for the outgoingfluxesand

substitutingEq. (135)for the cell

the outgoingflux 0. is,l~,j,m with

averageflux. Thus,for urn< 0 and cm <

many subscripts,omittedfor simplicity:

o,

*
O(h,k) means to order h and k in each of the independent variables
respectively.

**
The step method is so inaccuratefor reasonablemesh sizes,however,thatit
is virtuallyneverused.
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Q. ~
[

= 2(SV)ij + B(AiQ-Ai~)Azj
l-, j s 2

x [20. - (1 + a)Oi~,jl1,j,m+

+ IPI[(l - a)Ai+ + (1 + a)Ai+]Azj@i+,j

(136 )

- (1 + a)(ZV)t i,j~i~,j 1
1[(1- a)Ai+ + (1 + a)Aia

+ (1 -a) Iul 1
~

Az.
-a J

2AB.
+ 13(A.I-A

I

ia)Azj + I&.1~ + (ZtV)i,j “lb

This expressionis negativefor (EtV)largeor when the mesh is highly skewed

so that @i+~,j ‘> 2oIN,j” Only for the step method (a = -1) is 0.l-~,j
guaranteedpositive.

There are two remediesfor dealingwithnegativeextrapolationsfrom the

weighted diamond method. In the first, we adjust the parameter in the

weighted diamond expression (a. or b~ j,m) so that the extrapolationis
l,j,m

positive. For example, upon examination &f Eq. (136), we can guarantee

positivity if the numerator is positive. One of severalpossibleways to do

this is to satisfythe followinginequality:

(1 + a~ j,m)~ (SmV)ij + 13m(Ai~- Aia)Azj@i,j,m%
s s

2AB.
+ 6m(Ai4-Aia)Azj + ICMI & + (Ev)

2 t i,j ‘i~,j,m “

(137)

Thus, using Eq. (137) with equality to define the weighting parameter in

Eq. (136) and in the extrapolationEq. (132), we obtaina positiveoutgoing

boundaryfluxfor the cell. In a way, thisis a fixupmethod;that is, thisis
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a nonlinear adjustment of the computationalalgorithmto assurea positive

solution.

A much simpler way to ensure non–negative fluxes is the set-to-zero

fixup. In thismethod,whidhis usedmost frequentlywith the diamond method

(a-b= O), whenan extrapolatedoutgoingboundaryflux is negative,we set it

to zeroand re-solvethe balanceEq. (126) for the cell-averagedflux. For

example, assumethat 0. ~ < 0, whereas0. >0 forpm< O and&m<O.l~,j,m l,j~,m
We thenset @i--&j,m= O, and fromEqs. (126)and (132b),

2ABi
+ IUmlAi~Azj@ia,j,m+ l~ml ~ ‘i,j~,m

(138)

)Azj● ~m + lvml(Ai~- Ai~

2ABi
+ IEml ~ + ‘Xtv)i,j “

We thenrecomputeOi,j~,m usingEqs. (138)and (132b);therefore, balance is

preserved. If 0. now happensto be negative,we set it to zeroand againl,j~,m
solveEq. (126)for the finalvalueof @i J,m.

If we go back to the desirable a~tributes of spatial discretization

schemesgivenin Sec. 111.C,we see that the motivationfor the negative flux

fixups is to ensure a positivesolution. The cost is thatwe have sacrificed

the diffusionlimitbecausethe onlyweighteddiamondmethodwith the diffusion

limit is the diamond-differencingmethod (a= b = O). Thus,any fixupscheme

used in the diamondmethoddestroysthe capabilityof the difference equations
*

to have the diffusion limit. Also, the diamond method is O(Ar2,Az2) in

integralquantitieswhereasthe weighteddiamondis O(Ar,Az). This means that

as the mesh is refined the diamond method is a great dealmore accuratein

integralquantitiesthanis the weighteddiamond. Therefore, any fixup also

*
This may not necessarilybe bad becausefixupis generallyrequired when the
localsystemis far from the diffusionregimeand not requiredwhen the system
is near the diffusionregions. Thus, the impact of fixup upon the diamond-
differencingmethodis usuallysmall.
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worsens this propertyof diamonddifferencing.Correspondingly,a methodthat

has the diffusionlimitis more accurate for large meshes in problems where

diffusiontheoryis an accurateapproximationto the transportproblem. As has

beenmentioned,thisoccursin many reactorapplications- thus, our emphasis

here on the diffusion limit. A more complete explanationof the diffusion

limitis givenin Ref. 14.

Anotherproblemwith the use of fixup is that it can have a destabilizing

effectupon iteration convergence. That is, fixup is a nonlinear process

dependent upon the local value of the flux,so oscillationsmay occurin the

pointwisevalueof the fluxthatwill preventcompleteconvergence.

In summary, the most useful weighted diamond spatial discretization

methodis the diamond-differencingmethod. It is simple, accurate for small

meshes,and has the diffusionlimit,all of whichaccountfor its popularityin

transportcodesdesignedfor nuclearanalysis. The need for fixup to ensure

positivityis a drawback. To overcomethis,an optionis to abandonthe simple

lineardifferencingschemeof the diamondor weighteddiamondmethodand to use

other spatialdifferencingmethodsthatmore closelyfulfillthe objectivesof

positivity,accuracy,and havingthe diffusionlimit. The next two methods to

be described have improved positivity and higher-orderaccuracyin integral

quantitiesrelativeto diamondor weighteddiamondmethodswhileretaining the

diffusionlimit.

The LinearDiscontinuousMethod. In the linear discontinuous (LD)

metho~;34 a linear functionin spaceis assumedto representthe angularflux

withina spatialmesh cellfor eachdirection,but the linear function in one

cell is not assumed to be continuous with the linear function used for an

adjacentcellat the commonboundarybetweenthe cells. This is in contrast

to the diamond method, which can be considered a linear-continuousmethod.

Usingour (r$z)cylindricalgeometry model as an example, we represent the

angularflux for the LD methodin the i,j cellas

()r-r i

()

z-z.
4m(r,z)= 0. + @ + JO

l,j,m Ar R,i,j,m Az Z,i,j,m ‘ (139)
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where

‘r =‘i++ - ‘i-+ ‘

‘z=‘J++- ‘J-$ ‘

4. = cell-averageflux ,
1SJ,m

‘R,i,j,m= r-momentof the flux ,

QZ,i,j,m = z-momentof the flux ,

‘i
= + (Zj+ + Zj+) .

To deriveequationsthatpreservethe spatialmomentsof the fluxas definedin

Eq. (139),we writethe transport equation in which the angular derivative

termshavebeen approximatedby diamonddifferencingas

a(rom) aa
Urn ar + (Bm- @@m(r$z) + ~mrQ + rxt(r,z)om(r,z)

az
(140)

m m~(r’z) “= rSm(r,z) + B @

The angular derivativeterm in Eq. (140)is similarlyrepresentedin cell i,j

as

(141a)
z-z.

+ J@
Az Z,m~,i,j ‘

and becauseof the diamonddifferencingin angle,one can show that

@R,i,j,m= 0.5(0 +’3R,i,j,m~ R,i,j,m~) (141b)
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and

oZ,i,j,m = 0.5(0Z,i,j,ma +0 Z,i,j,m~) “ (141c)

The procedure for deriving the requisite LD equations is to substitute

‘qs= (139), (141a), (141b),and (141c)intoEq. (140)and then integrateover

the mesh cellusingthe weighting factors 1, (r - ri)/Ar, and (z - zj)/Az,

respectively. This yields the following threeequations,whichwe call the

spatialmomentequationsof the transportequationfor cell i,j.

IJm(Ai.+@i+,j,m v i*,j,m)Az- Ai ~0

+ (13m- vm)(L 1 - A
1* i-+)”” ‘zl,j,m

(142)

+ &mABi(III. -Q
1sj++$m i j+,m) + (~V)9 t i,j”i,j,m

= (Smv)ij + f3m(Ai@- As i+)” ‘z ‘i,j,ma

[
Pm (r.1++ - r )A.i l~”i~, j,m + (r - r )A ~0.i 1Azi-~ i-~ 1*, j,m

()

r~ArAz
+ (13m- Pm)(A. ~ - A. )1* 1+ @

12;i R,i,j,m

- (f3m-
()

ArAz ~
Urn)(Ai~ - Ai4) _ i,j,m – ~ v. .0

2
12;i

m 1,J i,j,m (143)

w. .
+ cm+ (0R,i,j~, m -0 R,i,j~,m) + ‘Xtw)i,joR,i,j,m

()

riArAz
= ,(sR,mw)i,j - 13m(Ai~- Ai~) @

12;i R,i,j,ma

()

ArAz ~- ~m(Ai~ - Aia) —
12Fi i,j,m+ ‘
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Mm@ i++”Z, i++,j,m - Ai~”z,i~,j,m)Az

+ (8m- Pm)(Ai
++ - ‘i-+)Azoz,i, j ,m

+ (Xtv)i,j“Z, i,j,m

= (sZ,mv)i,j+ ‘m(Ai~ - ‘i~)Azo.Z,i,j,m* ‘

(144)

where some simplificationshave occurred in the angularderivativetermsof

Eqs. (143)and (144),

ABiAz

[

2 2

w. =—
‘i+ + ‘i+ - r2

1,J Ar 2 1i’ (145)

(146)

and SR ,m,i,j and SZ,m,i,j are the source spatial moments. Notice that

Eq. (142)is the sameas Eq. (126),the startingpointfor theweighteddiamond

method. This leadsto the followinginterpretationof the lineardiscontinuous

methodabove. Equations(143)and (144)replacethe simple weighted diamond

linearextrWOlatiOnEq. (132),witha much more elaborateset, to preservethe

firstspatialmomentsof the transportequation.

To proceed with the solution,we must approximatethemomentsappearing

in Eqs. (143)and (144). This is wherewe make the linearapproximation;that

is,

{

2(0i,j,m-a ~a,j,m) for urn< 0
QR,i,j,m- 2(0 ~ -a i j,m) for urn>0 ‘i~,j,m ,

(147)

{

2(0
ijjjm- ‘i,ja,m

) forgm< O
0Z,i,j,m= 2(0. -0l,j+-#,m ~ j,m) for Em> O ;

s
(148)
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we furtherassume

@R,i,j–~,m=@ R,i,j,m ‘

@Z,i–*,j,m= ‘Z,i,j,m “

(149)

(150)

Theseassumptionsare thensubstitutedintoEqs. (143)and (144)to producethe
followingfor pm < 0, ~m < O:

- Iuml[ri+ - ‘i) Aj,++@i++j,m

+ (r - ri+)Ai+Qi+,j,mlAzi

()

riArAz
+ 2(6m+ [Urn])(Ai+l~- Ai~)

12;i

x (0. -0l,j,m i~,j,m)- (13m- Bm)(Aia - Aid)
2

()ArAz ~ w. .
x—

i,j,m- ‘mvi,joi,j,m+ cm* @
12Fi R,i,j~,m

x (0i,j,m -0 i~,j,m) = ‘sR,mw)i,j- ‘m(Ai~ - ‘i+)

(151)

()riArAzx @
12Fi R,i,j,m~ ‘



(152)

-4- lvm[Ai+Oz,i+,j,m AZ + 21LImlAi+(’#’i,j,m i+,j,m)Az

+ 2Bm(Ai~ - Ai~)Az(@i,j,m - ‘i, j~, m)

+ 6Cm( @i ,~ ~,m - @i, j%, m - 2Qi ,j ,~ )AB i + 2( ~tv )i j
*

x (0. -0
1 ,J ~m i,j~,m) = ‘S.z,mv)i,j+ ‘m(Ai~ - ‘i*)Az

x@
Z,i,j,m~ “

Equations(151) and (152)can be solvedfor 0.
l+, j,m and @. in terms of1,j–~,m

@
i,j$m

and the known incomingboundarydataand sources,and substitutedinto

Eq. (142)to obtainthe cell-averagedflux,0. As is readily seen, this1,j,m”
procedure involves considerablymore computationalwork and storagethandoes

the weighteddiamondapproach. What is gained? The method has the diffusion

limit,it is more accurate,and it is

Thus,we list the advantagesof

diamondmethodas

somewhatmore positive.

the lineardiscontinuousmethod over the

a. More accuratefor smallmeshes;O(Ar3,Az3),in integralquantities;

b. Less negativefor largemeshes

urn XtAr
@ — —
i~,j,m + XtAras Urn + = ‘

c. Retainsthe diffusionlimit.

Its disadvantageis that it is computationallymore expensivein computertime

(factorof 2 to 3) and storage (factor of 3) than the diamond method for a

given mesh. Further, the linear discontinuousmethodis not fullypositive

and,hence,in general,requiressomesort of fixup. One can devise a fixup,

however,thatallowsthe methodto be positivewith a decreasein accuracy,yet

stillsatisfiesthe diffusionlimit.
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All things considered,in the authors’opiniona main overalladvantage

of the linear discontinuousmethod over the diamond method is the better

stability of the LD method on problems with large meshes. The stability

referredto here is in the potentialflux spatial oscillations from mesh to

mesh; they are much more damped in the LD method than thosethathavebeen

observedwith the diamondmethod. Therefore,for problemswithlargemesh (~ 3

m.f.p.),theLD methodis preferredover the diamondmethodfor reactorphysics

applications; its use with relatively large mesh cells is actually more

efficient thanthatof the diamondmethodon a mesh smallenoughto reducethe

spatialoscillationerror.

4. The Linear Nodal Method. The failure of the lineardiscontinuous

methodto be positivearisesfrom the linear representationof the flux and

source within a spatial mesh cell. For practicalmethods,the linearrepre-

sentationof the source [for example, Eq. (139) applied to the source] is

probably an essential limitation for all methods;however,it is relatively

straightforwardto relax the linear representationof the angular flux. A

variety of methods do this, but the most promisingcomputationallyoriented
35)36 We illustratethe method by startingmethodis the linearnodalmethod.

from Eq. (140) and developing two equations,the firstby integratingoverr

and the secondby integratingover z withinmesh cell i,j. This yields

=r? j,m(r) + em~j,m+(r) - Gmr(@j+,m(r)- ~j+,m)

(153)

(154)

- PmCrj,+@i.+,m‘z) - ‘~+”i+,m(z)] >
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where

‘J++
~,m(r)=i ! @m(r,z)dz , (155a)

‘j-+

Li++
z~,m(z) =J @m(r,z)rdr ,

rid
2

(155b)

with similar definitionsfor S
j,m andS. . The procedurenow is to represent

the sourceand the terms~j~,m(z), ~i~~~~r), &j,ma(r), ~i,m-~(z) as linear

functions and substitute into the rightsideof Eqs. (153)and (154). These

m j(r) and ~equationscan thenbe solvedfor ~ ~ m(z) analyticallyin terms of

these linear representations. B&cause the ~umber of unknowns exceedsthe

numberof equations,we use the firstspatialmoment equations and integrate

as ‘e did to obtain Eqs. (152) and (153). This set of equations,then,i9
sufficientto eliminatethe unknownsand to developthe entiresolutionfor the

i,j cell. The procedure is much the sameas the lineardiscontinuousmethod

exceptthatthe analyticsolutionis used in each direction. Thus, the cell

boundary fluxes are not extrapolatedbut are evaluated from an analytic

formula. In thisway, assuminga positiverepresentationof the boundary data

and the sources, the average outgoingcellboundaryfluxeswill be positive.

The detailsof thisdevelopmentfor (x,y)geometryare givenin Ref. 36, along

with an indicationof themethod’scomputationaleffectiveness.

The linearnodalmethodrequiresabouthalfagainas much computational

time as the LD method per mesh cellwith aboutthe samestoragerequirement.

It is more stablewith respectto spatial oscillationsand requires no flux

fixup. Thus, for problems with large spatial mesh cells,the linearnodal

method may be the method of choice over both the diamond and linear

discontinuousmethodsin two or threedimensions.

To illustratethe effectof spatialdifferencingmethods, we present a

simple, iron/water shielding test problem representing a shieldedreactor

system. This is a three energy group problem in (x,y) geometry with the

geometric arrangement shown in Fig. 11. The central 10-cm x 10-cmregion
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Fig. 11. Iron/watershieldingproblem.

containsa uniformsource,and the problemis symmetricin x and y. For energy

group three, the system is very large since the mean freepath in the iron

is about1 cm and in the waterregionsabout0.3 cm. TableXII showsa summary

of the calculationalresultsas a functionof spatialmesh size,whichvaries

for group3 from 15 mfp to 1 mfp. All calculationswere performedusing an S4

quadrature set. Also presented in Table XI are the calculated groupwise

leakagesfor the diamonddifference(DD),the linear discontinuous (LD), and

linear nodal (LN) methods,alongwithan indicationof the computationaltime

requiredon a CDC 7600 computer. The computerrun timesshownin the tableare

for comparison only. The calculationswere performedusinga prototypetest
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TAM.EXIX

12CWUATX2.?J21XLOING?2012.5217122ULTS

(C911varwloe Cri Mrloll - 10-5)

5.0

0.2

(1OX1O- ILM)

2.5

0.6

(2090 - MO)
1

1.0

3.5

(5060 - 23M)
1

0.5 I15.5

(1OOX1OO- 10 m) I,
I

0.333 . . .

38.9

(1502150 - 22 5@3)

00 I I LO
1 I

LU

I12TL2222GC
(s Krror)

orals. 1 Cmw 2 wow ~

2.337 2.864 37.39

(-51 .1) (53.6) (677.2)

Run
Tim
●in.

0.3

N2T L2AKACE
($ 2rr0r)

Croup 1 GCW 2 mom 1

4.407 2.750 8.557
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Run
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mtn.

0.6

M2T LUKACE
(S Error)

(-0.19 (-1 .27) (0.23)

4.115 2.612 13.60 I I 4.698 2.48, 4.636

1.2

(-14.0) (3.26) (182.7) -1.78 -1.35 -3.64

4.680 2.627 5.215 8.778 2.523 4.826

7.1

(-2.15) (*.45) (8.40) (-0.10) (0.32) (1 .56)

4.764 2.544
‘“MT I I ~.7a3 2.517 ,.,,6

I31.2

(-0.40) (1.15) (1.56) I (o) (0.02) (0.31)

4.776 2.526 4.640

(-0.15) (0.u) (0.60)

1.7

10.5

W3.6

4.783 2.527 &.901

(o) (0.48) (1.87)

4.783 2.520 4.856

(0) (0.20) (0.94)

4.783 2.517 4.834

(o) (0.28) (0.48)

code thatcontainedno iterationaccelerationmethods. Actualproduction-type

computer codes could be expected to performthe calculationsin perhapsone-

fifthof the timesindicatedin the table.)

The table shows clearlythatthe diamondmethodis inadequatefor large

mesh spacings,and the LD and LN methods are much more acceptable. The LN

methodgivesgood resultseven for the coarsestmesh.

It is generallyconcludedthatfor two-dimensionalreactorcore analysis

problems, the diamond method is the method of choicebecauseof efficiency

sincemesh sizesare generally~ 2 mfp. For shieldingapplications,however,

the diamond method is frequently inadequate or inefficientbecauseof the

necessityof refining the mesh to acceptable sizes, and here the LD or LN

methodis preferable.

5. The ShortCharacteristicMethod. We have outlinedsomemethods used

for spatial discretizationof the two-dimensional(rtz)transportequation.

The main thrust has been to enforce conservation of particles over a
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spatial mesh celland to obtainpositivityof solutionin ways thatrangefrom

the simpleto the elaborate.The enforcementof conservationis importantfor

eigenvalue problemsor for problemswith a highwithin-groupscatteringratio.

In thissection,we presenta brief summary of a method in current use that

does not use conservationwithin a mesh cell, but whichis computationally

simpleand strictlypositive. The envisioned application is for shielding

problems where scatteringneed not be accuratelyresolved. The methodis the

short characteristicmethod, which has been developed and implementedby

Takeuchiand Sasamoto37,38in the PALLASseriesof codes.

We referto Fig. 12 for the developmentof thismethodin (x,y)geometry.

Given the direction~m for cell i,j,we want to determinethe fluxat the point

D (thefluxesat pointsA, B, and C are knownfrom solutionsin the adjoining

downstream cells). We can formally write the solution of the transport

equationat pointD by integratingalongthe characteristic~m, which strikes

the incomingcellboundaryat pointE. That is,

where

t = the

E = the

S(t) = the

In this method,

of the valuesat

a

‘o

(156)

coordinatealong~m,

lengthof the trajectoryfrom pointE to D,

sourcedistributionalongt.

thevalueof the flux at E is obtainedby linearinterpolation

A andB. That is,

@(E,fim)= P@(A,;m)+ (1 - P)@(B,~m) , (157)

where

l.lm,nmare the direction cosines of ~ in the x and y directions,m
respectively,and h,k are the cellwidthand height,respectively.
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c 

Fig. 12.  (x ,y )  ce l l  used t o  describe  short   characterist ic method. 

We assume tha t   the   source  is known a t  each of t he   ve r t ex   po in t s  from the  
previous  iteration, and we assume linear  representation of the  source  along  the 
characterist ic  as 

Thus,  t h i s  solution method t rea ts   par t ic le   t ranspor t  from p o i n t  t o  point i n  the 
mesh us ing  intzrpolation  to  obtain  the  required  init ial  o r  incoming f l u x  values 
and the   sources .  The accuracy of t h i s  method when the  scat ter ing  ra t io  is 
small is limited by the number  of angular  directions, Qm,  and t h e   s i z e  of t he  
spa t ia l  mesh that governs  the  accuracy of the  interpolations. 

+ 

We emphasize  the  weakness of t h i s  s h o r t   c h a r a c t e r i s t i c  method:  no 
pa r t i c l e   ba l ance   equa t ion  w i t h i n  a c e l l ,  such  as  Eq. ( 1 2 6 ) ,  is sa t i s f ied .  
T h i s  res t r ic ts   e i ther   the  appl icabi l i ty  or accuracy of the method, and i t  seems 
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to be most applicableto shieldingproblems. Indeed,applying this method in

the reactor physics area has been most effective where no self-scatter

iterationis performed.The reasonis thateigenvaluesolutiontechniquesrely

on particle balance to obtainan accurateand efficientsolution. It is also

true thatfor eigenvalue(fission)problemsand problemswith high scattering,

the most effectiveiterationaccelerationmethodsrely on particleconservation

withina cellor a groupof cells. Thus,we list the advantagesof thismethod

as

1) positive,yet computationallysimple,

2) able to treat large absorbing regions well because it treatsthe

streamingoperatoranalytically,

3) flexiblein its abilityto treatcomplexgeometries.

We see the disadvantagesas

1) not accurateor efficientfor eigenvalueproblems,

2) low orderof accuracyfor stronglyfissioningor scatteringproblems.

6. Summary. The most commonly used spatiaidiscretizationmethodin

presentgeneral-purposetransportcodesis the diamond-differencingmethodwith

either set-to-zero fixup or some weighted diamondfixup. If relativelyfew

fixupsare used,thismethodhas most of the desirablepropertiesof a spatial

discretizationmethod for reactor physics applications.The more elaborate

methodsincorporatedintosomelimited-distributioncodes seek to address the

accuracy-positivityrequirementwhilepreservingthe otherdesirablequalities

of conservationand diffusionlimit. These more elaborate methods are also

useful when more accurate values of pointwisequantitieson a givenmesh are

required because these methods greatly reduce spatial flux oscillations.

Frequently such pointwise quantities can be obtained accurately with the

diamondmethodonly by use of an uneconomicalmesh refinement.The lastmethod

discussed, the short-characteristicmethod, is a good exampleof a special-

purpose,nonconservativediscretizationmethod. It is usefulfor some typesof

shielding problems where other methodsmay exhibitexcessiveinaccuraciesin

pointwisevaluesof the solution.
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c. Accelerationof the InnerIteration

In Sec. III, we described the source inner iteration procedure for

solving the transport equation. In the multigroupformulation,we note that

the convergenceof the inneriterationdependsupon the scattering ratio, c
J3’

for that group where c ~ZO
13 S,g+g%,g; for a modelproblem,one can show that

the spectral radius of convergence is the scattering ratio. When source

iteration is applied to the geometricallycomplex problems encounteredin

reactoranalysis,numericalexperienceshowsthat the spectral radius, p, of

flux convergenceis the highestscatteringratioof anymaterialregionin the

problemin eachgroup.

In the multigroup formulation of the transportproblem,the scattering

ratiofor the groupsdependsupon the numberand distribution of groups over

the energy range of solution. In general, themore groups,the smallerthe

scattering ratio for each group (because of the higher probability for

scattering out of the group). This is modifiedby the effectsof scattering

resonances in some groups or the use of a lfdump!!group in fast reactor

applications,whichcoversall energiesbelowa specifiedminimum. For a many

groupproblemin fast reactoranalysis(>20groups), unaccelerated iteration

for most of the groups may be satisfactoryfor convergence because the

scatteringratiois less than0.5, and it only takesaboutthreeiterationsto

reduce the error in the solution by an order of magnitude [see Eq. (95)].

However,sucha finegroupstructureseldcxnoccurs,so sincea spectralradius

of 0.8 requires 10 iterationsto reducethe errorin the solutionby an order

of magnitude, some form of iteration acceleration is usually needed for

efficient computationof the transportsolution. In thissection,we describe

threeiterationaccelerationmethods for the inner iteration: Chebyshev,

rebalance,and diffusionsynthetic.

1. Chebyshev Acceleration of the Inner Iteration. The Chebyshev

polynomial-basediteration accelerationmethod is a particularform of the

generalresidualpolynomialfamilyof methodsto acceleratethe convergenceof
6matrix iterativeproblems. Thesemethodsare verygeneral. They utilizethe

propertiesof the iterationmatrixitselfand thusare usuallystraightforward

to implement. We start our discussion with the discreteordinates,inner-

iterationequationfor energygroup,g, usingEq. (93)writtenas
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[ii “ ?0;’+(:)]+Xt ~(;)ok’+(;)m $ m,g

~,g,%(a[i:,g(;)]=X“

NM

(16o)

where the superscriptsk, k+ denotean iterationindex. In Eq. (160),we have

used the sphericalharmonicsexpansionformof Sec. 11.Dwith the self-scatter

(or within group) source separated out from the remainderof the scattering

source. Further,the self-scattersourcehas beenbroken into two parts, the

isotropicportionand the higher-orderportion.

The unacceleratediterationprocedureis to set the fluxmoments

and

(161a)

(161b)

m=l

for n > 1.

The Chebyshevpolynomial-basedaccelerationprocedure,as it is normally

implemented,assumes that the higher-moment scattering terms make a minor

contribution to the source convergencecomparedto the zeromomentisotropic

term. Hence,Eq. (161b)remainsthe same,but Eq. (161a)is modifiedto

(162)
m=l

- ~k-1
+ 13k(i:,g O,g) $
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where

2
a“ = — , B“ = o ,

2- ;

f3k= (1 - j) ak -,
9

k= 1,2, ● Ca ,

Y - cosh-l(~-1 ) , and
i

~ = an estimate of the spectral radius of the transport iteration

matrix.

The procedureinvolvedin Eq. (162)is a straightforwardapplication of

the Chebyshevmethodto a problemwherethe eigenvaluesof the iterationmatrix
—

lie in the range, O ~ p ~ ~. This application implies that the iteration

matrix is a positive definite matrix; that is, it has a largesteigenvalue

whoseeigenvectoris everywherepositive. This, in turn, implies that the

spatial differencing scheme as used in Eq. (160)sho@d be positive. These

restrictionscan be relaxed,but numericalexperiencehas indicated that the

Chebyshev method is applied most effectively to those problems where the

iterationmatrixis positivedefiniteand accelerationis important.

We also note that the Chebyshevmethoddependsupon the spectralradius

of the iteration matrix. This is estimated during the iteration process

itself in general-purposecodes. Normally, one takes a few (k~ 5) unac-
-kceleratediterationsand estimatesp 6,39in some suitable manner. Once the

Chebyshev extrapolation has begun, one can update the estimate of ~ by

continuingto

procedure is

is simply~~~

(i,j).

monitor~k and restartingtheChebyshev cycle. An alternative

to use the infinitemediumestimateof the spectralradius,which

Ci,j‘ ‘hereCi,j
is the scattering ratio in spatial mesh cell
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Thereare many code-dependentdetailsin the successfulimplementationof

the Chebyshev method, but these remarks shouldsufficeto displaythe basic

conceptand the potentialof this method for the acceleration of the inner

iteration of the discreteordinatestransportequation. Numericalexperience

has shown that the Chebyshev iteration procedure is stable and that it

generallyreducesthe numberof requirediterationsby a factorof two compared

with unaccelerated iteration; that is, the Chebyshev spectral radius is

approximatelyC2, wherec is the scatteringratio. However,when c is closeto

one,many iterationsare stillrequired,and it is wellworththe search for a

more effectiveaccelerationmethod.

2. Coarse Mesh Rebalance. In the previous method, we described a

general extrapolationprocedurebasedupon themathematicalpropertiesof the

iterationmatrix and its application to accelerate the convergence of an

iteration scheme. We now describean iteration-accelerationmethodbasedmore

upon the physicalcontentof the equations.This accelerationmethodis called

coarsemesh rebalance.

In solvingthe transportequation, we are usually concerned with ob-

taining angular moments of the flux,ratherthanthe angularflux itself,as

the primarysolution. In the iterativeprocedureof Eq. (160),we obtain,with

each successive iteration, improved estimates of the angular fluxes and,

consequently,of the angularfluxmoments. It is plausiblethat the accuracy

of these estimates would be improved if a balance on angular moments is

enforced at each stage of the iteration because this is what should be

occurring physically. For example,if we integrateEq. (160)spatiallyover

the entiresystemof interestand sum over the discrete ordinates, we obtain

the balancefor groupg,

(163)

where

J&+- J +k++z+
~oJ dr,

i3- S,g
6R

111



outward-pointingnormalto the systemexteriorsurface,

net currentat the exteriorsurface,

j
*k++= ~
g t g(h’f~(hd; ,

9 s

R

Ss; =
f

~o
s,g+g(~)Qg,g 3

R

sO,g = J ‘O,g(~)d;, the totalisotropicsourceto groupin the system,

R

R = the regionwithinthe system,

15R= the surfaceboundingR.

We now rebalance;that is, we bringEq. (163)intobalancewith the most
k+ by findinga

recentflux information,@ factorfk+l suchthat
m,g’

~k+l
+ Ab;+l= S. g ,

13 9

where

Abk+l-
g I

(Xtg - El g%)[Q:’_@f;+l] d: ,
J s 9

R

~k+l . ~k+~fk+l
&3 gg”

(164)

Thus,

(165)

is the appropriaterebalancefactor. It is then applied to the flux moments

before the sourceis computedfor the next iterate,and the iterationproceeds
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-k+1 -k 1 k+l
as usual. That is, On ~ = @n~fg . The procedure given

s s
(165) is called ‘whole systemrebalance.”It is a stable

of iterationacceleration.

This rebalance procedure is readilygeneralizedto

by Eqs. (164) and

(convergent)method

the situationwhere

balance is enforced on a spatial subset of the calculational grid. To

illustrate this procedure,we specializeto the spatiallydiscretizedform of

Eq. (160)on an orthogonal grid in two-dimensionalgeometrY. The spatial

subset is defined from the calculationalgridby takinga subsetof the grid

linesto form a coarsemesh,whichis thenitselfan orthogonalmesh (as shown

in Fig. 13). It is general practice and physically reasonable that all

material boundaries lie on coarse mesh lines. The coarse mesh can also

correspond to the original fine mesh. Again,the idea is to enforcebalance

only on the angle-integratedequation. Thus, startingfrom Eq. (160), we sum

over the angles to obtain for each group g (with the group subscript

suppressed,for simplicity),

@
+ (xv). .0t I,J O,i,j= ($gv)i jo:,i,j+ (Sov)ij ,

9 s

with the flows

(166)

(167a)

(167b)

(167c)
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Fig. 13. Typicalcoarsemesh arrangementfor rebalance.

(167d)

and the iterationindexk showsthe stateof the solution.

Now balanceis enforcedover each coarsemesh by defininga factor,fl ~,k+l

for eachcoarsemesh (I,J)suchthat Eq. (166) is exactly satisfied on t;at

coarse mesh.
k+l

An equation for the fl J is derivedfromEq. (166)by summing
9

over the coarsemesh and associatingthe appropriaterebalancefactorwith each

mesh. We obtain,for eachgroupg, the followingrebalanceequation:
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(168)

where

(169a)

z +
‘RI~,J = ‘I~, jJI~,j ‘

jCJ

(169b)

(169c)

i CI

i~I jeJ

‘o,I,J=~~so,i,jvi,j $

(169d)

(169e)*

(169f)

iEI jcJ

and 1,J denotesthe coarsemesh interval. Equation (168) has the form of a

standard fi,ve-pointdifferenceequationfor the rebalancefactorsf and, thus,

can be solvedby any of a numberof standardtechniques.Upon solutionof the

rebalanceequation,we definethe nextflux momentiteratefor Eq. (160)to be

(170)
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wherek is the iterationindex.

In practice,thiscoarsemesh rebalance

systemrebalanceof Eq. (165)becausebalance

cell rather thanjust for the wholesystem.

approachis betterthanthe whole

is enforcedat each coarse mesh

Thereare two remainingquestions

aboutthismethod: 1) how does the choice of the coarse mesh bear upon the

effectiveness of this acceleration?and 2) how does the choiceof the coarse

mesh bearupon the stabilityof themethod? The first question results from

the observation through numerical experiments that when it converges,this

methodis generallythe more effectivethe finerthe coarsemesh; that is, it

is most effectivewhen the fineand coarsemesh correspondto eachother. The

measureof effectivenesswe are usinghere is the rate of convergence of the

accelerated iteration;that is, if we assumethatthe convergencerateof the

unaccelerated iteration is c the maximum scattering.ratio, then themax’
accelerated iteration convergence rate can be characterizedas acmax’
O<a<l. Thus, themore effectivethe acceleratoris, the smallerthe value

of a. Question2), above,resultsfrom the observationthatas the coarsemesh

approachesthe sizeof the finemesh, in someproblemsthe accelerationis less

and less stable, and, in fact, can be unstabledependingon the sizeof the

finemesh and the kindof spatialdiscretizatiunused.40 It has been observed

that for high scatteringproblems(c=l)thisspatialsizelimitfor stability

is 1-2 mfp; thus, in a typical multigroup reactor analysis problem, it is

difficult to ensurestabilityby choosingthe coarsemesh to be the finemesh,

which,we maintain,is requiredfor maximumeffectiveness.The art of applying

the coarse mesh rebalanceaccelerationmethodis in choosinga rebalancemesh

coarse enough to ensure stability and fine enough to achieve good

effectiveness. This can be a very difficult,if not impossible,task in many

multigroupreactoranalysisproblems. However,numericalexperiencehas shown

thatfor stableapplicationsof coarsemesh rebalance,thisaccelerationmethod

is more effectivethan the Chebyshev approach with the exception of whole

systemrebalance.

Thus, we have presented two methods, one of which is stable but of

limited effectivenessand the other of varyingeffectivenessbut not always

stable. The next method goes a long way to ensure effectiveness while

remainingstablefor a wide rangeof problems.

3. The DiffusionSyntheticAccelerationMethod.41-43 In presentingthe

diffusion synthetic acceleration (DSA) method,we returntoEq. (160). The
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basicidea is somewhatlike that involvedin developingthe rebalance method;

that is, we seek to balance the zeroth angularmomentand the firstangular

momentof the transportequation. By doingthis, we can develop an equation

with some interestingproperties,and in the courseof thisdevelopment,we can

addressthe effectivenessand stabilityof the resultingaccelerationmethod.

As will be seen shortly,thisaccelerationmethodis basedupon the diffusion

equation, which is appealing because it is a valid approximation to the

transportequationin certainlimits. Theselimitsare expressedmathematically

by assuming that the angular flux is accurately represented by a linear

function of angle. Physically, this representationis validwithinlarge,

homogeneousregions(about2-3 mfp away frommaterialboundaries)and wherethe

scatteringratiois closeto one. It is preciselyin sucha situationthat the

sourceiterationof the transportequationis slowlyconvergent;hence, it is

reasonableto expectthata judiciousemploymentof the diffusionequationwill

aid the convergenceprocess.

First, we consider

take the firsttwo angular

simplicity;thisyields

Eq. (160) not difference on a spatialmesh, and we

momentswhile we drop the energy group index for

where

M

(171)

(172)

m=l

M

3(3 =E Wmimom

m=l
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I- the unitdiad.

M
+
‘1 = z Wm;msm(h

m=l

In the above, @O(~) is the scalar flux, ~(~) is the current,and ~(~) is a

tensor of a second angular moment quantities. As in rebalance and upon

examiningEqs. (171)and (172),we want the followingequationsto be satisfied

at each iterationfor eachgroup:

~ ● jk+l(;)+ Xt$+’(;) = 1:0;+’(;)+ s (;)o 9 (173)

+ Vo[+’(3 + v “ Py-%) + Zt:k+’ (;) = +#+l(;) + s,(;) , (174)

Notice that we do not insist that the quantity ~ be accelerated at the

iterationstep;instead,it retainsits unacceleratedvalue. We also note that

if the angularflux is a linearfunctionof angle,thenp iS zeroand is, thus,.
in somesense,a second-order correction term in our accelerationmethod.

Indeed, if ~ is zero, thenEqs. (173)and (174)can be used to determine@~+l
+k+l

and J in one iteration.However,we stressthatP neednot be zero or small.
to ensure the effectivenessof the acceleration.We combineEqso (172)and

(174)to eliIllinatePk+*and obtain.

(Zt- Z:)F+l(:)= - + !?$+’(:)+
k++ +

+ Voo (r)

X:[m - P(;)]

+ (Zt- 2)?%;) .

Substitutionof Eq. (175)intoEq. (173)now yields

(175)
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(176)

I

+V*{ > [~k(;)- w%] ,
tr

where

1
D=3xtr ‘

o
‘R = ‘t- ‘s,g+g “

The

Eq.

the

solutionof Eq. (176)thusreplacesEq. (161a)in the iterationsolutionof

(16o). Equation(176)has the form of the standarddiffusionequationwith

additionof two source correction terms on the right side. Also, this

equation can be solved with either the conventional diffusion boundary

conditions or with boundary conditions specifically tailored to yield a

solutionin one iterationif the transportsolutionis indeeda linearfunction
44of angle. For weaklyanisotropic scattering, the second correction term

involving the difference of currentsmakesa smallcontributionto the total
*

correction and thus is usually ignored. The first correction term is

essential, giving the necessary correction to diffusiontheoryso that,at

convergence,the solution to Eq. (176) will yield the same scalar flux as

obtained from Eq. (160). This is what makes this method an acceleration

method. By assumingthatthe secondcorrectionterm to the sourceon the right

side of Eq. (176) iS zero, we obtain the following ‘source correction

diffusionsyntheticequationfor inneriterationaccelerationfor each group,

&3:

*
If we retainthis term,thenthe J‘k+l fromEq. (175)can be used to accelerate
the P, scatteringtermof Eq. (166). However,in reactorapplications, this
is a rarelyneededcomplicationand is not includedin presentreactorphysics
codes.
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-v “
k+l +

D(;)VQO (r) +

= so(:)- [v ●

(Xt - z:,g+g)o;+’
(177)

where the group subscripthas been omittedfor simplicity.We alsonote that

if we replace the diffusion coefficientD(~), above, with the following

diagonaltensorwith components,

~k++ +
~ (r)

[~l::;= - 6
{
a=l, 2, 3

Vao:+% “B
f3=1,2,3 ‘

thenEq. (177)becomes

-v “ Qk++ k+l +
“ Vf$o (r) + XR(F)CI~+’(F)s so(~) .

(178)

(179)

This form is used for the homogeneouseigenvalueproblem,as will be seen in

the next section,and is designatedthe ‘diffusioncorrection scheme.42 The

scheme is nonlinear and,hence,not amenableto analysis. However,numerical

experience indicates that DSA methods based upon Eq. (179) have the same

performanceas thosebaseduponEq. (177). An attendantpracticalproblemwith

defininga diffusioncoefficientfromEq. (178)is that it can numerically go

negative or even infinite. A remedy has beendevisedto modifythe removal

term in thesecaseswhileusingthe conventionaldiffusion coefficient.This

preserves the homogeneous nature of the diffusionequation. The detailsof

thisprocedureare explainedin Ref. 42.

The advantageof Eq. (176)is thatone can do a stabilityanalysisfor a

model problem. The model problem is an infinite homogeneous medium in

Cartesian (x,Y,z) geometry;thus,the crosssectionsare constant,allowinga

Fourieranalysis. We rewriteour equationsfor thiscaseas
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-Dv2@k+l+
~ (r) + (1 - C)xto[+’ (F)

2 k+++ ++ +
=SO(~) - IDVOO (r)+7 ● J (r)

If we resolve@ by a Fourieranalysis,
43,45we write

k++
Lam

. Ak++ J;.:
m Iis -1 , -’=< a< - ,

and fromEq. (180)we obtain(withsourceset to zero)

We now substituteintoEq. (181)to obtain

~k+l (1 + DA2/Xt)P(A)- 1
U(A) — =

I Bk I C[ 1- c + DA2/Zt ] ‘

(181)

(182)

(183)

(184)

where

A= Ill ,
u(A)= the eigenvalueof the acceleratediterationas a function of the

parameterA,

M

x wm
p(A)=

m=, 1 + (; ● i/zt)* “
m

In terms of the spectral radius of convergenceof the iteration,~, we note

that

SUP
;0 = ~ P(~)c= SPectralradiusof the unacceleratediteration,
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and

SUP
i“ ~ u(A)= spectralradiusof the acceleratediteration.

In Fig. 14, plotsshow the iterationspectrau(A)/c and P(A) as functions of
.

A/Zt for isotropic scatter (X: = O). For the worst case with c = 1, the

unacceleratediterationis nonconvergent since it has a spectral radius of

unity; for the worst case with c = 1, the spectralradiusfor the diffusion

syntheticacceleratediterationhas a maximum value of 0.2237, so only six

iterations are required to reduce the errorin the calculatedfluxesby four

ordersof magnitude.

This is an impressiveacceleration,at leastfor themodelproblem. It

now remainsto see whetherthisholdsup for nonmodelproblemswherethe cross

U
:(n

Czu
.—
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c
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sections can changeby ordersof magnitudeas a functionof space. To address

this issue,we firstmust considerthe effectsof spatialdiscretization.This

is a very complicated considerationbecause the results depend upon the

discretizationchosen. We illustratethe conceptsinvolvedin deriving a DSA

equation for a discretized transport equation using a one-dimensional-slab

problem with diamond differencing. In this case, the relevant transport

equationsare (withangularand energygroupsubscriptssuppressed):

(185)

#-+ - 1 (ok+ , f++)
i ‘7 i- “+ “

Again,we takethe firsttwo angularmomentsof Eq. (185)to obtain

L,J. J.

~k+~- 1
O,i - ~ (00 i+

*

Jk~ - 1
i - ~ (Ji4 +

2

We again assume Eqs.

for the 02 term;thus,

(186)

(187)

Ji4) ● (189b)
2

(187) through(189)are satisfiedat iteratek+l except

the currentequationbecomes

(188)

(189a)
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(190)

We can combineEqs. (187)and (190)along with the diamond relationshipsby

firstaddingtwo adjacentcellsin Eq. (187),

(J
y+l - (J ~ + Ji%)k+’

i%j.+ ‘i+ i2

+ [(1- c)ZtAx]
k+1

i+l”o,i+l

+[(1-
k+l

C)XtAX]i@o,i

= (SoAx)i+l+ (SoAx)i ,

which,combinedwithEq. (190),leadsto our finalresult,

1

- W++l ‘“o$i+-$Jk+’
+* ‘“o$i++- ‘o,i-+k+’
++{[(1 - C) XtAX]i+l (o. ~a + o

92 (),i~)k+’

+ [(1 - c)XtAx]~(ooi+ + 00 id)k+’}
J 9 2

= ; [(SoAx)i+l+ (SoAx)i]

1 [Q )
k++

3[ ZtAxji+, O,i+ - ‘O,i+

+ “* ‘“o,i-l+- ‘O,i+)k+
1

(191)
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and

(192)

Equations (191) and (185), are the synthetic diffusionequationsunderthe

assumptionof diamonddifferencingof the spatialvariable in slab geometry.

Similar equations are derivablefor diamonddifferencingin othergeometries.

With otherspatial-differencingmethodssuchas lineardiscontinuous,a similar

line of reasoning leads to the appropriate equations in slab geometry.
43

However,it is not at all clear that a simple diffusion-likeacceleration

equationis possiblein more complexcases.

We now considerthe stabilityand effectivenessof the iterationembodied

in Eqs. (185) and (191). For constantcrosssections,we can againperforma

Fourieranalysisand obtainan expressionfor the spectralradiusof iteration.

We quotethe resulthereas

(P - 1)/P+ (4/3)(xtAx)2tan2 (AAx/2)
u(a)= pc ,

1 - c + (4/3)(ZtAx)2tan2 (AAx/2)

where

M

~[
wmp= 1!1 + 4(vm/xtAx)2tan2 (aAx/-2)

m=l

Ax = the spatialmesh size.

Since

‘:pdA) Eq. (184)= S:p (I)(A)
Eq. (193) ‘

(193)

the spectral radius for the continuous and discrete methods is the same,

independent of mesh size. Thus, for diamond differencing, iteratingwith

Eqs. (185)and (191)is very effectiveand stablewith respectto spatial mesh

size.
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This proofof stabilityis for the modelproblemonly. Naturally,since

one does not solve the model problem in practice,but problemsin whichthe

mesh and cross sections are not constant, one can question whether the

conclusions derived from the above analysis are valid for real problems.

Throughmany testsand numericalexperiments,it has been shown that for real

problems in which the boundary conditionshavebeenproperlyformulated,one
44obtainsthe abovestabilityand convergenceproperties. That is, one can

assume that about six iterations are required to reduce the errorby four

ordersof magnitude.

Equation (191) is used to acceleratethe diamond-differencedtransport

Eq. (185). However,negative flux fixup is frequently used in the diamond

solution of Eq. (185). If Eq. (191)is used as the accelerationequationwhen

fixupis employed,the DSA procedurewill not convergein the sensethat

m=l

A generallyacceptedway to remedythisis to modifythe diamondrelationships

of Eq. (189) to the fmns,

~k+l .Jk++
i i

(194a)

(194b)

Equation(194)is a generalizationof the diamondexpressionrelatingthe cell-

centered quantities to the cell-edge quantities and, in fact, reduces to

Eq. (189) when no fixupis used in solvingEq. (185). NOW, if Eqs. (194a) and

(194b) are used in combining Eqs. (187) and (188) to a singleequation,we

obtain
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I

where

#-+ - 1
i- k~ “

3(XtAx6 )i

(195)

Unfortunately,Eq. (195)has somedeficienciesthatadverselyimpactthe

accelerationprocedure. BecauseEq. (195)has a three-pointremoval term, it

is possibleto obtainnegativesolutions;however,(Eq. (185)withfixupalways

generatesnon-negativesolutions.This situationleads to instabilities that

are not easily corrected by some kind of codinglogic. To circumventthese

difficulties,one frequentlyresortsto convertingEq. (195) into an equation

with a one-pointremovaltermwhileretainingEqs. (194a)and (194b) to ensure

consistencybetweenthe transportand diffusionscalarfluxesupon convergence.

We writethesetwo equationsas
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k+l
3(ztix)i+1(“o,i+)

1 k+l
+ 3(XtAX) ‘“O,i+-$-‘(),i~)i

+ ; {[(1- c)ZtAx]i+l+ [(1– ~)ZtAx]}@k+l
i O,i~

= + [(S06X)i+1+ (SOAx)i]- 3(Z ~x)
t i+1 (00,i+ - “o,,+)k++

+
3(Z~AX) ‘“O,i~ - ‘(),i-l\2)k~i

- ; (Ji+3,2- Ji-1,2)k+1’2+ + {[(1- C)ZtAX]i+l

k~
+ [(1 - c)XtAx]i}@of~ - + {[(1– C)ZtAx]i+l@;~+l

92 9

+[(1 - c)ZtAx]iO;~} ,
9

or

1 k+1

3(EtAx)i+1‘“O,i@ - ‘O,i@)

(196)

where

(197)
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Equation(197),a nonlineardiffusion synthetic equation, cannot be mathe-

matically analyzedas to its stability,but numericalresultsindicatethat it

has the samestabilitypropertiesas Eq. (196). The stability properties of

Eq. (196)are mathematicallydeterminedassumingdiamonddifferencingusingthe

same procedureas thatleadingto Eq. (193)and do not applywhennegativeflux

fixup is used. Thus, the impactof usingdiamonddifferencingwith negative

flux fixupupon thisformulationof the diffusion accelerationmethod is to

introduce some nonlinear steps (steps that depend nonlinearly upon the

transportsolution)intothe solutionprocedure.Thesenonlinearsteps, along

with the nonlinearaspectsof the flux fixups,have been observedto limitthe

effectivenessof the acceleration,but stability is not impaired for the

reasonable size meshes encounteredin most reactoranalysis. Even with this

reducedaccelerationeffectivenessfor largemeshes,numericalexperience has

shown that the diffusion synthetic accelerationmethod is generally more

effectivethaneithercoarsemesh rebalanceor the Chebyshevmethod.

For general one- and two-dimensionalgeometry,it is convenientto use

the nonlinearform of the accelerationequation, as indicated in Eq. (197),

together with the relationship of Eq. (194). For two-dimensionalproblems,

this typeof procedureleadsto a five–point acceleration equation
42 rather

than a nine-point equation if a truly linear and consistentprocedurewere

followed. The advantageof the five-pointform is the ease and efficiency of

solutionand the availabilityof a largearsenalof diffusionequationsolution

methods. In the discussionof outer iteration methods presented next, note

that for the diffusion syntheticmethod,a largefractionof the computation

time in two-dimensionalproblems is spent solving the diffusion equation.

Thus, efficientmethodsare importantfor thispurpose.

D. Accelerationof the OuterIterations

In Sec. 111.A,we introducedthe conceptof sourceouteriterationin the

multigroupformulationof the transportequation. The relevant equation is

Eq. (51), in which two

the upscatter source.

determination when the

eigenvaluedetermination

sourceprocessesare iterated: the fissionsourceand

Also included is the possibility of eigenvalue

inhomogeneoussourceQg, g = 1, ● 00 G, is absent. The

doesnot pose an additionalproblembecauseit is done

during the source iterationprocessby the powermethod. This has come to be
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standardin reactoranalysiscodes,whetherbasedupon diffusion or transport

theory.

In thissection,we presentthreemethodsused in transporttheory codes

to accelerate the outer iteration procedure. These are based upon the

Chebyshev polynomial method, the coarse mesh rebalance method, and the

diffusion accelerationmethod. In thispresentation,we willnot go intomuch

detail but will outline each of the methods and leave the details to the

references.

1. Chebyshev Polynomial-BasedOuter Iteration Acceleration.
45 In

transport theory,the significantouteriterationprocessesare on the fission

sourceand the upscattersourcein themultigroupapproximations.If we ignore

upscatter for this discussion and concentrate on the fission problem,the

Chebyshevmethodcan be used effectivelyfor the outer iterations. We write

this problemfrom the transportequationas

(198)
G

g’=1

wherek is an iterationindex.

In Eq. (198),we have assumedthatwe have convergedthe inner iteration

process to the k+l/2 iterate in the scatteringterms. We have alsoassumed,

for convenience,isotropicprocessesin the scattering term although this is

not necessary. If we definethe fissionsourceas

G

and for the next iterate,

(199)

G

(200)

g’=1
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then Eqs. (198) and (200) constitute an iterativeprocedurefor the fission

source, F(z), and this procedure can be accelerated. Details of this

accelerationprocedurefor the diffusionequationare givenin Ref. 45, and we

summarizethe resultshere. Insteadof simPIYusingEq. (200), we update the

fissionsourceby the followingequation:

~k+l +
(r)= Fk(~)+ ak[F

k+ +
(r)- Fk(;)]+ 13k[Fk(~)- Fk-l(~)] , (201)

where the extrapolationparametersa and 6 are determinedfrom the Chebyshev

polynomial-basedspectral fitting procedure. That is, we assume that the

iterationof Eq. (198)has a matrixrepresentationwith an eigenvaluespectrum,

AE{Ai}, i = 1, ●00, I, whereI is the rank of the iterationmatrix. If the

eigenvalues are ordered from largestat i = 1 to smallest,thenthe spectral

distributionof A is representedby Chebyshevpolynomialsin the range {A2/A1,

‘3’Al’““” ‘“
If we define~ = A2/A1,thena and 8 are definedby

2=— , 81 .() ,
al p

(202a)
-i

= ~ cosh(k- 1)Y
ak coshkY ‘

;

!ilk= (1 - j)ak -1 ,0

(202b)

(202C)

with

Y = cosh-l(~ -1 ) . (202d)
P

Again, as in the inner iteration applicationof thismethod,~ is estimated

duringthe iterationprocessfrom the quantity

- lim
d

(Fk- Fk-l, Fk - Fk-l)
i= k+cn k-1 - Fk-2 9

(F , Fk-l - Fk-2)
(203)
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where the notation(a,b)denotesthe innerproductof a and b.

The details of how this is implementedin a codeand the considerations

necessary for good estimates of p, which determine the quality of the

parameters a and ~, are explained in Ref. 45. Also in thatreference,the

modifications necessary to apply the procedure to eigenvalue problems is

detailed. In this latter case, we obtain an acceleration of the power

iterationmethod.

The attractive features of the Chebyshevpolynomial-basedacceleration

methodare 1) it is easy to applywith a minimumof codingeffort,and 2) it is

stable as long as any inner iterations are sufficiently converged.

Unfortunately,the effectivenessof thisprocedureis limited, especially for

eigenvalue problems, as the system becomeslarge. The acceleratedspectral

radiusdependsupon the unacceleratedspectralradiusof convergenceroughlyas

the square. Thus, as the unaccelerated spectral radius of convergence

approachesunity,so does the Chebyshevpolynomial-basedaccelerated spectral

radius. (Wederivetheunacceleratedspectralfor a modelproblemin the outer

diffusion synthetic acceleration section below.) To improve upon this

performancefor transportequationouteriterations,we must applymore of the

physicsof the iterationprocess. The next two methods discussed do this to

some degree and generally result in both theoretical and computational

improvementin the iterationconvergencerate.

2. Coarse Mesh Rebalancingof the OuterIterations.31,46,47 By coarse

mesh rebalancing,we referto the generalprocedureoutlined in the previous

sectionon inneriterations.Below,we describesomeof themany ways to apply

thistechniqueto the outeriterations. What is attempted in each of these

ways is to bring the multigroup system into balance at each step of the

iterationprocedure.

One of the simplestmethodsis calledwhole-system,groupwiserebalance,

in whichwe integrateeachenergygroupequationover the entirespatialdomain

of the system and seek the multigroup

equationsintobalance. To developthe

take the multigroupequation,Eq. (51),

followingequation:

factorsthatwill bringthemultigroup

appropriate rebalance equations, we

and integrateoverangleto obtainthe
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(204)

gf=l

G

+ x ~o~,g,+g’$:,gk)+Qo,g@) .
gf=g+l

We now integrateoverspaceand employrebalancefactorsto obtain

G

G

+ x (x#k+fk+l -
g’+g t3’ + ‘O,g ‘gf=l

g’#g

where

R

R

R

(206a)

(206b)

(206d)

R

and
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We

R = the spatialdomainof the system.

can rewriteEq. (205)as the matrixequationfor the fg as

Mf = Q , (207)

where

M = a GxG matrix,

f = the vectorof the f
$3’

Q= the vectorof Q
g’

and solveit usingsomematrixsolverroutine. Once we obtainthe rebalanceof

factorsf
g’

g= l,””., G, we defineour updatedscalarflux as

(208)

and proceed. Actually,all angularmomentscan be updatedas in Eq. (208),but

thishas not been foundto be useful.

We note thatthis typeof rebalance, which concentrates on the energy

spectral details of the problem, is not well suited for keff eigenvalue

problems. This is becausewe usuallysolvethe eigenvalueproblemby the power

iteration method described in Sec.111.A, which treats the fissiontermof

Eq. (200)as a givensource. [RecallthatEqs. (198) and (204)can be cast in

the keff eigenvalueformby replacingx
g
with x /k

g eff and by settingQm g(~) to

zero.] Rebalancein thiscasewill be effectiveonly if there is significant

upscatter since the downscatter is solvedwithoutiterationover the groups.

Of course,a matrixeigenvalueproblemsimilarto Eq. (207)can be posed where

the matrix solver could obtain both the eigenvaluesand eigenvectorsof M.

However, this is not as effective as estimating the eigenvalue from the

originalEq. (204),and, exceptfor the firstfew iterations,has been foundto

be largelywastedeffort.48

A rebalance method that has beenappliedto the eigenvalueproblemwith

some successis describednext. This method, which we call group-collapsed

coarse mesh outerrebalance,takesthe coarsemesh rebalanceequationsof Sec.
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IV.C, Eqs. (168) and (169),and simply sums them over the groups. Thus, we

have the following:

-m —
1+-&,JfI+l,J + ‘L1~,JfI,J - ml+, Jfl-lJ + m

9 I~,JfI,J

where

g=1

U
mI+=+,J = E

~Rg
I@,J ‘

g=1

G

mI,J~ = x
FDg
I,J+-$‘

g=l

G

g=1

(210a)

(21Ob)

(21OC)

(210d)
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G

We thenupdatethe flux iteratefor Eq. (204)as

~k+l #-k fk+l
O,i,j,g = O,i,j,gI,J

for icI , js. , g = 1, ...,G .

(210f)

(210g)

(211)

We note that in this method we have lost the bulk of our (energy)spectral

informationin the accelerationequationand we haveaddedmore spatialdetail.

Thus, this method is best appliedto situationswherethe transportsolution

for @~~ containsmost of the spectralinformation,as is the case for purely

downsc’atterproblems. Then thisouteriterationrebalancemethodis usefulin

helpingto convergethe fissionsourcethatappearsas a sum over groups. On

the other hand, this method is not veryusefulfor problemswith significant ~

upscatterbecausetherethe spectralinformationis important. Returning to

Eq. (209) and the fissionproblem,we note thatwhen~ = O, we can solvefor

the eigenvalue,keff,by power iteration. This is useful, at least in the

early stages of transport iteration, in that one quickly obtains a good

estimate of the system eigenvalue. It is not so useful in later outer

iterationsbecausethereis a spectraleffectthat is more efficientlyobtained

from the unacceleratedouteriterationthanfromEq. (209 ) .3’

In summary, we have presented two outer rebalance methods that are

reasonablycheapcomputationallyand, to someextent,are effective, at least

in the early outeriterations.The methodrepresentedby Eq. (205)focuseson

accountingfor the energyspectralinformation in performing the rebalance;

thatrepresentedby Eq. (209)focusesmore on spatialvariations.

One can deriverebalanceequationsthataccountfor both the spectraland

the spatial effects at the outeriterationstage. In developingthismethod,

we againuse the definitionsof Eq. (169)of Sec. IV.C to write the following

groupwise,coarse-mesh,rebalanceequation:
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-FL + FLg,I~,Jfg,1+1,J g,1~, Jfg,I,J- FRg,1~, Jfg,I-1,J

+ FRg,1~, Jfg,I,J- FD + FDg,I,J~fg,I,J+1 g,I,J~fg,I,J

- FU + FUg,I,J~fg,I,J-1 +Zg,I,J~fg,I,J R,g,I,Jfg,I,J (212)

G

= Xg E (Vz ‘$)f O g’,1,Jfgt,1,J
g’ =1

G

+ x ‘%@O)g’+g,I,Jfg’,1,J+ ‘O g,I,J ‘s
g’ =1
g’*g

wherewe solvethisat iteratek+l .

Quantitieswith bars are definedin Eq. (206),with the spatialintegra-

tions performedonly over the appropriatecoarsemesh intervalsimpliedby the

subscriptsI,J. As before, to cast Eq. (212) in the keff eigenvalue form,

simplyreplaceXg with Xg/keffand set Qo,g,l,J = 0“

Equation(212)itselfmust be solvedfor the rebalancefactors, fg,I,J’
by an iterative process before the rebalance factors can be applied to

acceleratethe transportouteriterations.Thus, thisgroupwise, coarse mesh

rebalance methodcan be computationallymuch more expensivethanthe othertwo

methods above. Although groupwise, coarse mesh rebalance contains more

information than the othertwomethodsand shouldthusbe more effective,its

complexityhas causedit to be used littlein reactoranalysiscodes. Further,

the method is not being activelypursuedbecausea more predictablyeffective

diffusionsyntheticmethodhas beendeveloped. It is describednext.

3. Diffusion Synthetic Accelerationof the OuterIterations.As with

rebalance,The diffusionsyntheticacceleration(DSA)methodis readilyapplied

to the outer iteration of the transport equation. The DSA method is also

amenableto someanalysison a modelproblemthatcan help determine the best

way to apply the method to real problems. The attractiveaspectof usingDSA

over coarsemesh rebalanceis that it uses the familiardiffusionequation. As

we show,this is much more convenientin an outeriterationaccelerationscheme

becausethe solutionmethodsfor the multigroup diffusion equation are well

137



developedand generallywellunderstoodby the reactoranalyst. To demonstrate
our procedure,we write the outeriterationDSA equationfromEq. (176)as

(213)

g’ *g

This is a multigroupdifusionequationwith a sourcecorrectionthatcomesfrom

the previoustransportsolution,designatedwith iteratek++. For eigenvalue
problems[Qo,g@) g effl,thisequationis modifiedby= O and Xg replacedby x /k

changingthe diffusioncoefficient to a diagonal tensor with the following

components:

(214)

thus, the right-side correction is zero, and the diffusion equation

homogeneousbut nonlinear.

To demonstrate how Eq. (213) is used in the outeriterationscheme,
write the companiontransportequationas

is

we

(215)

+s
mtg(;) ‘
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wherewe have u-sealthe sphericalharmonicsexpansionformas describedin Sec.

11.D for the within-groupscatteringsource,and Smg(~)representsthe source

fromfissionand scatteringinto the groupg. In the abovetransportequation,

we assume that only the scalar flux, O~ g(~),is updatedfrom the diffusion
J

equation,and the anisotropicscattering components come from the previous

transport angular flux. With Eqs. (213) and (215),the followingiteration

strategy

a.

b.

c.

d.

e.

f.

g.

is used:

At k = O, solve the diffusionequation,Eq. (213),with the correc-

tion ‘erms‘ero’‘or ‘O,g (~) to some desired orderof convergence.

With the Ok=O +o g(r), solve the transport equation, Eq. (215), for
9

~k~ +
m g(r),usingthemost up-to-date information for the scattering
9

part of S
mjg”

With this O
k+

computethe correctionterm (withthe diffusiontensor
mjg

or the sourcecorrection)and solvethe one–groupdiffusionsynthetic

equation, Eq. (177), for the scalarfluxesin each groupg.

With the same correction term, set up the multigroup diffusion

equation,Eq. (213),and solveit for o~=~(~),g = 1, ●00,G.

Repeat the outeriterationprocess[ste~s(b) through(d)]untilthe

sourcetermsof Eq. (213)convergeto a desired precision from one

outeriterationto the next.

With thisconvergedsource,Sm g(~),iteratethe energygroup trans-

port equation, Eq. (215),on’thewithin-groupscattersourceto the

‘++ +
precisiondesiredfor the convergenceof the scalar fluxes @O,g(r)

usingthe DSA inneriterationprocess.

With this final converged correction

‘finaln version of Eq. (213) and check
stillconvergedto the desiredprecision

steps (f)and (g).

The essentialfeatureof the procedureis thatone

and (c)] per outeriterationis performedUntilt

term, set up and solve the

to see whetherthe sourceis

if not, go back and repeat

inneriteration [steps (b)

.-emultigroupsourcehas been

converged.Then the group transport scalar fluxes are converged to their

convergencecriterionvia the DSA inneriterationof Sec. IV.C. The successof

this strategydependsupon the inneriterationsteps (b) and (c) being stable
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and convergent and the outer iterationequationbeingstableand convergent.

It has been shownthatthe firstpart of this is true in the discussionof Sec.

IV.C. Here we will indicate the stability and effectivenessof the outer

iterationDSA for a modelproblem.

To demonstrate the effectivenessof the outer iteration diffusion

syntheticaccelerationprocedure,we considera problem without inner itera-

tion, that is, a fission problem with no scattering. This

analysis while preserving the essential features of the

procedure.*Thus,our DSA procedureis reducedto the following

~ “ ?’$::(:)+ Zt g(:)o::(:) = XgFk(~)+ Q
9 s m,g(~) ,

-v ● Dg(~)V@k+l+~ g(r)+ Xt g(;)o~+~(~)9 9 s

simplifiesthe

acceleration

equations:

(216)

(217)

G

Fk(~)=
E

k
(~~f)g,~o,gl(;) .

g’=1

(218)

The accelerationequation,Eq. (217),can be put intothe more convenientform,

. xg(Fk~ - Fk) ,

where

(219)

(220a)

*
This developmentwas accomplishedby E. W. Larsen.
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k+1
and whereF is now definedas

(220b)

To do error analysis, we then takeEqs. (216),(219),(220a),and (220b)and

performa Fourier analysis assuming an infinite medium and constant cross

sections. We quotethe resultfor the iterationspectrumof convergence

Lo(a) =

G [(A2 + 3X2t g)(vzf)g(+) tan-’

x

(+) - 3~~ g(vxf)glxg9 t,g 9

a2 + 3z:,gg=l
n -i .(221)
“ {Ac+ 3X

x

~ gc~t,g - (Vzf)gl}xg9

A2 + 3z:,gg=l

The acceleratediterationspectralradiusof convergence,~, is givenby

;=S;U(A) , (222)

and the unacceleratediterationspectrum,UO(A),is

..O, .jxg[:::+][>tan-’(+1] s

so the spectralradiusfor the unacceleratediteration,GO, is

;0 = Sy (1)0(A) ,

whereA in the aboveis the Fouriervariable. Thus,we have at A = O,
,

(223)

(224)

G

z (Vxf )g
;0 . ‘g Xt, g 9

g=1
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and since

z =1,‘g
g

we see that (vZ ) /1 < 1 is sufficientbut not necessaryfor convergence.fg t,g—
For the accelerated iteration procedure, we note that u(O) = O from

Eq. (221). Thus, the accelerationmethodhas suppressedthe worstmode of the

unaccelerated iteration. To be more specificas to the acceleratedspectral

radius, we have to specify the cross-section values. We present some

representativedata in Table XIII and in Fig. 15 and note thatthe diffusion

syntheticaccelerationof the outersis, indeed,very effectivefor this case;

that is, we have reduced the spectral radius from 1.0 to 0.225 by the

acceleration.

As in Sec. IV.C, for the inner iteration, we must ask whether this

analysisis validfor ‘realW problems with finite spatial dimensions, dis-

continuous cross sections, and scattering. Numerical experience42 has

indicated that the analysis 1s, indeed, a good guide as to the expected

convergence of the outer iteration DSA. Actually, much of the superior

performance of codes using the DSA method over those using the Chebyshev

polynomial-based acceleration or the rebalance algorithm is due to this

excellentaccelerationof the outeriterations.

To illustrate the effectivenessof the variousaccelerationmethods,we

present in Table XIV some representativeone-dimensionalcalculationsof

multigroup systems. Threesystemshavebeen chosen,whichwe brieflydescribe

as

1) HTGR - a high temperaturegas reactoreigenvalue(keff)problemwith

9 energygroups,including 3 upscatter groups, 87 spatial

mesh points, and Sg discrete ordinates quadrature in

cylindricalgeometry.

2) SARAF - A test reactor eigenvalue (keff)problemfor fastreactor

applications consisting of a thermal driver and a filtered

experimental test section. This problem was run with 20 energy

groups,39 spatialmesh points,and S8 discreteordinatesquadrature

in cylindricalgeometry.
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TABLEXIII

THIRTY-GROUPDATAUSEDTO DETERMINETHE SPECTRAIN FIG. 15

Group (g)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

‘g

3.04800E-05

7.94300E-05

2.36900E-04

1.16000E-03

5.87500E-03

1.75200E-02

1.02700E-01

9.06600E-02

1.O81OOE-O1

1.14700E-01

1.108OOE-O1

1.81912E-01

1.20400E-01

7.O61OOE-O2

3.73700E-02

2.88300E-02

6.98200E-03

1.561OOE-O3

3.74000E-04

7.61700E-05

1.76800E-05

3.81OOOE-O6

8.50300E-07

1.89500E-07

4.23100E-08

9.45500E-09

2.105OOE-O9

4.741OOE-10

1.O5OOOE-10

3.03500E-11

z
t,g

8.82000E-03

5.15600E-03

5.32000E-03

1.01260E-02

7.611OOE-O3

1.05800E-02

Vzf,g’%,g

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.43400E-02 1.0000OE+OO

1.44650E-02 1.0000OE+OO

1.56900E-02 1.0000OE+OO

1.61900E-02 1.0000OE+OO

1.57500E-02

1.56700E-02

1.60400E-02

1.74600E-02

2.O21OOE-O2

2.48500E-02

3.38400E-02

4.40300E-02

6.151OOE-O2

9.27300E-02

1.51550E-01

3.1013OE-O1

4085500E-01

1.00220E+O0

1.O351OE+OO

6.43700E-01

3.62200E-01

9.94600E-01

2.50440E+O0

7.47940E+O0

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.OOOOOE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO

1.0000OE+OO
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Fig. 15. Iterationspectrafor 30-energygroupproblem.

TABLEXIV

TOTALNUMBEROF TRANSPORTITERATIONSTO CONVERGETHE
POINTWISEFLUX FOR VARIOUSACCELERATIONMETHODS

Problem CHEBY CMR DSA Time Ratio

1. (HTGR) 12000 6400 124 0.08

2. (SARAF) 5047 * 188 0.06

3. (KTST) -- * 200 --

* - divergence.
-- - resultsnot available.
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3

In Table

KTST- A two-groupcriticalsizesearch

upscatter. This is a mockup of a

reflectorand was run withS16 discrete

XIV, we present the number of iterat

threeaccelerationmethods;CHEBY= Chebyshev,CMR

problemin slabgeometrywith

water reactor with a water

ordinatesquadrature.

ions requiredfor each of the

= coarsemesh rebalance,and

DSA = diffusionsynthetic.The timeratiois thatof the DSA time to the best

achievedby eitherof the two othermethods.

We note that in this selection of eigenvalueproblems,DSA is clearly

superior;also,the coarsemesh rebalancealgorithmcan be quiteunpredictable,

resultingin nonconvergenceof the iteration.

Finally,we commentupon the computationaleffectivenessof the iteration

strategy outlined in steps(a) through(g)a few pagesearlier. We note that

with one inneriterationper outer iteration in the transport sweep of the

acceleration procedure, we are, in fact, replacing transportsweepsin the

outeriterationwith diffusionsweeps. Granted that the spectral radius of

convergence for this is excellent, good computationaleffectivenessof the

proceduredependsupon an efficientsolutionof the diffusionequation. That

is, in Eq. (213),we are askingfor the convergeddiffusionsolutionat iterate

k+l; but to obtainthis, we must iterate the multigroup solution for the

fission source. To complicate matters further,in two or threedimensions,

thereis an inneriterationfor each group of the diffusion solution. This

inner iteration is necessary for the efficient inversion of the diffusion

operator. The entireseriesof iterationsfor the diffusion solution can be

computationallyexpensive; hence, it may abrogatethe excellenttheoretical

performanceof the transportDSA procedure.Fortunately,a greatdeal of work

has been expended in the pastupon efficientdiffusionsolvers. Indeed,when

these are employed, good computationalperformance brought about by DSA
49procedureis generallyseen.

Anotherfacetof the DSA methodis that it can be employedas a diffusion

improvement method for many eigenvalue calculations. In many cases, an

estimateis wanted of the transport effects upon the eigenvalue and power

distributions as computed using diffusiontheory. This estimatecan be made

from the DSA iterationstrategyby terminatingthe overallprocedure,described

by steps (a)–(g) above, before full transportconvergenceis achieved. Note

thatsteps (b)-(d)are concernedwith convergingthe multigrouPsource to its
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final transport value before the final pointwise fluxes are converged.

Generally in this procedure, the eigenvalue converges first, followed by

convergenceof the pointwisefissionsource,followedby the convergenceof the

pointwisefluxes. Thus,dependingon the particularneed, the iterations can

be halted when the eigenvalue is well estimated but before convergenceof

pointwisequantities,and the user obtains a good estimate of the transport

eigenvalue. In fact,eventhoughin thisexamplethe pointwisefissionsource

and the pointwisefluxesare not fullyconverged,theycan stillbe considered

as being intermediate between pure diffusion results and fully converged

transportresults. This featureof the DSA iteration strategy results in a

very flexible computational tool that can be used to produceresultsranging

from pure diffusion theory, through improved (by transport corrections)

diffusion, all the way to fullyconvergedtransporttheory. With sucha tool,

userscan greatlyreducecomputationaltimeson problemswherefully converged

transport solutions are not necessary,but where‘betterthanpurediffusion~

resultsare desired.

In summary, although many forms of outeriterationaccelerationof the

transport solution have been employed in codes, the diffusion synthetic

acceleration method has been the most effective, both theoreticallyand

computationally,for a largevarietyof reactoranalysisproblems.

E. SearchCapabilitiesin DiscreteOrdinatesCodes

In many general-purpose,discrete ordinates codes, it is possible to

perform eigenvaluesearchcalculations.In thesesearchcalculations,certain

problemparameters,for example,dimensions or material concentrations,are

automatically adjusted to values that producea desiredvalueof keff. The

basicquantityused to alterthe problemparametersis the eigenvalue of the

specific calculation. It is importantto note thatthe termeigenvaluein a

search calculation takes on a meaning different from an ordinary keff

calculation. In the keff calculation,the term‘eigenvalue~simplyrefersto

the quantitythatapproachesthe valueof keff as the iterativecalculationis

converged. In search calculations,however,the ‘eigenvaluenis a quantity

used directlyto alterthe parameter(orparameters)being searched on. The

specificmannerin whichthis is done is describedbelow.
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1. Typesof Searches. The most commontypesof eigenvaluesearches are

the buckling search, the time-absorption (a) search, the spatial-dimension

search,and the concentrationsearch.

In a bucklingsearch,the parameterto be determinedin the searchis the

geometricbuckling,B2. For example, in a two–dimensional(x,y) geometry

calculation, the z-direction leakageof particlescan be simulatedby adding

the termDB2 as an effectiveabsorptionterm in the transport equation. The

quantity D is the diffusioncoefficient,which

dependent.The valueof B2 is typicallyaltered

is normally

by meansof

space-and energy-

the expression

B2 = EV*B: , (225)

2
whereEV is the searcheigenvalueand Bi is a user-inputbuckling value, that

is, an initialgeometricbucklingguess.

For a time-absorption,or a, searchthe time-dependentangular flux is

assumedto be separablein timewith respectto space,energy,and angle,viz.,

at
@(~,E,~,t)= @(~,E,~)e . (226)

If this separableform is insertedintothe time-dependenttransportequation,

the exponentialtime dependence can be cancelled, and a fictitious cross-

section term of the form a/v appearsas a ~time-absorption”correctionto the
g

totaland absorptioncrosssections.

with energy group g. The exponent

absorption,a, search. Obviously,a

a > 0 correspondsto a supercritical

In spatial-dimensionsearches,

Here,v is the particlespeedassociated
g

a is the eigenvalue,EV, soughtin a time-

= O for an exactly critical system and

system.

the dimensionsof selectedportionsof the

problem model are adjusted to achieve the desired valueof keff. Although

variousprescriptionsfor adjusting the dimensions are used, the following

genericform displaysthe basicmethod. Let Adk denotethe dimensionof the k-

th regionin a problemmodel. For two–dimensionalgeometries,this dimension

represents, in a general sense, either the height or widthof a particular

region. The dimensionsare alteredby thegeneralformula

Adk=Ad~* [1 +fk*EV] , (227)
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~ is the “as inputfrdimension of the k-th region and EV Is thewhere Adl

dimension search eigenvalue. The termfk representsa user-suppliedquantity

that permitsexpansion,contraction,or no alterationof the dimensionsfor each

region in the problem. For example,fk can be selectedsuch thatone region

can be expandedwhilean adjacent region is contracted such that the total

dimensionof the two regionsremainsconstant.

With concentrationsearches, the user can selectively determine the

nuclide concentrationsthatwill producethe desiredvalueof k Specificeff”
formulationsfor varyingthe concentrationsdifferamong the various computer

codes,but all are typifiedby

Ci-C:* [1 +fg*EV] , (228)

where C
k

is the adjustedconcentrationfor nuclide(ormaterial)!, C; is the

user-inputvalueof Cl, and EV is the concentration search eigenvalue. The

term f~ represents a user-supplied quantity that permits an increase, a

decrease,or no alterationin the concentration.With sucha formulation,for

example, uranium enrichment searches can be performedsuch thatas the atom

densityof U–235 is increased,the atomdensityof U-238 is decreased so the

totalatomdensityof uraniumremainsconstant.

2. OverallSearchStrategy. Regardless of the type of search being

conducted or the computer code being used, the followingsearchstrategyis

generallyused.50 The searchis executedby performinga sequenceof keff-type

calculations,eachfor a differentvalueof the searcheigenvalue.The search

is for a valueof the eigenvaluethatmakesthe value of A unity, where A is

definedas

~ ~ (FissionSource)j

(FissionSource)J-’
(229)

for the jth outeriteration.

In the followingdescriptionof the search strategy, it is helpful to

refer to Fig. 16, in which the deviation of A from unity for each outer

iterationis plotted.

The user providesinputvaluesand data to definethe initialsystem. An

inputvaluefor the initialeigenvalueis included. For this initial system,
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Fig. 16. Variationin A duringa hypotheticaleigenvaluesearch.

outeriterationsare performeduntiltwo successivevaluesof A differby less

tha= some user-controlledconvergencecriterion.Afterthe firstconvergedA

sequenceis obtained,the initialvalueof the eigenvalue(EV)is altered by a

user-suppliedquantitydenotedhere by EVM. If A > 1 (multiplyingsystem),the

new eigenvalueis equalto EV(initial)+ EVM; if A < 1 (decaying system), the

new eigenvalueis EV(initial)+ EVM. Thus, the signand valueof EVM shouldbe

chosensuch that the use of EV(initial)+ EVM willreducethe reactivityof the

system. Conversely, the use of EV(initial) - EVM should increase the

reactivityof the system.

Basically,aftertwo convergedvaluesof A are obtainedfor two valuesof

the searcheigenvalue,the computercodewill effectivelymake a plot of the

converged value of A as a function of the search eigenvalue. A curvefit

extrapolatedto a value of A = 1 is used to predict the next value of the

search eigenvalue. Depending on the amountof informationavailableand the

sizeof 11– Al, thiscurvefit proceedsin different ways. A parabolic fit

cannot be made until three converged values of A are available for three

differentvaluesof EV. Even then a parabolic fit is not attempted unless

]1 - Al is greaterthanan inputsearchlowerlimit (heredenotedas XLAL)and
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less thanan inputsearchupperlimit (here

is tried and the roots are imaginary, a

rootsare not imaginary,the closest root

Once a bracketis obtained(changeof sign

allowedto move outsidethe region of the

denotedXLAH). If a parabolicfit

straight line fit is used. If the

is used for the new value of EV.

of A – 1), the fit procedureis not

bracket. Should a

predict an eigenvalue outside the bracketregion,thisvalue

the new eigenvalue is taken as one-half the sum of the

eigenvalues.

parabolic fit

is rejectedand

two previous

Whenevera parabolicfit is not used,a linearfit is used, and the new

eigenvalueis computedfrom

(EV)new = (EV)previous+ pOD*EVS*(l- A) , (230)

where POD is an input ~lparameteroscillation damper” that can be used to

restrictthe amountof changein the elgenvalue and EVS is a measure of the

slope of the A versus EV curve. When II- al > XLAH, (1 - A) in Eq. (230)is

replacedby XLAH (withthe correctsign)to preventtoo large a change in the

predictednew eigenvalue.After II- Al is less thanXLAL,thevalueof EVS is

fixedand kept constantuntilconvergenceto prevent numerical difficulty in

the approximationof the slopewhen A is closeto unity.

Becauseparametricsearchproblemsrepresentsequencesof keff calcula-

tions, it is important that the user study thissearchstrategyin orderto

optimizehis calculations.It is also important that the user pose soluble

problems. That is, there are many problems for which solutions are not

possible. For example,a dimensionsearchon the critical size of a natural

uranium/ordinarywater mixture is doomedto failuresinceevenan infinitely

sizedmixtureremainssubcritical.

Convergence in time absorption(a)calculationsis typicallyone-sided.

If EV (theeigenvaluea) is negative,the effectiveremoval crosssection,ZR +

a/v mightbecomenegative. If thishappens,the automaticsearchproceduremay

fail dramatically.For thisreason,a parameteroscillation damper, POD, of

0.5 or less is frequentlyused in such searches.
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v. CONSIDERATIONSIN CHOOSINGA CODE

Numerous discrete ordinates computer codes havebeenwrittenoverthe

yearsand can be acquiredby potentialusers. If you do not already have a

discrete ordinates code capabilityat your facilityor if you wish to acquire

new or additionalcodes,you will be facedwith several choices. Should YOU

import someone else’s code or should you try to write yourown? Sincethe

writingof all but the simplestdiscreteordinatescodes is an expensive and

time-consuming task that requires a somewhat experiencedprogrammer,it is

normallybest to try to import an already-developedcomputer code. If YOU

decide to do this, whichcomputercode shouldyou choose? In thissectionwe

presentsomeof the considerationsthatshouldbe addressedin answering this

question. Some of the considerationsare quite obvious; others are more

subtlebut are frequentlyjust as important.

A. Code Capabilities

The first and most obvious consideration to be given to a candidate

discrete ordinates code is whetherthe codewill solvethe typesof problems

thatyou need solved. Is the codeone-,two-,or three-dimensional? Does it

treatthe geometriesyou need? Is it time-independentor time-dependent?Will

it solveboth forwardand adjointproblems? Will the code performthe kind of

calculation you need, for example, keff, inhomogeneoussource, eigenvalue

searches? Does the code permitarbitraryanisotropicorderof scattering? Do

the boundary conditions treated in the code match your needs? The basic

computationalcapabilitiesof a candidatecode should first be compared with

your needs.

In addition to the comparisons of needs versus basic calculational

capabilities in the candidate code, there are severalotherconsiderations.

Discrete ordinates computer codes can generally be classified as either

general-purposecodesor specific-applicationcodes. General-purposecodes,as

their names imply, contain a broad range of problem-type calculational

capabilities. For example, a two-dimensional,time-independent,general-

purpose, discrete ordinates code usually solves the multigroup, discrete

ordinates equations in (x,Y), (r,z), and (r,O) geomtries. Such codesalso

usuallysolvekeff (criticality),inhomogeneoussource, and several types of

searches. They normallyallowarbitraryanisotropicscatteringorder. These

codes are quite flexible; they usually contain good, reliable, numerical
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methods; they are normally well tested and documented. Because of their

flexibility, general-purposecodes tend to be quite large and may not be

computationallyoptimal for a specific type of problem. On the otherhand,

specific-applicationcomputercodesare generallydevelopedto solvea limited

class of problemsspecificallysuitedto the facilityauthoringthe code. For

example,a specific-applicationcode might solve only (x,Y) geometry, time-

independent, shieldingproblems. Such codesare usuallymuch smallerand may

be more computationallyoptimalthan general-purposecodes; but, of course,

they lackthe flexibilityof the latter.

Anothervery importantfactor to be considered in choosing a code is

whether it is essentially free standing and self-containedor whether it

requiresotherauxiliarycodes. A modern free-standing,discrete ordinates

codewill containa libraryof angularquadraturesets builtintothe code. It

will acceptmultigroup cross sections in several generally acceptable and

commonly used forms. It can be quitefrustratingto acquireand implementa

computercodeonly to learnthatone or more additionalcodesmust be acquired

and implemented to generate or preprocess data before themain code can be

used.

Variable dimensioning and flexible data management are other highly

desirablefeaturesin a discreteordinatescode. Fixeddimensions on vectors

and arrays can unnecessarily restrict the range of problem sizes that

can be analyzed,as can inflexibledatamanagement.

B. CommtinK Environment

In choosinga computer

very important

environment in

differences in

differencescan

code. In some

to consider

code for implementationat your facility, it is

both your computingenvironmentand the computing

which the desired code is operational. There are great

computerarchitectureand computeroperatingsystems,and these

causegreatdifficultiesin implementingan imported computer

cases known to the authors, the implementationof a discrete

ordinatescode intoa differentcomputingenvironmenthas required man-months

or even man-years of effort, whereas other codes have successfullybeen

implementedintonew environmentsin a few man-days.

Some computers,most notablyIBM machines,operatewith 32 bits per word.

Such machinesare commonlycalled‘shortword~machines. Othercomputers,for

example, CDC and CRAY computers,operatewith 48 or more bits per word. These
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are called “long word?’machines. On short-word computers, six-character

hollerith words must be ‘double precisioned~;on long-word machines such

hollerithwordscan be treatedas singleprecision.Since 32-bit short words

with hexadecimal roundoff carry only the equivalence of some six decimal

digits,5’calculationsrequiringgreaterprecisionmust be doubleprevisioned.

On long-wordcomputers,doubleprevisioningis seldomneeded. Becauseof these

word lengthdifferences,computercodeswrittenfor a long-word computer may

causegreatproblemswhen implementationis attemptedon a short–wordcomputer.

A well-writtencode,designedfor exchange,will minimize or eliminate these

problems.

The memoryhierarchyof computersvarieswithmanufacturer,and computer

codes written for one form of hierarchy may not be compatibleon a computer

with a differentmemoryhierarchy. The twomost notablememoryhierarchiesare

the two-level hierarchy and the single-level hierarchy. Two–levelmemory

hierarchycomputersnormallypossessbothsmall,fast corecentralmemoryand a

separate rapid access peripheralstorage,whichwe shallreferto as extended

core. ControlData Corporation (CDC) computers, such as the CDC-7600 and

Cyber 720 computers, are the most commontwo-levelhierarchymachines. Fast

core central memory on two-level machines is typically limited to about

60 00010 words;extendedcorememorymay accommodateseveralhundredthousands

of wordsof storage. Single-levelmemorycomputersdo not possess a separate

extended core, but insteadhave a single,large,fast centralmemorycommonly

accommodating several hundred thousand words. IBM computers and CRAY-I

computersare widelyused single-levelmemoryhierarchymachines. It shouldbe

quiteclearthat the data management/transferproceduresin a codewritten for

a single-levelmemory computer can be quite differentfrom thosein a code

writtenfor a two-levelmemorycomputer. The memory hierarchy assumed in a

computer code must be considered in deciding whether to import a discrete

ordinatescode.

In addition to central memory and extendedcore storage,virtuallyall

computercodesrequirethe use of auxiliary storage devices or units. The

number and typeof auxiliarystoragedevicesrequiredby computercodescan be

quitedifferent,however. Nearlyall codeswill require the availability of

severalsequentialaccessstorageunits,and suchunitsexistin most computing

environments.The numberof sequentialaccessunitsrequiredby some computer

codes can be quite large, however, and some computinginstallationsmay not
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1 allowas many unitsas a particular code needs. In addition to sequential

access storage,manymoderncodesrequirethe use of direct,or random,access

storage. Some computing installationsdo not support direct access data

storage devices. Even for those installationsthatdo permitdirectaccess

data storage,the rulesfor effectingdirect access data transfers are both

manufacturer dependent and computing-installationdependent. Such local

dependenciesmake the interchangeof codesbetweeninstallationssomewhatmore

difficult.

These and other differences in computer architecture and computing

environmentsimpactthe portabilityof discreteordinatescodes. Althoughthe

differencesin computingenvironmentsare significant, it is by no means a

hopeless task to importcodes. Well-writtencodesexistwhoseauthors,aware

of computingenvironment differences,have written in such a manner as to

minimize problems involved in code implementationintodifferentcomputing

environments.

c. ProgrammingLanguage

In choosinga discreteordinatescode, it is imperativethatthe code be

programmed in a languageusableat your installation,Fortunately,most codes

are writtenin FORTRAN. Currently,most codesare writtenin FORTRAN-IV, but

codes that use FORTRAN-77are appearing.Some incompatibilitiesexistbetween

the two languages,so it is importantthatyour facility has a compiler that

supports the language used in the code. Many codes, although written

predominately in FORTRAN, still contain subroutines written in assembly

language or require system library routines provided by the computer

manufacturer. These routines may have to be replaced with equivalent

subroutinesfor your computingenvironment.Be awareof the potentialproblems

associatedwith suchlocalsystems-dependentroutines.

D. Efficiencyand Accuracy

Both computationalefficiencyand numericalmethodaccuracyare important

factorsto be consideredin choosinga discreteordinatescomputercode.

Computationalefficiencyrefersnot only to the speed at which a given

calculation can be performed, but also to the data storagerequirementsand

data transfer/managementtechniques.
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The speed at which a calculationis performedis stronglyinfluencedby

the manner in which instructionsare programmed. A single IF-test in an

innermost loop of an iterative code can increase computerrunningtimesby

perhaps5$Jor more. Good,cleanprogramming can often be executed at least

twice as fast as a poorly programmed code. Structuring a code to take

advantageof vector operations on vector-processingcomputers can produce

factors of 2, 4, or even 10 in computational speed. Since most discrete

ordinatescodesare iterative,iterationacceleration schemes are a virtual

necessity. A typical iterative discrete ordinates code with an effective

accelerationmethod will frequently run 10 to a 100 times faster than an

unacceleratedbut otherwiseidenticalcode.

A discrete ordinates code should also manage and transfer data

efficiently. Large, multigroup discrete ordinates problemscan requirean

enormousquantityof dataand informationthat must be stored, managed, and

transferred. The quantity of informationmanagedcan be minimizedby clever

use of temporary,or scratch, data, by proper construction of phase-space

sweeping loops, and by storing only needed information.Time spentin data

transferscan likewisebe minimizedby constructingthe program such that the

number of data transfersis minimized,by indexingvectors/arraysso theycan

be transferredsequentially,by using record or block transfers instead of

transferringwordsindividually,etc.

Unfortunately,computationaland data storage/transferefficiency in

discrete ordinates codescan conflictwith the accuracyof the solution. For

example, the so–called ‘step” spatial differencing scheme for spatial

discretizationrequiresa minimalamountof flux informationto be computedand

stored,it is computationallysimpleand fast,and it is a positive scheme so

that there is no need for negative flux checks or fixups. For efficiency,

the stepschemelooksexcellent.As a spatialdiscretizationscheme,however,

it is generally unacceptablyinaccurate.In otherwords,for the stepscheme

to providean accuratesolutionto the transport equation, the spatial mesh

size must be made so smalland the numberof spatialmesh cellsso largethat

the net computational effort and the data storage requirements become

unacceptably large. Therefore, the step scheme is seldomused in discrete

ordinatescodes. More accurate,or higher-order,differenceschemes, such as

the diamondscheme

of calculational

and othermore

effort and/or

recentschemes,althoughmore costlyin terms

data storage per mesh cell, may permit
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acceptable accuracy on sufficientlyfew mesh cells that the overall net

calculational effort and data storge required is quite good. Thus, an

acceptable compromise between efficiency and accuracyshouldbe soughtin a

discreteordinatescode.

E. User-OrientedFeatures

The acceptanceand effectiveuse of a discreteordinatescode is greatly

influenced by the extent to which user-orientedfeaturesexistin the code.

Includedin user-orientedfeaturesare problemspecificationand data input,

interpretationof results,postprocessingor editfeatures,and documentation.

An otherwiseexcellentcode can be used seldom if it is not user oriented.

example,if a problemis to use 28 energygroups, it is much clearer for

user to enter this parameterin a formlikeNGROUP=28thanit is to enter

digits28 as the fifthentryon the secondcard-imageof the input ‘deck.v

ability of a code to use acceptablebuilt-indefaultvaluesfor parameters

reducethe amountof inputrequiredof the userbut can still allow users

Some of the desirableattributesof a user-orientedcodeare describedbelow.
I
I The inputof problemspecificationsand data should be clear, easily

I supplied, and easilychecked. Free-field,card–imageinputis much easierand

less proneto errorthanfixed-field,card-imageinput. The use of hollerith

words to identifyinputparametersor data arraysis very helpfulto the user.

For

the

the

The

can

to override these defaulted values if they wish to providethe parameterin

theirinput. Cross-sectiondata in severalformsshouldbe acceptedto permit

flexibility. Redundant inputshouldbe minimized. Quadraturesetsshouldbe

providedas built-in libraries within the code, but users should still be

permitted to provide their own quadraturesets if theyso desire. The code

shouldhave the optionof processingthe user-suppliedinputand haltingbefore

executing the solutionof the problem. This optionallowsusersto thoroughly

checktheirproblemspecificationsbefore effecting the full, perhaps time-

consuming,transportcalculation.

Resultsof a calculationare usuallyprovidedas printed output, remote

terminal output (printed or display), or both. The resultsprovidedby the

code shouldbe easy to readand easy to interpret.Liberaluse of descriptive

headings is a must. Results shouldbe formattedto fit nicelyon the output

pageor screen. The user shouldhave the option of suppressingor displaying

inputparameters/data.The user shouldalsobe able to controlthe printingof
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certain calculationalresults, for example, scalar fluxes,angularfluxes,

macroscopiccrosssections,etc.

Editing or postprocessingof results is best done by an essentially

independentediting module or code. With such a construction, the actual

transport calculationcan be performedonce,withfluxesand otherquantities

savedas filesor tapes. Differentedit calculations can then be run inde-

pendently without havingto rerunthe transportcalculations.The abilityto

presentresultsin graphicalform insteadof simpletablesof numbers is also

highly desirable. Since graphics capabilitiesand instructionsvarywidely

amongcomputingenvironments,a graphics output capability is generally not

directlyavailablein an as-importedcode.

Adequatedocumentationis an essentialpart of user-oriented features.

Intelligentuse of a computercoderequiresa clearand thoroughusersmanual.

With an inadequatemanual,the codewill eitherbe seldomused or, even worse,

it could be used incorrectly. The effectiveuse of a coderequiresfar more

thana ‘blackboxv treatment,and a goodusersmanualwill minimize this. In

addition to documentation in a users manual, it is importantthat the code

itselfprovidedocumentationin the form of error-diagnosticmessages in the

codeoutput. Comprehensiveerrorchecksand clearerrormessagesare extremely

valuablefeaturesin a computercode.

F. Availabilityof ComputerCodes

A majorconsiderationin choosinga computercode is its availability.

Is the codeavailableand, if so, fromwhere? Severalcomputercodeshave been

developedbut are consideredproprietaryand are unavailablefor external use.

Codes developed for military applications or by private companies are

frequentlyin this category. Other codesare available only to a limited or

restrictedcommunityof users. An exampleof the latterare codesdevelopedby

nationalgovernmentalagenciesor laboratories,whichmay be availableonly for

external distribution and use within that nation; exportof the codesto a

foreigncountrymay be prohibited.Fortunately,most discreteordinatescodes

are availablefor generalexport,distribution,and use.

If the desiredcomputer code is available for external distribution,

one can acquirethe code in two ways. The firstis to obtainthe codedirectly

from an installationwherethe code is operational.This installationmay be

that of the code’sauthor(s),or it may be thatof a knownuser of the code.
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The second source for obtaininga code is throughone of themajorcode

centers. The threeprincipalcentersare the RadiationShielding Information

Center, the National Energy SoftwareCenter(bothin the UnitedStates),and

the NEA DataBank in France. Thesecenters,in additionto providingcomputer

codes to interested users, offer additional related services. When they

acquirea computercodefroman author,theycompile and execute the code to

ensure its proper operation. They ensure that the code is adequately

documented,and theyprovidecopiesof codedocumentson request. These code

centers are, thus, a valuable resource to the interested user, both for

obtaininginformationon availablecomputercodesand for obtaining the code.

The addressesof the threemajorcodecentersare providedbelow:

RadiationShieldingInformationCenter(RSIC)
Oak RidgeNationalLaboratory
P. O. Box X
Oak Ridge,TN 37830
U.S.A.

NationalEnergySoftwareCenter(NESC)
ArgonneNationalLaboratory
8700SouthCassAve.
Argonne,IL 60439
U.S.A.

NEA DataBank
NuclearEnergyAgency
Organizationfor EconomicCooperationand Development
91191Gif-sur-YvetteCEDEX
FRANCE

G. Test Problems

A code imported and made operational in a particular computing

environment must be validated. Unfortunately,validatinga versionof a code

on one computerunder one operating system does not mean that a different

version operating in a differentenvironmentis validated. Inclusionof test

problemswith a computercode package that is being imported provides some

degree of code validation at the receiving installation.Normally,several

such test problems should be included. For each problem, the input

specifications and data should be provided, as well as a copy of the

calculationresultsfrom the sendinginstallation.
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VI. TYPICALDISCRETEORDINATESTRANSPORTCODES

Many different discrete ordinates transport computercodeshave been

developedsincethe discreteordinatesmethodwas originatedat Los Alamos in

the 1950s. To differentiatebetweendiscreteordinatescodes,it is helpfulto

understandtheirorigins. Figures17 and 18 chartthe genealogyof most of the

one- and two-dimensional,time-independent,discreteordinatescodes. These

chartsare reasonablycompletebut are not intendedto be exhaustive.

By far, the most common one-dimensional,time-independent,discrete

ordinates code used today is ANISN.52 To a lesserdegree,DTF-IV50is also

widelyused. Both of thesecodes,developed in the mid-1960s, treat plane,

cylinder, and sphere geometries; they solve inhomogeneoussource,keff,and

severaleigenvaluesearchproblemswith several boundary condition options.

Both codes perform both direct (forward)and adjointcalculations,and both

allowgeneral-orderanisotropicscattering.In otherwords,both are general-

purpose codes. Both have beenused at installationsaroundthe world,and it

is commonthata giveninstallationmay have its own special version of the

code. The popularity of these codes resulted in the creation of several
53offspringcodesin the late 1960sand early1970s. The SNID code offers the

same general options as ANISNbut allowsfreeformatinputand groupand zone

bucklingoptionsand containsotherspecialfeaturesnot availablein the basic

ANISNcode. The IDFX54coderepresentsan improved,more sophisticatedversion

of DTF-IV,especiallyin its improvediterationaccelerationtechniques. Both

the XSDRN55 (ANISN) and GTF56 (DTF-IV) codes are programs for calculating

space-dependentflux spectrafor use in formingmultigroupcrosssections. The

ASOP code57 is an extension of ANISN to perform shield optimization

computationsby solvingsequencesof transportcalculationsand dose constraint

equations. DTF6958 is a specialized version of DTF-IV for solvingphoton

(gamma-ray)transportcalculationsonly. All of thesecomputer codes use the

diamonddifferencespatialdiscretizationscheme.

The PALLAS-PL,SP13,59 46and ONETRAN discreteordinates codes represent

departuresfrom theirdiamond-differencedforebearers.PALLAS-PL,SPuses short

characteristicsfor determiningthe spatialvariationof the angular particle

flux, as discussed in Sec. IV.B. The code is limitedto radiationshielding
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calculationsin planeand sphericalgeometries and is, thus, not a general-

purposediscreteordinatescode. ONETRANis a general-purpose,one-dimensional

code that employs the linear-discontinuousspatial discretizationscheme

described in Sec. IV.B. An additionalcapabilityin ONETRANis its two–angle

planegeometryoption. {Recallthat,in standardplanegeometry, the angular

flux is independent of the azimuthal angle,~, so the angulardependenceis

reducedto the u interval[-1,1].} The two-angle option in plane geometry

allows the angular flux to be dependenton bothv and the azimuthalangle,a

very usefulfeaturefor someapplications.

The ONEDANTcode60 is a general-purposecodeusingthe diamonddifference

scheme. Its chiefadvantagesare its flexible,free-formatinput capability,

its use of the diffusion synthetic method for iteration acceleration as

describedin Sees.IV.Cand IV.D,and its portability.The code is currently

findingincreasinglywidespreaduse throughoutthe world.

B. Two-Dimensional,Time-IndependentCodes

For general-purpose, two-dimensional, time-independent,discrete

ordinatescomputercodes,the choiceis basicallybetweenone of the DOT series

of codesor a versionof theTWOTRANseries. Thesegeneral–purposecodestreat

(x,Y),(r,z),and (r$e)geometries;theysolveinhomogeneoussource,keff, and

eigenvalue search problems with several boundary condition options; both

operatein the direct(forward)and adjointmodes; and both accept arbitrary

anisotropic order of scattering.The DOT codeshave beendevelopedprimarily

for radiationshieldinganalysis. The TWOTRANcodeshave been developed in a

reactor/corephysicsenvironment.Thus,althoughsimilar,the two familiesof

codesembodysomewhatdifferentemphasesand flavors.

In the DOT family of codes (Fig. 18), DOT-III61 and its improved

offspringDOT 3.5 have been widely used throughout the world. In the late

1970s, a significantly improved,new versionin the DOT serieswas developed
28and denotedDOT-IV althoughthe firstgenerallyavailableform was released

under the nameDOT 4.2. Subsequentchangesand more efficientprogrammingled

to the releaseof an improvedversioncalledDOT 4.34 in the early1980s. For

radiationshielding,the DOT codeshavebeenwithoutpeer in termsof worldwide

acceptanceand usage.

For reactor core

shieldingapplications,
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47
code, developed in the late 1960s,includedseveraliterationacceleration

features. Such accelerationis virtually essential for the inner and outer

iterationused in core physicsapplications.The TWOTRAN-1131coderepresented

an improved,more easilyexportedversionof the codeand for nearly a decade

representedthe standardfor core physicsapplications.In the early1980s,a

totallynew offspringin theTWOTRANfamily, TWODANT,62 was developed. Two

major improvements in TWODANTare its freefield,easilyunderstoodinputand

its use of the very effective diffusion synthetic iteration acceleration

method. TWODANThas replacedTWOTRANin many institutions.

In additionto the DOT and TWOTRANcodes,severalsomewhat independent,

more specialized discrete ordinates codes were developedin the late 1970s.

The TRIDENT63 29andTRIDENT-CTR codesrepresentdiscreteordinatescodes using

the linear-discontinuous,finiteelementmethodfor spatialdiscretizationon

somewhatarbitrarytriangularmesh cellsin (x,Y)and (r$z) geometries. With

triangular mesh cells, rather generalgeometricalshapes,includingtoroidal

geometries,can be closelyapproximated. The I)IAMANT264and TWOI-IEX6’codes

also use a triangular mesh, but they are restrictedto uniformequilateral

trianglesin (x,Y)geometry. They are designed specially for modeling fast

breederreactorcoreswith hexagonalfuel assemblies.

The PALLAS-2DCY13,66 code is a special-purpose,shielding-analysis,

discrete ordinates code. It is restrictedto (r,z)cylindricalgeometryand

shielding(inhomogeneoussource) problems. It employs the method of short

characteristicsdescribedin Sec. IV.B.

c. Three-Dimensional.Time-IndependentCodes

The extension of discrete ordinates codes to three dimensions has

proceededsomewhatslowly. The firstknowndemonstrationcodewas THREETRAN,67

which was written for (x,Y,z) geometry. It was quite limited in its

generality,and its iterationprocedureswere virtually unaccelerated. The

code was not intended to be a practical production tool,but insteadwas a

demonstration-in-principlethatdatamanagementstrategiesand procedurescould

be devised and made to functionefficientlyon the computersand data stOrage-

capabilitiesextantin the 1970s. In this latter respect, THREETRAN was a

successful demonstrationcode. Althougha modestnumberof improvementswere

made to the code at Los Alamos,and the codewas subsequentlyrenamedTHREETRAN

(x,Y,z) in the late 1970s,littleworkwas doneon iterationacceleration.As
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a result, calculations required so much computingtimethatwhenwork on the

codewas suspended,it couldstillbe consideredonlya demonstrationcode.

The next three-dimensionalcode was THREETRAN(hex,z),68 developedfor

the hexagonal-zgeometriescharacteristicof fast-breederreactorcores. This

code uses an equilateral triangular, right prism, mesh cell suitable for

describing hexagonal-z geometries. As with THREETRAN (x,y,z),THREETRAN

(hex,z) contained minimal iteration acceleration and, thus, it too can be

consideredonlya demonstrationcode.

The ENSEMBLE69 code,developedin Japan,is an (x,y,z)geometrydiscrete

ordinatescode for radiationshieldingapplications only. The code permits

anisotropic scattering and uses the coarse mesh rebalancing scheme for

iterationacceleration.The codealsocontainsa negativeflux fixup routine

thatusesa variableweightdiamonddifferencescheme. A ray effectmitigation

optionis also available.Althoughusedlocallyby its authors, the ENSEMBLE

codehas not receivedwidespreadattentionor usage.

Duringthe late 1970s,therefore,the technical feasibility of three-

dimensional,discreteordinatescodeswas demonstrated.Theirpracticalusage,

however,was not well established because of the expense involved in both

computerexecutiontimeand computerstoragerequirements.Manymesh cellsare

requiredto adequatelymodelmost full-size,three-dimensionalproblems using

the diamond differencespatialdiscretizationscheme. It is likelythatmore

accurateschemeswill have to be developedand implementedso largermesh cells

can be used to reducethe totalnumberof mesh cellsto more practicallevels.

In addition,more modern and effective iteration acceleration schemes are

neededto reducethe timefor iterativeconvergence.

D. Time-DeDendentDiscreteOrdinatesCodes

Reasonably little work has been done in developing time-dependent,

discreteordinatescomputercodes. In about 1970, a one-dimensional, time-

dependentversionof theANISNcodewas developedjointlyby Oak RidgeNational

Laboratoryand Los AlamosNationalLaboratoryand namedTDA70 (Time Dependent— —
ANISN). This codeused a weighteddiamonddifferenceschemein spaceand time—
with an optional exponential time-differencing scheme. As originally

formulated, the code did not treat delayed neutrons; however, more recent

versionsof the code permitdelayedneutrontreatment.
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At approximately the same time as TDA was beingdeveloped,TRANZIT,a

two-dimensional,(r,z)cylindricalgeometry,time-dependentcodewas developed

at Los Alamos.
71 It employsa weighteddiamonddifferenceapproximationin all

variables. TRANZITdoes not provide for including a fission source, but a

time-dependent,inhomogeneous,distributedsourceseparablein spaceand time

can be used. It also containsa first-collisionsourceoption. Essentiallyno

furtherdevelopmenthas beendevotedto TRANZITsinceit was firstdevelopedin

1970.

In 1976, the general one-dimensional,time-dependentcodeTIMEX72 was

developed.TIMEX is quitesimilarto the time-independentcodeONETRAN in its

geometry and boundary condition capabilities. Like ONETRAN, it employsa

lineardiscontinuousfiniteelementscheme for spatial discretization. The

time variable in TIMEX is difference by an explicit,unconditionallystable

technique.Delayedneutronsare treated.

The above three computercodesare the only known,generallyavailable,

time-dependent,discrete ordinates codes in use. Numerous other time-

dependent, discrete ordinates codes exist at localinstallationsaroundthe

world,for example,theFrenchcodeEFD,73 but these codes are generally not

availablefor publicuse.

VII. GUIDANCEFOR THE USER

The ultimatereasonfor a discreteordinatescomputercode is that it be

used. The work of the code developer,the considerationsmade in choosing a

particular code for use at a givenfacility,and the stepsthatwere takento

make the code operationalat thatfacilityall becomehistory. It isnowthe

user’s job to make effectiveuse of thiscodeas a toolin designor analysis.

How can thistoolbe used most effectively?How does the user know that the

code is giving good answers? Where does the user begin? This section

providessome guidancethatshouldhelp answerthesequestions.

A. Familiaritywith the Code

One of the firstthings

the code. Three essentials

the actual execution of the

familiarityand understanding

you shoulddo as a user is to get familiar with

are 1) the codeusersmanual,2) familiaritywith

code and the information it provides, and 3)

of the physicsof particletransport.
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1. CodeUsersManual. The code users manual is a valuable resource.

Use it! At a minimum,it shouldtellyou how to providethe inputto the code

and how to interpret the code’s output. Many manuals provide much more

information. They will describe the numerical methods and approximations

containedin the codeor will providereferenceswherethisinformationcan be

found. The manualwill give specificadvice,cautions,and recommendationsfor

properusageof the code. It will describe the error diagnostics and error

messages providedby the code. It is the authors!experiencethatmost of the

mistakesand much of themisuseof a code couldhave beenavoidedhad the user

only become familiarwith the contentsof themanual. Accordingly,our advice

to you, the user, is to takethe timeand effortat the outsetto get familiar

with the code users manual. Remember,however,thata codeusersmanualis a

guideand not absolutetruth. It likelycontainsgeneralrecommendationsand

observations covering a broad range of problem types, computers, and/or

applications. For your particular situation, these recommendations and

observationsmay not apply. Thus, you mustacquirehands-onexperiencewith

the code- the secondareaof familiarization.

2. Run the Code. Familiarity with the actual executionof the code

requiresyourrunningproblems. You probablyhave alreadyused other computer

codes and know how they perform;runningseveralproblemswithyour discrete

ordinatescodewill give you a feel for the relative running times. It iS

quiteeasy to estimatethe executiontimesof subsequentruns once a problemof

a particular type has been run. The execution time of most codes is

proportional to the total number of spatial mesh intervals or angular

directions.As a user,you shouldverifythisproportionalityand get a good

feel for the amount of time,hence the cost,of calculations.Similarly,the

numberof energygroupswill affectrunning times. If upscatter or fission

coupling is not significantlyalteredby changingthe numberof energygroups,

executiontimesare usuallyproportionalto the numberof groups.

In addition to acquiringa feelfor the requiredexecutiontimes,get a

feel for the accuracy of the results. Vary the number of spatial mesh

intervals and the angular quadrature order to see if the results change

significantly.There is no sensein runninga two-dimensionalS16 calculation

with a 50 x 100 spatial mesh if you can get the same results with an S8

calculationon a 25 x 50 mesh. Similarly,althoughyou find thata particular

mesh structureand quadratureorderis requiredto yieldacceptableaccuracyin
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a givenparameter,say keff,accuratedifferencesin the parameter caused by

changes in problem dimensions or materialcompositionscan oftenbe obtained

with a coarser (hence, less expensive to calculate) mesh structure and

quadrature order. As a responsibleuser,you shouldconfirmthisbehaviorby

runningthe code.

Code execution times and accuracyof resultsare affectedby iteration

convergenceprecision. Convergenceprecision thatare too tightwill simply

waste computer time. The users manual will usually provide guidance on

acceptableconvergenceprecision,but you still should familiarize yourself

with the behavior of the code as a function of varying the convergence

criteria.

While you are becomingfamiliarwith runningthe codeand observinghow

the coderespondsto variouschanges,you will likelyfind yourself wondering

why the code respondsand behavesas it does. This leadsus to the thirdarea

of familiarization.

3. Learn Aboutthe Physicsof ParticleTransport. Familiaritywithand

understandingof someof the physicsof particletransport are important for

the knowledgeableuser. An understandingof someof the whys enablesthe user

to betterknow the hews of correctproblemmodelingand execution. The value

of understanding some of the physicsof particletransportcan be illustrated

by considering the problem of a monoenergetic point isotropic source of

particles at the center of a uniform 10 mean free path (mfp) sphere of

nonscatteringmaterial. For sucha problem,the scalarflux for source-energy

particlesvariesas [exp(-r)]/r2,wherer, the radialdistancefrom the center,

is measuredin mean free paths. To modelthe pointsource as a finite sphere

for analysis with a discrete ordinates code, this source-containingsphere

couldbe quitetiny,say of radius0.0001mfp. clearly,sucha choicemodelsa

‘point” source quite well, but such a choice is likelyto causesignificant

problemsin modelingthe rest of the problem. The reasonfor this is thatfrom

r = 0.0001 mfp to r = 1 mfp, the scalarfluxwill decreaseby at leasteight

ordersof magnitudebecauseof the l/r2behaviorof the flux. An extremely–

fine-mesh spacingwitha very largenumberof mesh cellswill be requirednear

the origin. By simplyexpandingthe sourcesphereto a radiusof, say,0.05 or

0.1 mfp, much of the l/r2singularityis removedwithlittleloss in accuracy

evenat distancesas closeas 1 mfp fromthe sphereorigin. Such modeling can

reduce dramatically the number of mesh cells. The ‘physics”of thisproblem
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also indicatesthatlogarithmicvariationIn mesh spacingmay be preferredover

uniformmesh spacing,especiallynear the sourcewhereratherfinemesh spacing

is necessary. Logarithmic interpolationoptions are available in several

general-purpose,discreteordinatescodes. Further,the ~physics~of angular

redistributionin thisproblemdictatesthata ratherhighSN orderis probably

required, perhaps S32 ‘r ’48” In addition, although a ‘pure absorbing~

materialmay seem somewhat academic, an understandingof the ‘physicsn of

multigroup crosssectionsshowsthatsuchmaterialsdo verynearlyexist. For

high-energyneutrongroupsin whichthe energygroupis fairlynarrow,within-

group,or self-scattercan be quitesmall. Sinceany reactionotherthanself-

scatterremovesparticles from the energy group, materials will appear as

nearlypure absorbers(removers)for suchgroups. The aboveexampleshowsthat

thereis a greatdealof ‘physicsUthat, when understood, can be applied by

you, the user. There are many other areas where an understanding of the

physicsof numericalparticletransportis valuable. The unacceleratedinner–

iteration processused in most transportcodesconsistsof generatingthe flux

solutionby addingtogetherthe fluxresultingfromno self-scattercollisions

(first inner iteration),the flux resultingfromone self-scatteringcollision

(seconditeration),the flux resulting from two self-scatteringcollisions

(third iteration), etc. Understanding this process explains why in large

regions for energy groups in which the material is nearly a pure self-

scatterer, unaccelerated inner iterations converge very slowly and why an

effectiveinneriterationaccelerationschemeis so important.Understandthat

applying a negativeflux fixupforcesmore particlesto leakfrom the affected

mesh cell and determinewhethersuchfixupsare importantto your calculation.

You shouldlearnaboutthe probableneedfor placingmore thanone mesh cell in

voidsin curvilineargeometrieswhereparticlestreaming occurs. Learn that

diamond differencing yields very accurate integralresults,evenwhen local

angularfluxesare poorly predicted. Learn to apply the correct boundary

conditions, especially in curvedgeometries.Far too frequently,cylindrical

cell calculationsare performedusingspecularreflectionas an outer boundary

conditioninsteadof the ‘whiten(isotropicreturn)boundaryconditionthatwas

developedfor curvedgeometrycell calculations.

Rememberthata computercode is inanimateand cannotanalyzeand correct

your inputso that you will correctly solve a problem. It will solve, or

attemptto solve,only the problemthatyou have givenit. Beingfamiliarwith
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the code and its users manual and understanding the physics of particle

transport will helpyou providethe codewith meaningful,well-posedproblems.

As a userwith suchfamiliarityand understanding,most of yourproblemsshould

be run acceptably. There will be times, however,whenyourproblemis ill-

posedin that it causestroublewhen the code attempts to effect a solution.

Beloware someof the commonindicationsof troubleand theircauses.

B. Indicationsand Causesof Trouble

There are many causes for an unsatisfactoryrun of a problem by a

discrete ordinates code. Simple user input errors, bad or inappropriate

nuclear data, poor geometricmodeling,an inappropriateangularquadrature,or

simply a very tough problem are examples of such causes. Indications of

troubleor unsatisfactoryexecutionrangefromthe glaring,obviousfatalerror

through the more subtle, not-so-obvious indications, all the way to no

indicationat all.

1. ObviousIndicationsof Trouble. The most obvious indication that

something is wrong in a computercoderun is the fatalerrorin whichproblem

executionis abruptlyhalted, usually with a highly visible message to the

user. Fatal errors are normally caused either by input errors or by

deficienciesin the computercode.

The most commonfatalerrorsare thosecausedby user inputerror. These

are eitherdetectedby the computercode or by the computingsystem. The most

user-friendlycodeswill have extensiveinputdata checkingcapabilities,error

diagnostics,and clearly understood error messages. Such codes make the

correcting of input errors quite simple. At the otherextremeare computer

codeswith virtuallyno built-in error diagnostics. Input errors in these

codes are usually discovered by the computingsystem,if discoveredat all.

Systemerrormessagestend to be somewhatgeneral,and pinpointing the input

erroris significantlymore difficultthanwith a user-friendlycode.

Fatal errors caused by errors or deficiencies in the code usually

manifest themselves as computingsystemfatalerrors. Examplesof theseare

systemoverflowswhereperhaps the code has attempted to divide by zero or

address-out-of-rangeerrors. Errorsof thissortusuallyoccurbecauseyour

particularproblemis exercisingan optionor a logicalflowpath that has not

been exercisedbefore. In sucha case,

erroror deficiency,or the codeauthor

you normallymust

must be contacted

eitherfix the coding

for assistance. If
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the codebeingused is somewhatnew, it is fairlylikelythatyou may encounter

sucha situation- we hope thatyou do not,but do not be surprised when this

happens. Large computer codes have many options, and the number of

combinationsand permutationsin the logicof the codecan be very large. Only

through the running of hundreds or thousands of problemsby many different

userswill a code be thoroughly checked out. Keep this in mind, and be a

friendly - or at least an understanding- userwhen you encounteran error in

the code.

2. Not-So-Obvious Indicationsof Trouble. Many computercoderuns do

nOt resultin fatalerrorsbut are, nevertheless,unsatisfactory. Such runs

commonly providethe userwith indicationsthatthe run may be unsatisfactory,

but theseindicationsare not as obvious as the fatal error. These not-so-

obvious indications of troubleusuallyappearin one or more of the following

forms: warningmessages, iteration convergence problems, negative scalar

fluxes, and poor particle balance. User-controlledoutputand editprints

and/orgraphicaldisplaysalso frequentlyindicatetrouble.

The well-written, user-friendlyproductioncodewill frequentlyprovide

relativelyvisiblewarningmessageswhen it detectsconditionsthat may cause

the results to be questionable or unsatisfactory.One situationin whicha

warning message might be provided is when a specular reflection boundary

condition instead of the white boundary condition is being used in a

cylindrical cell calculation. Another example might be the detection of

inconsistent nuclear cross sections in which the totalcrosssectionis not

equalto the sum of absorptionand scatteringcross sections. Still another

might indicatethat the codereachedthe user-inputlimiton allowablerun time

beforefull convergencewas achieved. Such warning messages can be of great

value to you in your deciding whetherthe coderesultsare satisfactory.If

warningmessagesare provided by your code, look for them. They have been

providedby the codeauthorto help you.

Discreteordinatescodesvirtuallyalways use an inner– and an outer-

iteration methodfor effectinga solution. Convergenceof theseiterationsis

usuallyconsidereda requirement for a satisfactorysolution. Most codes

provide an iterationmonitorprintin theiroutputto presenta recordof the

iterationconvergence.You shouldalwaysreviewthis iterationmonitor print

before accepting the results of a calculation. This monitor print will

indicatefailureto achieveconvergence,an importantindicatorof trouble.
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Before giving someof the reasonswhy a problemmay failto converge,we

shouldmake sanegeneralremarksaboutdiscreteordinatescode iterations.The

more leaky or absorbinga problemis, the fasterthe iterationswill converge.

Conversely, in diffusion-likeproblems with large, low-leakage, weakly

absorbing regions, the unaccelerated iterationconvergencerate can be very

slow. Eigenvalueproblemsand searchcalculationsrequiremore than one outer

iteration. Inhomogeneous source problems with isotropic scatter and no

upscattershouldconvergein one outeriterationif the inner iterations for

eachenergygroupare allowedto achievefull convergence.

Becauseof the iterativeproceduresused in discrete ordinates codes,

virtually all such codesemploytechniquesto acceleratethe convergencerate

of both the innerand outeriterations.Earlierwe described the Chebyshev,

rebalance, and diffusion synthetic accelerationschemescommonlyused. The

greatmajorityof the time,theseschemeswill perform quite adequately, and

full convergencewil be achieved. In someproblems,however,neitherChebyshev

nor rebalanceaccelerationwillwork veryeffectively,and convergencewill be

achieved quite slowly. It is inherent with certain problems thatneither

methodwill performwell,and there is little that you, the user, can do to

prevent it. What you must do is be awareof “thedifficultyof predictingthe

final,fullyconvergedresultwhen the iterationsare approaching the result

asymptotically.Even thoughthe differencein resultsbetweensuccessiveouter

iterationswill be quitesmall,the resultsmay stillbe unacceptablyfar from

the trueasymptoticresult.

Occasionally you may encounter a problem in which the acceleration

method itself delays or prevents convergence. Fine mesh rebalanceis most

likelyto do this. If divergence of the iterative procedure occurs for a

problem using fine mesh rebalance,makingthe rebalancemesh somewhatcoarser

may correct the situation. If divergence still occurs with coarse mesh

rebalance, the trouble probably lies elsewhere. The Chebyshevacceleration

methodalso,on rare occasions, can prevent convergence, in which case you

shouldsimplyturnoff the accelerationand try rerunningthe calculation.

Most discreteordinatescodes permit the user to specify the desired

convergenceprecisionthroughuser-inputconvergencecriteria. Generally,the

more localthe convergence criterion, the more slowly convergence will be

achieved. Thus, pointwise flux convergencefrom one inneriterationto the

nextmay be more difficultto achieve than convergence of a global quantity
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such as k Sinceinneriterationconvergencecriteriaare commonlyappliedeff”
to pointwise quantities, it is customary to limit the number of inner

iterations in any given outer iteration. This practice prevents endless

iterations in the event that convergence is not possible. It also saves

computationtime. In a problemrequiringseveralouteriterations,timecan be

wasteddoingmany inneriterationsduringthe earlyouter iterations. As the

outer iterations proceed toward convergence,inneriterationswill converge

concurrently.Failureto reachinneriterationconvergence can be caused by

the accelerationmethod, as previouslymentioned,or it can be causedby too

tighta convergencecriterion. It can alsobe causedby allowing too small a

limit on the allowablenumberof inneriterations.The appearanceof negative

fluxesor the applicationof negativeflux fixups can sometimes occur in an

oscillating !~on-off~pattern betweeniterationsfor a givenmesh cell. This

oscillatorybehavior may prevent the pointwise fluxes from achieving full

convergence. Frequently, such oscillationsoccurin unimportantmesh cells,

and theyhave littleeffecton the overallresults. In suchcases,failure to

reachfull inner-iterationconvergenceis not important.

Just as with inner iterations, outer-iterationconvergence can be

preventedby too tighta convergencecriterion.On somecomputers,a criterion
-8of 10 willfail simplybecausethe result of subtracting two nearly equal

numbers may differ by more than this. In selectingconvergencecriteriafor

your problem,you must understandthemannerin whichthe criteriaare usedand

the effectivenessof the convergencetestsin the code. Differentcodesuse

differentcriteria. What may be a necessaryconvergencecriterionin one code

may be grossoverkillin another.

The third not-so-obvious indicator of trouble is the existence of

negative fluxes in the output froma run. Negativefluxescan occurbecause

the scatteringsource,as computedby the code,is negative. This can happen

when the scattering processesare highlyanisotropicand/orthe particleflow

is highlyanisotropic.If the sphericalharmonicsexpansionfor the scattering

source is truncated at too low an orderand the expansionis evaluatedat the

discretedirectionsof the problemat hand,it may be negative. Normally,such

occurrences result in a few negativeangularfluxes,but the angle–integrated

scalarfluxremainspositive. Such situationscan usuallybe tolerated. If,

however, the situation is such that the scalar flux becomesnegative,some

remedialactionis probablyrequired. Increasingthe order of the scattering
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approximationmay sufficeif higher-orderscatteringdata are available. The

most common cause of negative scattering sourceslies with the higher-order

scattering cross-section data. Referring to Eq. (34) in Sec. II, the

scattering expansion for higher-order(anisotropic)termscontainsa (2!+ 1)

expansioncoefficientthat multiplies the higher-order cross sections, X
k
s“

Some computercodesexplicitlyperformthismultiplication;othercodesrequire

that the (2L+ 1) factorbe includedin the # data. If the latterform of X:

is used in the former type of code,the resultis an erroneousincreasingof

the higher-ordercontributionsto the scattersource. This commonlycausesthe

resulting negative fluxes. It is, therefore,imperativethatwhen performing

calculationswith anisotropicscattering,you make certain that the (21 + 1)

expansionfactoris beingtreatedcorrectly.

If negativescatteringsourcesare not the cause of negative fluxes in

your output, the probablecauseis mesh spacingthatis too large. The common

spatial-differencingschemes employed in discrete ordinates codes are the

diamond differencing and the lineardiscontinuousschemesdescribedearlier.

Both of theseschemescan producenegativeangularfluxes if the mesh spacing

is too large. Most codes employ a negative flux fixupschemeto eliminate

thesenegativefluxes. occasionally,however,a multidimensionalproblemis so

coarsely meshed that even the negative flux fixup will fail, and negative

fluxeswill remain. The onlyrecourseyou have for eliminatingthese problems

is to refinethe mesh in the regionswherethe offendingnegativefluxesoccur.

The finalindicationof trouble in a calculation appears in particle

balance and balance table summary prints in those codes that providesuch

output. Particlebalanceis normallya globalmeasureof the equalitybetween

losses and sources. Particle balancesufferswhen one or more energygroups

are not fullyconverged. It also sufferswhen a low-orderangular quadrature

is used in conjunctionwith high-orderanisotropicscatter,in whichcase the

quadraturemay not correctlyintegratethe sphericalharmonicflux momentsused

in the scattering source and may, thus, cause an erroneousadditionto the

sourcesin the particlebalanceequation. Elalancetables typically provide

certainspace-angleintegratedquantitiesfor each energygroupand for the sum

of the groups. Quantities typically provided are fission source rate,

absorption rate, inscatter,self-scatter,and outscatterrates,leakagerates

from each surface,etc. These tablesprovidevaluableclues to the proper or

improper performance of a calculation. For example, they are a sensitive
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measure of cross-section inconsistencies . If the group sum of the

outscatteringratesis not equalto the group sum of the inscatteringrates

while particle balance is satisfied, there is either an errorin the cross

sectionsor in the code itself.

In summary, there are many cluesand indicationsof the satisfactoryor

unsatisfactoryperformanceof a calculation provided in the output of most

codes. Warning messages, the iteration monitor print,and the convergence

informationit contains,fluxprints or plots, particle balance and balance

tables are commonly available. While not as glaringly obvious as a fatal

error,theyare therenevertheless,and theyprovide indications of trouble.

Get intothe habitof usingthem.

3. NonobviousErrors. Thereare,unfortunately,many nonobviouserrors

that occur in runningproblems. The causeof many of theseerrorsis the code

user. User inexperience,haste,simplecarelessness,and honestmistakesoften

result in invalid calculations, wasted computer time, and erroneous

conclusions. The wrong problem is often solved, and the error is not

recognized. Mistakenly entering the geometryoptionflag for (x,y)geometry

insteadof the desired(r$z)geometrycan easily go unnoticed. Using a fast

reactor multigroup cross-sectionset for a thermalneutronsystemcan lead to

grossly incorrect conclusions. Failing to check that mesh spacing or

quadrature variationsdo not significantlyaffectcalculationalresultscan be

dangerous. Simply ignoring or not noticing the indications of trouble

discussed above can have serious consequences. Rememberthat the codewill

attempt to solve the problem you give it. It cannot read your mind to

determine whether input specificationsdescribe the problem desired. The

responsibilityfor minimizing such

careful. Checkthe inputcarefully;

codesintelligently.Recognizethat

but thatcorrectuse of this toolis

errors rests squarely on the user. Be

reviewthe output. Use discrete

a powerfultool is at the user’s

the user’sresponsibilityalone.

ordinates

disposal
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APPENDIXA

CONVERTINGSPHERICALHARMONICSEXPANSIONINTOCOMPUTATIONALFORM

In Sec. II, we derived the spherical harmonics expression for the

scatteringsourceas Eq. (30), whichwe

o “L=o

reproducehere.

!?

z
Yg#,@(:,EI) ● (Al)

m.-~

Although this form is general and succinct, it is not computationallycon-

venientbecausethe sphericalharmonicsand the flux moments O; are complex

quantities. To convertEq. (Al)intoa more computationallyconvenientform,

we expandit as

We note that

‘k,-m(11,$)= (-1)mY;M(ll,l$),
9

m m*Q;= (-1)Ok ,

and thus the m summationin Eq. (A2) is converted to

which is a real quantity. If we definereal and imaginarypartsof the flux

momentsas

f(li



Y
L,m=RE,m+il!?,m ‘

then the abovesummation

L

may be writtenas

Further,if we writethe sphericalharmonicsin the form

‘!L,m(v,@)E Wg,m(p)eimo ,

thenthe scatteringsourcecan be writtenin the followingform:

L

l’z
Ss(;,E,?)= dE’ $Z,E’+E){WL @$;(~,E’)

s
o !t=o

+2
x

W2,m(V)[O~,L(;,E’) cos m$ + ‘~,g(Z,E’) sin m$]} ,
m=l

where

(A3)
1 2’11

and the m summationis evaluated only when k > 1. To convert to our final—
computationalform,we definean index,n, whichcountsthe numberof separate

momentsappearingin Eq. (A3) . We thenwritethe computationallycompactform
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(A4)

o n=l

whereNM is the numberof moments.

To define the Z:, Rn, and in terms,we make a one-to-onecorrespondence

betweenthe termsin Eqs. (A4) and (A3). Clearly, for special geometrical

symmetries, the scattering source can still be reduced to Eq. (A4) with

differentdefinitionsof eachof the quantitiestherein(includingthe number

of moments NM). Some of these are presentedin TableII. Note thatwe have

also includeda 21 + 1 factorexplicitlyin Eq. (A4)to be compatiblewith the

forms that are incorporated in existingtransportcodes. Note also thatthe

zerothflux moment,denoted as 0°o using the notation of Eq. (Al) and as ~1

using the notation of Eq. (A4), is the scalar flux thatwe normallydenote

simplyas O..
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INDEX

Accelerationmethods;53-54,108, 129-130.
See alsoChebyshevacceleration,Diffusion synthetic acceleration,
Rebalanceacceleration.

AdjointBoltzmannequation;29.
boundarycondition,30;
sources,29-30.

Angularquadrature.See Quadrature.

Angularredistribution;16-11’,42-44,49, 66-67,8’7,168.

ANISNcode;159-160,164.

ASOP code;159.

AssociatedLegendrefunctions;23, 28.

Balance. See Particlebalance.

Boltzmanntransportequation;6-10.
conservativeform,44, 46, 53-54,87.

Boundaryconditions;18, 30, 46, 168.
albedo,20-21;
cylindricalorigin,19;
grey (seealbedo);
periodic,19;
reflecting,18, 168,170;
sphericalorigin,19;
vacuum,18;
white,20, 168,170.

Buckling;147.

Chebyshevacceleration;108, 171.
inneriterations,108-I11,116, 129;
outeriterations,130-132,142;
stability,111,116,132.

Coarsemesh rebalance. See Rebalanceacceleration.

Code Centers;158.
Argonne(seeNationalEnergySoftwareCenter);
NationalEnergySoftwareCenter,158;
NEA Data Bank,158;
RadiationShieldingInformationCenterl158.
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Computermemory;153-154.
storage,153-154;

directaccess,154;
extendedcore,153;
randomaccess(seedirectaccess);
sequential,153.

Computers,CDC 7600;103, 153.
Class-VI,4;
CRAY-1,4, 153;
Cyber205, 4;
Cyber720, 153;
IBM, 152-153.

Convergence.See Iteration.

Deep penetrationproblems. See Shieldingproblems.

DIAMANT2code;163.

Diamonddifference,in angle;85, 88, 94, 96.
in space (seeSpatialdiscretizationmethods).

Differentialscatteringcrosssection;8, 21.
expansionin sphericalharmonics,21-22.

Diffusionapproximation.See Sphericalharmonicsmethod.

Diffusionlimit;54, 55, 94-95,100.

Diffusionsyntheticacceleration;4, 116-117,162-163.
inneriterations,116-129;
outeriterations,137-146;
stability,120-122,125-126,128-129.

Discreteordinatesmethod;39-48.
accuracy,46-47;
angularcouplingcoefficients,43-44,67;
angularquadrature(seeQuadrature);
boundaryconditions,46.

Discretization. See Spatial discretizationmethods,Discreteordinates
method.

Divergenceoperator. See Streamingterm.

DOT codes;83, 86, 161-162.

Doubleprecision;153.

DTF-IVcode;159-160.

DTF69code;159-160.
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EFD code;165.

Eigenvalueproblems;34, 45-46, 105, 107,120,129, 132,134,136-138,145-
150,171.

alpha (a),147,150;
“ 34, 79-80,134-138,142, 146,150,172;k ff’

t!meabsorption(seealpha);
see alsoSearch.

ENSEMBLEcode;164.

Finemesh rebalance. See Rebalanceacceleration.

Fissionfraction;9, 26, 28, 33-34.
source,8-9,26, 28.

Fixedsource. See Inhomogeneoussource.

FORTRAN;154.

GTF code;159.

Hexagonalmesh codes;163.

IDFX code;159.

Importance;29.

Inhomogeneoussource;9, 28-29.

Iterationaccelerationmethods;171.
See also Chebyshev acceleration,Diffusion syntheticacceleration,
Rebalanceacceleration.

Iteration,convergence;34, 57-58,95, 145,167-168,170-172.
inner,55, 57, 108-129,168;
outer,34, 58, 129-146;
power,34, 129,136;
source,34, 53, 55-58,117,129.

Legendrepolynomials;22.

Lineardiscontinuousmethod. See Spatialdiscretizationmethods.

Longwords;153.

Memory. See Computermemory.
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Multigroupcrosssections;31-32.
method,31.

Negative flux fixup;93-95, 107, 126-127, 129, 164, 172-173.

Negativefluxes;172-173.

ONEDANTcode;160, 162.

ONETRANcode;160, 162.

Outeriterations.See Iterations.

PALLAScodes;55, 105,159, 160,161,163.

Particlebalance;173-174.
tables,173-174.

PN method. See Sphericalharmonicsmethod.

Quadrature,integrationconditions;40, 45, 59-68,78.
sets,biased,82-85.

definition,40, 59;
evenmoment,71-73,78;
fullysymmetric,68-74,78;
Gauss-Chebyshev,74-78;
Gauss-doubleLegendre,64-66,74, 76, 79-80;
Gauss-Legendre,60-64,74, 76, 79-80;

startingdirections,85-86,89-90;
weights,40, 41, 59, 61-63,65, 71.

Ray effects;46-47,164.

Rebalanceacceleration;53, 111-116,132-137,144-145,171.
coarsemesh,111-116,129, 132-137;
finemesh (seecoarsemesh);
inneriterations,111-116;
outeriterations,132-137;
stability,113, 116,144-145;
wholesystem,113, 116,132-134.

Removal cross section; 39.

Scatteringangle;21-22,45.
laboratorycoordinatesystem,45.

Scatteringfunction. See Differentialscatteringcrosssection.

Scatteringratio;57, 108,111,116.
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Scatteringsource;8.
expansionin sphericalharmonics,21-26, 40, 172-173, App. A. (181-

183).

Search;146-150,171.
alpha (a),147;
buckling,147;
concentration,148;
spatialdimension,147;
timeabsorption.See alpha.

Shieldingproblems;4, 46, 55, 102-105,107.
Codes,162, 163,164.

Shortwords;152.

SN method;59. See alsoDiscreteordinatesmethod.

SNID code;159.

Source-to-group;56.

Spatialdiscretizationmethods;48-55,86-90.
commonassumptions,86-87;
desirableattributes,54;
diamonddifference,90-95,100-104,107,123, 125-126, 129, 155, 159,

162, 164,165,168, 173;
lineardiscontinuous,95-101,102-104,125,162, 163,165,173;
linearnodal,101-104;
positivity,86, 92, 95, 100, 102,107;
shortcharacteristic,104-107,159,163;
stability,101, 102;
stepdifference,91, 92, 93, 155;
weighteddiamond;see Diamonddifference.

Spectral radius of convergence;57, 108, 110-111, 121-122, 125, 131-132,
141-142.

Sphericalharmonicsmethod;35-37.
diffusionapproximation,37-39.

Streamingoperator. See Streamingterm.

Streamingterm;7-8, 10, 36-37,39, 41-44.
in rectangularCartesiangeometry,7-8, 10-12;
in cylindricalgeometry,12-15,41-44,50;
in sphericalgeometry,15-16.

TDA code;164.
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THREETRANcodes;163-164.

TIMEXcode;165.

Toroidalgeometrycodes;163.

TRANZITcode;165.

Triangularmesh codes;163.

TRIDENTcode;163.

TRIDENT-CTRcode;163.

TWODANTcode;161, 163.

TWOHEXcode;163.

TWOTRANcode;86, 161-163.

TWOTRAN-11code;163.

Upscattering;33.

Wholesystemrebalance. See Rebalanceacceleration.

XSDRNcode;159, 160.

Yvon’smethod;64.
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