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One of the objectives of an information analysis center 
is to make available or call attention to particularly valuable 
information which otherwise might be overlooked in the great 
mass of published literature. To further that objective, we 
are reprinting this series of reports on the Monte Carlo method. 
The series was originally written to bring together for one 
technical community Monte Carlo information that was widely 
scattered. It was pointed out that techniques developed for 
neutron transport calculations could be used for quite different 
application. Here, we point out the reverse: a comprehensive 
review of Monte Carlo for defense applications is useful to the 
radiation transport community. In thinking of Monte Carlo as a 
simulation of the transport process, we sometimes forget that it 
is a powerful mathematical tool for solving multidimensional 
integral equations arising in many other situations. 

We are grateful to the Office of Naval Research for granting 
us permission to reprint these reports. We feel this work will 
be of much greater usefulness as a result. 

. 
D. K. Trubey 

Radiation Shielding Information Center 
November 1974 
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I This document is the first of three volumes which 
present techniques and methods for  developing efficient Monte 
Carlo simulation: Each volume presents techniques for re- 
ducing computational effort in one of the following areas: 
Vol. I - Selecting Probability Distributions, Vol. II - Random 
Number Generation For Selected Probability Distributions, 
and Vol. 111 - Variance Reduction. 

This volume provides a straightforward approach and 
associated techniques for  selecting the most appropriate pro- 
bability distributions f o r  use in Monte Carlo simulations. Part 
I, BASIC CONSIDERATIONS, presents the underlying concepts 
and principles for selecting probability distributions. Part 11, 
SELECTION OF DISTRIBUTIONS, gives the mathematical models 
representing stochastic processes and presents step-by- step 
procedures for identification and selection of the appropriate 
probability distributions based upon the degree of knowledge and 
available data for the random variable under study. 
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E X E C U T I V E S 11 M PI A R Y 

Monte Carlo simulation is one of the most powerful and commonly 
used techniques for analyzing complex physical problems. Applications 

can be found in many diverse areas from radiation transport to river basin 
modeling. Important Navy applications include : analysis of antisubmarine 
warfare exercises and operations, prediction of aircraft or  sensor perform- 
ance, tactical analysis, and matrix game solutions where random processes 
are considered to be of particular importance. The range of applications 
has been broadening and the size, complexity, and computational effort re- 
quired have been increasing. However, such developments are expected 
and desirable since increased realism is concomitant with more complex and 
extensive problem descriptions. 

In recognition of such trends, the requirements for improved simu- 
lation techniques are becoming more pressing. Unfortunately, methods for 
achieving greater efficiency are frequently overlooked in developing simula- 
tions. This can generally be attributed to one or more of the following 
reasons : 

Analysts usually seek advanced computer systems to 
perform more complex simulation studies by exploit- 
ing increased speed and/or storage capabilities. This 
is often achieved at a considerably increased expense. 

0 Many efficient simulation methods have evolved for 
specialized applications. For example, some of the 
most impressive Monte Carlo techniques have been 
developed in radiation transport, a discipline that does 
not overlap into areas where even a small number of 
simulation analysts are working. 

0 Known techniques are not developed to the point where 
they can be easily understood or applied by even a 
small fraction of the analysts who are performing simu- 
lation studies o r  developing simulation models. 
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In addition to the above reasons, comprehensive references describing 
efficient methodologies to improve Monte Carlo simulation are not avail- 
able. It is the intent of these volumes to help alleviate the above short- 
comings in Monte Carlo simulation. 

This document is the first of three volumes which present techniques 
and methods for developing efficient Monte Carlo simulations. Each volume 
is essentially a self-contained discussion of useful techniques which can be 

applied in reducing computational effort in one of the following three major 
aspects of Monte Carlo simulation: 

0 Selecting Probability Distributions - Volume I 

o Random Number Generation for Selected Probability 
Distributions - Volume II 

Variance Reduction - Volume III 

The purpose of these volumes is to provide guidance in developing 
Monte Carlo simulations that accurately reflect the behavior of various 
characteristics of the system being simulated and are most e€ficient in 
terms of computational effort. The basic intent is to provide understanding 
of the concepts and methods for reducing analysis and computational effort 
as well as to serve as a practical guide for their application. They have 
been prepared primarily for the systems analyst and computer programmer 
who have a basic background and experinece in simulation and elementary 
statistics. 
knowledge of statistical techniques or of extensive literature search. How- 
ever, it is assumed the reader has a grasp of the fundamentals of Monte 
Carlo methods, simulation modeling, and elementary statistics. 

Thus, the material is presented so as to preclude extensive 

. 
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1. INTRODUCTION 

The starting point in developing any Monte Carlo simulation is the 

construction of mathematical models which describe the stochastic be- 

havior of the variables in theprocess under study. When the underlying 
processes are well understood and the functional forms of the variables 
are known, development of a model is straightforward. However, in many 
applications the exact functional form of the variable is not known, thus re- 
quiring selection from among a myriad of possible distributions to find the 

one that will  best represent the process. This volume provides a straight- 
forward approach and associated techniques for selecting the most appro- 
priate probability distributions for use in Monte Carlo simulations. 

Part I of this volume, BASIC CONSIDERATIONS, presents the under- 
lying concepts and principles to be used in the selection of probability dis- 

tributions. This background information provides the reader with an under- 
standing of the important considerations, tasks, and methods and procedures 
involved in dealing with simulation events characterized by random variables. 

Following Part I, the reader will  find in Part TI, SELECTION OF 
DISTRIBUTIONS, the mathematical models which will represent the stochastic 
behavior of the process as accurately as the data and understanding of the 

processes will allow. Part TI presents step-by-step procedures for the 

identification and selection of appropriate probability distributions. Part I1 

applies the rationale developed in Part I to the problems of developing dis- 

tributions based on varying amounts of data and depth of understanding of 
the processes being simulated. 

This volume also includes additional information useful in the selec- 
tion of probability distributions. Appendix A contains background information 

8 
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of the complex parametric families of distributions which will be useful 
for the reader who has not encountered these distributions before. Appen- 
dix B contains tables which are needed in making computations involving 
distribution fitting and testing. Appendix C is an abstracted bibliography 
of publications relating to the subjects of probability distribution identifica- 
tion and selection. 

J 

. 
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PART I 

BASIC CONSIDERATIONS 
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2. FUNDAMENTALS OF DISTRIBUTION SELECTION 

Selection of an appropriate probability distribution for a given 
random variable in a simulation requires gathering and evaluating all 
the available facts, data, and knowledge concerning each variable. It 
is also important to know how the particular process which any given 
variable represents relates to the entire simulation model. For Monte 
Carlo applications this includes careful investigation of: 

e Each individual process or event 

0 

0 

Underlying theory of the process 

Data representing the variability of the process 

0 Sensitivity of the process being simulated to probable 
values of the variable 

0 Simulation programming considerations 

When the variable under consideration is just one among many vari-  
ables which affect the overall problem or system, the simulation is often 
not very sensitive to the choice of the distribution. This can be likened 
to the phenomenon of summing a series of random variables, none of which 
dominates the sum. In this case the total tends to have a normal distri- 
bution irrespective of the individual distributions (see Refs. 7,27). In other 

cases, the selection of a distribution is more critical to effective simulation. 
For example, when only a few variables dominate the process or the process 
is greatly influenced by rare occurrences (e.g., failure of a critical high 
reliability component) the selection of probability distributions becomes 
of paramount importance. (7,27) 

Choosing the form of probability distributions is often a trade- 

off between theoretical justification and empirical evidence. Typically, 
some form of parametric distribution can be justified, such as the 
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normal, uniform, binomial, o r  Bernoulli distribution. Available data 
can then be used to estimate its parameters. In the absence of empirical 
data, one is forced to choose distributions on either theoretical o r  intui- 
tive grounds, o r  often to use several distributions and conduct sensitivity 
o r  worst-case analyses. At  the other extreme, where empirical data 
is abundant, either the histogram can be used o r  more elaborate para- 
metric models can be employed. 

The final choice of a particular distribution type is, of course, 
also dependent on ease of implementation. Computer storage space, 
computation time, and ease of programming are key considerations in 
most simulations. Generating random variables from a parametric 
distribution requires taking an inverse of the cumulative distribution 
function or using other random number generation techniques (see Vol- 
umeII). For  some distributions, such as the exponential or uniform, 
the inverse operation is a simple computation. For others, such as 
the normal, relatively simple techniques are available. Histograms 

a r e  also fairly easy to use in computer simulations. Here, only a list 
of numbers must be stored (the more variable and detailed the histogram, 
of course, the longer the list). For many distributions, however, in- 
verse  algorithms for generation of random numbers do not exist, and 
other methods require lengthy computation. In this case, a com- 

promise must be made between ease of computation and simulation accu- 
racy, Making an estimate of how sensitive the total simulation will be 

t o  individual probability distribution assumptions is important in deter- 
mining this compromise. 

2.1 BASTS FOR MAKING SELECTIONS 

Before proceeding to the techniques of distribution selection 
and their application in simulation development, it is necessary to un- 
derstand the underlying concepts for making selections. Basically, the 

. 
J 
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selection process described in Part II depends on two factors: the 
extent of knowledge of the process under study (qualitative) and the 
amount of data available (quantitative). Knowledge of the process refers 
to the level of understanding of its behavior and characteristics. For 
example, it is possible in some cases to be quite certain that the fre- 

quency distribution of a random variable is normal based on familiarity 
with the process. At  the other extreme, little o r  nothing may be known. 
Similarly, the amount of data describing a particular variable may range 
from extensive to none. Each combination of the state of knowledge and 
amount of data poses particular problems in selecting the most appro- 
priate distribution. 

2.2  QUALITATIVE BASIS FOR SELECTION 

Developing an understanding of some random process involves 
analysis to  characterize the process. In general, such efforts attempt 
to  identify the process on the basis of: 

0 Similarity to some other process whose behavior is known 

0 Underlying theory 

0 Certain qualitative aspects. 

Often a process can be likened to some other, the behavior of 
which is known. In such circumstances, it can be reasonably justi- 
fied that this known distribution might apply to the one under study. 
For example, consider the simulation of a process involving the 

human performance of some manual task. Even though the task may 
bear no particular resemblance to one in which the distribution is 

known, an assumption of similarity is reasonable. The frequency 

distribution of time of performance is likely to be from the same 
family of distributions even though the actual process might be quite 
different. 
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Many activities for which stochastic models must be developed 
can, at least generally, be identified by some applicable theory. Con- 
sider the case in which some repetitive human activity is involved such 
as in maintenance. Maintainability theory would indicate a strong like- 

lihood that the frequency distribution of time to perform would have a 
log normal or a gamma distribution. Similarly, if the failure of elec- 
tronic parts were to be modeled, it could be assumed that an exponen- 
tial or possibly a Weibull might be applicable (53). Such reasoning is 
a fundamental part of the task of distribution selection. 

There are, of course, many situations in which a theoretical 
basis for a particular distribution can be established. Consider the 
shots fired at a target or the velocity of a molecule in a stable solution. 

'.% Under fairly weak conditions the velocity of the molecule o r  the devia- 
tion of shots (in three-dimensional space) from the bull's eye can be 

shown to have a Maxwell distribution (27). The component of velocity 
in any direction or the projection of shots onto any axis through the 
bull's eye follows the normal distribution. In two dimensions the re- 
sulting distribution is the Rayleigh. If the process being modeled in- 
volves reliability, the exponential distribution reflects the behavior of 
an item with a constant failure rate. If the process involves waiting 
or  queueing phenomena, the exponential can be used to  depict random 
arrival and service times. The gamma distribution also has wide 
application since it is related to the exponential distribution. The 
number of occurences up to a given point in time has a gamma distri- 

bution if the time between occurrences follows an exponential distribution. 

In some cases, it will not be possible to relate the process be- 

ing examined to anything which is known. This may be either because 
little understanding of the process exists or  it simply bears no relation 
to any process whose behavior can be described on a theoretical basis. 

c 
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However, there still may be some clues which are useful in identifying 
an applicable distribution, particularly where some data exist. A num- 
ber of qualitative aspects of the process can be helpful. These include, 
for example, consideration of whether the variable is discrete or con- 
tinuous, bounded, symmetric, o r  can be described in some other sim- 
ilar ways. Such clues, although probably not sufficient for positive 
identification above, are useful in making a rational selection of a 
distribution. 

2.3 QUANTITATIVE BASIS FOR SELECTION 

One of the most common problems in simulation is not having, 
or  not being able to obtain, the data necessary to describe a particular 
variable. Collecting it may be too time consuming o r  expensive. In 

some cases it is simply not possible. Consequently, the amount of data 
& available is one of the major considerations in the selection of prob- 

ability distributions. 
& 
0 .  

Where sufficient data are available, an empirical approach 
can be used. 
model. Combined with the state of knowledge of the process being 
modeled, graphical and analytical techniques can be employed to 
select the distribution most representative of the data. 

This means essentially using the data to derive a 

In those cases where acquisition of the data is difficult, the 

application of the methodology of Part 11 can be useful in determin- 
ing whether such effort is warranted. I€ a distribution can, in fact, 
be selected with little data, there may be no justification for collect- 
ing more. If, on the other hand, a distribution cannot be identified 
and the simulation results are sensitive to that particular variable, 
additional data may be essential for developing a valid model, 



J 
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3. TECHNIQUES USED IN DISTRIBUTION SELECTION 

b . 

Specific techniques for selecting a particular stochastic mod- 
el depend on the information and the amount of data available. 
situation can range from having practically nothing to work with to 
almost certain specification of the model based on sound theoretical 
and empirical evidence. The development of the theoretical evidence 
is entirely qualitative. Development of the empirical. evidence, though, 
requires the use of a number of quantitative methods. These include: 

The 

0 Sensitivity analysis 
0 Graphical analysis 
0 Parameter estimation 

0 Goodnes s-of-f it- t es t ing . 
Each of these is introduced briefly in the following sections. 

3.1 SENSITIVITY ANALYSIS 

The purpose of sensitivity analysis is to determine the extent 

to which the outcome of an analysis is dependent upon a particular 
variable or assumption. It is particularly applicable in simulation 
where little or  no data is available to characterize some random var- 
iables. In such a situation, sensitivity analysis can indicate whether 
or  not the behavior of the variable must be more accurately known. 
If, for instance, the outcome of the simulation is not sensitive to the 
variable, no further effort to characterize it is necessary. However, 
if it does prove sensitive, an attempt to  develop an accurate distribu- 
tion model is warranted. 

The only practical way to perform the sensitivity analysis is 
to  perform a simulation varying the values or  assumptions concerning 

the variable in question. Comparison of the results using standard 
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statistical tests can reveal whether significant differences are pro- 
duced (see Sections 3 . 4  and 9.). This is not so  formidable a task as 
it might at first appear. If the simulation is to have any real  validity 
in the first place, the behavior of most of the variables must be known. 
If only a few variables can be accurately described, a simulation 
merely produces a precise but inaccurate result. 

3.2  GRAPHICAL ANALYSIS 

One of the topics in elementary applied statistics is the con- 
struction of frequency histograms and cumulative frequency polygons. 
These procedures provide one means for identifying appropriate dis- 

tribution models under the proper circumstances. Where such tech- 
niques are applicable they do offer the advantage of relative simplicity. 
They are most useful when there is some knowledge of the process and 
at least minimal data available. 

The histogram is constructed from data concerning the vari-  
able. It carries with it all the present empirical information available 
on the variable, nothing more. It does not try to estimate probable be- 

havior. If r a r e  events have not been observed, for instance, it will 
assign zero probability to their occurrence. Since it uses all data, it 
also perpetuates the mistakes of erroneous observations and may 
describe a model that is not valid. 

The most common graphical procedure is the construction of - 
the frequency histogram. This is simply a plot of the frequency with 

which each of various values occurs in the sample data. The histo- 
gram is useful in two ways. It provides visual evidence of the shape 
of the distribution which can be useful in selecting a distribution. It may 
also be used directly in the simulation as the model of the process. 

i 

4 . 

t 
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When data is abundant the use of the histogram is often adequate 
for  many Monte Carlo applications. In using the histogram, care  must 
always be exercised to remove obvious e r rors  and to consider low 

probability events. When only limited data is available the histogram 
approach suffers from sampling peculiarities and from lack of observa- 

tions in any tails of the distribution. In this case more effective distri- 

butions can be developed by taking into consideration other informa- 
tion about the behavior of the variable or by obtaining additional infor- 
mation from the data, e. g., by estimating higher moments. This 
information can range from an understanding of the theoretical nature 
of the variable to intuition. It might be assumed, for example, that 
the underlying real distribution is continuous; then smoothing proce- 
dures can be applied to the histogram to obtain a continuous curve. 

8 

c 
Another graphical procedure useful in the selection of proba- 

bility distributions involves the use of probability paper. As with the 
b * histogram, there is a large element of subjectivity in this procedure. 

It involves selection of an appropriate probability paper from those avail- 
able and plotting the sample distribution function. Judgment is required 
in deciding whether the plot sufficiently approximates a straight line. 

The use of graphical procedures in simulation development 
is described in Section 6,  Part II. 

3 . 3  PARAMETER ESTIMATION 

A parametric distri'bution is defined to be a functional or 
analytical representation for  a probability distribution which depends 
on one or  more parameters. Although use of such distributions re- 
quires that the parameter(s) be estimated, there are a number of 
reasons for using a parametric distribution function rather than a 
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histogram in developing a mathematical model. In particular, a parame- 
tr ic distribution: 

0 

0 

0 

0 

0 

0 

e 

0 

0 

0 

Provides a convenient means for inclusion of additional 
information about the variable (such as known upper and 
lower limits on the data). 

Allows meaningful extrapolation into the tail(s) of the 
distribution and into regions where no data was available. 

Allows incorporation of the additional information inher- 
ent in the shape of the distribution if there is a theoretical 
justification. 

Provides for a reproducible means of representing the 
data since freehand ''fit" to  the same data will vary from 
person to person. 

Provides important summary information about the vari- 
able in the form of estimated parameters of the fitted 
distribution. 

Provides a more compact representation of the random 
variable usually resulting in less data storage requirements. 

Allows construction of reasonable and convenient models 
in cases of no data or very limited data. 

Provides for efficient and convenient random number gen- 
eration in most cases. 

Facilitates analytic (rather than simulation) studies of 
portions of the process. 

Permits a convenient means whereby analysis of the sen- 
sitivity to the shape of the distribution can be accomplished. 

To facilitate the presentation of parametric distributions, the 
individual parametric families have been classified as being either of 

a simple or of a complex nature. The difference between these two 

'L 
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classifications is mainly the number of parameters necessary to 
describe the distribution. The simple distributions are character- 
ized by no more than two parameters, the complex by more than two. 

The other distinguishing feature is that simple distributions 
are those which a r e  commonly encountered, relatively easy to recog- 
nize, and have some theoretical basis for their functional form and 
application. Thus, simple parametric families of distributions can 
often be derived from assumptions about the process generating the 
random variable or from graphical evidence based on the data. 

The complex parametric families generally do not have a 
"nice" physical interpretation or a simple functional. form. They 
can be viewed more as abstract inventions which admit enough shapes 
to  insure a reasonable f i t  to any set of observations. They also pro- 
vide greater flexibility than simple distributions in projecting events 
of the process that would appear in the tails of the distribution. 

3 . 3 . 1  Simple Parametric Distributions 

The simple distributions include, but are not limited to, the 

normal, gamma, binomial, exponential, and other distributions which 
can be defined by at most two parameters. For the purposes of select- 
ing an appropriate probability model, a simple distribution will be in- 
dicated by the underlying theory of the process or by preliminary selec- 
tion using graphical procedures referred to. previously. 

One of the most common and useful of the simple continuous 
probability functions is the normal distribution. Much of the appeal 

of this distribution is based on a the central limit theorem. In essence, 

this states that the sum of independent variables tends to be normally - 

distributed. (27) This assumes, of course, that none of the individual 
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elements of the sum dominates its behavior. Since many variables which 
are modeled in Monte Carlo simulations are in reality derived from 
several variables, the assumption of a normal distribution can often be 
justified. 

Since simple parametric distributions are discussed in detail in 
most elementary textbooks on probability, they are not discussed in de- 
tail here. However, a summary of the more common simple paramet- 
r ic distributions is given in Section 4.3.  

3.3.2 Complex Parametric Distributions 

AS used in this volume, complex parametric distributions are 
defined as the Weibull, Johnson, and Pearson distribution families. 

The functional form of these distributions is somewhat complicated, 
and three to five parameters are often required to define the specific dis- 
tribution. Reverting to the analytic procedures to generate these dis - 
tributions is most necessary when a simple distribution cannot be jus- 
tified and the simulation results are dependent upon rare events. 

- Rare events are usually related to the tails of the distribution. For 

certain events or  processes to be simulated sufficient observations 
to accurately define the tail regions may not exist. In such cases, 

one usually employs smoothing techniques utilizing parametric func - 
tions to extend or Mer the beRavior of the tail regions from available 
data. 

Using a complex parametric distribution can be viewed as a 
convenient way of smoothing the raw data and expressing the smoothed 
data in functional form. These three families admit almost every type 
of probability distribution, one major exception being composite dis- 
tributions made up of several distinct populations, e. g. , multimodal 
distributions. In fact most of the simple parametric distributions are 
special cases of a Weibull, Johnson, or Yearson distribution. 

c 
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If the reader is interested in a further discussion of these dis- 

tributions, background information is contained in Appendix A. The 
material there is not, however, essential for understanding the prin- 
ciples discussed in Part I or the methods described in Part 11. 

3.4  GOODNESS-OF-FIT TESTS 

After initial selections of a distribution for a Monte Carlo 
application and where sample data a r e  available, it is usually worth- 
while to try and validate or substantiate these choices. The validation 
step of the selection procedure is especially critical when it has been 
determined that the Monte Carlo result will be sensitive to distribution 
selection. More generally, developing confidence in the distributions 
used in any simulation adds to the confidence in the total simulation in 
addition to aiding in the overall understanding of the process. 

One of the most useful methods used in validation is called 
e .  goodness-of-fit-tests. These a r e  statistical procedures for testing 

whether sample data can reasonably be expected to be representative 
of (drawn from) a particular probability distribution. Essentially, 
there are two such tests which have found wide application since they 

can be applied to any distribution. These are the Chi-square test and 
the Kolmogorov-Smirnov test. A brief description of each of these two 
tests is presented below. In addition there are a number of specialized 
tests such as the W-test  for a normal distribution and the WE-test for 
an exponential distribution which are useful. Specific details for apply - 
ing these tests are contained in Par t  11, Section 9. 

? . 

One word of caution should be noted in using these tests. The 

statistical inferences based on these tests rely on asymptotic proper- 
ties. Thus a fair amount of data is required to obtain valid interpre- 
tations. Where limited data a re  available or  many erroneous data 



18 

points are believed to be in the sample, the usefulness of these tests 
may be questionable. 

< 

Chi-square Test: This common goodness-of-fit-test is made by 
subdividing the data into groups or  intervals and comparing the num- 
ber of actual observations Ai in the ith interval to the number expected Ei 
as computed from the assumed distribution. The statistic employed in 
this method is 

n 

(A. 1 - Ei)' 2 
Xn-1 i=l Ei 

Under the null hypothesis (observations are from the assumed distribution) 
the distribution of this statistic asymptotically approaches a Chi-square 
distribution with n-1 degrees of freedom. 

The Chi-square test has certain obvious shortcomings. In addi- 

tion to being sensitive to sample size, this test is also sensitive to data 
grouping. Different investigators conducting this test will tend to get 
different results. One requirement in using the test is that each cell 
or  subgroup should have a sufficient number of observations in it. 
Some authors (27) feel that a good test requires at least twenty obser- 
vations per cell and that there should also be between five and twenty 
cells. 

Kolmogorov-Smirnov Test: This goodness-of-fit test is made 
by computing the maximum difference between the sample cumulative 
distribution function and the assumed distribution function. This dif- 

ference, under the null hypothesis, has a known asymptotic distribu- 
tion which is available in table form (see Appendix B). .The Kolmogorov- 
Smirnov is generally considered to be more sensitive than the Chi-square 

? . 
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test and also has the advantage that arbitrary data grouping decisions 
are not required. Its disadvantages are that it is usually more com- 
putationally difficult to  apply, and if the hypothesis is rejected, the 
reason for the rejection is less clear. 

. 

, 
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4. DISTRIBUTION SELECTION PROCEDURES 

This section presents a systematic set of procedures for selecting 
the most representative model for a random variable in a simulation. 
The procedures selected depend on two types of knowledge of the random 
variable in question. These are: 

1. Empirical Data (Quantitative Observations) 
2. Understanding of the Random Process (Qualitative A Priori  

Knowledge). 
- 

Based on the degree of knowledge in each category, a set of procedures 
for selecting a distribution has been constructed. By following a particu- 
lar procedure the most appropriate probability model can be easily 
selected. 

The initial discussion in this section is devoted to a discussion of 

selecting the appropriate procedure to be used based on the degree of 
available knowledge of the random variable in question. Secondly, this 

section is devoted to presenting a brief guide to using the remaining sec- 
tions of Part TI. This section is concluded with a table listing all the 

candidate distributions considered here. This table also summarizes the 
characteristics of these distributions. The rest  of Past TI is concerned with 

how one performs the specific operations which lead to selection of the 
appropriate probability distribution model. 

4.1 PROCEDURES FOR SELECTING DISTRIBUTIONS 

The particular selection procedure for a probability model is de- 

termined by the extent of empirical data and knowledge of the random 
process in question. The extent of empirical data can, for convenience, 

be broken into three categories: none, some, and ample. This cate- 
gorization is given in Table 4, 1. 
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Description 

Number of 
Observations 

TABLE 4.1 

Extent of Empirical Data (Observations) 

none some ample 

0-5 5 -20 over 20 

I Category I 1  1 2  1 3  I 

for expect- 
ing the dis- 
tribution to 
be some 
known 
family 

The extent of knowledge of the random process is, for conveni- 
ence, broken into four categories: no knowledge, qualitative knowledge, 
reasonably good ideas, and reasonable certainty. These categories 
a re  described further in Table 4.2. It should be clear that the more 
data and the greater the a priori qualitative knowledge available, the 
easier the selection process is and the greater the certainty of obtain- 
ing a good probability model. 

TABLE 4.2 

Extent of Qualitative Knowledge of the Random Process 

I Category 
I 

Description 

1 

None: 

No 
qualitative 
knowledge 
of the 
random 
process 

2 

Qua litat iv e : 

Some 
knowledge of 
the random 
process, i. e. 
continuity , 
range, 
symmetry , 
shape of 
distribution, 
likely values, 
etc. 

3 

Good ideas: 

Reasonably 
based 
expectations 
that the 
random 
variable is 
one of a few 
known 
families 

4 I 
Reas onable I 

I certainty : 

. 
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A concerted 
This means that all 

effort should be made to use all a priori knowledge. 
the qualitative characteristics listed under Category 

2 in Table 4.2 should be written down, if known. This will also help 
in  sketching a probability density or frequency curve. Table 4.3 should 
also be consulted to determine if  Categories 3 or 4 are appropriate. 
Table 4.3 lists all of the probability distributions considered here. These 
are arranged in two groups, the simple parametric distributions and the 
complex parametric distributions. This table also summarizes the 
characteristics of these distributions. Table 4.3 is very useful as a 
reference in selecting a probability distribution since almost all of the 

information needed for selection is presented. To this end, therefore, 
the columns in Table 4.3 entitled Comments and Justification and Applic- 

ations may give characteristics that fit the problem at hand. Any 
distributions that appear appropriate should be listed so that knowledge 
at a level of Category 3 or 4 can be used. 

Once the categories for empirical data and knowledge of the 
random process have been established from Tables 4.1 and 4.2, a specific 
selection procedure can be identified from Table 4.4. Table 4.4 is 
simply a matrix indicating all possible combinations of data and knowledge 
categories. For each combination, a figure number is indicated. Each 
figure presents the details of the particular selection procedure that it 
represents. 

A discussion of the selection procedures presented in Figure 4.1- 
4.12 and how that material is used is contained in  the following section 
(4.2). 



TABLE 4 . 3  
Probability Distributions 

Goodness-of-fit Test 

Simple P a r a  

Distribution 

etr ic  Distributions: Sumnary 

Recommended Parameter 
Estimators 

'n] 

"n] 

b = max [xl , .  . . . , 
a = min[xl,.  . . . , 
F = min [xl , .  . . . , 
x = urn- c )  

Comments 81 
Justification Applications 

Z eferences 
See App. c) 

15,24,35 

Functional Form of f(x) 

d-test") Equal probability in any 
interval 

Hide use ior  events 
if equal probability 

1 a s x r b  
b-a 

Uniform 

Exponential 

Normal 

x2 - test 

WE - test or 

WEo-test if F i s  known 

Wide applicability to  a n y  
process with no 'mem- 
ory' of the past and con- 
stant rate, e .g . ,  a 
process where (proba- 
biliCy of event)/time in- 
terval i s  constant and 
independent of time 
elapsed. 

beueing, quality con- 
rol, reliability, etc. 

3,11,15,17, 
24.35 

p = x  
2 2  n = s  

W - test Any variable generated 
by the sum of many 
uniform random num- 
bers.  Wide applica- 
bility as it is often 
justified by the central 
limit theorem. 

Physical measure- 
ments on living or- 
ganisms, intelligence 
scores,  product 
dimensions, bombing 
e r r o r s  (1 dinien- 
sional), average 
temp., etc. 

15,24,29,35 

The ratio of two inde- 
pendent normalized 
normal random varia- 
bles. Distribution of 
tan 8 ii  9 isuniform. 

15,24,29 Ratio of standard- 
ized noise readings. 
Caution: Cauchy 
moments a r e  iniinite; 
behavior in a Monte 
Carlo program will 
be errat ic .  

Bomb sighting prob- 
lems; amplitude oi 
noise envelope for 
linear detector. 

u = sample- Cauchy 

Rayleigh 2 1 1  
2 0 = - x  x' - test Sum of squares oi two 

independent nornial- 
ized random variables. 
i .  e . ,  radial e r r o r  
when x and y e r r o r s  
a r e  independent and 
normal with sanie stan- 
dard deviation. 

15,24, 29 x -x'/'o2 x 2 0 

n 2 > 0  

- 
Z e  

d - test' 

1' - test 

d - test' 

The t ime for  exactly k 
independent events if 
events occur a t  constant 
rate X .  

Time between inven- 
tory restocking or 
recalibration, time 
to iailure with stand- 
by, queueing time 
distributions. 

i , l5 ,1? ,24 ,  
39.36 

Gamma X = p  
k =Ax 

n 
s 2 ='X ( xi - R)', sample variance n-1 

i = l  

d - tes t  may not be strictly applicable but can still be used. 

'References quoted can be found In the abstracted bibliography of Appendix i 
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Discrete Distributions. TABLE 4.3 (Continued) 

Distribution Functional Form of f(x) Goodness-of-fit Test  Comments & 
Justification Applications 

eferences 
3ee App. C) 

Recommended Parameter 
Estimators 

* 
Binomial ( Z )  Pk(l - P)n-k p = ratio of success to total 

t r ia ls  x2 - test Describes probability 
of k successes in n 
independent t r ia ls  

Quality control, relia- 
bility, sampling, etc. 

15,23,29, 
35 

pi = ratio of i'2 outcome x2 - test Describes outcome of 
n independent t r ia ls  
where there a r e  m 
alternatives for  each 
trial. 

Quality control, relia- 
bility, sampling, etc. 

15,23,35 k~ k~ kg km 
P1 P2 P3 . . . Pn 

k 1 + k 2 + . . . . + k m =  

Multinomial 

Poisson k 

e k! 
-A A- A = mean value of k x 2  - t e s t  Describes the number 

of occurrences in an 
interval when the rate 
of occurrence i s  
constant. 

Queueing, reliability, 
quality control, 
sampling. 

15,23,29, 
35 

Hyper- 
geometric * 

Reliability, quality 
control, sampling 

15,23,35 From formula 

mean value of k - M _ -  
n N '  

either M or  N can be esti- 
mated if the other i s  known. 

Describes the proba- 
bility of an event oc- 
curring k t imes in a 
sample of size n when 
it i s  known that M 
events will occur in 
the population of 
size N. 

Describes the number 
of t r ia ls  to the f i rs t  
success in a sewence  
of Bernoulli trials. 

- 
Geometric * P(1 - P)k-l p = mean number of successes x2 - test Quality control, 

sampling, etc. 
15,23,35 

Pascal (also 
called nega- 
tive 
binomial) * 

P = mean number of 
successes in a se r ies  of trials. x2 - test Describes the proba- 

bility of exactly k 
successes occurring 
before the n b  failure 
in a se r ies  of Bernoulli 
trials. 

Quality control, 
sampling, etc. 

15,23,35 

*Discrete Distributions 
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Complex Parametric Distributions: TABLE 4 . 3  (Continued) 

Distiibution 

Weibull 

-- 
Johnson 

Functional Form of f(x) 

- - < x  <- 

Recommended Parameter 
Estimators 

F can be estimated a s  outlined 
in Ref. 8. 

For q and A ,  a simple tech- 
nique i s  described in Ref. 38. 
A more complicated but more 
accurate method i s  the maxi- 
mum likelihood estimate, a s  
outlined in Ref. 51. 
For both techniques, the esti- 
mates should be multiplied by 
the unbiasing factors given in 
Ref. 51. 

Calculation of skewness and 
kurtosis for data determines 
which type (SL, SB, or SU) 
of distribution to use. 

At some expense in computer 
time, maximum likelihood 
equations can be solved numer- 
ically. However, unbiasing 
factors a r e  not yet available. 

Simpler, but less  accurate, 
methods a re  the percentile tech- 
nique (Ref.35) fo r  SL and SB 
and the moments method for 
Su (see Ref. 22). 

Goodness ;of -fit 
Test  

The WE test 
can be z e d  on 

(x - 4 7  x 

S ' Use W-test 
o k i n  (xi - e) 

SB: Use W-test 

Su: Use W-test 
on 

sifi-l (y ) 

~~ 

andom Number Generation 
(See Volume 11) 

i n  analytic selection tech- 
iique requiring little data 
;torage and using moder- 
ite amounts of computer 
ime i s  available. With 
L little effort, very fast 
echniques requiring s iz-  
tble data tables can be 
ieveloped. 

'airly fast analytic selec- 
ion techniques requiring 
ittle data storage a r e  
wailable. Very fast  
iumerical techniques 
vhich would, however, 
:equire sizable data s tor-  
ige could be developed 
Kith a little effort. 

Applications 

l a t a  storage requirements 
i re  small. 
?andom number selection 
s easy. 
I11 values in variable range, 
:specially in the tail of the 
iistribution, wi l l  be 
represented. 
Vide applicability. Has been 
ised successfully fo r  such 
iiverse cases  a s  yield 
strength of steel, s ize  dis- 
ribution of fly ash, fatigue 
life of steel, height of adult 
males, and width of beans. 

4lmost universal applica- 
lility. 
3ata storage requirements 
are small. 
?andom number selection 
1s easy. 
411 values in variable range, 
?specially in the tail of the 
iistribution, will be 
represented. 

~ 

References 
(See APP. C) 

1.8~15,  
11,21,22, 
34,35,36, 
38,51,55 

15,21,22, 
35.37 



TABLE 4.3  (Continuedl 

which are  fast  o r  which re -  
luire small amount of 

Drily for integral values of 
exponents and only for  a 
iew types. In the general 
case. numerical techniaues 

puter are available 

Distribution 

.. 
All values in variable range, 

distribution, will be repre-  
sented' 

especially in the tail of the 

Pearson 

Functional Form of f(x) 

Twelve types. See Table 8.1. 

Recommended Parameter  
Estimators 

The method of moments can be 
used to estimate parameters. 
This i s  described in detail for 
each type i n  Ref. 10. 

Alternatively the percentile tech- 
nique, using tables and outline 
given in Ref. 25, may be 
employed. 
The maximum likelihood technique 
which requires considerable com- 
puter time may also be used. This 
method i s  more powerful than the 
others, but i ts  bias has been in- 
completely investigated (although 
Refs. 12 and 5 consider the 
bias for  types 1 and 3). 

Goodness -of -fit 
Test 

Kz-test 

d-test may also 
be tried although 
it i s  not strictly 
applicable. 

Applications !andom Number Generation 
(See Volume n) 

Analvtic selection techniouesl Almost universal aDDlicabilitv 

mu& be used which wil i  
involve: 

1. Moderate to large num- 
bers  of storage cel ls  
for tabular data. 

2. Considerable process- 
ing time spent genera- 
ting the selection 
technique. 

References 
(See App. C) 

5,10,12,15, 
17,18,25 
35,40,41, 
42 

, - ' , '  
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TABLE 4.4 

* 

1 2 3 4 

Figure Figure Figure Figure 
4.1 4.2 4.3 4.4 

Figure Figure Figure Figure 
4.5 4.6 4.7 4.8 

Figure Figure Figure Figure 
4.9 4.10 4.11 4.12 

Sequence of Activity Selection (By Figure Number) 

. 
. 

4 . 2  SELECTION TECHNIQUES 

The following list provides a brief description of each selection 
technique used in the selection procedures and provides the location of 
further detailed discussion. 

Sensitivity Analysis - 
(Section 5. ) 

Graphical Analysis - 
(Section 6.) 

Analytic Curve Fitting - 
(Section 7.) 

Parameter Estimation - 
(Section 8.) 

Involves performing the simulation study 
using several different distributional 
assumptions or parameters to examine the 
effect it has on the final results. 

Involves plotting a histogram and/or using 
probability paper to judge what distributions 
appear likely. This analysis may reject 
some ideas as inappropriate or suggest 
several likely distributions. This analysis 
applies primarily to the simple or  common 
distributions. 

Refers to fitting the data to one or more of 
the complex or uncommon distributions such as the 
Weibull, Johnson, and Pearson. 

Is the task of estimating the values of the 
parameters of a given distribution family 
to  obtain the best fit with the data. 



Goodness *f -Fit - 
(Section 9.) 

Tests are used to determine if the candi- 
date distribution is an adequate represen- 
tation of the actual random process based 
on the data available. 

Histogram - 
(Section 6;) 

If all likely distributions fail the goodness - 
of-fit tests fail, a histogram should be used. 

These techniques can best be applied by referring to the appro- 
priate section. After application of any technique, refer to the appropriate 
figure to determine subsequent selection techniques to employ, if any. 

. 
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F i g u r e  4 . 1  F i g u r e  4.2 
No Data, No Knowledge No Data, Qualitative Knowledge 

I Sensi t ivi ty  I 
Analys is  

F i g u r e  4.3 
No Data, Good Knowledge 

Parameter 
Estimation 
(Arb i t r a ry  
Paramet r s elec tione 

Graphic  a1 
Analys is  
(Table of 
Shapes  ) 

Sensit ivity 
Analys is  

F i g u r e  4.4 
No Data,  Cer ta in  Knowledge 

Selection) Y 
Sen si tivity 
Ana lys i s  

1 Sensit ivity 1 
Analys is  
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Figure 4.5 
Some Data, No Knowledge 

Graphic a1 GI 

I 

Goodness- 
of-Fit Test 

Figure 4.7 
Some Data, Good Knowledge 

Graphical 
Analysis 

t 

Estimations 
Distribution 

I 
I t 

Accept Goodness- 
of - Fit 

Reject A l l  Distributions Q- 
I E k r e  4.6 

Figure 4.6 
Some Data, Qualitative Knowledge 

n 
Graphic a1 
Analysis 

Parameter  
Estimation 

I t  
Accept Goodness- 

of-Fit Test  

Sensitivity 
Analysis 

Figure 4.8  
Some Data, Certain Knowledge 

Parameter  
Estimation 

I zgeSS- +Accept 

Reject ,-, 
Figure 4.7 

I 
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Figure 4.9 
Ample Data, No Knowledge 

Figure 4.10 
Ample Data, Qualitative Knowledge 

I Analysis I 
E s ti mat i on 

Accept Goodness- 1 of-Fit 

Reject 
Analytic Curve 
Fitting 

Parameter 
Estimation 

R k r e  4.9 t- 
Goodness- Accept I of-Fit Test 

4 Reject 

lUse Histogram I 
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Goodness- 
of-Fit 

Figure 4.11  
Ample Data, Good Knowledge 

Accept 

Parameter 
Estimations 

Reject 
" I  

Distribution 1 

Estimation Distribution 

1 1 Goodness- Accept 
of-Fit u-l- Reject Al l  Distributions 

Use  
Histogram 

Figure 4.12  
Ample Data, Certain Knowledge 

Reject 

Figure 4.11  

. 

f 
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5. SENSITIVITY ANALYSTS 

. 

. 
8 

The objective of sensitivity analysis is to determine the extent to 
which the final results of the simulation study are sensitive to a given 
probability distribution. To this end two general guidelines can be given. 

The first is to attain a determination of sensitivity to the parame- 
ters of a distribution. It might be reasonable to vary the parameters to 
some extent in both directions. Suppose, for example, that a normal dis- 

tribution with mean 100 and standard deviation 20 is postulated. Then 
five runs might be made to test sensitivity of the final simulation results 

to these parameters as follows [(mean, standard deviation)]: (100, 20), 

(110, 20), (90, 20), (100, 18), (100, 22). 

A second sensitivity test that can be performed is one of shape 

of parametric family: it may be reasonable to make several simulations 
with different probability distributions, especially if unlikely events a re  
important to the simulation results. In this case the shape of the tail of 
the distribution is important. Suppose, for example, that a gamma dis- 

tribution has been chosen; then a lognormal or  Weibull might also be tried, 
since these have similar shapes. 



. 
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6. GRAPHICAL TECHNIQUES 

There a r e  two graphical techniques that a r e  applicable here. 
The first deals with the empirical histogram and the second deals 

ing with the empirical cumulative distribution polygon. 
niques can be quite useful in selecting a good functional fit to data. 
These graphical techniques are intended primarily for use in select- 
ing one of the common or  simple distributions. Although graphical 
techniques can be helpful in the selection of a complex distribution, 
this is discussed as analytical curve fitting in Section 7. 

Both tech- 

Graphical techniques can often suffice to determine a satis- 
factory probability model for a simulation variable. This is especi- 

ally true if the simulation results are not sensitive to rare events of 
the several random variables. An example is given in Section 6.3 to 
illustrate the histogram and cumulative distribution polygon methods. 

6.1 USING THE EMPIRICAL HISTOGRAM 

The empirical histogram can be used to determine wbat dis- 
tributions are likely to fit a given set  of data. This can best be 
accomplished by a visual comparison to find curves representing 
probability distributions that a r e  similar to the data. The approach 
taken in this section is to find such visual fits by examining a series 
of figures representing the density function of most of the simple 
dis t r ibut i ons . 

The procedure is very straightforward. First plot the histo- 
gram from the data available. In some cases it may be helpful to 

, 
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sketch a smoothed version of the histogram, especially if the cells 
of the observation groupings a r e  large or  the data are few. Then ex- 
amine the shapes given in Figure 6.1 and select those distributions 
whose densities are similar to the histogram. (Figure 6.1 does not 
include the Weibull, Johnson, or Pearson distributions. For these 
distributions, see Section 7.)  It is also useful to rank the selections 
according to how good the fit is. 

6.2 USING THE EMPIRICAL CUMULATIVE DISTRBUTION 
POLYGON 

An alternate technique is to use the cumulative distribution 
polygon in conjunction with probability paper. The horizontal axis of 
this paper represents the values of the variable under investigation; 
the vertical axis is a probability scale. The spacing on the vertical 
axis is constructed for a given probability family so that a cumulative 
distribution function belonging to that family will appear as a straight 
line on the paper. 

The graphical method is quite general and can be applied to 
any known distribution; however, the probability paper which is com- 
mercially available is limited to  the more commonly encountered dis- 

tributions such as the normal (see Figure 6.2), lognormal, extreme 
value, chi-square, gamma, binomial, and Weibull. * 

The procedure for using this graphical method is extremely 
simple although interpretation of the results is somewhat subjective. 
The sample cumulative distribution is plotted on the probability paper 
corresponding to the theoretical distribution of interest. If the points 

*See, for example, TEAM Special Purpose Graph Papers,  Box 25, 
Tamworth, N. H. 03886, also K+E papers. 

. 

. 
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, 

fall on a straight line the theoretical distribution is accepted as rep- 
resentative of the data. If the line is badly curved, other distributions 
can be tried. The nature of the curve often suggests distributions 
which might be of better fit. 

Another useful aspect of the graphical procedure is that esti- 
mates of the distribution's parameters can be read directly off the 

graph. For example, on normal probability paper, the difference 
in variable value between the .50 probability point and the . 84  prob- 
ability point on the fitted line corresponds to  one standard deviation. 

6.3 NUMERICAL EXAMPLE 

An example will illustrate the use of these techniques. The 
data for the example is given in Table 6.1. Observations ranging 
from 66.75 to  75.25 have been divided into seventeen equal inter- 
vals or cells of 0.50 each. The frequency with which observations 
fall within each cell has been tabulated and summarized. This data 
was then plotted in Figure 6.3 to produce what is generally referred 

to as a histogram, 

The histogram serves two purposes. First, it provides vis- 
ual evidence on which to base preliminary selection of a distribution. 
Second, in the case of limited data, it may provide as good an esti- 
mate of the variability of the process as any other more elaborate 
approach . 

On the basis of its symmetry and bell shape, the histogram 
of Figure 6.3 appears typical of data from a normal distribution. 

Making an assumption of normality, it is possible to proceed to the 
application of other quantitative methods to determine its validity. 
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Cell 
Boundaries 

66.75-67.25 
67.25-67.75 
67.75-68.25 
68.25-68.75 
68.75-69.25 

69.25-69.75 
69.75-70.25 
70.25-70.75 
70.75-71.25 
71.. 25-71.75 

71.75-72.25 
72.25-72.75 
72.75-73.25 
73.25-73.75 
73.75-74.25 

74.25-74.75 
74.75-75.25 

Frequency 

2 
2 
5 
6 
7 

24 
36 
48 
64 
51 

41 
32 
24 
12 
5 

4 
1 

TABLE 6.1 
Sample Data 

Relative 
Frequency 

0.005 
0.005 
0.014 
0.016 
0.019 

0.066 
0.099 
0.132 
0.176 
0.140 

0.113 
0.088 
0.066 
0.033 
0.014 

0.011 
0.003 

Cumulative 
Frequency 

2 
4 
9 
15 
22 

46 
82 
130 
194 
245 

286 
31 8 
342 
354 
359 

363 
364 

Cumulat ivf 
Relative 
Frequency 

0.005 
0.011 
0.025 
0.041 
0.060 

0.126 
0.225 
0.357 
0.533 
0.673 

0.786 
0.874 
0.940 
0.973 
0.986 

0.997 
1.000 

c 
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Value of Random Variable 

Fig. 6 . 3  Frequency Histogram for Data of Table 6 . 1  
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The data given in Table 6.1 can also be plotted on normal proba- 
bility paper. This will  verify the assumption of a normal distribution and 
also give the appropriate parameters for the distribution if the assumption 
of normality is accepted. The cumulative relative frequency (sample 
cumulative distribution function) when plotted on normal probability paper, 
shown in Fig. 6.4, turns out to be reasonably linear. Thus it can be con- 
cluded, at least tentatively, that the data in Table 6 .1  has been drawn from 
a normal population. For many applications this will suffice to identify a 
satisfactory distribution. Note that the mean (p) and the standard devia- 
tion (0) can also be estimated from the graph. 

Rather than go through the process of grouping the data into class 
intervals or  cells as in Table 6.1 one can plot the data directly onto proba- 
bility paper in the following way. The n observations x x 
placed in ascending order (ranked) such that: 

x are n 1’ 2 ’ ” ”  

(n-1) ‘x(n) x(l) < X  - 
(2) I X($ ---I x 

To each x 
ordered pairs (x(~) ,  Y ( ~ ) )  on the probability paper. This procedure is 
extremely fast, with the excepticn of having to rank the n observations. 
Therefore, it is probably most useful for sample sizes in the range 1-50, 
depending of course on how proficient one is at ranking observations. 
Many excellent examples of the use of probability paper for extreme 
value distributions may be found in Gumbel. 

associate the ordinate value y(i) = n - l  and plot the (0 

(14) 

This example is concluded with a visual verification of the selection 
of a normal distribution to f i t  the data in Table 6.1. Figure 6.5 gives the 
same information as Fig. 6.3 with the addition of the normal density curve 
scaled to the frequency polygon. 

. 



49 

99.9 
99.8 
99.5 

99 
98 
95 

h 
0 

3 e 
3 70 

50 
w 

10 
5 

2 
1 

0.5 
0.2 
0.1 
0.05 

0.01 

Value of Random Variable 

Fig. 6.4 Cumulative polygon on normal probability paper 
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Value of Random Variable 

Fig. 6.5 Comparison o f  Histogram and Normal Distribution 

. 

, 
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7. ANALYTICAL CURVE FITTING 

. 

Analytical curve fitting encompasses a variety of techniques to 
smooth an empirical histogram for use. A s  discussed in Part I, the 
purpose of analytical curve fitting is to obtain a reasonable functional 
approximation of the empirical histogram to be used in a simulation. 

For the purposes of Part I1 of this volume, analytical curve fitting 
will  be restricted to the use of three families of probability distributions. 
These are the Weibull, Johnson, and Pearson distributions. The reader 
who is unfamiliar with these distributions may wish to refer to Appendix A 

to find a background discussion of these three distributions. The Weibull 
family is the easiest to work with and the Pearson family is the most dif- 
ficult to work with. It is, therefore, recommended that analytical curve 
fitting be tried first with the Weibull, then if  need be with the Johnson, 
and finally if necessary with the Pearson distributions. 

The procedure for selecting one or  more of these families is based 
on Table 7.1. The use of Table 7.1 is facilitated if qualitative information 
about the random processes and a sketch of the probability density a re  avail- 
able. Once one or  more families have been chosen, the selection procedure 
outlined in Section 4 should be followed. 

Since using the Weibull, Johnson, or Pearson distribution is tanta- 
mount to using a smoothed histogram, some consideration should be given 
to using the histogram itself rather than a distribution. This is especially 
true if the histogram is drawn from an ample set of data, if the Weibull, 
Johnson, and Pearson curves do not give reasonably good fits, or if the 
histogram is multimodal. In the latter case the underlying population may 
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~~ ~ 

Unimodal, finite left bound, 
tail to  right 

actually be several distinct populations, and unless the user  is prepared 
to separate that population by techniques not discussed here, using the 
histogram may be tnost expedient. 

Figure 7.1 

TABLE 7.1 

Characterist ics of Complex Probability Curves 

Great variety of curves 

Family Name 

Figure 7.5 

We ibu 11 

Johnson 

Pearson 

Number of 
Parameters  

3 

4 
(plus choice 
of three 
functions) 

up to  4 
(plus choice 
of twelve 
functions) 

General 
Character ist ics 

Figures for 
Shapes of Densities 

Bounded o r  unbounded, 
variety of shapes, 
mostly unimodal 

Figures 7.2-7.3 
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t 

\ 
\ 
\ 

Fig. 7.1. Weibull Distribution for Various Values of 
Parameter 7 

, 
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X 
1 0 1 

Y = l  I 

i 

v = l  4.0 

2 1 0 

, -  

I I I X 
-5 - 4  -3 - 2  - 1  0 1 

c 

c 

Fig. 7.2. Johnson Probability Density Functions for Su 
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0 1.0 2 . 0  3.0 4.0 5.0 6.0 7 . 0  

. 

0.7 -- 

y = - . 3 ;  q = 1  

0 1.0 2 . 0  3 . 0  4.0 5.0 6.0 7.0 

Fig. 7 .3 .  Johnson Probability Density Functions for S ( C  = 0) L 
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y =o; q = l/J2 
I 

X 

":'v--\; 
0 

0 1 

4. 

3. 

3. 

2. 

2. 

1. 

1. 

0. 

0 1 0 1 

2.5 

2.0 

1.5 

1 . 0  

0.5 

0 

y = 1 ;  q = l  
I 

X 
0 1 

I 7-O; 

L 

c 

X 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 
0 1 0 1 

Fig. 7.4. Johnson Probability Density Functions for SB (E = 0 ; A =  1) 



57 

TYPE1 
I 

TYPE 11 IY 

Ax -a o a 

TYPEIII i Y  

TYPEV1= iqy 
X 

0 

I Y  TYPE IX 

I' TYPE X 

TYPE V 

TYPE XI 

TYPE VI TYPE XI1 Iy I 
I 

Note: 'Types IV and VI1 a r e  similar to 
Normal Distributions 

Fig. 7.5. Typical Shapes of Pearson Distributions 
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8. PARAMETER ESTIMATION 

Once a specific type from a family of probability distributions has 

been tentatively chosen to model a random variable, specific parameters 
for the distribution must be chosen. These parameters should be chosen 
so that the resulting specific distribution will best fit the data and knowl- 
edge available. This section is devoted to finding the specific parameter 
values based on the empirical data (observations) available. 

If no data is available, the parameters must be chosen arbitrarily. 
In this case no estimation procedure exists that is better than the analyst's 
intuition and judgment. If data is available, the parameters can be estimated 
based on the sample of data. Estimates, in this case, always begin with 

calculation of certain sample statistics which a re  given in Section 8.1. 
This section should be used in conjunction with the directions given in 
Section 8.2. This latter section gives formulas for estimating the specific 
parameters for all of the distributions considered. Since not all the sample 
statistics in Section 8.1 are needed for all the distributions and parame- 
ters in Section 8.2, Section 8.2 should be referred to before calculating 
sample statistics. 

8.1 CALCULATING SAMPLE STATISTICS 

The sample statistics given in this section include the sample mean, 
median, variance, skewness, kurtosis, 3rd moment, and 4th moment. 
To establish some standard notation, we define the following symbols: 

n = number of data points 

x. = ith data point (observation) for i = 1, 2,. . . , n . 
1 
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The sample statistics a re  calculated a s  follows: 

Sample Mean (symbol x) 

x= (2 
i=l 

Sample Median 

First rank the observations from smallest to largest. If n is odd, 
the median is given by the value of the [(n+l)/2]th observation. If n is 
even the median is given by the mean of the [n/2]th and [(n/2) + 13 th 

observations. 
2 Sample Variance (symbol s ) 

or, more conveniently 

-2 / n - x  . 
1=1 

Sample - mth Centralized Moment 

Sample Skewness - (symbol B,) 

. 

(symbol km)(only p3 and p4 needed) 
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. 

Sample Kurtosis (symbol 8,) 

Interpretation of the last two estimators is usually in terms of how well the 

data fits the normal distribution. If the skewness is close to zero and the 
kurtosis is close to three the normal distribution should provide a good 
approximation to the distribution. Figure 8.1 gives an interpretation of 

the skewness value. Zero indicates a symmetric distribution, negative 
skewness means a long left tail, positive values a long right tail. Figure 8.2 
illustrates the kurtosis measure. If the kurtosis is greater than three the 
distribution is more peaked than the normal (curve C). If it is less than 
three the curve is flatter than the normal (curve A). 

8.2 CALCULATING PARAMETER ESTIMATES 

This section is divided into two parts. Section 8.2.1 deals with 

the simple distributions. This section will be the one more commonly 
used. Section 8.2.2 is more complicated and deals with estimating parame- 
ters for the complex distributions. 

8.2.1 Simple Parametric Distributions - 

Refer to Table 4.3 to obtain the recommended parameter estimates 
for the selected distribution. Use  Section 8.1 to obtain the sample statis- 
tics required. 

8.2.2 Complex Parametric Distributions 

, 

, 

A s  can be seen in Table 4.3, estimating parameters for the Weibull, 
Johnson, and Pearson distributions is more involved than for the simple 

distributions. The reason for this is that the simple distributions generally 
have one or  two parameters, whereas the complex distributions have 3 to 5 
effective parameters. Background for the material which follows can be 

found in Appendix A. 
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No 

0 
Figo 8.1.  Skewed distributions 

Mesokurtic curve 
Leptohrtie curve 
Platykurtic curve 

. 

Fig. 802. Three frequency curves with 
different degrees of hrtosis 
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8.2.2.1 Weibull 

The basic three -parameter Weibull distribution has a density given 
by: 

= o  X S €  

where: 

f (x) = Weibull probability distribution 

c = location parameter 

X = scale parameter 

q = shape parameter 

In most applications the location parameter, e, is known. In 
cases where it is not known, it can be estimated from the observations: . 

c = min[x.] . 
1 

Better estimates of c can be obtained using techniques developed by Dubey; (8) 

however, the improvement is not usually sufficient to warrant the extra 
effort involved. 

The maximum likelihood estimators for the three-parameter Weibull 
distribution result in a set of equations that can be solved by iterative 
methods which are very tedious to perform. If the location parameter is 
known or  estimated, the maximum likelihood equations for X and n can - 

be solved fairly easily(51) and are given by: 

. 
* 

' I  

n 1= pi tnxi n 
- - n  A Z t n x  = o 

i=l 
i A 
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and 

where: 
A 

q = Maximum likelihood estimator of q 
A 

X = Maximum likelihood estimator of X 

Equation 8.1  can be solved by the Newton-Raphson iterative procedure. 

A n 

where: 

. - + - - -  1 s1 si 
% s; 

. 
n 

s1 = In x. 
i=l 

n "  s; =c x. 'k 
1=1 
n 

1 

1 

A 

qk =q (In x.)x. 1 1  
s3 1= 

A 

2 qk s4 k =c (lnxi) xi 
n 

1=1 

The estimate 6 is biased and should be corrected using the unbiasing fac- 
tors in Table B-lof Appendix B. Then, the estimate for X can be obtained 
directly from (8.2). Further improvement can be obtained by using Menon's 

A 

estimators. (38) b 
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8.2.2.2 Johnson Distributions 

A s  indicated in Table 4.3,  there are three Johnson distributions. These 

three are generally denoted SL, SB, and Su because these distributions 
are related to the normal distribution through a logarithmic transformation 
(S ) , bounded transformation (SB), and unbounded transformation (Su). 

The problem of estimating parameters of the Johnson distribution thus be- 

comes a two-step procedure. First determine which distribution to use, then 
estimate the appropriate parameters. 

L 

The probability density functions for the three Johnson distributions 
are : 

Sg: f2(X) = sz’;; - rl (x-€) x (x-x+€) exp 1- f [.+7 (fj&)12 1 
su: f3(X) = - rl 

& &  

- < x <  

In these distributions 7 and y a re  shape parameters, A is a scale parame- 
ter, and is a location parameter. These must satisfy: 

7 >o, x>o, -a< y, € < + a 

In Section 8.1, expressions are given for the skewness, p1, and 

kurtosis, p,, of the sample data. These are used to determine which 
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distribution, SL, SB, or  Su to use. This can be accomplished by plotting 

the sample ,!Il and ,!I2 on Fig. 8.3. The location of the sample point 

1’ 2 
however. Figure 8. 3 is accurate for categorizing distributions given the 

truevalue of 8, and p2. Thevalues for 8, and 8, derivedfrom the 
sample (Section 8.1) a r e  estimates of the true values. Thus if the sample 

point falls near the edge of a region in Fig. 8.3, i. e., near the SL line, 
then it would be prudent to t r y  all three Johnson distributions or  to select 
one or more based on possible boundedness of the random variable in ques- 
tion. Examining the density functions given above will aid in this 

determination. 

( p  p ) indicates the distribution to select. One warning must be given, .- 

4 

The parameter estimates for the Johnson distributions are given be- 

low. The estimates of the Johnson parameters are not maximum likelihood 
estimates, except for the SL ( e  known) case, however they are the most 
practical to use. The approach taken is to use percentile points from the 

data. Recall that a 100 CY percentile point for the population, xa, is that 
value of x for which P [x s x J = CY. We assume that the random sample 

x1 n 
Then the kth order statistic will provide an estimate for the 1 0 0 ~  percentile 
of the population, where: 

. . . . ,xn has been ordered to give the order statistics Wl< . . . < W . 

(8.3) 
k - 1  

Q =  - 
n - 1  

This will be required in subsequent application, S ( c know). In L 
-1/2 this case the estimators for q and y are respectively, 

1 n 

i = ]  ; [ l n ( x i - f ) ]  2 - 
i=l J 

. 

and (8.4) 

$ 2  h(xi  - F) y =  -ii 
A 

i=l 
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c 

e4 
4 

-7 
I 
I 
I 

I 
I 
I 

- _ _ - _ -  ------ 
Region for Johnson 
Su Distribution 

I 

Line for Johnson SL Distribution 

I 
(lognor mal) 

Line for Y distribul I / I 
student t _ _  _ _  :ion 

/ 
/ 

Region for Johnson 
Sg Distribution 

Distribution 

A 
I 
I 
I 
I 
I 
I 
I 

Region I 
I 
I 
I 
I 
I 
I 

I 1 I 1 
0 1 2 3 4 

p i ,  SKEWNESS 

Fig. 8.3 .  Selecting a Johnson Distribution from Skewness and Kurtosis 
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Thus, from the sample xl,. . . , x 
estimated with q and y, respectively. 

the parameters q and y can be readily 
A A n 

SL (F unknown) - 

Again, the maximum likelihood estimators may be obtained but with some 

1 

difficulty, and it is perhaps better to use  the percentile approach. That is assume 
the percentile points xu , xa  , and xu have been estimated. These are 

1 2 3 required since there a r e  three parameters 6 ,  7 ,  and y to estimate. If 

'a 
responding to the cumulative probability a ,  then. 

4 

is defined as the value of the variable in the normal distribution function cor- 

z = y + q  ln(Xa1 - F )  
al 

z = y + q h(x, - F) 
012 2 

z = y +  q In(x, - F) 
a3 3 

Explicit solutions cannot be obtained for e ,  y , and q from these 
equations although they can be determined iteratively. However, the following 
example will  illustrate the use of one simplification. 

Suppose a sample size of n = 51 has been obtained. The 6th, 26th, and 
46th order statistic from W1 < W2 < . . . < W51 will be used to estimate the 

following percentiles: 

= x  = w 6  x9 . l  

= w26 x = x  a2 .5 

= w46 x = x  a3 . 9  

where ai i = 1,2,3, is obtained using Eq. 8.3. From Table B-2 in 
Appendix B: 



69 

= -1.28 z. 1 

z = o  .5 

z = 1.28 . 9  

From Eq. 8.4: 

A h 

The advantage of selecting al = 1 - a3  and 01 = .5 should be noted. 2 
The percentiles chosen are, of course, rather arbitrary and, therefore, 
many estimates could be obtained for 6, y and q . 
of the relative goodness-of-fit for each selection may be appropriate. 

In this case, comparisons 

This case implies both end points of the distribution are known. Using 
the percentile method, estimators for y and q may be obtained: 

z - z  
012 O11 - r j  - € / € + A - x  

.j = z - i j  In 
a 2  [€ 

(8.5) 
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SB (General Case) 

This case implies that none of the parameters are known and requires 
that the appropriate number of equations of the form 

za 

be solved for the unknown parameters. Generally, this will lead to tran- 
scendental equations which can be solved numerically. There is one simpli- 
fication in the case where E is known and the percentiles are selected such 
that 01 = al = 1 
required for this case). The solution for 

and cy2 = . 5  (only three equations of the type - 013 
for this case is 

Equation 8.5 may then be used to generate estimates for q and Y 

since with 8.6 the problem reduces to one with both end points known. 

S,, (General Case) 

For general case of the Su system, Johnson has generated tables 
that a re  useful for determining the parameters, (22) These are pres.ented 

in Tables B-3 and B-4 of Appendix B. The tables were developed from solu- 

tions of equations defining the relationships of the first four moments to the 
parameters . 

Use of the tables first requires that the mean, variance, skewness 
and kurtosis be calculated. The values for 4 and i2 are then used to 
obtain the estimates for y and 7 from Tables B-3 and B-4, respectively. 
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The and 2 estimators are calculated using: . 
S A 

1 /2 A =  

(0-1) [. c o s h ( v )  + ;] f 

where s is the sample standard deviation (see Section 8.1)  

To illustrate use of the tables, assume a random sample gave 
A 

6 = . 5  and p 2 = 6 .  From Tables B-3, B-4 

A 

y = - .3278 and 6 = 1.672 

and may now be calculated directly from Eqs. 8 .7  and 8.8. 

8 . 2 . 2 . 3  Pearson Distributions 

There are twelve Pearson distributions. These are generally indicated 
by Roman numerals: Type I through Type XII. The problem of estimating 

Pearson parameters, like those of the Johnson, becomes a two-step problem. 
First determine which Pearson Type to use, then estimate the appropriate 
parameters. 

P l ,  To determine which Pearson distributions to use, the skewness, 
and kurtosis, p2, of the sample data (see Section 8.1) are  needed. The 

sample point (i , i ) should be plotted on Fig. 8.4 .  The location of the 

sample point indicates what distribution to use. A warning needs to be given 
on using this procedure. The point (jl, i2) calculated from the data as in 

1 2  
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Skewness PI 

Fig. 8.4. Selection of Pearson Type from Skewness and Kurtosis 

0.0 . 

, 
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. 

Section 8.1 is only an estimate of the true values. Thus if the sample point 
falls near a line separating two regions in Fig. 8.4, the Pearson Type in 
either region or  in the line may fit the data. In this event more than one 
Pearson Type should be tried. It should also be clear from examination of 
Fig. 8.4 that only Types I, IVY and VI are indicated by regions; therefore, 
in practice only these types will be indicated by strict application of this 
selection procedure. 

Selection of a Pearson Type may also be aided by examining the 
Remarks column of Table 8.1. This table lists all twelve Pearson Types and 
some information on each. The form of the density function should be ob- 
tained from Table 8.1. 

The parameters for the density functions are given below. 

. 

, 

Calculate the quantities 

t = s[pl(r + 2) 2 + 16(r + l)] 1 /2 

ml and m2 are given by: 
1 

81 
2 pl(r + 2) + 16(r + 1) 

r' - 2 k r(r + 2) 1 
z m =  

If p3 is positive, take m2 to be the positive root 

a 1 = t/(m2/ml + I) 



TABLE 8.1 
Summary of Pearson Distributions 

No. of type 
usually 
adopted 

(Pearson) 

MAIN TYPES 
I 

IV 

VI 

TRANSITION 
TYPES 

'Normal' 
curve 

I1 

VI1 

m 

V 

VnI 

M 

X 

XI 

xn 

Equation to curve in form usually adopted (Pearson) 

Equation 

1 -&an- x/a y = yo(l + x2/a3-me 

Y = Y,(X - a) x P2 91 

-x2/2u 
Y = y 0 e  

y = yo(l-x2/a3m 

2 2 - m  
Y = yo(l+x /a 1 

y = yo(l+x/a)ya e - p  

= .-Pe-Y/x 
0 

y = yo(l+x/a)-m 

-x/a 
Y = y o e  

-m 
Y = Y0X 

Origin 

Mode (antimode) 

val(2m-2) after mean 

a before s ta r t  of curve 

Mode (= mean) 

Mode (= mean) 

Mode (= mean) 

Mode 

Start of curve 

End of curve 

End of curve 

Start of curve 

b before s ta r t  

Mean 

Remarks 

Limited range (-al to a ) *  skew; 
usually bell-shaped, %t may 
be U-shaped, J-shaped o r  
twisted J-shaped 

Unlimited range; skew; bell-shaped 

Unlimited range in one direction 
(a to m ); skew; bell-shaped, 
but may be J-shaped 

Unlimited range; symmetrical; bell- 

Limited range (-a to a); symmetrical ; 
shaped 

usually bell-shaped, but U -shaped 
when ,9, < - 8 

shaped 

(-a to m); usually bell-shaped, 
but may be J-shaped 

Unlimited range in one direction 
(0 to -); bell-shaped 

Range from infinite ordinate a t  -a to  
finite ordinate at 0 (or from -a(l-m)/ 
(2-m) to a/(2-m) with origin at mean) 

where y = y (or from -a/m+l)/(m+2) 
a/(m+2) with'origin at  mean) 

Exponential from finite ordinate at 0 
(or -u with origin at mean) to in- 
finitesimal ordinate a t  m ; J-shaped 

J-shaped; s ta r t s  at x=b (or -b/(m-2) 
with origin at mean) where ordinate 
is finite 

Type I 

Unlimited range; symmetrical; bell- 

Unlimited range in one direction 

Range from x = -a where y = 0 to x = 0 

Twisted J-shaped; special case of 

1 ,  .. . - 
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. 
6 r ( m l  + m2 + 2) 

r(m, + l ) r (m2  + 1) 
- .  2 

1 

m 

m + m  2 

1 
1 m 

- - 
YO 

The function parameters are found as follows: 

Type III 

The function parameters a re  given by: 

2 
Y =  - 2 s  

p3 
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. 

Type IV 

-1 f(x) = yo exp( -Y tan x/a) 

The function parameters are given by: 

Y = 6 ( &  - p1 - 1)/(2P2 - 3 8 ,  - 6) 

Y O  = U[aF(y, 4 

f(x) = yox-p exp(-y/x) 

where F(y, v )  is given in Reference 42. 

Type V 

(x ' 0) 
The function parameters are given by: 

8 +44-; 
p = 4 +  

81 

Y = S(P - 2) Jlp-3) . 
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I 

Type VI 

92 91 f(x) = yo(x -a) X 

The function parameters are given by: 

q2 and -ql are givenby: 

r-2 k r(r+2) [pl/[Pl(y + 2)2 + 16(y + 1)111/2 
q =  2 2 

Type VI1 

f(x) = yo ( 1 + -  $ 
The function parameters are given by: 

5P2 - 9 
= 2(P2-3) 

1 r (mi 
- rCm - 0.51 
- -  

'0 a n 

. 
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Type VI11 

f(x) = yo ( 1  + x /a jm 

The function parameters are given by: 

where m is the solution of 

Type M 

f(x) = yo(l + x /dm 

The function parameters are given by: 

= (m + I)/a YO 

where m is the solution of 

3 2 m (fll - 4) + m (96, - 12) + 24mP1 + 16131 = 0 

The parameter is given by: 

= s  YO 
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Type XI 

The function parameters are given by: 

b = +s(m - 2) ,/(m = 3)/(m - 1) 

where m is  a solution of 

3 2 m (4 - B1) + m (9Bl - 12) - 24plm + 16pl = 0 

Type XI1 

is  given by 
YO 

= r(m + l)r(l - m)/b YO 

where 

b = 2s d(3 + p,) 



. 
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9. GOODNESS-OF-FIT TESTS 

Goodness-of-fit tests are statistical tests for evaluating whether a 
group of data supports the assumption that the random variable from which 
the data are drawn has come from the assumed probability distribution. 
These tests are helpful in accepting o r  rejecting the conclusion that some 
random variable follows a tentatively selected probability distribution. 

The technique of applying statistical tests of distributional assump- 
tions follows three basic steps: 

1. A number known as a test statistic is calculated from 
the observed data.. 

2. The probability of obtaining the calculated test statistic, 
assuming the selected distribution is correct, is deter- 
mined. This can often be done by using precomputed tables 
of percentiles of the distribution of the test statistic. 

3. If the probability of obtaining the calculated test statistic is 
low, the conclusion is that the assumed distribution does not 
provide an adequate representation. If the probability 
associated with the test statistic is not low, then the data 
provide no evidence that the assumed distribution is 
inadequate. 

It should be clearly understood that although this procedure allows 
rejection of a distribution as inadequate, it never proves that the model is 

correct. In fact, the outcome of a statistical test depends highly upon the 
amount of data available - the more data there are, the better are the chances 
of rejecting an inadequate model. If too few data points are available, even 
a model that deviates grossly from the assumed model frequently cannot be 

established as inadequate. 
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Table 9.1 provides summary information on goodness-of -fit 
tests and also indicates on which distributions the tests are applicable. 
After  a test is selected from this table, instructions on how to perform 
the test can be found in the subsequent sections. 

A comment on using goodness-of-fit tests on the complex distri- 

butions (Weibull, Johnson, and Pearson) may also be helpful. These dis- 

tributions are designed to fit almost any set of data well. It is, therefore, 
unlikely that any of them will be rejected by a goodness-of-fit test. Using 

goodness of f i t  tests on any of these distributions will not generally give 
the analyst much further information on the form of the true distribution, 
and he may elect to accept one of these complex distributions without a 
goodness-of -fit test. 

This brief background should suffice for practical use of goodness- 
of-fit test in simulation modeling. In the following section, a simple selec- 
tion procedure is given to determine what goodness-of-fit test to use based 

upon the probability distribution tentatively selected to model the random 
variable in question. In the following sections these tests are described 
and instructions for performing the tests are given. Although there are 
numerous statistical tests, these are the most powerful available. 

9.1 CHI-SQUARE GOODNESS-OF-FIT TEST 

The Chi-square goodness-of-fit test is probably the most widely used 
and versatile technique for evaluating distributional assumptions. It can be 

applied to test any distributional assumption without having to know the values 
of the distribution parameters. Its major drawbacks are its lack of sensitivity 
in detecting inadequate models when few observations a re  available and the 
frequent need to arrange the data within arbitrary cells which can affect the 
outcome of the test. 

. 

. 
, 



Any 
continuous 

"d" - tes t  

Kolmogorov- 
Smirnov tes t  
Kolmogorov 
tes t  

(9.2) 

Normal 
Log Normal 
Johnson 
(see Table 4.4) 

"w" - tes t  

(9.3) 

Exponential 
(origin 
unknown) 

"WE" - tes t  

Exponential 
(origin known) 

"WEo" - test 

(9.5) 

TABLE: 9 .1  
G o o d n e s s - o f - F i t  T e s t s  

TABLES OR 
DATA REQUIRED 

(APPENDIX B) 

REFERENCES 

APPENDIX C) 
(PEE 

PPROPRIATE 
'ROBAEILITY TEST APPLICABILITY EASE OF USE GENERAL COMMENTS 

I 
rest is relatively easy 
to apply. Requires 
placing the sample value 
into intervals and some 
minor computations. 

Chi-square distribu- 
tion table (1-2 pages). 

Test t o  evaluate a 
sample for  any dis- 
tributional assump- 
tion for any type of 
distribution. A non- 
parametric o r  dis- 
tribution free test.- 

Test to  evaluate the 
agreement between the 
distribution of a set  of 
sample values and any 
completely specified 
continuous distribution. 
A non-parametric or 
distribution f ree  test. 

Test t o  evaluate the 
assumption that a 
sample comes from 
a normal o r  log- 
normal distribu- 
tian. 
Test to  evaluate the 
assumption that a samg: 
comes from an exponen 
tial distribution with 
origin unknown. 

4,15,20 A general and powerful statis- 
tical test that i s  widely used. 
However, it is not a good test 
for small  samples. 

Chi-square 
tes t  

(9.1) 

r e s t  is easy t o  apply. 
However requires 
ordering of data which 
may be tedious for  
large samples. 

d - distribution table 
(1-2 pages). 

4,33  A powerful statistical tes t  for  
continuous theoretical distribu- 
:ions. It is a good test for  
small samples and where it is 
ipplicable it i s  usually a better 
:est than the Chi-square. 

Relatively easy t o  use. Tables (2-3 pages) 
used with equations 
are required. 

A test more powerful than the 
x2 for  testing the normal 
distribution assumption. 

15,47 

Relatively easy t o  use. 15,47 A test more powerful than the 
x for  testing the exponential 
distribution assumption. 

Requires tables 
(2-3 pages) used with 
equations. 1 (9.4) 

r e s t  to evaluate the 
wsumption that a samprt 
zomes from an exponen- 
:ial ,distribution with 
migin known, 

Relatively easy to use. Requires tables 
(2-3 pages) used with 
with equations. 

A test more powerful than the 
x for  testing the exponential 
distribution assumption 

15,47 



84 

The Chi-square test is used as follows: 

Step 1. Estimate each of the unknown parameters of the assumed distribution. 

Step 2. Divide the data into k classes o r  cells and determine the probability 
of a random value from the assumed model falling within each class. Two 
methods for this are presented: the first method is applicable if the data are 
initially arranged in frequency classes, and the second applies when the data 
are not initially tabulated in classes. 

Method a. The number of cells, k, will be the number of classes of 
the tabulated data subject to the restriction that the expected number 
of observations in each cell under the assumed model is at least 5. 
Let CLi and Cui denote the lower and upper bounds of the ith fre- 
quency cell. The distribution of the assumed model (using the esti- 
mated parameters) is then used to estimate: 

Pr(CLi 5 x < Cui) , i = 1,2 , .  . .k . 
Method b. When the number of observations, n, is large (>2OO) a 
good rule is to take k as the integer closest to 

k' = 4[0.75(n-1) 2 f /5 . 
For moderate values of n a good rule is to make k as large as 
possible but with the restriction k <n/5. The cell boundaries 

a r e  determined from the cumulative distribution for 
x1'x2' the assume ."a model (using the estimated parameters) as the values 
such that: 

Step 3. Multiply each of the cell probabilities by the sample size n. This 
yields the expected number E. of observations for each cell  under the 
assumed model. For  Method ab: 

E. = n/k , i = 1 , 2  ,... k . 
1 

Step 4. If the data are not initially tabulated, count the number of observed 
values, mi, in each cell. Otherwise, determine mi directly. 

Y 
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Step 5. Compute the test statistic 

t 

k (mi - E ~ )  2 

Ei 
x2 = E  

i=l 

For  Method 2b this simplifies to 

Step 6. Compare the computed value x with the tabulated percentiles for 
a s q u a r e  variate (Table B-5) using k-r-1 degrees of freedom, where r 
i the number of parameters that were estimated in Step 1. High values of 
x 
example, if the above calculated value x exceeds the 0.95 tabulated value 
of Chi-square, the chances are less than one in twenty that the data could 
have come from the assumed distribution. 

Et2 signify that the observed data contradjcts the assumed model. For 

9.2 KOLMOGOROV-SMIRNOV TEST 

This test is used to evalute the assumption that a sample belongs to  a 
specified known continuous distribution. It is a distribution-free test and is 
a good test for small  samples. In general, it is a more powerful test than 
the Chi-square where it is applicable. Although the test is designed for com- 
paring a sample against a specified and known distribution, the test is robust 
enough that it may still be applied to distributions whose parameters are 

estimated from the sample data. The effect of estimating the parameters of 
the distribution from the sample is to  reduce the critical level of the d&N) 
statistic, i. e., the level of significance is really higher than the a associated 
with the chosen d (N). Hence, if the chosen d (N) statistic value is or a! 
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exceeded in the test, it can be safely concluded that the discrepancy is 
significant. Grouping observations into intervals also tends to lower the 
value of d. For  grouped data, therefore, the appropriate significance 
levels for testing should be chosen smaller than the significance levels used 
for a complete sample. 

The test is used as follows: 

Step 1. Rearrange the sample of size n to obtain the ordered sample 
x1,x2,. . .x where x1 5 x2 s . .  . .< xn. 

Step 2. The sample cumulative distribution then takes on values of 
l/n,2/n,. . . . , n/n at the points xi,. . . . , x 

Step 3. Calculate the cumulative frequency values for the assumed distri- 
bution at the sample values of xl, x2, . . . x 

n 

n' 

n' 
Step 4. Determine the maximum deviation, d, between the sample cumula- 
tive distribution and assumed cumulative distribution from Steps 2 and 3. . 
Step 5. Compare the calculated deviation d with the test statistic d (nl  
found from Table B-6 fo r  the desired level of significance. If d excgeds 
the Zalue d (n )  then the assumption that the Sam le comes from the 
assumed d iar ibut im may be rejected at the 100a f o significance level. 

9. 3 W-TEST 

This test is used to  evalute the assumption that a sample has a normal 
distribution. It can be used to test the assumption that a sample fits log- 
normal distributim by using the log of the sample values. The W-test has 

been shown to  be an effective technique for evaluating the assumption of 
normality against a wide spectrum of non-normal alternatives, even if only 
a 'relatively small number of observations a r e  available. It is generally 

more powerful than the x , especially for small  sample sizes. 2 

The W-test is used as follows: 
'. 

n' Step 1. Rearrange the sample to obtain the ordered sample xl, x2, . . . , x 
where x 5x2 s.. .x 1 n' 
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Step 2. Compute 

i=l i=l 

where x is the data mean. 

Step 3. If n is even, set k = n/2; if n is odd, set k 
compute. 

k 

b = ) : a  n - i t1  (x n-i+l -xi)  , 
i=l 

where the values of %-1+1 for i = 1,. . . . k are given 
n = 3,. . . ,50. Note that when n is odd x ~ + ~  does not 
computation. 

Setp 4. Compute the test statistic 

= (n-1)/2. Then 

in Table B-7 for 
enter into this 

2 2  W = b / S  . 
Step 5. Compare the calculated value of W with the percentiles of the dis- 
tribution of this test statistic shown in Table B-8. This table gives the mini- 
mum values of W that we would obtain with 1,2,5,10, and 50 percent proba- 
bility as a function of n, if the data actually came from a normal distribution. 
If the percentile is lower than the selected level of significance, then the 
hypothesis of normality can be rejected and accepted otherwise. 

9.4 WE-TEST 

This test is used to evaluate the assumption that a sample has an ex- 
ponential distribution with the origin unknown. Percentiles of the WE dis- 

tribution have not yet been tabulated for sample sizes other than 7 to 35. 
The comments on the W-test are also applicable here. 
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The WE-test is used as follows: 
Step 1. Calculate the test statistic: 

2 
( X - X : )  

i=l 

where xi, i = 1,. . . n, a re  the n observed values, x 
value, and x is the data mean. 

is the smallest 1 

Step 2. Compare the computed value WE with the 95 percent and 90 percent 
ranges given in Table B-9. This test is two-sided in that too-low or  too- 
high values indicate non-exponentiality. Thus, if the computed WE value 
falls outside the 95 or 90 percent range, then the chances are less than 
one in 20 or one in 10, respectively, that the observed sample was drawn 
from an exponential distribution. w 

9.5 WE,-TEST 
This test is used to evaluate the assumption that a sample has an expo- 

nential distribution with the origin F known. However, percentiles of the distri- 
bution WEo have not been tabulated for sample sizes other than 7 to 35. The 
comments on the W-test  are also applicable here. 

The WE -test is used as follows: 

Step 1. 

Step 2. 

0 

Subtract the known location F from each of the sample values xi. 

Calculate the test statistic 

i=l 
WE = 9 

i=l 
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i 

where xi, i = 1,. .. , n, are the n sample values and x is the sample 
mean. 

Step 3. Determine whether the computed value WE lies outside the tabulated 
95 percent and 90 percent ranges shown in Table B-PO as a function of n. This 
test is two -sided in that too-low or too-high values indicate non-exponentiality . 
Thus, if the computed value of WEo falls outside the 95 percent range, the 
chances a re  less than one in twenty that the observed sample was drawn from 
an exponential distribution with the assumed origin. 

, 
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A.  1 INTRODUCTION 

Although the reader probably has a good general knowledge 
of the simple parametric distributions, he is likely to be unfamiliar 
with the complex parametric distributions. The main text of this 

volume indicates when and how to use these distributions, but all with- 
out requiring a thorough understanding of the complex distributions. 
This appendix is intended to give the reader some background informa- 
tion on the complex distributions so that he will be better able to under- 
stand and use the related material in the main text. 
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A. 2 WETBULL DISTRIBUTION 

The Weibull distribution is best known for its application to reliability 
analysis where it is known to f i t  a large class of life (time to failure) dis- 

tributions (53). The basic distribution suggested by Weibull is to define 
~ ( x ) ,  where the cumulative distribution function F is given by 

F(x) = P[X I x] = 1-e -cp(x) = sx f(x)dx 

One of the simplest forms for ~ ( x )  is 

= o  

in which case 

X l  € 

( X - p  -- 
X T F  

x F(x) = 1 - e 

= o  X l €  

and 

-- 
rl-1 e ' A ,  f(x) = q/A (x-F) 

= o  X l F  

The parameter F is called the location parameter in the sense that it 
defines the lower limit for the random variable x. For the special case 

where c = O ,  
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and 

-X rl /A F(x) = l-e 

The values of q and X may be selected to provide a large number 
of shapes some of which a re  sketched below in Fig. A. 1. For this reason 
q is called a shape parameter and X is called a scale parameter since it 
scales the value of x. 

X 
0 

c 

Fig. A. 1. Weibull Distribution for Various Values of 
Parameter q 

. 
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It should be noted from Fig., A. 1 that v l  3 1/2 might represent 
the shape parameter for the early failure region and q 3  = 3 the shape 
parameter for the wear -out region in a typical reliability application. 



C 
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A. 3 JOHNSON DISTRIBUTIONS 

. 

These distributions were proposed by Johnson who used trans - 
formations of the normalized normal random variable to generate 
empirical distributions(21,22). The main advantages of this approach 
are that percentiles of the empirical distribution may be obtained using 
a table of the normal probability distribution, as will become apparent 
later, and that the approach encompasses a broad class of problems. 

To introduce the Johnson distributions, assume that it is de- 

sired to obtain a probability density function for the random variable 
X about which little o r  no information is available. Then, a general 
transformation from X to Z is postulated, where Z is a normalized 
normal random variable, as follows 

where yand q and parameters to be determined. 

In most situations, the transformation T(X) will be unknown. 
However, Johnson proposed three families of distributions, referred 

and S to as the SL, SB, systems, respectively, defined as follows U 
SL(Log-normalJW = .en (x-c) ; X > €  

SB(Bounded) T(x) = & n ( x )  
A+€-X ’ 

-m< x<m SU(Unbounded) T(x) = sinh -1 (T) x-€ ; 

The undefined regions for x above imply T(x) = 0. 
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Similar to the Weibull distribution, q and y are shape parameters, 
is a scale parameter, and F plays the role of location parameter 

which shifts the region of relevancy for x . These parameters are 
subject to the following constraints: b 

In some cases, these parameters may be identified from a 
basic understanding of the process. For example, if the random 
variable x must be non-negative, then 
distribution, might be appropriate. If x is restricted to a finite region, 

= 0 and the SL, or lognormal 

5 x I + A ,  then S (bounded distribution) may be appropriate. B 
An infinite range for x would suggest the Su (unbounded) distribution. 

The probability density function for the distributions are as 
follows : 

su: f (x) = - 
3 %k 

C 

. 
c 
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e 

I 

t 

The density function for the SL system is a three-parameter 
distribution commonly called the log-normal distribution. This is 
known to describe many familiar events such as amount of inheritance, 
income, particle size from breakage, etc. 

As previously mentioned, the class of situations encompassed 
within these distributions is large. An indication of the flexibility 
in defining a large number of shapes is evidenced in Figs. A. 2 to 
A. 4 which illustrate several forms of the SL, SB and Su density func- 
tions. 

The difference between the three types of Johnson distributions 
can be characterized by the relationship between the distribution skew - 
ness and distribution kurtosis. Section 8 of this volume contains a dis- 

cussion of skewness and kurtosis; however, a summary definition is 

that 

,!?, = p 3 / s  3 (skewness) 

and 
4 

B2 = p4/S (kurtosis) 

To help in the definition of the relative variation in ,!?, and p2, 
Johnson prepared the results as shown in Fig. A. 5. Note that the log- 
normal distribution is defined by a line given by: 

; > o  2 8, = (0-1) (0+2) 

4 3 2 p2 = 0 + 2 w  + 3 w - 3  ; r O  

where 

llrl o = e  

is the shape parameter for SL. 



. 
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I y =o; 7 = 1/J2 

X 

:::V--\i 
0 
0 1 

7 

c 

4.0 

3.5 
3.0 
2.5 
2.0 

1.5 

1.0 
0.5 
0 
0 1 

0 1 

Fig. A. 3. Johnson Probability Density 

1.5 

1.0 
0.5 

0 X 
0 1 
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y = o  

1 
I 
1 X I I I 

X - 1  0 1 - 2  -1 0 

-5 -4 -3 -2 -1 0 1 

U Fig. A. 4. Johnson Probability Density Functions for  S 
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. 

-- 1 ----- 
I Extension according to 

2 B, = (0-1) (0 + 2) 
Region for Johnson 
Su Distribution 

7 

/ student. t Y distr- '  
I 

/ I ibution 

Region for Johnson 
Sg Distribution 

I Distribution 

I 
I 1 I I 

0 1 2 3 4 
p i ,  SKEWNESS 

Fig. A. 5., Regions of Definition for Johnson Distributions Based on 
Skewness and Kurtosis 
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It should be recognized that estimates for and /3 may lead 1 2 
to a wrong conclusion as to the type of distribution to be used. The 
confidence that this will not occur is related to the accuracy of the 

estimates. In case of doubt, a goodness-of-fit test may be used to 
help in a decision. 
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A. 4 PEARSON DISTRIBUTIONS 

I,  

A general class of probability density functions known as the 
Pearson family (lo9 35) , is given by solutions of the differential 
equation : 

dx b + b l x + b  x 0 2 

c 

The solutions of this equation were classified by Pearson into twelve 
families of curves shavn in Table 8.1. These curves a r e  displayed 
in Fig. A.6. The Pearson distributions a r e  related to the standard 
densities frequently discussed. For example: the gamma distributions 
are Pearson's Type 111 curves, the normal is a Type VII, the beta 
is a Type I while the beta with parameters a=8 is represented by 

the Pearson Type II curves. 

This system of density functions is very appealing from the 

standpoint of fitting sample data, the reason being that only the first 
four moments need be calculated. Pearson's methods of fitting sample 
data consists of the following steps: 

1. Compute the first four moments, pl ,  p2, p3, 

u4 of the sample data. 

2. Calculate the numerical value of the parameters 
,!3, and p 2 ,  where: 

p = skewness, 

B = kurtosis. 
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-a dx 1 o a2 

T Y P E  11 ,Y 

-a o a 

T Y P E  III i f & )  

-a o X 

T Y P E  VI 

2 m ml 

-P e- Y / X  f(x) = Yo 

Fig. A. 6. Typical shapes of Pearson distributions (Sheet 1 of 2) 
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* 

TYPE IX f 6r) 

-m 
f(x) = Yo (1  + g) 

TYPE X 

-X/O f(4 = Yoe L 0 X 

TYPE XI1 

2 -X 
0 a, 

L 

Note; Type IV and VII  appear as normal distributions. 

Fig. A.6 .  Typical shapes of Pearson distributions (Sheet 2 of 2) 
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Kurt os i 
02 

Fig. A. 7. Types of Skew Frequency for Values of 8, and 4 
for the Pearson System 

t 

10.0 

. 

L 

. 
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These parameters determine the type of 
Pearson distribution which appropriately . 
matches the sample data. 

3. Equate the observed (sample) moments to 
the moments of the appropriate distribution 
expressed in terms of its parameters, and 

4. Solve the resulting equations for those parame- 
ters thereby completely specifying the distribution 
function. 

The relationships between 8, and p2 for a. given Pearson distribution have 
been represented in a convenient graphical form in the so-called 1' 82- 
plane shown in 

8, = 0, 82 = 3 
when the point 

Fig. A. 7. The normal distribution corresponds to the point 
in the /3,,/3, plane. Type III distributions a re  to be chosen 
8,,/3, is on the line 2p2-3%-6 = 0 and Type Vwhen (p1,p2) 

is on the cubic 

In considering the subtypes under Type I, a biquadratic in fll and 8, 
separates the area of the J-shaped curves from the regions of limited 
range modal'curves and the region of the U-shaped curves. 

In summary, 
a means of selecting 
tion of sample data. 

see Elderton(l0) and 

the curves traced in the ( Bl, p2)- plane provide. 
the Pearson distribution appropriate to a given collec - 
For further details and numerical examples 
Kendall( 27). 

, 
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. 

f TABLE EL1 
Unbiasing Factors for the M . L . E .  of Q 

1 4  15 16 n 5 6 7 8 9 1 2  13 10 11 

B (n) .669 .752 .792 .820 .842 .859 .872 .883. .893 .901 .908 .914 

26 28 30 32 34 36 38 40 n 18 20 22 24 

B (n )  .923 .931 .938 .943 .447 .951 -955 .958 .960 .962 .964 .966 
n 42 44 46 48 50 52 54 56 58 60 62 64 

B (n) .968 .970 .971 .972 .973 .974 .975 .976 .977 .978 .979 .980 
n 66 68 70 72 74 76 78 80 85 90 100 120 

B(n )  .980 .981 .981 .982 .982 ,983 .983 .984 .985 .986 .987 .990 
c 
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.OO I .01 1 .02 1 .03 I .04 I .05 1 .06 1 .07 1 .08 
---------- 

TABLE B-2 
Percentiles of the Normal Distribution 

.09 X 

.o 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1 .o 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3.4 

.6179 

.6554 

.6915 

.7257 

.7580 

.7881 

.8159 

.8413 

.8643 

.a849 

.9032 

.9192 

.9332 

.9452 

.9554 

.9641 

.9713 

.6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.7291 .7324 .7357 .7389 .7422 .7454 ,7486 .7517 .7549 

.7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.7910 .7939 .7967 .7995 .a023 .a051 .a078 .a106 .a133 

.a186 .a212 .a238 .a264 .a289 .8315 .a340 .8365 .a389 

.a438 .a461 .8485 .a508 .a531 .a554 .a577 .a599 .a621 

.a665 .a686 .a708 .a729 .a749 .a770 .a790 .8810 .a830 

.a869 .8888 .a907 .a925 .a944 .a962 .8980 .a997 .9015 

.9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

.9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

,9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
.9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
.9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
.9649 .9666 .9664 .9671 .9678 .9686 .9693 .9699 -9706 
-9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

.9772 

.9821 

.9861 

.9893 
-9918 

.9938 

.9953 

.9965 

.9974 

.9981 

.9778 .9783 .9788 .9793 

.9826 .9830 .9834 .9838 

.9864 .9868 .9871 .9875 

.9896 .9898 .9901 .9904 

.9920 .9922 -9925 .9927 

.9940 .9941 .9943 .9945 

.9955 .9956 .9957 .9959 

.9966 .9967 .9968 .9969 

.9975 .9976 .9977 ,9977 

.9982 .9982 .9983 .9984 

.9798 

.9842 

.9878 

.9906 
-9929 

.9946 

.9960 

.9970 

.9978 

.9984 

.9803 .9808 .9812 .9817 

.9846 -9850 .9854 .9857 

.9881 .9884 .9887 .9890 

.9909 .9911 .9913 .9916 

.9931 .9932 .9934 .9936 

.9948 .9949 .9951 .9952 

.9961 .9962 .9963 .9964 

.9971 .9972 .9973 .9974 

.9979 .9979 .9980 .9981 

.9986 .9985 .9986 .9986 

.9987 

.9990 

.9993 

.9995 

.9997 

.9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

.9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

.9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

.9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

.9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

?[l - F ( x ) ]  I .20 I .10 1 .05 1 .02 I .01 I .002( .001 I .OOO1 1 .00001 
2 1.282 1.645 1.960 

(From A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill, 1950.) 
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2.326 2.576 3.090 3.291 3.891 4.417 



117 

TABLE B-3 

Fac i l i t a t e  F i t t i n g  Johnson S, D i s t r i b u t i o n  
n 

Values of - y 
T a b l e s  t o  

. 
0.05 0.10 0.15 , 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

3.2 0.3479 0.7372 1.228 1.939 3.188 6.367 
3.3 ,2332 ,4843 0.7762 1.145 1.662 2.488 
3.4 I763 ,3626 ,5710 0.8184 1.133 1.567 2.236 3.472 
3.5 I424 ,2911 ,4536 ,6397 .a640 1.151 1.546 2.146 

t 

0.2440 0.3776 0.5270 0.7011 0.9136 1.187 1.565 2.139 3.157 
,2106 3243 .4495 ,5919 .7602 0.9681 1.238 1.614 2.188 
,1856 ,2849 ,3928 ,5134 .6528 .a197 1.028 1.302 1.687 
.1663 ,2546 ,3495 ,4544 ,5734 .7 127 0.881 4 1.095 1.378 
.1509 ,2305 ,3155 ,4083 ,5122 .6317 ,7733 0.9470 1.169 

4.1 0.0685 0.1383 0.2109 0.2879 0.3713 0.4637 0.5684 0.6902 0.8363 1.018 
4.2 ,0633 ,1276 .1943 ,2647 ,3404 ,4234 ,5174 ,6243 ,7503 .9031 
4.3 ,0589 ,1188 ,1806 ,2456 ,3151 ,3907 .4755 ,5708 ,6814 ,8132 
4.4 ,0552 ,1112 ,1689 ,2294 ,2937 ,3632 ,4397 ,5265 ,6250 ,7407 
4.5 ,0519 ,1046 .1588 ,2153 ,2752 ,3396 ,4100 ,4891 ,5780 ,681 1 

3.6 0.1198 
3.7 ,1036 
3.8 ,0916 
3.9 ,0822 
4.0 ,0746 

4.6 0.0491 
4.7 ,0466 
4.8 ,0444 
4.9 ,0424 
5.0 ,0406 

0,0989 0.1499 0.2031 0.2592 0.3192 0.3844 p.4564 0.5382 0.6311 
.0938 ,1421 ,1923 ,2451 ,3014 ,3622 ,4288 .6040 ,5886 
,0893 .1352 ,1828 ,2327 ,2857 ,3426 ,4048 ,4744 ,6620 
,0852 .1290 ,1743 ,2216 ,2717 ,3264 ,3836 ,4484 ,5202 
.OS16 ,1234 ,1666 ,2117 ,2692 ,3099 ,3648 ,4254 .4922 

5.1 0.0390 
5.2 ,0374 
5.3 ,0361 

0.0783 
,0752 
,0726 
,0700 
,0676 

0.0655 
,0636 
,0616 
,0599 
,0683 

0.0668 
,0553 
,0540 
.0527 
,0515 

0.0504 
,0493 
,0483 
,0473 
,0464 

0.0455 
,0447 
,0439 
,0431 
,0424 

0.0417 
,0410 
.0404 
,0398 
,0392 

0.1184 
:1138 
.lo96 
,1057 
,1022 

0.0989 
,0958 
,0930 
,0904 
,0879 

0.0856 
,0835 
.OS14 
.0796 
,0777 

0.0760 

0.1597 
,1534 
,1477 
,1424 
,1376 

0.1331 
,1290 
,1251 
.I216 
.I182 

0.2027 
,1946 
,1872 
.I804 
,1742 

0,1684 
,1631 
,1582 
,1536 
,1493 

0.2480 
.2378 
,2285 
,2201 
.2123 

0.2052 
,1986 
,1925 
,1868 
,1816 

0,2961 
,2836 
,2723 
,2620 
,2626 

0.2438 
.2358 

0.3479 
,3328 
,3191 
,3066 
,2952 

0.2848 
.2762 

0.4050 
.3866 
.3696 
,3547 
,3411 

0.3286 
,3172 
,3066 
,2967 
,2879 

0.2794 
,2716 
,2643 
,2574 
,2509 

0.2448 
,2391 
,2337 
,2285 
.2237 

0.4674 
.4463 
.4255 
,4076 
.3913 

0.3765 
,3629 

5.4 .0348 
5.5 ,0337 

5.6 0.0326 
5.7 ,0316 
5.8 ,0307 
5.9 ,0298 
6.0 ,0290 

L 

,2284 
,2216 
,2161 

0.2091 
,2036 
.I983 

,2663 
,2581 
,2504 

0.2433 
,2366 
,2304 

.3504 
,3385 
,3278 

0.3180 
.3088 
,3002 

6.1 0.0283 
6.2 .0276 
6.3 ,0269 

0.1161 
,1121 
,1094 

0.1453 0.1766 
,1415 ,1719 
,1380 ,1676 

6.4 ,0263 
6.5 .0257 

6.6 0.0251 
6.7 ,0246 
6.8 ,0241 
6.9 ,0236 
7.0 ,0232 

7.1 0.0227 
7.2 ,0223 
7.3 ,0219 
7.4 0216 
7.5 ,0212 

7.6 0,0208 

,1067 
,1043 

0.1020 

,1347 
,1315 

0.1286 

,1635 
.I596 

0.1560 
,1525 
,1492 
,1461 
.1432 

,1933 
,1887 

0.1843 

.2246 
,2190 

0.1138 
,2089 
,2043 
,1999 
,1957 

,2921 
,2846 

0.2775 
,2709 
,2646 
,2586 
,2530 

,0743 
,0728 
,0713 
.0699 

,0998 
,0977 
,0957 
,0938 

,1268 
,1231 
.1206 
,1182 

.la02 
,1762 
,1725 
,1690 

0.0686 
,0673 
,0661 
,0650 
.0639 

0.0628 
,0618 
,0608 
,0599 
,0690 

0.0920 
,0903 

0.1159 0,1404 0.1656 0.1918 0.2190 0.2476 
,1137 ,1377 ,1624 ,1880 ,2147 ,2426 ~~~ 

,1116 ,1362 ,1594 ,1844 ,2105 ,2377 
.lo96 ,1327 ,1566 ,1810 .2065 ,2331 
,1077 ,1304 ,1637 ,1777 ,2027 ,2287 

0,0842 
,0828 
,0815 
,0802 
,0790 

0.1059 0,1282 0.1510 0,1746 0.1991 0.2246 
,1042 ,1260 ,1485 ,1716 ,1956 ,2206 
.I026 ,1240 ,1460 ,1687 ,1922 ,2167 
,1009 ,1220 ,1437 .I660 ,1891 ,2131 
,0993 ,1201 ,1414 ,1633 ,1860 ,2096 

7.7 ,0205 
7.8 ,0202 
7.9 ,0198 
8.0 .0196 

8.2 0.0190 
8.4 ,0185 
8.6 ,0180 
8.8 ,0175 
9.0 ,0171 

9.2 - 
9.4 - 

0.0380 0.0572 0.0767 0.0964 0.1165 0,1371 0.1683 0.1802 0.2029 
,0370 ,0557 ,0745 ,0937 ,1132 ,1332 ,1537 .I749 .I968 
,0360 ,0542 ,0725 ,0912 ,1101 ,1295 ,1494 ,1699 ,1912 
.0361 ,0528 ,0707 ,0888 ,1073 ,1261 ,1454 ,1653 ,1869 
.0342 ,0515 ,0689 ,0866 ,1046 ,1229 ,1417 .1610 ,1810 

(From E. S. Pearson and H. 0. Hart ley,  Biometrika T a b l e s  fo r  S t a t i s t i c i a n s ,  
V o l .  2 ,  pp. 288-291, Cambridge Univers i ty  P r e s s ,  1972).  
T a b l e  B-3 c o r r e c t e d  according to: N. L. Johnson, "Extensions and Correc t ions  
t o  'Tables t o  F a c i l i t a t e  F i t t i n g  S, Frequency Curves ' ,"  Biometrika 61, 203-205, 
(1974). 

. 
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TABLE B-3 (continued) 

Values of - y (continued) 
A 

0.55 0.60 0.65 0.70 0.75 0.80 0 4 5  0.90 0.95 1.00 

3.8 
3.9 
4.0 

4.1 
4.2 
4.3 
4 4  
4.5 

4.6 
4.7 
4.8 
4.9 
5.0 

5.1 
5.2 
5.3 
5 4  
5.5 

5.6 
5.7 
5.8 
5.9 
6.0 

6.1 
6.2 
6.3 
6 4  
6.5 

6.6 
6.7 
6.8 
6.9 
7.0 

7.1 
7.2 
7.3 
7.4 
7.5 

7.6 
7.7 
7.8 
7.9 
8.0 

8.1 
8.2 
8.3 
8 4  
8.5 

8.6 
8.7 
8.8 
8.9 
9.0 

9.2 
9 4  
9.6 
9.8 

10.0 

2.284 
1.783 
1.469 

1.253 
1.095 
0.9751 

,8802 
.SO33 

0.7398 
,6865 
.64 10 
.6017 
.5675 

0.6374 
~5106 
.4868 
.4663 
4469 

0.4283 
.4122 
,3976 
.3840 
.3714 

0.3698 
.3491 
.3390 
.3297 
.3209 

0.3123 
.3046 
.2973 
,2904 
.2839 

0.2778 
.2719 
.2664 
.2611 
,2661 

0.2613 
.2467 
,2423 
,2381 
.2341 

0.2303 
.2266 
.2230 
,2196 
-2163 

0.2132 
.2101 
.2072 
.2044 
.20 16 

0,1964 
.1916 - - 
- 

3.383 
2.426 
1.906 

1.577 
1.349 
1.182 
1.054 
0.9526 

0.8704 
.SO24 
.7451 
,6962 
,6539 

043170 
6846 
6666 
.6298 
,6066 

0.4866 
-4666 
.4491 
.4331 
.4 184 

0.4049 
.3923 
.3806 
.3697 
.3696 

0.3600 
.3410 
,3326 
.3247 
.3172 

0.3101 
,3034 
,2967 
.2907 
.2849 

0.2795 
,2742 
,2692 
,2646 
.e699 

0.2666 
,2614 
,2473 
,2436 
,2397 

0.2362 
.2327 
.2294 
,2262 
.2231 

0.21 72 
.2117 - 
- - 

2.621 

2.060 
1.705 
1.460 
1.280 
1.141 

1.032 
0.9434 

,8698 
.SO79 
.7550 

0.7092 
,8693 
4341 
4028 
.6749 

0.6498 
4270 
,5063 
.4876 
.4701 

0.4542 
.4396 
.4268 
.4131 
,4013 

0.3903' 
.3799 
,3702 
,3611 
.3624 

0.3443 
.3366 
.3283 
,3224 
,3169 

0.3096 
,3037 
.2980 
,2926 
'2871 

0.2822 
.2774 
.2729 
.2686 
.2643 

0.2603 
.2664 
.2626 
,2490 
,2466 

0.2389 
,2328 - - - 

4.105 

2.886 
2.254 
1.860 
1.589 
1.391 

1.240 
1.121 
1.024 
0.9435 

,8761 

0.8184 
,7687 
,7252 
,6869 
,6530 

04226 
,6853 
,6706 
6481 
.6276 

0.6088 
.4916 
.4766 
,4607 
.4470 

0.4341 
,4221 
.4109 
.4004 
.3905 

0.3812 
,3723 
,3640 
.3661 
,3486 

0.3415 
,3347 
.3283 
,3221 
,3163 

0.3106 
.3063 
,3001 
.2962 
,2904 

0.2869 
,2812 
,2770 
,2730 
,2691 

0.2617 
.2548 
.2483 
.2422 
,2366 

1.522 
1.353 
1.221 
1.113 
1.025 

0.9509 
.8876 
,8331 
,7855 
.7437 

0.7067 
-6735 
6437 
4168 
6924 

0.6700 
+496 
6308 
fd34 
.4973 

0.4824 
.4684 
.4654 
4433 
.43 18 

0.4211 
.4110 
.4014 
,3924 
,3838 

0.3767 
.3680 
.3607 
.3537 
.3470 

0.3407 
,3346 
,3288 
,3232 
,3179 

0.3127 
,3078 
,3031 
.2986 
.2941 

0.2868 
.2778 
,2706 
.2639 
.2676 

1.931 
1.676 
1.485 
1.335 
1.215 

1.117 
1.034 
0.9641 

,9039 
,8515 

0,8066 
,7647 
.7284 
,6957 
43663 

0.8396 
4162 
.6929 
6724 
,6636 

0.5369 
.6197 
m 4 5  
,4904 
,4772 

0.4648 
.4631 
4421 
.43 18 
.4220 

0.4127 
,4039 
.3966 
,3876 
,3801 

0.3729 
.3660 
.3694 
,3631 
,3471 

0.3413 
.3368 
.3306 
,3253 
.3204 

0.3111 
.3026 
.2944 
,2868 
,2798 

2.603 
2.166 
1.864 
1.641 
1.469, 

1.332 
1.221 
1.128 
1.050 
0.9825 

0.9243 
+732 
4282 
.7881 
,7621 

0.7197 
4904 
43637 
4392 
,6168 

0,6962 
-5770 
,6692 
6427 
.5273 

0.6130 
.4996 
.4868 
,4749 
.4636 

0.4630 
.4429 
.4334 
.4244 
.4168 

0.4076 
,3998 
,3923 
,3862 
,3784 

0.3719 
,3667 
.3697 
.3639 
.3484 

0.3380 
.3283 
,3193 
,3109 
.3030 

4.031 
3.037 
2.472 
2.099 
1.831 

1.629 
1.470 
1.342 
1.236 
1.147 

1.071 
1 406 
0.9486 
4982 
4.536 

04138 
.7780 
.7466 
.7161 
,6892 

04646 
6419 
43209 
,6015 
6836 

0.6666 
,5509 
.6362 
.6224 
.6094 

0.4972 
,4867 
,4741 
,4644 
,4646 

04462 
,4364 
.4279 
.4199 
.4122 

0.4048 
.3978 
.3910 
.3846 
.3783 

0.3666 
,3668 
,3457 
.3363 
.3276 

2.406 

2.071 
1.824 
1.635 
1.484 
1.361 

1.259 
1.172 
1.098 
1.033 
0.9765 

04266 
4820 
4420 
4060 
.7733 

0.7436 
.7164 
43914 

4470 

0,6272 
,6087 
,6916 
.6764 
.5603 

0.6463 
,6328 
4203 
.5084 
,4971 

0.4864 
.4763 
,4667 
.4676 
.4488 

0.4406 
.4325 
.4248 
.4176 
.4106 

0.3974 
,3852 
,3739 
,3634 
.3637 

m 8 a  

3.540 

2.831 
2.385 
2.072 
1.838 
1.656 

1.510 
1.390 
1.289 
1.203 
1.129 

1.066 
1.008 
O+k%31 
.9132 
4729 

0.8364 
,8033 
,7730 
,7463 
,7198 

0.6962 
4744 
,6541 
6362 
,6176 

0.6010 
.6856 
.6709 
+671 
.5442 

0.5319 
,6203 
6092 
.4987 
,4888 

0.4793 
,4702 
,4616 
,4633 
,4464 

0.4305 
.4169 
,4042 
,3926 
.3816 

. 
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TABLE B-3 (cont inued)  

A 

Values of - y (cont inued)  

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.10 1.45 1.50 

. 

5.4 
5.5 

5.6 
5.7 
5.8 
5.9 
6.0 

6.1 
6.2 
6.3 
6.4 
6.5 

6.6 
6.7 
6.8 
6.9 
7.0 

7.1 
7.2 
7.3 
7.4 
7.5 

7.6 
7.7 
7.8 
7.9 
8.0 

8.1 
8.2 
8.3 
8.4 
8.5 

8.6 
8.7 
8.8 
8.9 
9.0 

9.1 
9.2 
9.3 
9.4 
9.5 

9.6 
9.7 
9.8 
9.9 

10.0 

10.2 
10.4 
10.6 
10.8 
11.0 

11.2 
11.4 
11.6 
11.8 
12.0 

2.401 
2.099 

1.871 
1.672 
1.547 
1.428 
1.327 

1.241 
1.167 
1.102 
1.1044 
0.9933 

0.9477 
,9066 
23694 
A356 
,8046 

0.7762 
,7500 
.7258 
.7034 
4825 

04M30 
4448 
4278 
43117 
.5967 

0.5825 
,5690 
,5563 
,5443 
,5328 

0.5220 
,5116 
.5018 
,4924 
,4834 

04748 
,4666 
,4587 
,4511 
,4439 

0.4369 
.4302 
.4237 
,4175 
.4115 

0.4001 
,3895 
,3796 
,3703 
,3815 

0.3533 
,3455 - - - 

3.529 
2.872 

2.450 
2.149 
1.921 
1.741 
1.595 

1.474 
1.372 
1.285 
1.210 
1.143 

1.085 
1.032 
0.9857 

,9435 
,9053 

04705 
,8386 
4093 
,7823 
,7573 

0.7342 
.7126 
4924 
4736 
4559 

04393 
43237 
4089 
,5950 
-5818 

0.5693 
.5574 
,5461 
.5354 
.5251 

0.5154 
,5060 
,4971 
.4885 
.4803 

0.4724 
.4648 
,4576 
,4506 
.4438 

0.4311 
,4192 
.4082 
,3978 
,3881 

0.3789 
,3703 - 
- - 

2.532 
2.223 
1.989 

1 .805 
1.655 
1.531 
1.426 
1.336 

1.258 
1.190 
1.130 
1.076 
1.028 

04840 
4444 
,9083 
4753 
43450 

04170 
.7910 
,7670 
,7445 
.7236 

0.7040 
,6857 
43684 
4521 
4368 

0.6223 
,6085 
,5955 
,5831 
,5714 

0.5601 
,5494 
.5393 
.5295 
,5202 

0.5112 
.5027 
,4946 
,4866 
,4790 

0,4646 
,4513 
,4389 
-4273 
,4165, 

0.4063 
,3968 - - 
- 

3.892 
3.122 
2.653 

2.324 
2.078 
1.885 
1.728 
1.599 

1.489 
1.396 
1.315 
1.243 
4.180 

1.124 
1.074 
1.028 
0.9871 

.9495 

0.9151 
.E834 
4542 
,8272 
4020 

0.7786 
,7568 
.'I364 
,7172 
43991 

04822 
4661 
,6510 
,6366 
4230 

0.6101 
.597? 
.5861 
,5749 
,5642 

0.5540 
.5443 
,5349 
,5260 
,5174 

0.5012 
,4862 
,4723 
,4593 
,4472 

0.4358 
.4252 - 
- - 

2.819 
2.458 
2.191 
1.983 

1.817 
1.679 
1.563 
1.464 
1.378 

1.303 
1.237 
1.178 
1.125 
1.077 

1.034 
.9945 
.9584 
.9251 
4945 

0,8661 
4397 
4152 
,7923 
,7709 

0.7507 
,7318 
,7140 
4972 
4813 

0.6663 
,6520 
4385 
,6256 
4133 

0.6016 
,5904 
,5797 
,5895 
,5597 

0.5413 
,5243 
,5086 
,4940 
.4804 

0.4678 
,4559 - 
- 
- 

5.129 
3.708 
3.052 
2.634 

2.334 
2.106 
1.923 
1.774 
1.650 

1.543 
1.452 
1.372 
1.301 
1.238 

1.182 
1.132 
1.086 
1.044 
1446 

0.9706 
,9382 
.go83 
,8805 
,8546 

0.8304 
4078 
,7866 
.7667 
.7480 

0.7303 
,7136 
43977 
,6827 
4885 

0.6549 
,6420 
,6297 
43180 
43061 

0.5857 
,5664 
,5485 
,5320 
,5167 

0.5025 
,4891 - 
- 
- 

2.520 
2.258 
2.054 

1.889 
1.752 
1.636 
1.536 
1.450 

1.374 
1.306 
1.246 
1.192 
1.143 

1.099 
1.058 
1.020 
0,9860 

,9642 

0.9246 
,8972 
,8716 
4477 
,8252 

04042 
,7843 
,7656 
,1480 
.7312 

0.7154 
,7003 
,6860 
,6724 
4594 

04352 
,6131 
.5927 
,5739 
,5866 

0.5404 
,5254 - 
- 
- 

3.939 
3.210 
2.766 

2.453 
2.216 
2.028 
1.874 
1.745 

1.635 
1.540 
1.457 
1.384 
1.319 

1.260 
1.207 
1.159 
1.115 
1.075 

1.038 
1,004 
0.9729 
.9436 
4163 

08908 
,8669 
.a445 
4234 
4036 

0.7848 
.7671 
,7503 
,7343 
,7192 

06910 
,6654 
4420 
4205 
4007 

0.5823 
,5653 
,5495 
.5347 
,5209 

2.424 
2.201 

2.023 
1.876 
1.752 
1.646 
1.553 

1.472 
1.401 
1.337 
1.279 
1.227 

1.180 
1.136 
1.096 
1.060 
1.026 

0.9943 
,9651 
.9377 
,9122 
4882 

0.8657 
,8445 
4245 
,8056 
,7877 

0,7546 
,7247 
,6975 
,6727 
,6499 

0,6289 
,6095 
,5915 
,5748 
,5592 

3.680 
3.085 

2.703 
2.425 
2.209 
2.036 
1.892 

1.771 
1.667 
1.576 
1.496 
1.425 

1.361 
1.304 
1.252 
1.204 
1.161 

1.121 
1,084 
1.050 
1.019 
0.9892 

0.9616 
,9359 
,9117 
,8889 
4675 

0.8280 
,7927 
,7608 
,7318 
,7053 

0.6811 
,6588 
4383 
,6192 
,6015 

. 
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TABLE B-3 (cont inued)  

Values of - y (cont inued)  
A 

c 
1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 

8.0 

8.1 
8.2 
8.3 
8.4 
8.5 

8.6 
8.7 
8.8 
8.9 
9.0 

9.1 

9.3 
9.4 
9.5 

9.6 
9.7 
9.8 
9.9 
10.0 

10.1 
10.2 
10.3 
10.4 
10.5 

10.6 
10.7 
10.8 
10.9 
11.0 

11.1 
11.2 
11.3 
11.4 
11.5 

116 
11.7 
11.8 
11.9 
12.0 

12.1 
12.2 
12.3 
J2.4 
12.5 

12.6 
12.7 
12.8 
12.9 
13.0 

13.2 
13.4 
13.6 
134 
14.0 

14.2 
14.4 
14.6 
14.8 
15.0 

9.1 

2.453 

2.239 
2.066 
1.923 
1 .a02 
1.698 

1.607 
1.527 
1.455 
1.391 
1.334 

1.282 
1.234 
1.190 
1.150 
1.112 

1.078 
1.046 
1.010 
0.9881 
4019 

0.9374 
4142 
4924 
,8718 
4623 

04338 
4163 
TJ90 
.7837 
.7686 

0.7541 
.7403 
.7272 
.7146 
.7024 

0.0907 
6790 
4088 
4686 
4480 

04390 
4297 
4208 
,0122 
4039 

0.6969 
6881 
.6806 
,6733 
6002 

- 
- 
- - - 
- - 
- - - 

3.828 

3.189 
2.792 
2.508 
2.289 
2.114 

1.968 
1.845 
1.739 
1.647 
1.566 

1.493 
1.428 
1.370 
1.316 
1.268 

1.223 
1.182 
1.144 
1.109 
1.076 

1.040 
1.017 
0.9900 
4066 
4419 

0.9196 
,8986 
4786 
4690 
4410 

04240 
4083 
.7928 
.'I780 
.7038 

0.7603 
.7373 
.7248 
,7129 
.7014 

04904 
4798 
4090 
4698 
4603 

04411 
4323 
4237 
,6164 
4074 

- 
- 
- 
- 
- 
- 
- - - 
- 

2.594 
2.363 
2.180 
2.029 
1.901 

1.792 
1.697 
1.613 
1.538 
1.471 

1.412 
1.367 
1.307 
1.201 
1.219 

1.180 
1.144 
1.110 
1.079 
1,060 

1.022 
0.9963 
.9720 
.9490 
4274 

04009 
4874 
,8089 
4613 
4340 

0.8180 
,8034 
.'I888 
.7749 
G"116 

0.7487 
.7304 
*7240 
.7132 
.7023 

04918 
,0810 
,0719 
4024 
4633 

- 
- 
- 
- 
- 
- 
- - 
- 
- 

4.642 
3.576 
3.058 
2.717 
2.465 

2.268 
2.107 
1.972 
1.857 
1.757 

2.382 
2.206 

3.698 
3.143 

1.070 
1.692 
1.623 
1.400 
1.403 

2.060 
1.937 
1.830 
1.737 
1.655 

2.790 
2.533 
2.333 
2.171 
2.035 

1.361 
1.304 
1.280 

1.582 
1.516 
1.456 
1.402 
1.353 

1.919 
1.818 
1.730 
1.652 
1.582 

2.311 
2.157 
2.027 
1.916 

3.49 
3.03 
2.72 
2.49 

1.220 
1.183 

1.148 1.307 
1.206 
1.220 
1.190 

1.618 
1.401 
1.408 
1.300 
1.310 

1.274 
1.230 
1.201 
1.108 
1.137 

1.108 
1.080 
1.054 
1.030 
1.007 

0.9861 
4644 
.9447 
4200 
.BO81 

0.8810 
,8747 
4692 
4442 
4299 

0.8030 
,7781 

1.819 
1.734 
1.657 
1.589 
1.527 

2.311 
2.161 
2.035 
1.926 
1.831 

. 
1.116 
1.086 
1.067 
1.030 

1406 
0.9811 

2.332 3.637 1.160 

1.124 
1.096 

f 1.471 
1.420 
1.373 
1.329 
1.289 

1.747 
1.673 
1.605 
1.544 
1.489 

2.183 
2.057 
1.949 
1.854 
1.770 

3.126 
2.800 
2.562 
2.375 
2.223 

.9687 
,9376 
,9174 

1.007 
1.041 
1.010 

0.8983 
4801 
4028 
4403 
4300 

04928 
,9708, 
,9409 
,9300 
,9112 

1.261 
1.210 
1.183 
1.162 
1.124 

1.438 
1.391 
1.347 
1.30" 
1.27, 

1.695 
1.628 
1.567 
1.511 
1.461 

2.094 
1.984 
1.888 
1 A03 
1.728 

1.060 
1.698 
1.642 
1.490 
1.443 

1.398 

04166 
4011 
.7873 
.7740 
.7013 

0.8932 
4701 
.E697 
4441 
4291 

1.090 
1.071 
1.040 
1.024 
1.002 

1.236 
1.202 
1.171 
1.143 
1.116 

1.414 
1.370 
1.330 
1.293 
1.268 

1.226 1.090 
1.006 
1.043 
1.021 
1 .Ooo 

0.9014 
.9263 
43941 
,8046 
4373 

0.7491 
.7374 
.7201 
,7162 
.7047 

0.8148 
4011 
a 7 9  
.7762 
.7030 

0,7400 
,1187 

0.9811 
.gal4 
4427 
.9248 
.go78 

0.8768 

1.194 
1.106 
1.138 
1.112 

~ ... 
1.368 
1.320 
1.284 
1.261 

1.190 
1.130 
1.088 
1.046 
1,006 

0.90SO 
.9369 
,9056 
4774 
4614 

1.064 
1.021 
0.9822 
,9408 
.9141 

,7661 
.7330 
.7130 

04404 
.6311 
4100 
4029 
4900 

04949 
4774 
4609 

4308 
.a464 

0.7490 
.7296 
.7100 
43929 
,0703 

0.8121 
.7880 
,7008 
.7404 
.7273 

04842 
+1600 
4310 
4072 
.7861 

. 
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TABLE B-4 
i 

Tables  t o  F a c i l i t a t e  F i t t i n g  Johnson D i s t r i b u t i o n s  
A 

Values of 11 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

3.2 
3.3 
3.4 
3.5 

3.6 
3.7 
3.8 
3.9 
4.0 

4.1 
4.2 
4.3 
4.4 
4.5 

4.6 
4.7 
4.8 
4.9 
5.0 

5.1 
5.2 
5.3 
5.4 
5.5 

5.6 
5.7 
5.8 
5.9 
6.0 

6.1 
6.2 
6.3 
6.4 
6.5 

6.6 
6.7 
6.8 
6.9 
7.0 

7.1 
7.2 
7.3 
7.4 
7.5 

7.6 
7.7 
7.8 
7.9 
8.0 

8.2 
8.4 
8.6 
8.8 
9.0 

9.2 
9.4 

4,671 
3,866 
3.396 
3.081 

2.852 
2.676 
2,535 
2.420 
2.324 

2.242 
2,171 
2.109 
2.054 
2.006 

1.961 
1.921 
1.885 
1.852 
14322 

1.793 
1.767 
1.743 
1.721 
1499 

1480 
1.661 
14343 
1,627 
1.611 

1.596 
1.582 
1,568 
1.556 
1.543 

1,532 
1.520 
1.510 
1.499 
1.490 

1,480 
1.471 
1.462 
1.464 
1.445 

1,438 
1.430 
1.423 
1.415 
1.408 

1.395 
1.383 
1,371 
1.360 
1,349 

- 
- 

4.787 
3.927 
3.436 
3.108 

2.872 
2,692 
2.548 
2.431 
2.333 

2.250 
2.178 
2.115 
2.060 
2.010 

1..’66 
1.925 
1,889 
1.856 
1,825 

1.796 
1.770 
1.746 
1,723 
1.702 

1.682 
14363 
1,645 
1.628 
1.613 

1.598 
1,583 
1.570 
1.557 
1.545 

1.533 
1.522 
1.511 
1,501 
1.491 

1.481 
1.472 
1.463 
1,455 
1,446 

1.438 
1.431 
1.423 
1,416 
1.409 

1.396 
1.383 
1,372 
1.361 
1.350 

- 
- 

5.004 
4.036 
3.503 
3.156 

2.908 
2.719 
2.571 
2.460 
2,349 

2.264 
2.190 
2.126 
2.069 
2.018 

1,973 
1.932 
1.896 
1.861 
1.830 

1.801 
1.776 
1.750 
1.727 
1.705 

1.685 
1.666 
1.648 
1.631 
1,615 

1.800 
1.586 
1.572 
1.559 
1.547 

1.535 
1.524 
1.513 
1.502 
1.492 

1.483 
1.474 
1,465 
1.456 
1.448 

1.440 
1.432 
1,425 
1.418 
1.411 

1.397 
1,385 
1.373 
1.362 
1.351 

- - 

5.369 
4.208 
3.607 
3,227 

2.960 
2.760 
2,604 
2.477 
2.372 

2,283 
2.207 
2.141 
2.082 
2.030 

1:984 
1.942 
1.904 
1,869 
1.837 

1.808 
1.781 
1.756 
1.732 
1.711 

1.690 
1.671 
1,653 
1,636 
1.619 

1.604 
1.590 
1,576 
1.563 
1.550 

1.538 
1,527 
1,516 
1.505 
1.495 

1,485 
1.476 
1.467 
1.458 
1.450 

1.442 
1.434 
1.427 
1,419 
1.412 

1.399 
1.386 
1,374 
1.363 
1,352 

- 
- 

5.992 
4.469 
3.769 
3.328 

3.033 
2.816 
2.648 
2.513 
2.402 

2.309 
2.229 
2.160 
2.100 
2,046 

1.998 
1.955 
1.916 
1.880 
1.847 

1,817 
1.790 
1.764 
1.740 
1.718 

1,697 
1.677 
1.658 
1.641 
1,625 

1.609 
1.594 
1.580 
1.567 
1.554 

1.542 
1.530 
1.519 
1.509 
1.498 

1.489 
1.479 
1.470 
1,461 
1.453 

1.445 
1.437 
1,429 
1.422 
1.415 

1.401 
1,388 
1.376 
1.365 
1,354 

- 
- 

7.204 
4.875 
3.979 
3.467 

3,132 
2.890 
2.707 
2.661 
2.442 

2.343 
2.258 
2.186 
2.122 
2.066 

2.016 
1.971 
1.930 
1.893 
1.860 

1,829 
1.800 
1.774 
1.749 
1.726 

1.706 
1.685 
1.666 
1448 
1431 

1,615 
1.600 
1.586 
1.572 
1.559 

1.547 
1.535 
1.524 
1.513 
1.502 

1.492 
1.483 
1.474 
1.465 
1.456 

1.448 
1.440 
1,432 
1,425 
1.418 

1.404 
1,391 
1.379 
1,367 
1,356 

- 
- 

4.300 
3.663 

3.266 
2.989 
2.783 
2.623 
2.492 

2.386 
2.296 
2.217 
2.150 
2.090 

2.038 
,1.991 
1.948 
1.910 
1.875 

1.843 
1413 
1.786 
1.760 
1.737 

1.715 
1,694 
1,674 
1.656 
1.639 

1423 
1.607 
1.593 
1.579 
1.565 

1.553 
1,541 
1.529 
1.518 
1.507 

1.497 
1,487 
1,478 
1.469 
1.460 

1,452 
1.444 
1.436 
1.428 
1.421 

1.407 
1.394 
1.382 
1,370 
1,359 

1.349 
1.339 

4,813 
3.943 

3.448 
3.120 
2.882 
2.701 
2,567 

2.439 
2.340 
2.256 
2.184 
2.121 

2.065 
2.015 
1.970 
1.930 
1,893 

1.859 
1.829 
1BOO 
1.774 
1.749 

1.726 
1.705 
1.685 
1.666 
1448 

1.631 
1415 
14300 
1.686 
1.573 

1.560 
1.547 
1.535 
1.524 
1.513 

1.503 
1.493 
1.483 
1.474 
1.465 

1.457 
1.448 
1,440 
1,433 
1.425 

1.411 
1,398 
1,385 
1.373 
1.362 

1.352 
1.342 

3.705 
3,295 
3.01 1 
2.801 
2,637 

2.506 
2.396 
2.304 
2.226 
2.157 

2.097 
2.044 
1.997 
1.954 
1.915 

1.880 
1,847 
1.817 
1.789 
1.764 

1.740 
1.718 
1.697 
14377 
1,659 

1.642 
1,625 
1,610 
1.595 
1.581 

1.568 
1,555 
1.543 
1.531 
1.520 

1.509 
1.499 
1.489 
1.480 
1.471 ’ 

1,462 
1.454 
1.445 
1.438 
1,430 

1.416 
1.402 
1.389 
1.377 
1,366 

1.355 
1.345 

4.087 
3.540 
3.184 
2.931 
2.739 

2.588 
2.465 
2.363 
2.276 
2.202 

2.136 
2.079 
2.028 
1.982 
1.941 

1.903 
1.869 
1.837 
1408 
1.781 

1.756 
1.733 
1.711 
1.691 
1.672 

1,653 
1.636 
1.620 
1.605 
1.691 

1.577 
1.564 
1.551 
1.539 
1.528 

1.517 
1,506 
1.496 
1.487 
1.477 

1.468 
1.460 
1.451 
1.443 
1.435 

1.421 
1.407 
1.394 
1.381 
1.370 

1.359 
1.348 

(From E. S. Pearson  and H. 0. H a r t l e y ,  Biometr ika Tables  for  S t a t i s t i c i a n s ,  
V o l .  2,  pp. 292-295, Cambridge U n i v e r s i t y  P r e s s ,  1972) .  
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TABLE B-4 (cont inued)  
h 

Values of rl (cont inued)  

~~ ~ 

0.55 0.60 0.65 0.70 0.75 0.80 045 0.90 0.95 1.00 

3.8 
3.9 
4.0 

4.1 
4.2 
4.3 
4.4 
4.5 

4.6 
4.7 
4.8 
4.9 
5.0 

5.1 
5.2 
5.3 
5.4 
5.5 

5.6 
5.7 
5.8 
5.9 
6.0 

6.1 
6.2 
6.3 
6 4  
6.5 

6.6 
6.7 
6.8 
6.9 
7.0 

7.1 
7.2 
7.3 
7.4 
7.5 

7.6 
7.7 
7.8 
7.9 
8.0 

8.1 
8.2 
8.3 
8 4  
8.5 

8.6 
8.7 
8.8 
8.9 
9.0 

9.2 
9.4 
9.6 
9.8 

10.0 

3.424 
3.105 
2,872 

2.694 
2.662 
2.436 
2.338 
2.255 

2.183 
2.120 
2.065. 
2.015 
1.971 

1.931 
1.894 
14360 
1,830 
1.801 

1.776 
1.760 
1.728 
1.706 
1.686 

1.667 
1.649 
1433 
1.617 
1.602 

1.687 
1.574 
1.561 
1.648 
1.537 

1.625 
1.514 
1.504 
1.494 
1.484 

1.476 
1.466 
1.458 
1.450 
1.442 

1.434 
1.426 
1.419 
1.412 
1.405 

1.399 
1.392 
1.386 
1.380 
1.374 

1.363 
1.353 - 
- - 

3.776 
3.346 
3.049 

2,830 
2462 
2.526 
2.414 
2.320 

2.240 
2.170 
2.109 
2.056 
2.007 

1.963 
1.924 
1.888 
1.865 
1.824 

1.796 
1.770 
1.746 
1.724 
1.703 

1,683 
1.664 
1.647 
1.630 
1.614 

1,699 
1.585 
1.672 
1.559 
1.547 

1.535 
1.624 
1.513 
1.603 
1.493 

1.483 
1.474 
1.466 
1.457 
1.448 

1.440 
1.433 
1.426 
1.418 
,1.411 

1.405 
1.398 
1.392 
1.386 
1.380 

1.368 
1.357 - 
- 
- 

3.294 

3.013 
2.804 
2.641 
2.610 
2.401 

2.309 
2431 
2.162 
2.100 
2.049 

2.001 
1.958 
1.919 
1,884 
1451 

1,821 
1.794 
1.768 
1.744 
1.722 

1.701 
1.681 
1,663 
1.645 
1.629 

1.813 
1,698 
1.684 
1.571 
1.558 

1.546 
1,634 
1.523 
1.512 
1,602 

1.492 
1.483 
1.473 
1.465 
1.456 

1.448 
1 4  10 
1.432 
1.425 
1.418 

. 1.411 
1.404 
1.398 
1.391 
1.385 

1.373 
1.362 - 
- 
- 

3459 

3.269 
2,996 
2.791 
2.631 
2.502 

2.395 
2.304 
2.226 
2.159 
2.099 

2.045 
1.999 
1.957 
1.918 
1.883 

1.850 
1.820 
1.793 
1.767 
1.743 

1.721 
1.700 
1.681 
1.662 
1.645 

1.628 
1.613 
1.598 
1.684 
1.671 

1.658 
1.646 
1.534 
1.623 
1.512 

1.502 
1.492 
1.483 
1.474 
1.465 

1.456 
1.448 
1.440 
1.433 
1.426 

1.418 
1.411 
1.404 

1.392 

1.379 
1.368 
1.357 
1.347 
1.337 

1 . m  

2.503 
2.395 
2.305 
2.227 
2.160 

2.100 
2.048 
2400 
1.968 
1.918 

1.884 
1,851 
1,821 
1.794 
1.768 

1.744 
1.722 
1.701 
1.682 
1463 

1.646 
1.629 
1.614 
1.699 
1.585 

1.572 
1.559 
1.547 
1.535 
1.524 

1.513 
1.503 
1.493 
1.483 
1.474 

1.466 
1.467 
1.449 
1.441 
1.433 

1.426 
1.419 
1.412 
1.405 
1.399 

1.386 
1.374 
1.363 
1.353 
1.343 

2.641 
2.511 
2.403 
2.312 
2.234 

2.165 
2.105 
2.052 
2,005 
1.962 

1.923 
1.887 
1.855 
1.824 
1.797 

1.771 
1.747 
1.725 
1.704 
1.684 

1,666 
1.648 
1.632 
1.616 
1.601 

1.587 
1.673 
1.561 
1.548 
1-537 

1.625 
1.515 
1.604 
1.494 
1.485 

1.476 
1.467 
1.458 
1.460 
1.442 

1.436 
1.427 
1.420 
1.413 
1.406 

1.393 
1.381 
1.370 
1.359 
1.349 

2428 
2462 
2.529 
2.418 
2.325 

2.245 
2.176 
2.116 
2.061 
2.012 

1.969 
1.929 
1.893 
1.860 
1.830 

1,802 
1.776 
1.752 
1.729 
1.707 

1.688 
1.869 
1452 
1.635 
1,619 

1.604 
1.690 
1.576 
1.563 
1.551 

1.639 
1.528 
1.617 
1.507 
1.497 

1.487 
1.478 
1.469 
1.460 
1.452 

1.444 
1.437 
1.429 
1.422 
1.416 

1.401 
1.389 
1.377 
1.366 
1.355 

3.093 
2,868 
2.694 
2.555 
2.441 

2.344 
2.262 
2.191 
2.128 
2.073 

2.023 
1.979 
1.939 
1.902 
1468 

1437 
1,809 
1.782 
1.758 
1.735 

1.713 
1.693 
1.674 
1.656 
1.639 

1.623 
1.608 
1.694 
1.680 
1.567 

1.555 
1.643 
1.631 
1.520 
1.510 

1.500 
1.490 
1.481 
1.472 
1.463 

1.455 
1.447 
1.439 
1.431 
1.424 

1.410 
1.397 
1.385 
1.373 
1.362 

2.692 

2.472 
2.371 
2,285 
2.211 
2.146 

2.089 
2.038 
1.992 
1.951 
1413 

1.879 
1.847 
1.818 
1.791 
1.766 

1.742 
1.721 
1.700 
1.681 
1.663 

1.645 
14329 
1,614 
1.599 
1.685 

1.572 
1.569 
1.547 
1.536 
1.524 

1.514 
1.504 
1.494 
1.484 
1.475 

1.467 
1.458 
1.450 
1.442 
1.434 

1.420 
1.406 
1.394 
1.381 
1.370 

2.799 

2.641 
2.512 
2.406 
2.315 
2.237 

2.170 
2.110 
2.057 
2.009 
1.967 

1428 
1.892 
1.860 
1430 
1.802 

1.776 
1.752 
1.730 
1.708 
1,689 

1.670 
1,653 
143@ 
142C 
140C 

1.591 
1.57f 
1.661 
1.65: 
1.541 

1.52! 
1.511 
1.501 
1.491 
1.48! 

1.47! 
1.47 
1.46: 
1.46, 
1.44' 

1.43 
1.41 
1.40 
1.39 
1.37 
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TABLE B-4 (continued) 
i 

h 

Values of r) (continued) 

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.10 . 1.45 1.50 

L 

5.4 
5.5 

5.6 
5.7 
5.8 
5.9 
6.0 

6.1 
6.2 
6.3 
6.4 
6.5 

6.6 
6.7 
6.8 
6.9 
7.0 

7:l 
7.2 
7.3 
7.4 
7.5 

7.6 
7.7 
7.8 
7.9 
8.0 

8.1 
8.2 
8.3 
8.4 
8.5 

8.6 
8.7 
8.8 
8.9 
9.0 

9.1 
9.2 
9.3 
9 1  
9.5 

9.6 
9.7 
9.8 

- 9.9 
10.0 

10.1 
10.2 
10.3 
10.4 
10.5 

10.6 
10.7 
10.8 
10.9 
11.0 

11.2 
11.4 
11.6 
11.8 
12.0 

2.460 
2.363 

2.270 
2.199 
2.136 
2.080 
2.031 

1.986 
1.946 
1.908 
1476 
1.843 

1.816 
1.788 
1.763 
1.740 
1.719 

1.698 
1,679 
1.661 
1.044 
1428 

1413 
1.698 
1.684 
1.571 
1.669 

1-547 
1.636 
1.624 
1.614 
1.604 

1.494 
1.484 
1.476 
1.467 
1.468 

1.460 
1.442 
1.436 
1.427 
1.420 

1.413 
1.407 
1.400 
1.394 
1.388 

1.382 
1.376 
1.371 
1.366 
1,360 

1.366 
1.349 
1.346 
1.340 
1.336 

1.326 
1.318 - 
- - 

2.632 
2.606 

2.400 
2.311 
2.234 
2.168 
2.109 

2.066 
2.009 
1,966 
1.928 
1493 

1.860 
1.830 
1.803 
1.777 
1.763 

1.731 
1.710 
1.690 
1.671 
1.664 

14337 
1.622 
1.607 
1.593 
1.679 

1-566 
1.664 
1.642 
1.631 
1.620 

1.610 
1xWO 
1.490 
1.481 
1.472 

1.463 
1.465 
1447 
1.440 
1.432 

1.426 
1.418 
1.411 
1.404 
1.398 

1.392 
1.386 
1.380 
1.374 
1.369 

1.363 
1.368 
1.363 
1.348 
1.343 

1.334 
1.325 - - 
- 

2.362 
2.278 
2.206 

2.143 
2.087 
2.037 
1,992 
1.961 

1.914 
1.880 
1,849 
1.820 
1.793 

1.768 
1.746 
1.723 
1.703 
14383 

1.666 
1.648 
1432 
1.616 
1.602 

1.688 
1.676 
1.662 
1650 
1,638 

1-527 
1.617 
1.607 
1.497 
1.487 

1.478 
1.469 
1.461 
1.463 
1.446 

1.437 
1.430 
1.423 
1.416 
1.409 

1.403 
1.396 
1.390 
1.384 
1.378 

1.373 
1.367 
1.362 
1.357 
1.362 

1.342 
1.332 - 
- - 

2.530 
2,423 
2,331 

2.263 
2.184 
2.124 
2.070 
2.022 

1.978 
1,939 
1.903 
1.870 
1.840 

1.811 
1.786 
1.761 
1.738 
1.717 

1.697 
1,678 
1460 
1.644 
1,628 

1413 
1.698 
1.686 
1.671 
1.669 

1.547 
i . 5 ~  
1.626 
1.514 
1.604 

1.496 
1.486 
1.476 
1.468 
1.469 

1.461 
1.443 
1.436 
1.428 
1.421 

1.414 
1.408 
1.401 
1,395 
1.389 

1.383 
1.377 
1.372 
1.366 
1.361 

1.361 
1.341 - - 
- 

2.309 
2.234 
2.168 
2.109 

2.067 
2.011 
1.969 
1.930 
1.895 

1463 
14333 
1.806 
1.780 
1,766 

1.734 
1.713 
1.693 
1.675 
1.667 

1.640 
1.626 
1.610 
1.696 
1.682 

1.660 ~ ~~~ 

1.667 
1.646 
1.634 
1,623 

1.613 
1.603 
1.493 
1.484 
1.475 

1.466 
1.468 
1.460 
1.442 
1.435 

1.428 
1.420 
1.414 
1.407 
1.401 

1.394 
1.388 
1.382 
1.377 
1.371 

1.360 
1.360 - 

2.476 
2.378 
2.294 
2.221 

2.166 
2.100 
2.049 
2.003 
1.962 

1.924 
1.890 
1,868 
1.829 
1.802 

1.776 
1.763 
1.731 
1.710 
1.691 

1.672 
1,666 
1.639 
1.623 
1.608 

1,694 
1.681 
1.668 
1.656 
1.644 

1.633 
1.622 
1.612 
1.602 
1.492 

1.483 
1.474 
1.466 
1.468 
1.460 

1.442 
1.434 
1.427 
1.420 
1.413 

1.407 
1.400 
1.394 
1.388 
1.382 

1.371 
1,360 - 
- 
- 

2.161 
2.094 
2.044 

1.999 
1.968 
1.921 
1.887 
1.866 

1.827 
1,800 
1.776 
1.761 
1.730 

1.709 
1490 
1.671 
1.664 
1.638 

1423 
1408 
1,694 
1,580 
1.668 

1.666 
1.644 
1.633 
1622 
1.612 

1.602 
1.492 
1.483 
1.474 
1.466 

1.458 
1.460 
1.442 
1.435 
1.427 

1.420 
1,414 
1.407 
1.401 
1.394 

1.383 
1.371 - 
- - 

2.281 
2.210 
2.148 

2.093 
2.043 
1.998 
1.958 
1.921 

1487 
1.856 
1.827 
1.800 
1.715 

1.762 
1.730 
1.709 
1490 
1.672 

1455 
1.639 
1423 
1.608 
1.694 

1.681 
1.668 
1.666 
1646 
1.634 

1.623 
1.613 
1.603 
1.493 
1.484 

1.475 
1.467 
1.468 
1.460 
1.443 

1.435 
1.428 
1.421 
1414 
1.408 

1.396 
1.383 
1.372 
1.361 
1.351 

2,046 
2.001 

1.960 
1,923 
1,889 
1.868 
1.829 

14302 
1.777 
1.764 
1.732 
1.711 

14392 
1.674 
1.66'1 
14340 
1.626 

1,610 
1.696 
1.683 
1.670 
1.568 

1.616 
1.636 
1.624 
1.614 
1.604 

1,495 
1.485 
1.477 
1.468 
1.460 

1.462 
1.444 
1.437 
1.429 
1.422 

1.409 
1.396 
1.384 
1.373 
1.363 

2,167 
2.102 

2.061 
2.006 
1.966 
1.928 
1.894 

1,862 
1433 
1.806 
1.781 
1.758 

1.736 
1.716 
1.696 
1,677 
1.660 

1.643 
1.628 
1.613 
1.699 
1.686 

1.673 
1.680 
1.649 
1,638 
1.627 

1.516 
1.506 
1.497 
1.488 
1.479 

1.470 
1.462 
1.464 
1.446 
1.439 

1.424 
1.411 
1.398 
1.386 
1,376 . 
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TABLE B-4 (cont inued)  

Values of rl (cont inued)  
A 

. 

8.0 

8.1 
8.2 
8.3 
8.4 
8.5 

8.6 
8.7 
8.8 
8.9 
9.0 

9.1 
9.2 
9.3 
9.4 
9.5 

9.6 
9.7 
9.8 
9.9 

10.0 

10.1 
10.2 
10.3 
10.4 
10.5 

10.6 
10.7 
10.8 
10.9 
11.0 

11.1 
11.2 
11.3 
11.4 
11.5 

11.6 
11.7 
11.8 
11.9 
12.0 

12.1 
12.2 
12.3 
12.4 
12.5 

12.6 
12.7 
12.8 
12.9 
13.0 

13.2 
13.4 
13.6 
13.8 
14.0 

14.2 
14.4 
14.6 
14.8 
15.0 

1.974 

1.936 
1.901 
1.869 
1440 
1412 

1.787 
1.763 
1.741 
1.720 
1.700 

14382 
14364 
1448 
1.632 
1.617 

1.603 
1.689 
1.676 
1.664 
1+562 

1.641 
1.630 
1.620 
1.609 
1.600 

1.491 
1.482 
1.473 
1.466 
1.466 

1.449 
1.441 
1.434 
1.427 
1.420 

1,413 
1.407 
1.400 
1.394 
1.388 

1.383 
1.377 
1.371 
1.366 
1.361 

1.366 
1.361 
1.346 
1.341 
1.337 

- 
- - 
- 
- 
- 
- - - 
- 

2074 

2.028 
1.986 
1447 
1.911 
1.879 

1.849 
1421 
1.795 
1.771 
1.748 

1.727 
1.707 
1488 
1.670 
1,663 

1,637 
1.622 
1,608 
1.694 
1.681 

1,669 
1.657 
1.646 
1.634 
1,623 

1.613 
1.604 
1.494 
1.486 
1.476 

1.468 
1.460 
1.462 
1.444 
1.437 

1.430 
1.423 
1.416 
1,409 
1,403 

1.397 
1,391 
1.385 
1.379 
1,374 

1.369 
1.363 
1,368 
1.363 
1.348 

- - - 
- - 
- 
- - - - 

1.926 
1.891 
1.860 
1.831 
1.806 

1.780 
1.767 
1.736 
1.716 
1.696 

1.678 
1.660 
1.644 
1429 
1414 

1.600 
1.687 
1.674 
1.662 
1.660 

1.639 
1.628 
1.518 
1608 
1.499 

1489 
1.481 
1.472 
1.464 
1h66 

1.448 
1.441 
1.433 
1.426 
1-419 

1.413 
1.406 
1.400 
1.394 
'1.388 

1.382 
1.377 
1.371 
1.366 
1.361 

- 
- 
- 
- 
- 
- - 
- 
- 
- 

2.018 
1.978 
1.940 
1.906 
1.874 

14344 
1,817 
1,792 
1.768 
1.746 

1.726 
1.706 
1.686 
1.669 
1.662 

1.636 
1.621 
1.607 
1.694 
1.681 

1.568 
1.666 
1.546 
1.634 
1,624 

1.614 
1.504 
1.494 
1.486 
1,477 

1.468 
1.460 
1.462 
1.446 
1.437 

1.430 
1.423 
1.417 
1.410 
1.404 

1.398 
1.392 
1.386 
1.380 
1.376 

- 
- 
- 
- 
- 
- 
- - 
- 
- 

1.831 
1,806 

1.910 
1479 

1.849 
1.822 
1.79F 
1.772 
1.760 

1.729 
1.709 
1.691 
1,673 
1466 

1.640 
1.626 
1 4 1 1  
1.697 
1.684 

1.781 
1.768 
1.736 
1.716 
14397 

1.679 
1.766 
1.744 
1.723 
1.704 

1486 

1.834 
1.809 
1.784 
1.761 

1.740 
1.720 

1416 

1402 
1.588 
1.676 
1.664 
1.662 

1469 
1.662 
1.637 
1.622 

161 
1.683 
1.666 1.717 

14399 
1.681 
1.664 
1.648 
1433 

1.618 
1.604 
1.691 
1.579 

.1.667 

1.666 
1.644 
1.633 
1623 
1.613 

1604 
1.495 
1.486 
1.477 
1.469 

1.463 
1.438 
1.426 
1.412 
1.399 

1.780 

1.768 
1.737 
1.717 
1.698 
14381 

1.664 
14348 
1433 
1.618 
1406 

1.691 
1.679 
1.667 
1.665 
1.644 

1.634 

1.641 
1.630 
1.620 
1.610 
1.500 

1.491 
1.482 
1.474 
1.466 
1.458 

1,460 
1.442 
1.436 
1.428 
1.421 

1.416 
1.408 
1.402 
1.396 
1.390 

1.672 
1.660 
1.649 
1.638 
1,627 

1.608 
1-594 
1.681 
1.669 
1.667 

1.649 
1,634 
1419 
1406 
1,692 

1.680 
1.667 
1.666 
1.645 
1.534 

1.617 
1.607 
1.498 
1.489 
1.480 

1.471 
1,463 
1.466 
1.448 
1.440 

1,433 
1,426 
1.420 
1.413 
1.407 

1.394 
1.383 
1.372 
1.362 
1.362 

1.646 
1,636 
1.526 
1,616 
1.605 

1.496 
1.487 
1.478 
1.470 
1.462 

1.464 

1-624 
1.614 
1.604 
1.496 
1.488 

1.477 
1.469 
1.461 
1.463 
1.446 

1.446 
1.439 
1.432 
1.426 

1.412 
1.400 
1.388 
1.377 
1.366 

~~~ 

1.623 
1.614 
1.604 
1.496 

1.379 
1,368 
1.358 
1.348 
1.339 

1.330 
1.321 
1,313 
1.306 
1.298 

1.431 
1.418 
1.405 
1.393 
1.382 

1.478 
1.461 
1.446 
1.432 
1.419 

1.342 
1.333 
1.326 
1.316 
1.308 

1.371 
1.361 
1.361 
1.342 
1.333 

1.388 
1.377 
1.366 
1.366 
1.346 

1.366 
1.346 
1.337 
1.328 
1.320 

1.372 
1.362 

. 

.. 
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TABLE B-5 
P e r c e n t i l e s  of t h e  Chi-Squared D i s t r i b u t i o n  

F ( u )  = dk 

Degrees 
of 

freedom 
( y )  0.005 0.010 0.025 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.975 0.990 0.995 y 

I 
2 
3 
4 
5 

6 
7 
8 
9 
IO 

I I  
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

35 
40 
45 
50 
75 

100 

0.0'393 
0.0100 
0.07 17 
0.207 
0.412 

0.676 
0.989 
1.34 
1.73 
2.16 

2.60 
3.07 
3.57 
4.07 
4.60 

5.14 
5.70 
6.26 
6.84 
7.43 

8.03 
8.64 
9.26 
9.89 

10.5 

11.2 
11.8 
12.5 
13.1 
13.8 

17.2 
20.7 
24.3 
28.0 
47.2 
67.3 

0.03157 
0.0201 
0.115 
0.297 
0.554 

0.872 
1.24 
1.65 
2.09 
2.56 

3.05 
3.57 
4.1 I 
4.66 
5.23 

5.81 
6.41 
7.01 
7.63 
8.26 

8.90 
9.54 

10.2 
10.9 
11.5 

12.2 
12.9 
13.6 
14.3 
15.0 

18.5 
22.2 
25.9 
29.7 
49.5 
70. I 

0.03982 
0.0506 
0.216 
0.484 
0.831 

1.24 
1.69 
2.18 
2.70 
3.25 

3.82 
4.40 
5.01 
5.63 
6.26 

6.9 I 
7.56 
8.23 
8.91 
9.59 

10.3 
11.0 
11.7 
12.4 
13.1 

13.8 
14.6 
15.3 
16.0 
16.8 

20.6 
24.4 
28.4 
32.4 
52.9 
74.2 

0.02393 
0.103 
0.352 
0.71 I 
1.15 

1.64 
2.17 
2.73 
3.33 
3.94 

4.57 
5.23 
5.89 
6.57 
7.26 

7.96 
8.67 
9.39 

10.1 
10.9 

11.6 
12.3 
13.1 
13.8 
14.6 

15.4 
16.2 
16.9 
17.7 
18.5 

22.5 
26.5 
30.6 
34.8 
56.1 

* 77.9 

0.0158 
0.21 1 
0.584 
1.06 
1.61 

2.20 
2.83 
3.49 
4.17 
4.87 

5.58 
6.30 
7.04 
7.79 
8.55 

9.31 
10.1 
10.9 
11.7 
12.4 

13.2 
14.0 
14.8 
15.7 
16.5 

17.3 
18.1 
18.9 
19.8 
20.6 

24.8 
29.1 
33.4 
37.7 
59.8 
82.4 

0.0642 
0.446 
1 .oo 
1.65 
2.34 

3.07 
3.82 
4.59 
5.38 
6.18 

6.99 
7.81 
8.63 
9.47 

10.3 

11.2 
12.0 
12.9 
13.7 
14.6 

15.4 
16.3 
17.2 
18.1 
18.9 

19.8 
20.7 
21.6 
22.5 
23.4 

27.8 
32.3 
36.9 
41.4 
64.5 
87.9 

0.148 
0.713 
1.42 
2.19 
3.00 

3.83 
4.67 
5.53 
6.39 
7.27 

8.15 
9.03 
9.93 

10.8 
11.7 

12.6 
13.5 
14.4 
15.4 
16.3 

17.2 
18.1 
19.0 
19.9 
20.9 

21.8 
22.7 
23.6 
24.6 
25.5 

30.2 
34.9 
39.6 
44.3 
68.1 
92. I 

0.275 
I .02 
1.87 
2.75 
3.66 

4.57 
5.49 
6.42 
7.36 
8.30 

9.24 
10.2 
1 1 . 1  
12.1 
13.0 

14.0 
14.9 
15.9 
16.9 
17.8 

18.8 
19.7 
20.7 
21.7 
22.6 

23.6 
24.5 
25.5 
26.5 
27.4 

32.3 
37.1 
42.0 
46.9 
71.3 
95.8 

0.455 
1.39 
2.37 
3.36 
4.35 

5.35 
6.35 
7.34 
8.34 
9.34 

10.3 
11.3 
12.3 
13.3 
14.3 

15.3 
16.3 
17.3 
18.3 
19.3 

20.3 
21.3 
22.3 
23.3 
24.3 

25.3 
26.3 
27.3 
28.3 
29.3 

34.3 
39.3 
44.3 
49.3 
74.3 
99.3 

0.708 
1.83 
2.95 
4.04 
5.13 

6.21 
7.28 
8.35 
9.41 

10.5 

11.5 
12.6 
13.6 
14.7 
15.7 

16.8 
17.8 
18.9 
19 9 
21.0 

22.0 
23.0 
24.1 
25.1 
26.1 

27.2 
28.2 
29.2 
30.3 
31.3 

36.5 
41.6 
46.8 
51.9 
77.5 

102.9 

1.07 
2.41 
3.67 
4.88 
6.06 

7.23 
8.38 
9.52 

10.7 
11.8 

12.9 
14.0 
15.1 
16.2 
17.3 

18.4 
19.5 
20.6 
21.7 
22.8 

23.9 
24.9 
26.0 
27. I 
28.2 

29.2 
30.3 
31.4 
32.5 
33.5 

38.9 
44.2 
49.5 
54.7 
80.9 

106.9 

I .64 
3.22 
4.64 
5.99 
7.29 

8.56 
9.80 

11.0 
I2,2 
13.4 

14.6 
15.8 
17.0 
18.2 
19.3 

20.5 
21.6 
22.8 
23.9 
25.0 

26.2 
27.3 
28.4 
29.6 
30.7 

31.8 
32.9 
34.0 
35.1 
36.3 

41.8 
47.3 
52.7 
58.2 
85. I 

111.7 

2.71 
4.61 
6.25 
7.78 
9.24 

10.6 
1 2.0 
13.4 
14.7 
16.0 

17.3 
18.5 
19.8 
21.1 
22.3 

23.5 
24.8 
26.0 
27.2 
28.4 

29.6 
30.8 
32.0 
33.2 
34.4 

35.6 
36.7 
37.9 
39.1 
40.3 

46. I 
51.8 
57.5 
63.2 
91.1 

118.5 

3.84 
5.99 
7.81 
9.49 

1 1 . 1  

12.6 
14.1 
15.5 
16.9 
18.3 

19.7 
21.0 
22.4 
23.7 
25.0 

26.3 
27.6 
28.9 
30. I 
31.4 

32.7 
33.9 
35.2 
36.4 
37.7 

38.9 
40. I 
41.3 
42.6 
43.8 

49.8 
55.8 
61.7 
67.5 
96.2 
124.3 

5.02 
7.38 
9.35 

1 1 . 1  
12.8 

14.4 
16.0 
17.5 
19.0 
20.5 

21.9 
23.3 
24.7 
26. I 
27.5 

28.8 
30.2 
31.5 
32.9 
34.2 

35.5 
36.8 
38. I 
39.4 
40.6 

41.9 
43.2 
44.5 
45.7 
47.0 

53.2 
59.3 
65.4 
71.4 

100.8 
129.6 

6.63 
9.21 

11.3 
13.3 
15.1 

16.8 
18.5 
20. I 
21.7 
23.2 

24.7 
26.2 
27.7 
29. I 
30.6 

32.0 
33.4 
34.8 
36.2 
37.6 

38.9 
40.3 
41.6 
43.0 
41.3 

45.6 
47.0 
48.3 
49.6 
50.9 

57.3 
63.7 
70.0 
76.2 

106.4 
135.6 

7.88 
10.6 
12.8 
14.9 
16.7 

18.5 
20.3 
22.0 
23.6 
25.2 

26.8 
28.3 
29.8 
31.3 
32.8 

34.3 
35.7 
37.2 
38.6 
40.0 

41.4 
42.8 
44.2 
45.6 
46.9 

48.3 
49.6 
51.0 
52.3 
53.7 

60.3 
66.8 
73.2 
79.5 

110.3 
140.2 

1 
2 
3 
4 
5 

6 
7 
8 
9 
IO 

1 1  
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

35 
40 
45 
50 
75 

100 

(From G. J. Hahn and S. S. Shapiro , Sta t i s t i ca l  Mod-els-i-n .Enqineerinq, John 
Wiley & Sons, New York, 1967, pp. 314-315.) 
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Sample 
size 
(N) 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

25 
30 
35 

over 35 

TABLE B-6 
Percentiles of the Maximum Absolute 

Population Cumulative Distributions* 
Difference Between Sample and 

Level of significance (a) 

0.20 0.15 0.10 0.05 0.01 

0.900 
0.684 
0.565 
0.494 
0.446 

0.410 
0.381 
0.358 
0.339 
0.322 

0.307 
0.295 
0.284 
0.274 
0.266 

0.258 
0.250 
0.244 
0.237 
0.231 

0.21 
0.19 
0.18 

1.07 
- 
437 

0.925 
0.726 
0.597 
0.525 
0.474 

0.436 
0.405 
0.381 
0.360 
0.342 

0.326 
0.313 
0.302 
0.292 
0.283 

0.274 
0.266 
0.259 
0.252 
0.246 

0.22 
0.20 
0.19 

1 .I4 - 
4 R  

0.950 
0.776 
0.642 
0.564 
0.510 

0.470 
0.438 
0.411 
0.388 
0.368 

0.352 
0.338 
0.325 
0.314 
0.304 

0.295 
0.286 
0.278 
0.272 
0.264 

0.24 
0.22 
0.21 

1.22 - 
4x 

0.975 
0.842 
0.708 
0.624 
0.565 

0.521 
0.486 
0.457 
0.432 
0.410 

0.391 
0.375 
0.361 
0.349 
0.338 

0.328 
0.318 
0.309 
0.301 
0.294 

0.27 
0.24 
0.23 

1.36 

0.995 
0.929 
0.828 
0.733 
0.669 

0.618 
0.577 
0.543 
0.514 
0.490 

0.468 
0.450 
0.433 
0.418 
0.404 

0.392 
0.381 
0.371 
0.363 
0.356 

0.32 
0.29 
0.27 

1.63 

c 

*Values of da(N) such that 

PrCmaxls (XI - FO(x)I>da(N)l = a I 
N 

where F (x) is the theoretical cumulative distri- 

bution and S (x) is an observed cumulative dis- 

tribution for a sample of N observations. 

0 

N 

(From F. J. Massey, "The Kolmogorov-Smirnov Test for Goodness of Fit," 
J. Amer. Stat. Ass. 46: 70 (19511.1 

. 
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. 

TABLE B-7 
T a b l e  of C o e f f i c i e n t s  [a 1 Used i n  t h e  W T e s t  for  Normality n- 1+1 

n 
i 3 4  5 6 7 8 9 IO I 1  12 I3 14 15 16 17 18 

1 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 0.5601 0.5475 0.5359 
2 0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291 0.3315 0.3325 0.3325 
3 0.0875 0.1401 0.1743 0.1976 0.2141 0.2260 0.2347 0.2412 
4 0.0561 0.0947 0.1224 0.1429 0.1586 0.1707 
5 0.0399 0.0695 0.0922 0.1099 
6 0.0303 0.0539 
7 
8 
9 

0.5251 0.5150 0.5056 0.4968 
0.3318 0.3306 0.3290 0.3273 
0.2460 0.2495 0.2521 0.2540 
0.1802 0.1878 0.1939 0.1988 
0.1240 0.1353 0.1447 0.1524 
0.0727 0.0880 0.1005 0.1109 
PO240 0.0433 0.0593 0.0725 

0.0196 0.0359 

0.4886 
0.3253 
0.2553 
0.2027 
0.1587 
0.1 197 
0.0837 
0.0496 
0.0163 

,\. 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

1 0.4808 
2 0.3232 
3 0.2561 
4 0.2059 
5 0.1641 
6 0.1271 
7 0.0932 
8 0.0612 
9 0.0303 
IO 
11 
I2 
13 
14 
I5 
16 
17 

0.4734 
0.321 1 
0.2565 
0.2085 
0. I686 
0.1334 
0.1013 
0.071 1 
0.0422 
0.0140 

0.4643 0.4590 0.4542 0.4493 
0.3185 0.3156 0.3126 0.3098 
0.2578 0.2571 0.2563 0.2554 
0.2119 0.2131 0.2139 0.2145 
0.1736 0.1764 0.1787 0.1807 
0.1399 0.1443 0.1480 0.1512 
0.1092 0.1150 0.1201 0.1245 
0.0804 0.0878 0.0941 0.0997 
0.0530 0.0618 0.0696 0.0764 
0.0263 0.0368 0.0459 0.0539 

0.0122 0.0228 0.0321 
0 3107 

0.4450 
0.3069 
0.2543 
0.2148 
0. I822 
0. I539 
0.1283 
0.1046 
0.0823 
0.0610 
0.0403 
0.0200 

0.4407 
0.3043 
0.2533 
0.2151 
0.1836 
0.1563 
0.1316 
0.1089 
0.0876 
0.0672 
0.0476 
0.0284 
0.0094 

0.4366 
0.3018 
0.2522 
0.2152 
0. I848 
0.1584 
0.1346 
0.1128 
0.0923 
0.0728 
0.0540 
0.0358 
0.0178 

0.4328 
0.2992 
0.2510 
0.2151 
0.1857 
0.1601 
0.1372 
0.1 162 
0.0965 
0.0778 
0.0598 
0.0424 
0.0253 
0.0084 

0.429 I 
0.2968 
0.2499 
0.2150 
0. I864 
0.1616 
0.1395 
0.1192 
0.1002 
0.0822 
0.0650 
0.0483 
0.0320 
0.01 59 

0.4254 
0.2944 
0.2487 
0.2148 
0.1870 
0.1630 
0.1415 
0.1219 
0.1036 
0.0862 
0.0697 
0.0537 
0.0381 
0.0227 
0.0076 

0.4220 
0.2921 
0.2475 
0.2145 
0. I874 
0.1641 
0.1433 
0. I243 
0.1066 
0.0899 
0.0739 
0.0585 
0.0435 
0.0289 
0.0144 

0.4188 
0.2898 
0.2463 
0.2141 
0. I878 
0.1651 
0.1449 
0.1265 
0.1093 
0.093 I 
0.0777 
0.0629 
0.0485 
0.0344 
0.0206 
0.0068 

0.41 56 
0.2876 
0.2451 
0.2137 
0.1880 
0.1660 
0.1463 
0. I284 
0.1118 
0.0961 
0.08 I2 
0.0669 
0.0530 
0.0395 
0.0262 
0.0131 

0.4127 
0.2854 
0.2439 
0.2132 
0.1882 
0.1667 
0.1475 
0.1301 
0.1140 
0.0988 
0.0844 
0.0706 
0.0572 
0.0441 
0.0314 
0.01 87 
0.0062 

n 
1 35 36 37 38 

I 0.4096 0.4068 0.4040 0.4015 
2 0.2834 0.2813 0.2794 0.2774 
3 0.2427 0.2415 0.2403 0.2391 
4 0.2127 0.2121 0.2116 0.2110 
5 0.1883 0.1883 0.1883 0.1881 
6 0.1673 0.1678 0.1683 0.1686 
7 0.1487 0.1496 0.1505 0.1513 
8 0.1317 0.1331 0.1344 0.1356 
9 0.1160 0.1179 0.1196 0.1211 
IO 0.1013 0.1036 0.1056 0.1075 
I I  0.0873 0.09oO 0.0924 0.0947 
12 0.0739 0.0770 0.0798 0.0824 
13 0.0610 0.0645 0.0677 0.0706 
14 0.0484 0.0523 0.0559 0.0592 
I5 0.0361 0.0404 0.0444 0.0481 
16 0.0239 0.0287 0.0331 0.0372 
17 0.0119 0.0172 0.0220 0.0264 
18 0.0057 0.0110 0.0158 
19 0.0053 
20 
21 
22 
23 
24 
25 

.39 

0.3989 
0.2755 
0.2380 
0.2104 
0.1880 
0. I689 
0.1520 
0.1366 
0.1225 
0.1092 
0.0967 
0.0848 
0.0733 
0.0622 
0.05 I5 
0.0409 
0.0305 
0.0203 
0.0101 

- 40 

0.3964 
0.2737 
0.2368 
0.2098 
0. I878 
0.1691 
0. I526 
0. 1376 
0.1237 
0.1108 
0.0986 
0.0870 
0.0759 
0.0651 
0.0546 
0.0444 
0.0343 
0.0244 
0.01 46 
0.0049 

- 41 42 43 

0.3940 
0.2719 
0.2357 
0.2091 
0.1876 
0.1693 
0.1531 
0.1384 
0.1249 
0.1123 
0.1004 
0.089 I 
0.0782 
0.0677 
0.0575 
0.0476 
0.0379 
0.0283 
0.0188 
0.0094 

0.3917 
0.2701 
0.2345 
0.2085 
0.1874 
0.1694 
0. I535 
0.1392 
0.1259 
0.1136 
0. I020 
0.0909 
0.0804 
0.0701 
0.0602 
0.0506 
0.041 1 
0.0318 
0.0227 
0.01 36 
0.0045 

0.3894 
0.2684 

44 

0.3872 
0.2667 

0.2334 0.2323 
0.2078 0.2072 
0.1871 0.1868 
0.1695 0.1695 
0. I539 0.1542 
0.1398 0.1405 
0. I269 0. I278 
0.1149 0.1160 
0.1035 0.1049 
0.0927 0.0943 
0.0824 0.0842 
0.0724 0.0745 
0.0628 0.0651 
0.0534 0.0560 
0.0442 0.0471 
0.0352 0.0383 
0.0263 0.0296 
0.0175 0.0211 
0.0087 0.0126 

0.0042 

45 

0.3850 
0.265 I 
0.2313 
0.2065 
0. I865 
0.1695 
0.1545 
0.1410 
0. I2a6 
0.1 170 
0.1062 
0.0959 
0.0860 
0.0765 
0.0673 
0.0584 
0.0497 
0.0412 
0.0328 
0.0245 
0.0163 
0.0081 

- 46 

0.3830 
0.2635 
0.2302 
0.2058 
0.1862 
0.1695 
0. I548 
0.1415 
0.1293 
0.1180 
0.1073 
0.0972 
0.0876 
0.0783 
0.0694 
0.0607 
0.0522 
0.0439 
0.0357 
0.0277 
0.0197 
0.01 18 
0.0039 

47 

0.3808 
0.2620 
0.2291 
0.2052 
0. I859 
0. I695 
0. I550 
0.1420 
0. I300 
0.1189 
0.1085 
0.Q986 
0.0892 
0.0801 
0.07 I 3 
0.0628 
0.0546 
0.0465 
0.0385 
0.0307 
0.0229 
0.0153 
0.0076 

48 

0.3789 
0.2604 
0.2281 
0.2045 
0. I855 
0.1693 
0.155I 
0.1423 
0. I306 
0.1197 
0.1095 
0.0998 
0.0906 
0.0817 
0.0731 
0.0648 
0.0568 
0.0489 
0.041 I 
0.0335 
0.0259 
0.0185 
0.01 11 
0.0037 

49 

0.3770 
0.2589 
0.2271 
0.2038 
0.1851 
0. I692 
0. I553 
0.1427 
0.1312 
0. I205 
0.1105 
0.1010 
0.0919 
0.0832 
0.0748 
0.0667 
0.0588 
U.05I 1 
0.0436 
0.0361 
0.0288 
0.0215 
0.0143 
0.0071 

50 

0.3751 
0.2574 
0.2260 
0.2032 
0.1847 
0.1691 
0. I554 
0.1430 
0.1317 
0.1212 
0.1 I13 
0. I020 
0.0932 
0.0846 
0.0764 
0.0685 
0.0608 
0.0532 
0.0459 
0.0386 
0.0314 
0.0244 
0.0174 
0.0104 
0.0035 

(From G. J. Hahn and S. S. Shapiro,  S t a t i s t i c a l  Methods i n  Engineering, 
John Wiley & Sons, New York, 1967, pp. 330-331). 
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TABLE B-8 
Percentage Po in t s  of t h e  W S t a t i s t i c  

n 1 2 5 10 50 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.753 
0.687 
0.686 
0.713 
0.730 
0.749 
0.764 
0.781 
0.792 
0.805 
0.814 
0.825 
0.835 
0.844 
0.851 
0.858 
0.863 
0.868 
0.873 
0.878 
0.881 
0.884 
0.888 
0.891 
0.894 
0.896 
0.898 
0.900 
0.902 
0.904 
0.906 
0.908 
0.910 
0.912 
0.914 
0.916 
0.91 7 
0.919 
0.920 
0.922 
0.923 
0.924 
0.926 
0.927 
0.928 
0.929 
0.929 
0.930 

0.756 
0.707 
0.71 5 
0.743 
0.760 
0.778 
0.791 
0.806 
0.817 
0.828 
0.837 
0.846 
0.855 
0.863 
0.869 
0.874 
0.879 
0.884 
0.888 
0.892 
0.895 
0.898 
0.901 
0.904 
0.906 
0.908 
0.910 
0.912 
0.914 
0.915 
0.917 
0.919 
0.920 
0.922 
0.924 
0.925 
0.927 
0.928 
0.929 
0.930 
0.932 
0.933 
0.934 
0.935 
0.936 
0.937 
0.937 
0.938 

0.767 
0.748 
0.762 
0.788 
0.803 
0.818 
0.829 
0.842 
0.850 
0.859 
0.866 
0.874 
0.881 
0.887 
0.892 
0.897 
0.901 
0.905 
0.908 
0.91 1 
0.914 
0.916 
0.91 8 
0.920 
0.923 
0.924 
0.926 
0.927 
0.929 
0.930 
0.931 
0.933 
0.934 
0.935 
0.936 
0.938 
0.939 
0.940 
0.941 
0.942 
0.943 
0.944 
0.945 
0.945 
0.946 
0.947 
0.947 
0.947 

0.789 
0.792 
0.806 
0.826 
0.838 
0.851 
0.859 
0.869 
0.876 
0.883 
0.889 
0.895 
0.901 
0.906 
0.910 
0.914 
0.917 
0.920 
0.923 
0.926 
0.928 
0.930 
0.931 
0.933 
0.935 
0.936 
0.937 
0.939 
0.940 
0.941 
0.942 
0.943 
0.944 
0.945 
0.946 
0.947 
0.948 
0.949 
0.950 
0.951 
0.951 
0.952 
0.953 
0.953 
0.954 
0.954 
0.955 
0.955 

0.959 
0.935 
0.927 
0.927 
0.928 
0.932 
0.935 
0.938 
0.940 
0.943 
0.945 
0.947 
0.950 
0.952 
0.954 
0.956 
0.957 
0.959 
0.960 
0.961 
0.962 
0.963 
0.964 
0.965 
0.965 
0.966 
0.9@ 
0.967 
0.967 
0.968 
0.968 
0.969 
0.969 
0.970 
0.970 
0.971 
0.971 
0.972 
0.972 
0.972 
0.973 
0.973 
0.973 
0.974 
0.974 
0.974 
0.974 
0.974 

(From G. J. H a h n  and S. S. Shapiro,  S t a t i s t i c a l  Methods i n  Engineer ing,  
John Wiley & Sons, New York, 1967, p. 332.) 
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TABLE B-9 
Percentage Poin ts  f o r  t h e  WE S t a t i s t i c  

95% Range 90% Range 

Lower Upper Lower Upper 
n Point Point Point Point 

, 

. 

f 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.062 
0.054 
0.050 
0.049 
0.046 
0.044 
0.040 
0.038 
0.036 
0.034 
0.030 
0.028 
0.026 
0.025 
0.024 
0.023 
0.022 
0.021 
0.021 
0.020 
0.020 
0.01 9 
0.019 
0.01 8 
0.017 
0.01 7 
0.01 7 
0.017 
0.01 6 

0.404 
0.342 
0.301 
0.261 
0.234 
0.215 
0.195 
0.17t' 
0.163 
0. I50 
0.135 
0.123 
0.114 
0.106 
0.101 
0.094 
0.087 
0.082 
0.078 
0.073 
0.070 
0.067 
0.064 
0.060 
0.057 
0.055 
0.053 
0.05 1 
0.049 

0.071 
0.062 
0.058 
0.056 
0.052 
0.050 
0.046 
0.043 
0.040 
0.038 
0.034 
0.03 1 
0.029 
0.028 
0.027 
0.026 
0.025 
0.024 
0.023 
0.022 
0.022 
0.021 
0.021 
0.020 
0.019 
0.01 9 
0.01 8 
0.01 8 
0.01 8 

0.358 
0.301 
0.261 
0.23 1 
0.208 
0.191 
0.173 
0.159 
0.145 
0.134 
0.120 
0.109 
0.102 
0.095 
0.091 
0.084 
0.078 
0.074 
0.070 
0.066 
0.063 
0.061 
0.058 
0.054 
0.052 
0.050 
0.048 
0.047 
0.045 

(From G. J. Hahn and S. S. Shapiro,  S t a t i s t i c a l  Methods i n  Engineering, 
John Wiley & Sons, New York, 1967, p .  335.) 
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TABLE B-10 
Percentage Points  f o r  t he  WEo Sta t i s t i c  

n 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

- 

95% Range 

Lower Upper 
Point Point 

c 

90% Range 

Lower Upper 
Point Point 

. 

0.025 0.260 
0.025 0.230 
0.025 0.205 
0.025 0.184 
0.025 0.166 
0.025 0.153 
0.025 0.140 
0.024 0.128 
0.024 0.119 
0.023 0.113 
0.023 0.107 
0.022 0.101 
0.022 0.096 
0.021 0.090 
0.020 0.085 
0.020 0.080 
0.019 0.075 
0.019 0.069 
0.018 0.065 
0.018 0.062 
0.017 0.058 
0.017 0.056 
0.016 0.054 
0.016 0.053 
0.016 0.051 
0.015 0.050 
0.015 0.048 
0.014 0.046 
0.014 0.045 

0.033 0.225 
0.032 0.200 
0.031 0.177 
0.030 0.159 
0.030 0.145 
0.029 0.134 
0.028 0.124 
0.027 0.115 
0.026 0.106 
0.025 0.098 
0.024 0.093 
0.024 0.087 
0.023 0.083 
0.023 0.077 
0.022 0.074 
0.022 0.069 
0.021 0.065 
0.021 0.062 
0.020 0.058 
0.020 0.056 
0.020 0.054 
0.019 0.052 
0.019 0.050 
0.019 0.048 
0.018 0.047 
0.018 0.045 
0.018 0.044 
0.017 0.043 
0.017 0041 

~ 

(From G. J. Hahn and S. S. Shapiro,  Stat is t ical  Methods i n  Engineering, 
John Wiley & Sons, New York, 1967, p. 334. )  

'. 
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Bain, L. J., and C. E. Antle, "Estimation of Parameters in 
the Weibull Distribution", Technometrics - 9(4):621-627 (1967). 

A new method of estimation is used to obtain two simple esti- 
mators of the parameters in a Weibull distribution. These 
estimators are similar to the estimators given by Gumbel, 
Miller and Freund, and Menon. Monte Carlo methods were 
used to determine the variances and biases of the estimators 
for various sample sizes. Comparisons of the estimators 
can be made and unbiasing factors calculated in some cases. 

Bhattacharya, P. K. , "Efficient Estimation of a Shift Parameter 
From Grouped Data", Ann. Math. Statist. 38:1770-1787 - (1967). 

This paper considers two populations having frequency functions 
f(x) and f(x-8) where the common form f and the shift param- 
eter 8 are unknown. A method of estimating 8 when one sample 
is reduced to a frequency distribution over a given set of class- 
intervals is suggested by the likelihood principle and the asymp- 
totic efficiency of this estimator relative to the appropriate 
maximum likelihood estimator based on the complete data is 
found to be the ratio of the Fisher-information in a grouped 
observation to the Fisher-information in an ungrouped observa- 
tion. 

3. Birnbaum, Z. W. , Probability and Mathematical Statistics, 
Harper & Brothers, New York (1962). 

General theory of tests of statistical hypotheses is presented 
along with a detailed discussion of the C hi-squared distribution 
and test. Also distribution free tests are discussed including 
the Kolmogorov test and Smirnov test. Also included a r e  the 
likelihood function and likelihood ratio statis tics. 

4. Brunk, H. D. , Mathematical Statistics, Blaisdell Publishing 
Co., Waltham, Massachusetts (1965). 

Basic theory of testing hypotheses is presented including a 
discussion of testing a simple hypothesis against a simple al- 
ternative, choice of null hypothesis, the power function, most 
powerful tests and consistent tests. Specific tests described 

b 
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5. 

are Chi-squared test, Kolmogorov-Smirnov test for goodness 
of it, t-test, F-test, runs test, median test, and likelihood 
ratio test. 

Choi, S. C., and R. Wette, "Maximum Likelihood Estimation 
of the Parameters of the Gamma Distribution and Their Bias", 
Technometrics - 11(4):683-690 (1969). 

The maximum likelihood method is recommended for  estimating 
the parameters of a gamma distribution. . Numerical techniques 
for carrying out the calculation are examined. A convenient 
table is obtained to facilitate the estimation of parameters. 
The bias of the estimates is investigated by Monte Carlo; the 
indication is that the bias of both parameter estimates pro- 
duced by the maximum likelihood method is positive. 

6. . Cornell, R. G., and J.A.  Speckman, "Estimation for a Simple 
Exponential Model", Biometrics 23:717-737 (1967). - 
Graphical, maximum likelihood, least squares, weighted least 
squares, partial totals, moment, finite differences, Fisher, 
and Spearman estimation procedures are presented for estima- 
ting the parameter X in the exponential model with expectations 
given by 1 - e-XT for different values of T. The estimators 
a r e  described, referenced, illustrated, and compared. Tables 
are cited which make several of the estimation procedures 
easier computationally. Included in the comparison of the 
estimators is a review of some Monte Carlo computations. 
The method of maximum likelihood, which can be used for 
any spacing of T-values, has very desirable large sample prop- 
erties. The simple method of partial totals is a possible alter- 
native for small samples of equally spaced T-values while the 
Fisher and Spearman method are suggested alternatives for 
T-values whose logarithms a r e  equally spaced. 

7. Cramer, H., Mathematical Methods of Statistics, Princeton 
University Press ,  Princeton (1945). 

Chapter 30 of this book describes "goodness of fit" statistical 
tests. The two tests described in detail are the Chi-squared 
test and Cra'mer-von Mises  test. However, statistics for  the 
Cr6mer-von Mises test and examples a r e  not presented. 

c 

. 

. 
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8. Dubey, S. D., "On Some Permissible Estimators of the Location 
Parameter of the Weibull and Certain Other Distributions", 
Technometrics 9(2):293 -307 (1967). - 
An estimator for the location parameter of the Weibull distri- 
bution is proposed which is independent of its shape and scale 
parameters. Several properties of this estimator are estab - 
lished which suggest a proper choice of three ordered sample 
observations insuring a permissible estimate of the location 
parameter. This result is valid for every distribution which 
has the location parameter acting as the origin o r  threshold 
parameter. Asymptotic properties of such an estimator of 
the location parameter of the Weibull distribution is discussed. 
Finally the paper contains a brief discussion on a percentile 
estimator of the location parameter of the Weibull distribution 
and includes some numerical illustrations. 

9. Elandt, R. C., "The Folded Normal Distribution: Two Methods 
of Estimating Parameters From Moments", Technometrics 

The general formula for the rth moment of the folded normal 
distribution is obtained, and formulae for the first four non- 
central and central moments are calculated explicitly. Two 
methods, one using first and second moments of the sample 
and the other using second and fourth moments, of estimating 
the parameters of the parent distribution are presented and 
their standard e r rors  calculated. The accuracy of both methods 
is discussed. 

- 3 (4) : 551 -562 (19 61). 

10. Elderton, W. P., Frequency Curves and Correlation, 4th Ed. , 
Cambridge University Press, Cambridge, (1953) 

A thorough covering of the Pearson system. Describes each 
type of distribution and gives relevant formulae for the type 
of curve. 

11. El-Sayyad, G. M., "Information and Sampling from the Expo- 
nential Distribution", Technometrics - 11(1):41-45 (1969). 

Methods of sampling an exponential population in order to obtain 
a prescribed accuracy in the determination of the unknown 
parameter are discussed. The concept of information due to 
Shannon is used and it leads to well-known schemes. 
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12. Gnanadesikan, R., R. S. Pinkham, and L.P.  Hughes, "Maxi- 
mum Likelihood Estimation of the Parameters of the Beta 
Distribution from Smallest Order Statistics", Technometrics 
- 9(4):607-620 (1967). 

Numerical methods, useful with high-speed computers are 
described for obtaining the maximum likelihood estimates of 
the two parameters of a beta distribution using the smallest 
M observations, 0 < u1 < u2 <. . . <. . UM, in a random sample 
of size K (2 M). The maximum likelihood estimates are func- 
tions only of the ratio R + M/K, the Mth ordered observation, 

M 1/M - M  
-uM, and the two statistics, G = [lli=luil and G2 = [rIi=l 

1/M 
(1-ui)] 
however, the estimates are functions only of G1 and G2, and 
hence, for this case, explicit tables of the estimates are pro- 
vided. 

. For the case of the complete sample (R = l), 

Some examples a r e  given of the use of the procedures described 
for fitting beta distributions to sets of data. 

13. Govindarajulu, Z. , "Certain General Properties of Unbiased 
Estimates of Location and Scale Parameters Based on Ordered 
Observations", SIAM J. App. Math. - 16(3):533-551 (1968). 

Some upper bounds are derived for the variances of least squares 
estimators based on a subset of the ordered observations in 
a random sample of (i) location, (ii) scale, and (iii) both loca- 
tion and scale parameters of a distribution. 

14. Gumbel, E. J., "Statistical Theory of Extreme Values and 
Some Practical Applications", National Bureau of Standards, 
Applied Math Series 33, (Feb. 1954). 

15. Hahn, G. J., and S. S. Shapiro, Statistical Models in Engineering, 
John Wiley and Sons, New York, 1967. (1967). 

Discusses many continuous and discrete distributions. Gives 
functional form, discusses theoretical basis, and mentions 
applications. In some cases describes parameter estimation 
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4 

techniques. Discusses advantages to fitting data to empirical 
distributions. Describes Johnson system and displays plot 
of P1,p values. Fitting procedures for Johnson distributions 

system of distributions and displays @1,& plot. Does not 
attempt to describe Pearson fitting procedures. 

are out H ined and examples are given. Describes Pearson 

Discusses general techniques of goodness of .fit tests. Two 
procedures are discussed: a series of tests developed by 
Shapiro and Wilk, known as W tests (including the WE test), 
and the Chi-squared goodness of f i t  test. The W tests a r e  
used to evaluate the assumption of a normal and exponential 
distribution for a set of data. The procedures for using these 
techniques a r e  presented in a detailed step-by-step manner. 

16. Haight, F. A. , Index to Distributions of Mathematical Statistics, 
J. Res. Natl. Bureau Stand. - B. Math. and Math. Phys 65B - 
(1):23-60 (1961). 

A fairly complete index of references to results on statistical 
distributions published before January 1958 is presented. 
The material given for each distribution is a list of references 
relating to: (a) functions and constants which characterize 
the distribution, (b) derived distributions, (c) estimation, 
(d) testing statistical hypotheses, and (e) miscellaneous. 
The distributions covered a r e  characterized as normal, type 
111, binomial, discrete, distributions over (a, b), distributions 
over (a, m), distributions over ( -m, m), miscellaneous univariate, 
miscellaneous bivariate, and miscellaneous multivariate. 
The number of entries varies from one or two for less well- 
known distributions to several hundred for the normal distri- 
bution. 

17. Harter, H. L. , "Maximum-Likelihood Estimation of the Param- 
eters of a Four-Parameter Generalized Gamma Population 
From Complete and Censored Samples", Technometrics - 9 
(1):159-165 (1967). 

The four -parameter generalized gamma distribution includes 
such distributions as the usual three-parameter gamma, the 
Weibull, the exponential, and the half normal, For these dis- 
tributions this paper develops the maximum likelihood equations. 
Iterative computer techniques are needed to solve these equations. 
Some results of applying this to various distributions are pre- 
s ented. 
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18. Harter, H.L., "A New Table of Percentage Points of the Pearson 
Type III Distribution", Tec - hnome tric s - 11 (1): 177 -1 87 (1 969). 

A table of percentage points for the type III Pearson distribution. 

19. Hodges, J. L.,  Jr. and E. L. Lehmann, "A Compact Table 
For Power of the t-Test", Ann. Math. Statist, - 39, No. 5 
(1968) 

The paper gives a one-page table for t-power which covers 
any values of the (one-sided) significance level a in the range 
from 0.005 to 0.1, any value of the second-type e r ror  probability 
p in the range from 0.01 to 0.5; and any number of degrees 
of freedom greater than 2. The table gives reasonably accurate 
answers without iteration and using only linear interpolation. 
Eight examples are provided which illustrate a variety of t-power 
problems. 

20. Hogg, R. V. and A. T. Craig, Introduction to Mathematical 
Statistics, the Mac Millan Company, New York (1965). 

Includes chapters on order statistics, sufficient statistics, 
statistical hypotheses and statistical tests. It provides the 
theoretical basis of the Chi-square tests and Bayesian tests. 
It also describes Likelihood Ratio tests and the sequential 
probability ratio test. 

21. Johnson, N. L., "Systems of Frequency Curves Generated by 
Methods of Translation", Biometrika - 36:149-176 (1949). 

Introduces Johnson system of distributions. Reviews literature 
on systems of distributions. Provides a theoretical background 
to Johnson system. Compares Johnson and Pearson systems 
for skewness and kurtosis values. Gives some numerical ex- 
amples. 

22. Johnson, N. L., "Tables to Facilitate Fitting Su Frequency 
Curves", Biometrika - 52:547 (1965). 

In fitting empirical data to a distribution from the Johnson 
family, one usually adjusts the parameters of the Johnson 
distribution to match the first four moments of the original 
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I 
data. However, given the first four moments it is not a trivial 
problem to calculate the correct Johnson parameters. This 
paper provides tables from which the Johnson parameters can 
be obtained. 

23. Johnson, N. L . ,  and S. Katz, Distributions in Statistics: Dis- 
crete Distributions, Houghton-Mifflin co. , Boston, (1969). 

Thorough covering of all known discrete distributions. Gives 
functional form, moments, and other information and discusses 
the estimation of parameters for each distribution. 

24. Johnson, N. L . ,  and S. Katz, Distributions in Statistics: - Con- 
tinuous Univariate Distributions, Vol. - 1 and - 2, Houghton-Mifflin 
Co., Boston, (1970). 

Thorough covering of all known continuous distributions (except 
empirical families). Gives functional form, moments, and 
other information and discusses the estimation of parameters 
for each distribution. 

25. Johnson, N . L . ,  E. Nixon, D. E. Amon, and E. S. Pearson, 
"Table of Percentage Points of Pearson Curves", for given 
,& and 02, expressed in standard measure", Biometrika - - 50: 
459-498 (1963). 

For the general Pearson system of distributions, this paper 
gives tables of percentiles (or solutions of the inverse equation) 
as a function of skewness and kurtosis. 

26. Kagan, A. M., "Estimation Theory for Families with Location 
and Scale Parameters and For Exponential Families", Proc. 
Steklov. Inst. Math. - 104:19-87 (1968). 

This theoretical paper investigates families of distributions 
and estimators. The conditions for admissible estimators are 
discussed. 

27. Kendall. M. G.. and A. S. Stuart. The Advanced Theorv of 
Statistics, Vol.' - 1, Distribution Theory, Charles Griffin & 
C 0 . B ) .  

i 
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28. Kodlin, D. , "A New Response Time Distribution", Biometrics 
23~227-239 - (1967). 

A skewed, two-parameter distribution is described which has 
been found useful in the analysis of human survival time data. 

-(ct+$t 1 2  ) 

The density has the form f ( t )  = (c+kt)e . This form 
is integrable and has manageable first and second moments. 
Since the distribution has non-zero density at the origin, it 
may be of value in connection with those types of responses 
which take place even before observation begins. Description 
of a maximum likelihood technique of estimating the parameters 
is followed by discussion of damage models that incorporate 
the distribution. 

29. Langton, N. H., "Statistical Distribution", Brit. Chem, Engr. 
- 8~478-484 (1963). 

This paper is an elementary article which gives the basic 
concepts and formulae characterizing probability distributions 
and sampling. It discusses the binomial, Poisson, and normal 
distributions and the fitting of empirical data to these distri- 
butions using moments method. 

30. Malik, H. J., "Estimation of the Parameters of the Pareto 
Distribution" , Metrika 1 5 : 12 6 - 13 6 (1 9 7 0). - 

In this paper, sufficient estimators for the parameters a and 
v of the Pareto distribution a r e  obtained. It is shown that 
Y = Min (x , . . . , x ) is sufficient for a when v is known, 
th& sample &eometr$ mean g is sufficient for v when a is 

known; and (Y1, Z &en -) is a joint set of sufficient statistics 

for (a,v) when both are unknown. The exact distribution of 
the maximum likelihood estimator is derived. 

yi 

i=l y1 

N 

31. Mandel, J., "A Method for Fitting Empirical Surfaces to Physical 
o r  Chemical Data", Technometrics - 11(3):411-429 (1969). 

A method, largely graphical, for fitting a distribution to bi- 
variate data is presented. An example is given. The method 
does not require prior assumptions as to the form of the 

C 
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distribution to be f i t .  However, it may not have general appli- 
cability and needs further investigation. 

32. Marshall, A. W. , and I. Olkin, "A Multivariate Exponential 
Distribution", J. Amer. Stat. Assoc. 62:30-44 (1967). - 
A number of multivariate exponential distributions are known, 
but they have not been obtained by methods that shed light on 
their applicability. This paper presents some meaningful 
derivations of a multivariate exponential distribution that serves 
to indicate conditions under which the distribution is appropriate. 
Two of these derivations are based on "shock models", and one 
is based on the requirement that residual life is independent 
of age. It is significant that the derivations all lead to the same 
distribution. 

For this distribution, the moment generating function is obtained, 
comparison is made with the case of independence, the distri- 
bution of the minimum is discussed, and various other proper- 
ties are investigated. A multivariate Weibull distribution is 
obtained through a change of variables. 

33. Massey, Frank J., Jr., "The Kolmogorov - Smirnov Test 
for Goodness of Fit", J. Am. Stat. ASSOC., 46 - (1951). 

The Kolmogorov-Smirnov test which is based on the maximum 
difference between an empirical and hypothetical cumulative 
distribution is discussed. Percentage points are tabulated, 
and a lower bound to the power function is charted. Confidence 
units for a cumulative distribution are described. Examples 
are given. Indications that the test is superior to the Chi- 
square test are cited. 

34. Mann, Nancy R . ,  "Point and Interval Estimation Procedures 
for the Two-Parameter Weibull and Extreme-Value Distributions", 
Technometics - 10(2):23 1-2 56 (1968). 

Point estimators of parameters of the first asymptotic distri- 
butions of smallest (extreme) values, the extreme-value distri- 
bution, a r e  surveyed and compared. Since the logarithms of 
variates having the two-parameter Weibull distribution a r e  
variates from the extreme-value distribution, the investigation 
is applicable to the estimation of Weibull parameters. Those 
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estimators investigated are maximum-likelihood and moment 
estimators, inefficient estimators based on only a few ordered 
observations, and various linear estimation methods. A com- 
bination of Monte Carlo approximations and exact small-sample 
and asymptotic results has been used to compare the expected 
loss (with loss equal to squared e r ror )  of these various point 
estimators. Interval estimation procedures are also discussed. 

35. McGrath, E. J., Fundamentals for Operations Research, 
West  Coast University, 1970, Chapter 3. 

Discussion of probability distributions and estimators for most 
basic distributions. Weibull - describes distribution and typical 
curves and discusses estimators for parameters. Johnson - 
defines distribution, displays typical curve shapes, and gives 
skewness - kurtosis diagram for family. Extensive discussion, 
with examples, of estimation of parameters. Pearson - defines 
distribution types and gives skewness-kurtosis plot for family. 
Discussion of X2-test for evaluation of fits. 

36. Meier, F. A. , "Non-Normal Statistical Distributions and Their 
U s e  in Industrial Engineering", Amer. Inst. of Indust. Eng., 
Tech. Papers,  20 Inst. Conf. and Conv. T1-83 (1969). 

Both the gamma and Weibull distributions are described with 
comments on calculational methods and approximations. A 
thcwough review of methods for estimating parameters is given. 

37. Mengel, P. R., "Fragility Curve Preparation Methods", unpub- 
lished memo, 1970. 

Presents a methodology for fitting data from failure levels 
to a lognormal distribution. Theoretical reasons underlying 
the use of the lognormal for this case are discussed. 

38. Menon, M. W., "Estimation of the Shape and Scale Parameters 
of the Weibull Distribution", Technometrics - 5(2):175-182 (1963). 

Estimates 6 and 6 are proposed for the shape parameter c 
and the scale parameter b of the Weibull distribution on the 
assumption that the location parameter is known. First an 
estimate of l/c is found, the 6 is obtained as l/& When 
b is unknown, d is a consistent and non-negative estimate of 
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d, with a bias which tends to vanish as the sample size increases 
and with an asymptotic efficiency of about 55%. When b is known, 

and its efficiency is approximately 84%. An estimate ten 6 
of &en b is found with an asymptotic efficiency of 95%. It is 
proposed that exp (tn 6) be used to estimate b. 

is an unbiased, non-negative, and consistent estimate of d, 

39. Neave, H.R. and C.W. J. Granger, "A Monte Carlo Study 
Comparing Various Two-Sample Tests for Differences in Mean", 
Technometrics, - 10 (3) (1968). 

A study was conducted on eight tests for differences in means 
under a variety of simulated experimental situations. Estimates 
were made of the power of the tests and measures made of 
the extent to which they gave similar results. In particular 
the performance of a new quick test developed by Neave was 
studied. 

40. Pearson, K., "Mathematical Contributions to the Theory of 
Evolution - Supplement to a Memoir on Skew Variation", Trans. 
Roy. Phil. SOC. London - 197:443 -459 (1901). 

One of the classic papers introducing some of the Pearson 
system distributions and giving some examples. 

41. Pearson, K., "Mathematical Contributions to the Theory of 
Evolution - Second Supplement to a Memoir on Skew Variation", 
Trans. Roy. Phil. SOC. London A216:429-457 (1916). 

Classical paper setting forth the properties of the Pearson 
system and the distributions in it. 

42. Pearson, E. S., and H. 0. Hartley (eds), Biometrika Tables 
for  Statisticians, Vol. I, - sections 23-24, Cambridge Univ. 
Press (1958). 

The basic functional forms and some properties are given for 
each distribution in the Pearson system. Some applications 
showing the fitting to empirical data are discussed. 

43. Pickands, J. III, "Efficient Estimation of a Probability Density 
Function", Ann. Math. Statist. - 40(3):854-864 (1969). 
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Some theoretical results in using the "kernel method" to esti- 
mate a probability density function a r e  derived. 

44. Plait, Alan, "The Weibull Distribution - with Tables", Indus- 
trial Quality Control - 19(5):17-26 (1962). 

Describes Weibull distribution and gives extensive tables to 
aid in curve fitting. 

45. Press ,  S. J., "The T-Ratio Distribution", J. Amer. Stat. Ass .  
6 4 : 2 42 -2 52 ( 1 9 6 9) . - 
The distribution of the ratio of correlated student T-variates 
is of interest in problems in econometrics and ranking and 
selection. The density of this ratio is derived and computer 
graphs of the density are given in terms of standardized variates. 
Fractiles are given for selected parameter values. It is shown 
that the distribution contains no moments. 

46. Schwartz, S. C., "Estimation of a Probability Density by an 
Orthogonal Series", Ann. Math. Statist. - 38:1261-1265 (1967). 

The estimation of an unknown probability desnity function from 
a realized sequence of random numbers is considered. An 
approximation in terms of a sum of Hermite polynomials is 
made and equations for the coefficients a r e  derived. Conver- 
gence to the correct density function is proven and convergence 
rates are calculated. Comparison to the kernel method is 
made. 

47. Shapiro, S. S. and M. B. Wilk, "An Analysis of Variance Test 
For Normality (Complete Samples)", Biometrika, 52 
(1965). - 

A new statistical procedure (W Test) for testing a complete 
sample for normality is presented. The test statistic is ob- 
tained by dividing the square of an appropriate linear combin- 
ation of the sample order statistics by the usual symmetric 
estimate of variance. Presented are derivation, properties, 
and applications of the W test and comparison with other tests. 

48. Suzuki, Giitiro, "On Exact Probabilities of Some Generalized 
Kilmogorov's D-Statistics", Institute on Statistical Mathematics, 
Annals, Tokyo, - 19 (1967). 
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This paper gives a unified computational method for exact 
probabilities of the most generalized form of the D-statistic 
proposed by Kolmogorov for non-parametric tests of f i t .  
First, a historical survey of the subject is given and then 
goodness-of-fit D-tests are stated (based on some general 
bounds) by constructing general acceptance and confidence 
regions, sizes of which are calculated in a distribution-free 
way. The method is also applied to calculation of the exact 
power of tests for a certain continuous alternative. A com- 
putational method for the functional a?(. . . ) is presented. 

49. Takahasi, K., and K. Wakimoto, "On Unbiased Estimates 
of the Population Mean Based on the Sample Stratified by Means 
of Ordering", Ann. Inst. on Stat. Math., Tokyo, 2O:l-31 (1968). - 
In many experimental situations, it is costly and time-consuming 
to make accurate measurements while at the same time judg- 
ments as to relative order of size can be made easily. This 
paper describes techniques for ordering subgroups of a large 
sample, then picking a smaller sample, using the stratification 
induced by the ordering. Accurate measurements a r e  made 
only on the smaller sample. An unbiased estimate of the popu- 
lation mean can be generated from this small sample with much 
less variance than would be obtained in estimating from a sample 
of similar size, but randomly chosen. This is basically an 
example of stratified sampling, but as applied prior to experi- 
mental measuring rather than to choices made in simulation. 

50. Tarter,  M.E., R.L. Holcomb, and R.A. Kronman, "After 
the Histogram, What? A Description of New Computer Methods 
for Estimating the Population Density", Proc. ACM 22nd Natl. 
Conf. P-67~511-519 (1967). -- 
The kernel method for estimating a probability density function 
from a sequence of random observations is discussed. A s  
an alternative, a Fourier expansion is considered for an esti- 
mate of the density. Restrictions on the function and the optimum 
order of the expansion is derived, Computer implementation 
of this algorithm is discussed and several applications are 
displayed. 

51. Thoman, D.R., L. J. Bain, and C. E. Antle, "Inferences on 
the Parameters of the Weibull Distribution", Technometrics 
- 1 l(3) ~445-460 (1969). 
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The problems of estimation and testing hypotheses regarding 
the parameters in the Weibull distribution a r e  considered in 
this paper. The following results are given: 

1. Exact confidence intervals for the parameters 
based on maximum likelihood estimators are 
presented. 

2. A table of unbiasing factors (depending upon 
sample size) for  the maximum likelihood esti- 
mator of the shape parameter are given. 

3.  Test of hypotheses regarding the parameters 
and the power of the test regarding the shape 
parameter are developed and presented. 

4. Sample sizes at which large sample theory 
may be useful are presented. 

52. Thornber, H., "Finite Sample Monte Carlo Studies: An Auto- 
regressive Illustration", J. Arner. Stat. Assoc. - 62:801-818 
(1967). 

In this paper the problem of choosing among point estimators 
on the basis of their small sample properties is discussed 
from the sampling point of view. The indeterminacy of most 
Monte Carlo studies is analyzed and resolved within the frame- 
work of statistical decision theory. A first order auto-regres- 
sive model is worked through in detail both for its own sake 
and to illustrate how a complete Monte Carlo study might be 
done. 

53. Weibull, W., "A Statistical Distribution Function of Wide 
Applicability", J. App. Mech. - 18(3):293-297 (1951). 

Introduces the Weibull distribution and gives several examples 
of fitting to it. 

54. Weiss ,  L. ,  and J. Wolfowitz, "Maximum Probability Estima- 
tors", Ann. Inst. Stat. Math. Tokyo 19 193-206 (1967). 

A new class of estimators, called maximum probability esti- 
mators, is suggested as an alternative to maximum likelihood 
estimators. 
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55. White, J. S. , "The Moments of Log-Weibull Order Statistics", 
Technometrics - 11:373-386 (1969). 

Formulas for the moments of the order statistics of a general 
distribution are derived. Then the log-Weibull distribution 
is introduced and the moments of its order statistics are cal- 
culated. An application showing how this can be applied to the 
fitting of a Weibull distribution to empirical data is given. 
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