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TRANSPORT CALCULATIONS FOR NUCLEAR ANALYSES:
THEORY AND GUIDELINES FOR EFFECTIVE USE OF
TRANSPORT CODES

by

R. Douglas 0'Dell and Raymond E. Alcouffe

ABSTRACT

This report is for the serious user of discrete
ordinates transport computer codes for performing nuclear
analysis calculations. The first section after the
introduction provides a reasonably thorough mathematical
description of the analytic Boltzmann transport equation.
Next is a section on the numerical discretization of the
energy, angle, and space variables in the transport
equation, along with an introduction to the socurce iteration
method. The fourth section provides numerical details and
features pertinent to discrete ordinates codes. That
section details angular quadrature, spatial discretization
methods, iteration acceleration methods, and search
capabilities. The fifth section presents considerations in
choosing a discrete ordinates code for use, and this is
followed by a section on typical discrete ordinates codes
avallable throughout the world. The report ends with some
guidance for the user.

This report is a revision of the chapter titled
"Transport Calculations for Nuclear Reactors," written by
the authors for Volume 1 of the three-volume CRC Handbook of
Nuclear Reactors Calculations, Y. Ronen, Editor, published
by the CRC Press, Boca Raton, Florida (1986).

I. INTRODUCTION

The use of computer codes to perform nuclear analysis calculations costs
money. Transport calculations are more expensive than diffusion calculations.
Although continuing development in computer hardware and codes (software) have

reduced the expense of transport calculations to more practical and acceptable




levels than in the past, transport calculations are still more expensive than
diffusion calculations. Moreover, there arises the question of whether a
transport calculation must adequately describe the physics in a given problem
or whether a diffusion calculation will suffice. To answer this question
intelligently and to use a computer code effectively and properly requires
understanding the physics modeled by a computer code and the numerical
techniques used in the code. The purpose of this report is to provide the
nuclear analyst with information about the use of deterministic particle
transport codes for nuclear analysis calculations.

This introduction describes briefly the principal differences between
diffusion theory and transport theory and some of the recent advances that have
reduced the cost of running a transport calculation. Subsequent sections
provide a more detailed description of the mathematics, physies, and numerical
methods in deterministic transport codes and give the reader guides to the use
of such computer codes.

Any precise description of neutral particle transport must involve
treatment of the migration of particles in phase space (space, energy,
direction, and time) as influenced by interactions with the underlying matter.
Below, the description of particle migration is as a single linear equation
under the assumptions that the particles interacting with the underlying matter
do not affect the matter and that the particles do not interact with
themselves. Stated another way, the descriptive equation is linear if
interactions between particles and material can be described in terms of cross
sections independent of the particle density. The neutral particle transport
equation is then developed by performing a mathematical balance on the physical
production and losses of particles. Section II of this report describes this
development of the transport equation in some detail. The result is, in its
full generality, an equation with seven independent variables, three spatial
variables, three momentum variables (or equivalently, an energy or speed
variable plus two direction-of-motion variables), and one time variable.
Although in practical applications the transport equation can be cast in
specialized forms involving fewer independent variables, the equation still
provides a rather elaborate description of the particle migration process, and

its computational solution is a fairly expensive method for performing reactor

or other nuclear analyses. It is thus desirable to discuss the utility of the




full transport description and to describe some of the simplified
approximations to it.

The most useful approximation for performing neutronic analyses is the
diffusion equation. The diffusion equation is computationally less expensive
to solve than is the transport equation because diffusion theory reduces the
maximum number of independent variables from seven to five--three spatial
variables, one momentum variable (energy or speed), and one time variable.
Mathematically, the diffusion approximation places some rather severe
restrictions on the momentum dependence of the neutron density. Physically,
these restrictions consist of two major requirements. First, the neutron
migration process must be dominated by scattering interactions, or collisions;
that is, the material must be highly scattering and weakly absorbing for
neutrons. Second, the neutron migration process must be far removed from
system interfaces - that is, material discontinuities - where large gradients
in the neutron density may occur. In practice, diffusion theory has been
applied extensively to reactor analyses and generally found Lo perform better
than it theoretically has any right to. That is, if proper corrections are
made from transport theory, diffusion theory can be used quite acceptably for a
large class of reactor analysis problems. These corrections come from a
transport-based homogenization theory and are normally made in preparing cross-
section data. These transport-based corrections do much to foster the success
of diffusion theory-based reactor neutronic analysis.

It is natural, then, to ask "If diffusion theory, successfully corrected
for transport effects, is computationally less expensive than transport theory,
why be concerned with transport theory to perform nuclear analyses?" To answer
this question, one must recall the two basic requirements of diffusion theory
which, even with transport-based corrections, still largely exist. Diffusion
theory relies on the absence of large gradients in the neutron density (or
flux) in any spatial region of the problem. Large gradients imply a highly
directional migration of neutrons, and diffusion theory does not include the
direction-of-motion variables. Also, for an accurate diffusion coefficient to
be defined for the material, diffusion theory requires that the migration
process be dominated by scattering collision. Both of these conditions
relate directly to the description of the neutron leakage, and in this
description diffusion theory suffers the most relative to transport theory.

Two examples in reactor analysis where large gradients are known to exist are




1) in thermal reactors near control rods and 2) in fast reactors in the
vicinity of internal blankets. In both cases, unless special, somewhat ad hoc,
treatments are applied, the diffusion solution will be inaccurate or, at best,
uncertain, and transport analysis is needed. Another application requiring
transport analysis is in shielding calculations or in any calculation of deep
penetration. In such applications, the collision (interaction) processes
between particles and material are usually not weakly absorbing and highly
scattering, but are commonly just the reverse, and diffusion theory cannot be
used with any confidence. Also, particle flow or migration through a shield
tends to be directional, and diffusion theory treats this situation poorly.
For these reasons, virtually all shielding and analyses of deep penetration
are performed with transport theory.

Given the experience with diffusion theory, the preponderance of reactor
core analyses will likely continue to be performed with this simpler,
computationally cheaper tool. Several developments in the late 1970s and early
1980s, however, reduced the expense of transport calculations to levels where
they can be performed much more routinely. One of the developments is the
continuing computer hardware improvement in computational speed, in memory
size, and in data storage availability. The Class-VI computers developed in
the early 1980s (CRAY-1 and Control Data Corporation's Cyber 205), which
perform tens of millions of floating point operations per second, have reduced
transport calculational times into the seconds and minutes range instead of the
minutes and hours range of earlier computers. Further, developments in
solution methods for the transport equation have shown that the nuclear
designer/analyst can have at his disposal an enriched set of transport analysis
tools completely compatible with the diffusion theory tools he has been
accustomed to using. This is discussed in our section on iteration convergence
of the transport solution process using the very effective diffusion synthetic
acceleration (DSA) method. The DSA method employs the diffusion equation to
accelerate the convergence of transport iterations by using the intermediate-
iteration transport results to correct the diffusion equation. When DSA
is carried to completion, the corrected diffusion equation solution is the same
as the transport solution within a specified convergence criterion. Note,
however, that since the iterative process is carried out in stages
(iterations), at each successive stage the diffusion solution becomes a better

approximation to the transport solution, so the DSA method can be thought of as




a diffusion improvement method. Thus, a properly designed transport computer
code offers the user a diffusion equation solver that can be consistently
improved by transport theory so any doubts or uncertainties about transport
effects can be systematically removed conveniently. Thus, with faster and
larger computer hardware and better, more modern computer codes, the use of
transport theory as a routine nuclear analysis tool is likely to increase.

In subsequent sections of this report, we attempt to provide the nuclear
designer/analyst with a reasonably completevoverview of numerical methods for
deterministically solving the transport equation. In Sec. II we present a
mathematical description of transport theory, quickly specializing to some
convenient geometries for the spatial resolution of the transport divergence
operator that appears in the transport equation. Next, in Sec. III, we proceed
to numerical descriptions based on the analytical equations, with emphasis on
the discretization of the independent variables to produce the discrete
ordinates equations. We also include an introduction to the concept of solving
the discrete ordinates transport equations by source iteration techniques.
Section IV is devoted, in some detail, to many of the numerical procedures that
are computationally effective and are in use in today's computer codes.
Section V discusses some considerations that are important in choosing a
computer code as a transport calculational tool, and this is followed by a
short section on some typical discrete ordinates codes that are readily
available for use. This report concludes with Sec. VIII, a brief section

giving some general guidance to the discrete ordinates code user,

II. MATHEMATICAL DESCRIPTION: THE ANALYTIC EQUATION

The linear Boltzmann transport equation is an integro-partial differen-
tial equation embodying the physics of neutral particle transport. This
equation and boundary conditions are required for problems of finite geometric
extent. The boundary conditions specify the distribution of particles entering
the geometric problem through its exterior boundaries. The Boltzmann equation,
together with the appropriate boundary conditions (and an initial condition for
time-dependent problems), constitutes a mathematically well-posed problem
having a unique solution. This solution consists of the complete, that is,
deterministic, distribution of particles throughout the space, energy,

direction-of-motion, and time (for time-dependent problems) portions of the




problem. The linear Boltzmann equation, together with the boundary conditions
(and initial condition, if required) in discretized form, is solved by
deterministic transport computer codes.

In this section, we present a brief development of the linear Boltzmann
transport equation in its general analytic form. Following this, we show some
of the specific forms the equation takes for common geometries - that is,
coordinate systems - encountered in practice. We then describe the various
boundary conditions that are appropriate for use in these geometries. Next, we
develop the spherical harmonics expansion forms for the particle source
(production) terms in the Boltzmann equation since these forms are almost
universally used in deterministic transport codes. We conclude this section

with a presentation of the adjoint form of the Boltzmann equation.

A. The Balance Equation (Linear Boltzmann Transport Equation)

The distribution of particles as a function of the seven variables
constituting phase space is obtained, in principle, by solving the linear
Boltzmann transport equation. This equation serves to precisely describe
particle balance in which the rate of accumulation of particles is equal to the
difference between their rates of production and removal. If
N(?,E,a,t)d;dEdadt is the number of particles in volume d; about space point ;,
with energy in dE about E, moving in direction da about 3, in time interval dt

about t, then the Boltzmann transport equation can be written as

IN(r,E,Q,t)

= = - v@ - WN(r,E,2,t) - vN(F,E,ﬁ,t)zt(F,E,S,t)

+ S(r,E,0,t) . (1)

This equation is linear if the macroscopic cross sections of the medium,

such as I are not functions of the particle density. This linearity

t'
condition is met for virtually all practical applications.
The term on the left side of Eq. (1) represents the rate of accumulation

of particles at the phase space point in question, namely

lig [N(F,E,E,t + At) - N(F,E,fz’,t)] _ ON(F,E,d,t) (2)
At>0 At =" 5t .




The first term on the right side of Eq. (1), va . 3N(;,E,5,t), represents the
rate of change of the particle density at spatial position ; resulting from
streaming of the particles with speed v, that is, motion in a straight line
without collisions. That this term represents streaming can be seen by
considering, without loss of generality, a Cartesian incremental volume
AV = AxAyAz as shown in Fig. 1. In particular, consider the face of area AxAy
at z. The rate at which particles enter the volume through the face at z is
(vﬁ-ﬁ)N(x,y,z,E,a,t)AxAy, where va-ﬁ is simply the z-component of the velocity
va. Similarly, the rate at which particles leave the incremental volume
through the face at z+Az is (vﬁ-ﬁ)N(x,y,z + Az,E,a,t)AxAy. The difference

between outflowing and inflowing particles is, in the limit of vanishingly

small Az,
1 > > N( + Az,E,3,t) - N( E,Q,t)
im . X,¥,2 Zybh, i, - X,¥,2,8,4,
h (ViR | v lav
> > BN( E,2,t)
(VQ'k) x’y’z’ 1] 9 AV .

oz

Fig. 1. Incremental volume in Cartesian coordinates.




Similar expressions can be written for flow (or streaming) in the x- and y-

directions so that the net rate at which particles are lost from the volume is
> > oN > > ON 2> =+ oN
[(va.1) = (v@+]3) 5y + (vQek) EE]AV ,

where the arguments (x,y,z,E,a,t) have been omitted for simplicity. Thus,
using the definition of the divergence operator 5-6, the net rate at which
particles are lost from an incremental volume because of streaming is
vﬁ-%N(r,E,a,t) per unit volume.

The second term on the right side of Eq. (1), VN(;,E,a,t)Zt(;,E,a,t),
accounts for the rate at which particles are lost because of collisions of any
kind with the nuclei constituting the medium. Here I (F,E,d,t) is the
macroscopic total cross section of the medium defined such that Ids is the
probability of a collision in a path length, ds.

The third term on the right side of Eq. (1), S(;,E,a,t), represents the
source rate of particles, that is, the rate at which particles are produced.
This source includes contributions from scattering, fission, and inhomogeneous
(fixed) sources.

The scattering source accounts for the rate at which particles are
produced as a result of particle interactions with nuclei - other than inter-
actions that result in fissioning of the nuclei. The scattering source is

denoted SS(;,E,a,t) and is described by the equation
sS(F,E,E,t) =f dE" fd?z' v(E'N(r,E',2',t)
E' 4
x I_(FEE,dT-8,0) . 3)
where Zs(;,E'*E,a'*ﬁ,t) is the macroscopic differential cross section for
scattering particles from energy E' and direction 5' to energy E and direction

5. Here we have denoted the particle speed as v(E') for particles of energy,

E', since particle speed is a function of particle energy. The fission

_)
contribution to the source is denoted SF(r,E,ﬁ,t) and is given by




> > > > > > >
S (r,E,e,t) = f dq! fx(r',E'->E)vZf(r',E',Q'+Q,t)
Lo E'

x V(EVN(r,E',2',t) (4)

where x(;,E'*E)‘represents the probability of particles appearing at energy E
as a result of a fission caused by a particle of energy E' at space point ;;
Zf(;,E',5'+§,t) is the macroscopic cioss section for fission induced by
neutrons with energy E' and direction Q', with emergent neutrons from the
fission having direction 3; and v is the average number of neutrons emerging
from a fission. The above expression for the fission source makes no
distinction between prompt and delayed particles. All particles have been
assumed to emerge simultaneously from fission. This assumption is valid for
most applications since the vast majority of transport calculations are time
independent, that is, steady state. Only for fission system dynamics
applications should delayed particles be explicitly described.

The inhomogeneous (or fixed) source is denoted Q(;,E,a,t). It represents
all sources not dependent on the particle density in the medium. Thus, the

total source rate of particles in Eq. (1) is
> > > > > > > >
S(r,E,Q,t) = Ss(r,E,Q,t) + SF(r,E,Q,t) + Q(r,E,Q,t) . (5)
Up to this point, the time variable has been included in the Boltzmann
transport equation. Since the usual application of transport methods is to
time-independent problems, we limit our considerations in this report to the

time-dependent equation. Accordingly, the remaining development will be

simplified to the time-independent Boltzmann transport equation,
g-Vo(r,E,8) + I (r,E,D)e(r,E,8) = S(r,E,§) , (6)

-> >
in which the angular particle flux Q(;,E,a) = v(E)N(r,E,Q). As before, the

total source rate of particles S(;,E,ﬁ) is written

S(FE,D) = s_(F,E,8) + s (FE,8) + Qr,E,R) (1)




with

S (F,E,f) = fd?z' de' O(r,E',a1)I_(FEE,&8) (8)
U E'

seed) - fab f o x@pmvr, e o
Ly E'

x o(rE",R)] (9)

> >
and with Q(r,E,Q) denoting the inhomogeneous, or fixed, source rate of

particles.

B. Coordinate Systems and Divergence QOperator Forms

The streaming term va-gN(;,E,a) = 5-3@(;,E,5) in Eq. (6) actually
represents the rate of change of the particle angular flux ¢ along the
streaming path, s, in the direction of particle motion 5. In other words,
3.-Fo = dosds where the arguments of ¢, (;,E,a) have been omitted for
simplicity. A description of the path, s, requires the specification of up to
five variables (three spatial variables and two variables to define the
direction 3). The choice of these variables is governed by both the
geometrical coordinate system to be used and a suitable angular-direction
coordinate system. Thus, the particular form of the divergence operator
5-6 d/ds or, more specifically, the streaming term 3-Vo d¢/ds, requires
specification of suitable coordinate systems.

Shown below are the three common coordinate systems used in deterministic
transport codes and the form of the streaming term for each. Note that in each
geometrical coordinate system, an angular direction coordinate system is
defined in which the direction variable 3 is described in terms of a polar
angle (or its cosine) measured from a directional coordinate axis and an
azimuthal angle specifying the angle of rotation about that axis. The symbol ;
denotes direction.

1. Rectangular Cartesian Coordinates (x,y,z). The three-dimensional

rectangular Cartesian coordinate system is shown in Fig. 2, together with the

angular-direction coordinate system used to define the direction 5. In

10
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Fig. 2. Rectangular Cartesian coordinates.

this system, a space point is described by its (x,y,z) coordinates, an

incremental spatial volume 4V

dxdydz, and

=eQ +eQ +eQ ’ (10)
X X yy zZ 7z
where
Q. =e 3% : (112)
x - ex = COosy uo, a
QyE ey -8 - siny cosp = V1 - u2 cosp = n , (11b)
Qz =e, - 5 = s8iny sin¢ = V1 - u2 sing = ¢ , (11e)

and da = dudé.

11




> >
The divergence operator Q ¢« V is written, in general, as

With the rectangular coordinates, dx/ds = y, dy/ds = n, dz/ds = g, and
du/ds = d¢/ds = 0. Thus,
> 3> 99 9o od
Q'V¢=p—a-}?+na—y‘+£-§z— ’ (12)
> >
where @(P,E,Q) = Q(x)y’szvuod’)'
For two-dimensional rectangular Cartesian (x,y) geometry, there is no z-

dependence of the particle angular flux, and Eq. (12) reduces to

a¢ 39

a-v’¢-u3;+na—y , (13)

where ¢ = &(x,y,E,u,d).
For one-dimensional rectangular Cartesian (slab) geometry, there is

neither a y- nor a z-dependence of the particle angular flux, and Eq. (12)

reduces to
3 . 6@ = u-gg . (14)

where ¢ = ¢(x,E,u,¢). In many one-dimensional slab applications, azimuthal
angular symmetry exists, so the angular flux is a function only of the

variables x, E, and u.

2. General Cylindrical Coordinates (r,6,z). The general three-

dimensional cylindrical coordinate system is shown in Fig. 3, together with an
angular-direction coordinates system used to define the particle direction 5.
In Fig. 3, the n-& plane is tangent to the cylindrical surface at (r,8). In
this system, a spatial point is defined by its (r,6,z) coordinates, an
incremental spatial volume is given by dV = rdrdédz, and

~ ~

S-cn +en +en (15)
= Cptg T Gty T Gy

12




where

1l
4

i
@

dgdw.

v

Dy

£e2
n

]

Fig. 3.

General cylindrical

vi - 52 cosw

Vi - g2

sinw

u

coordinates.

(16a)

(16b)

(16c)
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> >
The divergence operator Q@ « V is

With cylindrical coordinates, dr/ds = u, d8/ds = n/r, dz/ds = g, d&/ds = 0, and

dw/ds = -n/r. With some manipulation,

3 pa(re) mn 92 _ 1 3(nd) ¢
a - Vo - r or Tr T ow &3 a7

where ¢ = ¢(r,8,z,E,E,w).
The selection of the angular direction variables £, w for the specifi-
cation of 5 is arbitrary, and the variables u, ¢ could just as well be used.

In the latter case,

~ >
‘E-E e, *=u , (18a)
Qe = e, ° g =V1- u2 cosp = n , (18b)
QZE e, 3 = Vi - u2 sing = £ , and (18¢)
+
dQ = dudé.

Equation (17) remains unchanged.

In two space dimensions, there are two rather widely used cylindrical
geometries, both subsets of the general (r,6,z) geometry. These are the
finite, or (r,z), cylindrical geometry and the planar, or (r,8), cylindrical
geometry.

In (r,z) two-dimensional cylindrical geometry, a space point is defined
by the spatial coordinates (r,z), an incremental volume dV is given by 2wrdrdz,
and Eq. (17) reduces to

3(nd)

p o(re) _ 9%
T dw e 9z '’ (19)

3 . Vo = 1
r or r

with ¢ = ¢(r,z,E,£,w) or &(r,z,E,u,$). The spatial variable 8 does not appear.
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In (r,08) two-dimensional cylindrical geometry, a space point is defined
by the spatial coordinates (r,6), an incremental volume dV is given by rdrde,
the angular particle flux is described by ¢&(r,0,E,£,w) or é(r,6,E,u,4), and
Eq. (17) reduces to

> > u
@ - Ve = rad r ow . (20)
In one-dimensional cylindrical geometry, a space point is defined solely by r,
its radial position. An incremental volume dV is given by 2wrdr, and Eq. (17)

reduces to

Cw3(re) _ 1 3(ne)
- Vo " or r dw : (21)

O

The angular particle flux is ¢(r,E,§,w) or, equivalently, ¢(r,E,u,¢).

3. One-Dimensional Spherical Coordinates. In spherical coordinates, the

only geometry for which deterministic transport has received much attention is
the one (space) dimensional sphere. Although a two-dimensional spherical
geometry computer code has been developed,1 its usage has been quite
specialized and limited. Accordingly, this section will be limited to one-
dimensional spherical geometry.

The coordinate system for spherical geometry is shown in Fig. 4, together
with the angular direction coordinate system used to define the direction 5.
In Fig. 4, the n—E plane is tangent to the spherical surface of radius r. For
one-dimensional spheres, a space "point" is defined simply by its radius, r,
and the incremental volume dV associated with this point is the spherical shell
of volume Hnrzdr. The angular variable 5 is defined solely by u ;r . 6 with
no dependence on the azimuthal angle ¢. Thus, the angular particle flux ¢ is
described by the arguments (r,E,n) and
For this geometry, dr/ds = p and du/ds = (1 - u2)/r so that, with some

rearrangement,
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Fig. 4. Spherical geometry coordinates.

2 2
p o(r ) . 1 3[(1 - u")e]
.§¢=7T+? 50 , (22)

O

r

where the argument of ¢ has been omitted for simplicity.

4, Angular Redistribution in Curvilinear Geometries. 1In curvilinear

geometries such as those described in Figs. 3 and 4, a particle transport
phenomenon occurs that does not occur in rectangular Cartesian geometries,
This phenomenon is known as angular redistribution and is defined in

cylindrical geometries by the term

9(n®)
dw

1
r
in Egqs. (17), (19), (20), (21), and in spherical geometry by the term

AL - 12)e]
au

1
r
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in Eq. (22). To understand the physical meaning of angular redistribution,
recognize that in both cylindrical and spherical geometries the angular
variable p is proportional to the cosine of the angle w shown in Figs. 3 and 4.
(In cylindrical geometries, the angular variable n is proportional to sinw.)
In both geometries, the angle w is measured from the radius vector, r.
As a particle moves without collision in a straight line from the point r, to

1

09 the angle w changes from w, to w, (Fig. 5). Angular

redistribution is simply the change in the directional variable u (and n in

the point r

cylindrical geometry) as particles move from one radial position to another.
Several observations can be made regarding angular redistribution.

First, there can be no net gain or loss of particles because of angular
redistribution, that is, if one integrates over all angles, the net
redistribution gain or loss term must vanish.

Second, there is no way in which a particle, moving without collision and
with w = 0, can acquire a direction w = w(cosw = -1) by angular redistribution.
Similarly, there is no way for a particle moving without collision and with
cosw # 1 to become anything but a particle with cosw closer to unity because of
angular redistribution. Restating this seconq observation, angular
redistribution always serves to increase the value of directional variable u

(or cosw) provided w #» nw, n =0, 1, 2.

Fig. 5. Illustration of angular redistribution of particles in
curvilinear coordinates.

17




Third, there is no angular redistribution for particles with cosw = =*1,
that is, for particles moving with directions along a radius vector of a
cylinder or sphere.

Finally, angular redistribution involves only the directional variables u
and 1, as shown in Figs. 3 and 4. The value of the directional variable g

is unchanged with angular redistribution.

C. Boundary Conditions

The Boltzmann transport equation is normally used to describe transport
of particles in a finite region of space in which cross sections are known
functions of particle energy and position. To effect the solution to the
transport equation corresponding to the physical system being modeled, it is
necessary to specify the appropriate conditions on the particle density, or
flux, at the external boundaries of the region. Below are described the
boundary conditions most commonly used in deterministic transport calculations.

1. Vacuum Boundary. If no particles enter the region of solution from

external sources and if a particle, once it exits the region across its
external boundary, cannot return to the region, then the boundary is called a
free surface or vacuum boundary. Let 5 denote the outward-directed unit normal

vector at the boundary surface at spatial position ; Then, at a vacuum

0
boundary, any particle having H . 5 > 0 will be crossing the boundary in an
outward direction and any particle having 3 . 5 < 0 will be crossing in an

inward direction. The vacuum boundary condition, then, is

O

(P, E,8) =0 , ifn-@&<o0 .
This boundary condition is the one most commonly applied at the external
surfaces of the region of solution.

In reality, of course, the vacuum boundary is an idealization. Particles
leaving a system will always have a finite probability of returning to the
system. Nevertheless, the vacuum boundary condition is quite acceptable if
either the probability of particle return is negligible or the boundary surface
is so far removed from the volume of interest that an approximate boundary
condition is sufficient.

2. Reflecting Boundary. The reflecting boundary occurs at a plane of

symmetry in the system being analyzed. At a reflecting boundary, the value of
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the angular flux for incoming directions is set equal to the value of the
outgoing flux in the direction corresponding to specular (mirror-like)
reflection. For example, in a rectangular Cartesian geometry (see Fig. 2), if
a y-z plane is a reflecting surface, then at the surface the incoming particle
flux with direction cosines u, n, § is set equal to the outgoing particle flux
with direction cosines -u, n, §. Although rigorously correct only for planes
of symmetry, the reflecting boundary is frequently applied at the radial center
line of cylinders and at the origin of spheres. The theoretically correct
boundary conditions for these two cases are described below, In practice, the
use of reflecting boundary conditions at the radial origin of cylinders and
spheres usually yields satisfactory results.

In cylindrical "cell" calculations, the reflecting boundary condition is
also frequently used at the outer radial surface of the cell. Such
calculations are used to analyze a typical cylinder in an extended lattice of
cylinders, in which case the cell is usually a fuel rod surrounded by an
annulus of moderator or coolant. Use of the reflecting boundary condition at
the cell surface 1s satisfactory only if the moderating annulus is reasonably
thick (about one thermal neutron mean free path or greater).

3. Spherical Origin Boundary Condition. In one-dimensional spherical

systems, a boundary condition is required at the center of the sphere. The
theoretically correct condition is that the angular flux be isotropic at the
center. The value of the angular flux at the center of the sphere can be found
by first solving the Boltzmann transport equation for u = -1, that is, for a
straight-in directed particle at the origin. Then, ¢(r=O,E,§) = ¢(r=0,E,u=-1)
for all other a(u).

4, Cylindrical Origin Boundary Conditions. In cylindrical geometries, a

boundary condition is required at the radial origin. The theoretically correct
condition is that for a fixed value of the polar angle (or its cosine, &) as
shown in Fig. 3, the flux is azimuthally isotropic along the cylinder's radial
center line. The value of the angular flux at r = 0 can be found by first
3 J 2
solving the Boltzmann transport equation for n =0, u = - V1 - £, Then,
> >
letting @ = @(g,n), ¢(r=0,E,g,n) = ¢(r,=0,E,E,n=0).

5. Periodic Boundary Condition. The periodic boundary condition sets

the values of the incoming angular fluxes at a boundary equal in detail to the

values of the outgoing angular fluxes on the opposite boundary. The periodic
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condition is used on the boundaries of an asymmetric "unit" cell, which
represents one of an "infinite" array of such cells. The boundary condition
can be applied to x-, y-, or z-dimension boundaries in Cartesian coordinates,
or to the z-dimension boundaries of (r,z) or (r,0,z) cylindrical geometries.
It must be used as the 6—-dimension boundary condition where the 6-dimension is
used to represent a 360° circular mesh in, for example, (r,6) cylindrical
geometry.

6. White Boundary Condition. With the white boundary condition, the

values of the incoming angular boundary fluxes are set equal to a constant
value. In other words, the incoming angular flux is made isotropic. The
constant value used for the incoming angular flux is the average of the
outgoing angular fluxes such that the net flow of particles across the boundary
is zero. For example, in one-dimensional cylindrical geometry with a white

boundary condition at radius R,

21 1
f f U'Q(R’E yu! ’¢') du'd¢
0O O

Q(R:E’U"p) = o1 1

S [ wanas
0 O

for ue[-1,0].
This condition was designed to be meaningful as an exterior boundary

2,3 but with limited success., A

condition for cylindrical "cell" calculations,
variant of the white boundary condition, known as the cylindrical boundary
condit:ion,‘4 adjusts the incoming angular flux to be azimuthally isotropic for
constant values of the polar angle (or its cosine, E). This cylindrical
boundary condition shows evidence of producing good results for cylindrical
cell calculations.

7. Albedo Boundary Condition. The albedo, or grey, boundary condition

is similar to the white boundary condition described above except that the
ratio of the incoming (isotropic) particle current to the outgoing current is a
constant, a < 1. For example, in one-dimensional plane geometry with a grey

boundary condition at X = R,
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1
f u'®(R,E,n") du'

0
¢(R,E,u) = a

1
f u'duy’
0

for ue[-1,0].

When a