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FOREWORD

One of the objectives of an information analysis center
is to make available or call attention to particularly wvaluable
information which otherwise might be overlooked in the great
mass of published literature. To further that objective, we
are reprinting this series of reports on the Monte Carlo method.
The series was originally written to bring together for one
technical community Monte Carlo information that was widely
scattered. It was pointed out that techniques developed for
neutron transport calculations could be used for quite different
application., Here, we point out the reverse: a comprehensive
review of Monte Carlo for defense applications is useful to the
radiation transport community. In thinking of Monte Carlo as a
simulation of the transport process, we sometimes forget that it
is a powerful mathematical tool for solving multidimensional
integral equations arising in many other situations.

We are grateful to the Office of Naval Research for granting

us permission to reprint these reports. We feel this work will
be of much greater usefulness as a result.

D. K. Trubey

Radiation Shielding Information Center
November 1974
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ABSTRACT

This document is the first of three volumes which
present techniques and methods for developing efficient Monte
Carlo simulation: Each volume presents techniques for re-
ducing computational effort in one of the following areas:

Vol. I - Selecting Probability Distributions, Vol. I - Random
Number Generation For Selected Probability Distributions,
and Vol. III - Variance Reduction.

This volume provides a straightforward approach and
associated techniques for selecting the most appropriate pro-
bability distributions for use in Monte Carlo simulations. Part
I, BASIC CONSIDERATIONS, presents the underlying concepts
and principles for selecting probability distributions. Part II,
SELECTION OF DISTRIBUTIONS, gives the mathematical models
representing stochastic processes and presents step-by-step
procedures for identification and selection of the appropriate
probability distributions based upon the degree of knowledge and

available data for the random variable under study.
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EXECUTIVE SUMMARY

Monte Carlo simulation is one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications
can be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include: analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of applications
has been broadening and the size, complexity, and computational effort re-
quired have been increasing. However, such developments are expected
and desirable since increased realism is concomitant with more complex and

extensive problem descriptions.

In recognition of such trends, the requirements for improved simu-
lation techniques are becoming more pressing. Unfortunately, methods for
“achieving greater efficiency are frequently overlooked in developing simula-

tions. This can generally be attributed to one or more of the following

reasons:

e Analysts usually seek advanced computer systems to

' perform more complex simulation studies by exploit-
ing increased speed and/or storage capabilities. This
is often achieved at a considerably increased expense.

e Many efficient simulation methods have evolved for
specialized applications. For example, some of the
most impressive Monte Carlo techniques have been
developed in radiation transport, a discipline that does
not overlap into areas where even a small number of
simulation analysts are working.

¢ Known techniques are not developed to the point where
they can be easily understood or applied by even a
small fraction of the analysts who are performing simu-
lation studies or developing simulation models.
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In addition to the above reasons, comprehensive references describing
efficient methodologies to improve Monte Carlo simulation are not avail-
able. It is the intent of these volumes to help alleviate the above short-

comings in Monte Carlo simulation,

This document is the first of three volumes which present techniques
and methods for developing efficient Monte Carlo simulations. Each volume
is essentially a self-contained discussion of useful techniques which can be
applied in reducing computational effort in one of the following three major

aspects of Monte Carlo simulation:
e Selecting Probability Distributions - Volume I

e Random Number Generation for Selected Probability
Distributions - Volume II

® Variance Reduction - Volume II

The purpose of these volumes is to provide guidance in developing
Monte Carlo simulations that accurately reflect the behavior of various
.characteristics of the system being simulated and are most efficient in
terms of computational effort. The basic intent is to provide understanding
‘of the concepts and methods for reducing analysis and computational effort
as well as to serve as a practical guide for their application. They have
been prepared primarily for the systems analyst and computer programmer
who have a basic background and experinece in simulation and elementary
statistics. Thus, the material is presented so as to preclude extensive
knowledge of statistical techniques or of extensive literature search., How-
ever, it is assumed the reader has a grasp of the fundamentals of Monte

Carlo methods, simulation modeling, and elementary statistics.



1. INTRODUCTION

The starting point in developing any Monte Carlo simulation is the
construction of mathematical models which describe the stochastic be-
havior of the variables in the process under study. When the underlying
processes are well understood and the functional forms of the variables
are known, development of a model is straightforward. However, in many
applications the exact functional form of the variable is not known, thus re-
quiring seleéction from among a myriad of possible distributions to find the
one that will best represent the process. This volume provides a straight-
forward approach and associated techniques for selecting the most appro-

priate probability distributions for use in Monte Carlo simulations.

Part I of this volume, BASIC CONSIDERATIONS, presents the under-
lying concepts and principles to be used in the selection of probability dis-
tributions. This background information provides the reader with an under-
standihg of the important considerations, tasks, and methods and procedures

involved in dealing with simulation events characterized by random variables.

Following Part I, the reader will find in Part II, SELECTION OF
DISTRIBUTIONS, the mathematical models which will represent the stochastic
behavior of the process as accurately as the data and understanding of the
processes will allow. Part II presents step-by-step procedures for the
identification and selection of appropriate probability distributions. PartII
applies the rationale developed in Part I to the problems of developing dis-
tributions based on varying amounts of data and depth of understanding of

the processes being simulated.

This volume also includes additional information useful in the selec-

tion of probability distributions. Appendix A contains background information



of the complex parametric families of distributions which will be useful

for the reader who has not encountered these distributions before. Appen-
dix B contains tables which are needed in making computations involving
distribution fitting and testing. Appendix C is an abstracted bibliography

of publications relating to the subjects of probability distribution identifica-

tion and selection.



PART 1

BASIC CONSIDERATIONS
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2. FUNDAMENTALS OF DISTRIBUTION SELECTION

Selection of an appropriate probability distribution for a given
random variable in a simulation requires gathering and evaluating all
the available facts, data, and knowledge concerning each variable. It
is also important to know how the particular process which any given
variable represents relates to the entire simulation model. For Monte

Carlo applications this includes careful investigation of:
e Each individual process or event
e Underlying theory of the process
e Data representing the variability of the process

e Sensitivity of the process being simulated to probable
values of the variable

e Simulation programming considerations

When the variable under consideration is just one among many vari-
ables which affect the overall problem or system, the simulation is often
not very sensitive to the choice of the distribution. This can be likened
to the phenomenon of summing a series of random variables, none of which
dominates the sum. In this case the total tends to have a normal distri-
bution irrespective of the individual distributions (see Refs. 7,2%7). In other
cases, the selection of a distribution is more critical to effective simulation.
For example, when only a few variables dominate the process or the process
is greatly influenced by rare occurrences (e.g., failure of a critical high
reliability component) the selection of probability distributions becomes

of paramount importance. (7,27) -

Choosing the form of probability distributions is often a tré.de-
off between theoretical justification and empirical evidence. Typically,

some form of parametric distribution can be justified, such as the



normal, uniform, binomial, or Bernoulli distribution. Available data
can then be used to estimate its parameters. In the absence of empirical
data, one is forced to choose distributions on either theoretical or intui-
tive grounds, or often to use several distributions and conduct sensitivity
or worst-case analyses. At the other extreme, where empirical data

is abundant, either the histogram can be used or more elaborate para-

metric models can be employed.

The final choice of a particular distribution type is, of course,
also dependent on ease of implementation. Computer storage space,
computation time, and ease of programming are key considerations in
most simulations. Generating random variables from a parametric
distribution requires taking an inverse of the cumulative distribution
function or using other random number generation techniques (see Vol-
ume II). For some distributions, such as the exponential or uniform,
the inverse operation is a simple computation. For others, such as
the normal, relatively simple techniques are available. Histograms
are also fairly easy to use in computer simulations. Here, only a list
of numbers must be stored (the more variable and detailed the histogram,
of course, the longer the list). For many distributions, however, in-
verse algorithms for generation of random numbers do not exist, and
other methods require lengthy computation. In this case, a com- |
promise must be made between ease of computation and simulation accu-
raCyo Making an estimate of how sensitive the total simulation will be
to individué.l probability distribution assumptions is important in deter-

mining this compromise.
2.1 BASIS FOR MAKING SELECTIONS

Before proceeding to the techniques of distribution selection
and their application in simulation development, it is necessary to un-

derstand the underlying concepts for making selections. Basically, the



selection process described in Part II depends on two factors: the
extent of knowledge of the process under study (qualitative) and the
amount of data available (quantitative). Knowledge of the process refers
to the level of understanding of its behavior and characteristics. For
example, it is possible in some cases to be quite certain that the fre-
quency distribution of a random variable is normal based on familiarity

~ with the process. At the other extreme, little or nothing may be known.
Similarly, the amount of data describing a particular variable may range
from extensive to none. Each combination of the state of knowledge and
amount of data poses particular problems in selecting the most appro-

priate distribution. -

2.2 QUALITATIVE BASIS FOR SELECTION

Developing an understanding of some random process involves
analysis to characterize the process. In general, such efforts attempt

to identify the process on the basis of:
® Similarity to some other process whose behavior is known
e Underlying theory
e Certain qualitative aspects.

Often a process can be likened to some other, the behavior of
which is known. In such circumstances, it can be reasonably justi-
fied that this known distribution might apply to the one under study.
For example, consider the simulation of a process involving the
human performance of some manual task. Even though the task may
bear no particular resemblance to one in which the distribution is
known, an assumption of similarity is reasonable. The frequency
distribution of time of performance is likely to be from the same
family of distributions even though the actual process might be quite
different.



Many activities for which stochastic models must be developed
can, at least generally, be identified by some applicable theory. Con-
sider the case in which some repetitive human activity is involved such .
as in maintenance. Maintainability theory would indicate a strong like- N
lihood that the frequency distribution of time to perform would have a
log normal or a gamma distribution. Similarly, if the failure of elec-
tronic parts were to be modeled, it could be assumed that an exponen-
tial or possibly a Weibull might be applicable (53). Such reasoning is
a fundamental part of the task of distribution selection.

There are, of course, many situations in which a theoretical
basis for a particular distribution can be established. C‘onsider the
shots fired at a target or the velocity of a molecule in a stable solution.
-- Under fairly weak conditions the velocity of the molecule or the devia-
- tion of shots (in three-dimensional space) from the bull's eye can be .
shown to have a Maxwell distribution (27). The component of velocity
in any direction or the projection of shots onto any axis through the
bull's eye follows the normal distribution. In two dimensions the re-
sulting distribution is the Rayleigh. If the process being modeled in-
volves reliability, the exponential distribution reflects the behavior of
an item with a constant failure rate. If the process involves waiting
or queueing phenomena, the exponential can be used to depict random
arrival and service times. The gamma distribution also has wide
application since it is related to the exponential distribution. The |
number of occurences up to a given point in time has a gamma distri-

bution if the time between occurrences follows an exponential distribution.

In some cases, it will not be possible to relate the process be-
ing examined to anything which is known. This may be either because
little understanding of the process exists or it simply bears no relation

to any process whose behavior can be described on a theoretical basis. :
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However, there still may be some clues which are useful in identifying
an applicable distribution, particularly where some data exist. A num-
ber of qualitative aspects of the process can be helpful. These include,
for example, consideration of whether the variable is discrete or con-
tinuous, bounded, symmetric, or can be described in some other sim-
ilar ways. Such clues, although probably not sufficient for positive
identification above, are useful in making a rational selection of a

distribution.
2.3 QUANTITATIVE BASIS FOR SELECTION

One of the most common prbblems in simulation is not having,
or not being able to obtain, the data necessary to describe a particular
variable. Collecting it may be too time consuming or expensive. In
some cases it is simply not possible. Consequently, the amount of data
available is one of the major considerations in the selection of prob-
ability distributions.

Where sufficient data are available, an empirical approé.ch
can be used. This means essentially using the data to derive a
model. Combined with the state of knowledge of the process being
modeled, graphical and analytical techniques can be employed to

select the distribution most representative of the data.

In those cases where acquisition of the data is difficult, the
application of the methodology of Part II can be useful in determin-
ing whether such effort is warranted. If a distribution can, in fact,
be selected with little data, there may be no justification for collect-
ing more. If, on the other hand, a distribution cannot be identified
and the simulation results are sensitive to that particular variable,

additional data may be essential for developing a valid model.
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3. TECHNIQUES USED IN DISTRIBUTION SELECTION

Specific techniques for se'lecting’a particular stochastic mod-
el depend on the information and the amount of data available. The
situation can range from having practically nothing to work with to

almost certain specification of the model based on sound theoretical

- and empirical evidence. The development of the theoretical evidence

is entirely qualitative. Development of the empirical evidence, though,

requires the use of a number of quantitative methods. These include:

e Sensitivity analysis
e Graphical analysis

- e Parameter estimation
e Goodness-of-fit-testing.

Each of these is introduced briefly in the following sections.
3.1 SENSITIVITY ANALYSIS

The purpose of sensitivity analysis is to determine the extent
to which the outcome of an analysis is dependent upon a particular
variable or assumption. It is particularly applicable in simulation
where little or no data is available to characterize some random var-
iables. In such a situation, sensitivity analysis can indicate whether
or not the behavior of the variable must be more accurately known.
If, for instance, the outcome of the simulation is not sensitive to the
variable, no further effort to characterize it is necessary. However,
if it does prove sensitive, an attempt to develop an accurate distribu-

tion model is warranted.

The only practical way to perform the sensitivity analysis is -
to perform a simulation varying the values or assumptions concerning

the variable in question. Comparison of the results using standard
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statistical tests can reveal whether significant differences are pro-
duced (see Sections 3.4 and 9.). This is not so formidable a task as

it might at first appear. If the simulation is to have any real validity
in the first place, the behavior of most of the variables must be known.
If only a few variables can be accurately described, a simulation

merely produces a precise but inaccurate result.

3.2 GRAPHICAL ANALYSIS

One of the topics in elementary applied statistics is the con-
struction of frequency histograms and cumulative frequency pblygons.
These procedures provide one means for identifying appropriate dis-
tribution models under the proper circumstances. Where such tech-
niques are applicable they do offer the advantage of relative simplicity.
They are most.useful when there is some knowledge of the process and

at least minimal data available.

The histogram is constructed from data concerning the vari-
able. It carries with it all the present empirical information available
on the variable, nothing more. It does not try to estimate probable be-
havior. If rare events have not been observed, for instance, it will
assign zero probability to their occurrence. Since it uses all data, it
also perpetuates the mistakes of erroneous observations and may
describe a model that is not valid.

The most common graphical procedure is the construction of -
the frequency histogram. This is simply a plot of the frequency with
which each of various values occurs in the sample data. The histo-
gram is useful in two ways. It provides visual evidence of the shape
of the distribution which can be useful in selecting a distribution. It may

also be used directly in the simulation as the model of the process.
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When data is abundant the use of the histogram is often adequate
for many Monte Carlo applications. In using the histogram, care must
always be exercised to remove obvious errors and to consider low
probability events. When only limited data is available the histogram
approach suffers from sampling peculiarities and from lack of observa-
tions in any tails of the distribution. In this 'case more effective distri-
butions can be developed by taking into consideration other informa-
tion about the behavior of the variable or by obtaining additional infor-
mation from the data, e.g., by estimating higher moments. This
information can range from an understanding of the theoretical nature
of the variable to intuition. It might be assumed, for example, that
the underlying real distribution is continuous; then smoothing proce-

dures can be applied to the histogram to obtain a continuous curve.

Another graphical procedure useful in the selection of proba-
bility distributions involves the use of probability paper. As with the
histogram, there is a large element of subjectivity in this procedure,

It involves selection of an appropriate probability paper from those avail-
able and plotting the sample distribution function. Judgment is required

in deciding whether the plot sufficiently approximates a straight line.

The use of graphical procedures in simulation development

is described in Section 6, Part II.
3.3 PARAMETER ESTIMATION

A parametric distribution is defined to be a functional-or
analytical representation for a probability distribution which depends
on one or more parameters. Although use of such distributions re-
quires that the parameter(s) be estimated, there are a number of

reasons for using a parametric distribution function rather than a
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histogram in developing a mathematical model. In particular, a parame-

tric distribution:

L Provides a convenient means for inclusion of additional
information about the variable (such as known upper and
lower limits on the data).

e Allows meaningful extrapolation into the tail(s) of the
distribution and into regions where no data was available.

e Allows incorporation of the additional information inher-
ent in the shape of the distribution if there is a theoretical
justification.

e Provides for a reproducible means of representing the
data since freehand "fit" to the same data will vary from
person to person.

e Provides important summary information about the vari-
able in the form of estimated parameters of the fitted
distribution.

e Provides a more compact representation of the random
variable usually resulting in less data storage requirements.

¢ Allows construction of reasonable and convenient models
in cases of no data or very limited data.

e Provides for efficient and convenient random number gen-
eration in most cases.

e Facilitates analytic (rather than simulation) studies of
portions of the process. '

e Permits a convenient means whereby analysis of the sen-
sitivity to the shape of the distribution can be accomplished.

To facilitate the presentation of parametric distributions, the
individual parametric families have been classified as being either of

a simple or of a complex nature. The difference between these two
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classifications is mainly the number of parameters necessary to
describe the distribution. The simple distributions are character-

ized by no more than two parameters, the complex by more than two.

The other distinguishing feature is that simple distributions
are those which are commonly encountered, relatively easy to recog-
nize, and have some theoretical basis for their functional form and
application. Thus, simple parametric families of distributions can
often be derived from assumptions about the process generating the

random variable or from graphical evidence based on the data.

The complex parametric families generally do not have a
"nice'’ physical interpretation or a simple functional form. They
can be viewed more as abstract inventions which admit enough shapes
to insure a reasonable fit to any set of observations. They also pro-
vide greater flexibility than simple distributions in projecting events

of the process that would appear in the tails of the distribution.

3.3.1 Simple Parametric Distributions

The simple distributions include, but are not limited to, the
normal, gamma, binomial, exponential, and other distributions which
can be defined by at most two parameters. For the purposes of select-
ing an appropriate probability model, a simple distribution will be in-
dicated by the underlying theory of the process or by preliminary selec-

tion using graphical procedures referred to previously.

One of the most common and useful of the simple continuous
probability functions is the normal distribution. Much of the appeal
of this distribution is based on a the central limit theorem. In essence,
this states that the sum of independent variables tends to be normally

distributed. (27) This assumes, of course, that none of the individual
b
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elements of the sum dominates its behavior. Since many variables which
are modeled in Monte Carlo simulations are in reality derived from

several variables, the assumption of a normal distribution can often be .
justified. ‘ ,

Since simple parametric distributions are discussed in detail in
most elementary textbooks on probability, they are not discussed in de-
tail here. However, a summary of the more common simple paramet-

ric distributions is given in Section 4. 3.

3.3.2 Complex Parametric Distributions

As used in this volume, complex parametric distributions are
defined as the Weibull, Johnson, and Pearson distribution families.
The functional form of these distributions is somewhat complicated,
“and three to five parameters are often required to define the specific dis-
" tribution. Reverting to the analytic procedures to generate these dis-

tributions is most necessary when a simple distribution cannot be jus-

rs

tified and the simulation results are dependent upon rare events.

- Rare events are usually related to the tails of the distribution. For
~-certain events or processes to be simulated sufficient observations
to accurately define the tail regions may not exist. In such cases,
one usually employs smoothing techniques utilizing parametric func-
tions to extend or infer the behavior of the tail regions from available
data.

Using a complex parametric distribution can be viewed as a
convenient way of smoothing the raw data and expressing the smoothed
data in functional form. These three families admit almost every type
of probability distribution, one fnajor excepiion being composite dis-
tributions made up of several distinct populations, e.g., multimodal
distributions. In fact most of the simple parametric distributions are

special cases of a Weibull, Johnson, or Pearson distribution. -
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If the reader is interested in a further discussion of these dis-
tributions, background information is contained in Appendix A. The
material there is not, however, essential for understanding the prin-

ciples discussed in Part I or the methods described in Part II,
3.4 GOODNESS-OF-FIT TESTS

After initial selections of a distribution for a Monte Carlo
application and where sample data are available, it is usually worth-
while to try and validate or substantiate these choices. The validation
step of the selection procedure is especially critical when it has been
determined that the Monte Carlo result will be sensitive to distribution
selection. More generally, developing confidence in the distributions
used in any simulation adds to the confidence in the total simulation in

addition to aiding in the overall understanding of the process.

One of the most useful methods used in validation is called
goodness-of-fit-tests. These are statistical procedures for testing
whether sample data can reasonably be expected to be representative
of (drawn from) a particular probability distribution. Essentially,
there are two such tests which have found wide application since they
can be applied to any distribution. These are the Chi-Square test and
the Kolmogorov-Smirnov test. A brief description of each of these two
tests is presented below. In addition there are a number of specialized
tests such as the W-test for a normal distribution and the WE -test for
an exponential distribution which are useful. Specific details for apply-

ing these tests are contained in Part II, Section 9.

One word of caution should be noted in using these tests. The
statistical inferences based on these tests rely on asymptotic proper-
ties. Thus a fair amount of data is required to obtain valid interpre-

tations. Where limited data are available or many erroneous data
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points are believed to be in the sample, the usefulness of these tests

may be questionable.

Chi-Square Test: This common goodness-of-fit-test is made by

subdividing the data into groups or intervals and comparing the num-
ber of actual observations Ai in the ith interval to the number expected Ei
as computed from the assumed distribution. The statistic employed in
this method is
2
2 ) i (4, - E))
n-1 o= R
Under the null hypothesis (observations are from the assumed distribution)
the distribution of this statistic asymptotically approaches a Chi-Square

distribution with n-1 degrees of freedom.

The Chi-Square test has certain obvious shortcomings. In addi-
tion to being sensitive to sample size, this test is also sensitive to data
grouping. Different investigators conducting this test will tend to get
different results. One requirement in using the test is that each cell
or subgroup should have a sufficient number of observations in it.

Some authors (27) feel that a good test requires at least twenty obser-
vations per cell and that there should also be between five and twenty

cells,

Kolmogorov-Smirnov Test: This goodness-of-fit test is made

by computing the maximum difference between the sample cumulative
distribution function and the assumed distribution function. This dif-
ference, under the null hypothesis, has a known asymptotic distribu-
tion which is available in table form (see Appendix B). ‘The Kolmogorov-

Smirnov is generally considered to be more sensitive than the Chi-Square
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test and also has the advantage that arbitrary data grouping decisions
are not required. Its disadvantages are that it is usually more com-

putationally difficult to apply, and if the hypothesis is rejected, the
reason for the rejection is less clear.
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PART II

SELECTION OF DISTRIBUTIONS
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4. DISTRIBUTION SELECTION PROCEDURES

This section presents a systematic set of procedures for selecting
the most representative model for a random variable in a simulation.
The procedures selected depend on two types of knowledge of the random

variable in question. These are:

1. Empirical Data (Quantitative Observations)
2. Understanding of the Random Process (Qualitative A Priori
Knowledge).
Based on the degree of knowledge in each category, a set of procedures
for selecting a distribution has been constructed. By following a particu-
lar procedure the most appropriate probability model can be easily

selected.

The initial discussion in this section is devoted to a discussion of
selecting the appropriate procedure to be used based on the degree of
available knowledge of the random variable in question. Secondly, this
section is devoted to presenting a brief guide to using the remaihing sec-
tions of Part II. This section is concluded with a table listing all the
candidate distributions considered here. This table also summarizes the
characteristics of these distributions. The rest of Part II is concerned with
how one performs the specific operations which lead to selection of the

appropriate probability distribution model.
4.1 PROCEDURES FOR SELECTING DISTRIBUTIONS

The particular selection procedure for a probability model is de-
termined by the extent of empirical data and knowledge of the random
process in question. The extent of empirical data can, for convenience,
be broken into three categories: none, some, and ample. This cate-

gorization is given in Table 4, 1.
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TABLE 4.1

Extent of Empirical Data (Observations)

Category 1 2 3
Description none some ample
Number of 0-5 5-20 over 20
Observations

The extent of knowledge of the random process is, for conveni-

ence, broken into four categories: no knowledge, qualitative knowledge,

reasonably good ideas, and reasonable certainty. These categories
are described further in Table 4. 2. It should be clear that the more
data and the greater the a priori qualitative knowledge available, the

easier the selection process is and the greater the certainty of obtain-

ing a good probability model.

TABLE 4.2

Extent of Qualitative Knowledge of the Random Process

likely values,
etc.

Category 1 2 3 4
None: Qualitative: Good ideas: Reasonable
certainty:
Description | No Some Reasonably Good basis
qualitative | knowledge of | based for expect-
knowledge | the random expectations | ing the dis-
of the process, i.e. | that the .tribution to
random continuity, random be some
process range, 1 variable is known
symmetry, one of a few | family
shape of known
distribution, | families
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A concerted effort should be made to use all a priori knowledge.
This means that all the qualitative characteristics listed under Category
2 in Table 4.2 should be written down, if known. This will also help
in sketching a probability density or frequency curve. Table 4.3 should
also be consulted to determine if Categories 3 or 4 are appropriate.
Table 4.3 lists all of the probability distributions considered here. These
are arranged in two groups, the simple parametric distributions and the
complex parametric distributions. This table also summarizes the
characteristics of these distributions. Table 4.3 is very useful as a
reference in selecting a probability distribution since almost all of the
information needed for selection is presented. To this end, therefore,
the columns in Table 4.3 entitled Comments and Justification and Applic -
ations may give characteristics that fit the problem at hand. Any
distributions that appear appropriate should be listed so that knowledge

at a level of Category 3 or 4 can be used.

Once the categories for empirical data and knowledge of the
random process have been established from Tables 4.1 and 4.2, a specific
selection procedure can be identified from Table 4.4. Table 4.4 is
simply a matrix indicating all possible combinations of data and knowledge
categories. For each combination, a figure number is indicated. Each
figure presents the details of the particular selection procedure that it

represents.

A discussion of the selection procedures presented in Figure 4.1-
4,12 and how that material is used is contained in the following section
4.2).



Simple Parametric Distributions:

Summary of Probability Distributions

TABLE 4.3

ments & References
Distribution Functional Form of f(x) Recom%]:?id;gtgf‘l:ameter Goodness-of-fit Test E\?sntliﬁsation Applications (See App. C)
Uniform 1 _ (2) R .
ey asxsb b = max [xl, N .,xn] d-test Equal probability in any | Wide use for e\(epts 15, 24,35
2 interval of equal probability
a=min[x1,....,xn] X~ - test
Exponential N e_Mx -¢€) Kz ¢ = min [xl, ey xn] WE - test or Wide appli'cability to any |Queueing, quality con- | 6,11,15,17,
process with no 'mem- trol, reliability, etc. 24,35
2 >0 r=1/X-¢ WE -test if ¢ is known ory' of the past and con-
stant rate, e.g., a
process where (proba-
bility of event)/time in-
terval is constant and
independent of time
elapsed.
Normal 2 2
1 -{(x - u)/2y 2 = . .
—_—e o u=X W - test Any variable generated Physical measure- 15, 24,29, 35
o0/27 2 2 by the sum of many ments on living or-
o =8 uniform random num- ganisms, intelligence
bers. Wide applica- scores, product
bility as it is often dimensions, bombing
justified by the central errors (1 dimen-
limit theorem. sional), average
temp., etc.
Cauchy 1 L e g <m u = sample median The ratio of two inde- Ratio of standard- 15, 24, 29
a1+ (x - )] ! pendent normalized ized noise readings.
H N normal random varia- Caution: Cauchy
bles. Distribution of moments are infinite;
tan A if 6 is uniform. | behavior in a Monte
Carlo program will
be erratic.
Rayleigh X e-x2/202 xz 0 02 =% x2 xz - test Sum of squares of two Bomb sighting prob- 15,24, 29
2 2 independent normal- lems; amplitude of
o 0" >0 d - test ized random variables, noise envelope for
i.e., radial error linear detector.
when x and y errors
are independent and
normal with same stan-
dard deviation.
Gamma k _ 1 = 2 The time for exactly k Time between inven- 3,15,17, 24,
F/\Zk_) xk'le"\x x=0 A= g? X v - test independent events if tory restocking or 29,36 ’
1 >0 d- testz events occur at constant | recalibration, time
k =A% rate A. to failure lwithlstand-
k>0 by, queueing time
distributions.

n
1
X = 5 Z xij sample mean
i=1

9¢

n
LE (x, - )_()2 sample variance
n-1 i ’
i=1
2 d - test may not be strictly applicable but can still be used.

3Ret‘erences quoted can be found in the abstracted bibliography of Appendix .



Minimum value:

l(X- )
1 ex l(x- ) ~e” ¥
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gamma, normal, log-
normal, and exponential.

. - A .. . N [
‘'ABLE 4,3 (Lontinueq)
. Recommended Parameter . Comments & S References
Distribution Functional Form of f(x) Estimators Goodness-of -fit Test Justification Applications (See App. C)
Beta 1 Tiy+n) (x_a)y-l [1 %-a -1 ) Zall% z Al 2 Atbtgsif: difstributi_or;)lof Pistribution gf timg to | 12,15,24,
oy by - b-a - 1- -a][ -a(l_ -a) -S} ~ statistics for variables ask completion, dis- 20
ba TGIrm) b-a ntZ [ b-a|[b-a\ b-a X - test bounded at both sides. | tribution of daily yiéld
a<x<b d- test2 in manufacturing
X- processes.
y>0 n(—b_:)
n>0 Y= 3(-_3)
(1' b-a
Pareto aeh xM1 x2e e=minfx), ... X X2 - test Distribution of income | 24, 26
2 and property values.
%711 d - test
A = |log=
€
Log-normal 1 . exp __(ln(x_()_u)z € = min [x;, 1Xp ] W - test A random variable Size distribution from |24, 37
olx - ¢) J2m 22 whose logarithm is breakage, various
normal. economic distributions,
Xz e = Inkx; -« Model for a process v;ilnous blololg}cal
arising from the multi- g fnorp?}gg.l}te test
o>0 plication of many uni- ata, reliabilily.
2_ _ form random numbers.
o= Inf; - €) Appropriate when the
value of a variable is
a random proportion
of the previously ob-
served value.
Folded 2,2 2 2] See Reference 9 2 Distribution of the ab- 9,24
Normal - [e_(x-“) /207, o~lxm)/20 X - test solute value of a normal ’
o2 d- test2 variable.
x>0
g?sdtlxl-?l;\sxtions (n+ yx)e-(nx +1/2 93 See Reference 28 2 - and d-test? Suggested for a 28
: variety of survival
time data.
Extreme Maximum value: o = 1.2838 XZ - and d-test2 The asymptotic distri- Maximum wind gust 15,34, 35
Value _ l(x- ) _ bution for the maximum | velocities, stock
Distributions| 1 . f_ l(x -y -e © ® p = X-.517T¢ Maximum (or minimum) of a large| market maxima or
o Pl 5 K _ number of values from minima, flood or
p = X+.5170c Minimum such distributions as drought distributions.

L2



Discrete Distributions

TABLE 4.3 (Continued)

Recommended Parameter

Comments &

References

Distribution Functional Form of f(x) Estimators Goodness-of -fit Test Justification Applications (See App. C)
*
i i n\ _k n-k = i 3
Binomial p(1-p) P = ratio of success to total Xz - test Describes probability Quality control, relia- | 15,2329
k trials A L€ T » &9, a9,
of k successesin n bility, sampling, etc. 35
independent trials
R 1K R X i
Multinomial n k, k, k m p. = ratio of i'ﬂ ocutcome XZ - test De§cr1bes outcorpe of nghty contr(_)l, relia- | 15 23,35
k.Koo..k_ )Py Py Pr .--P i n independent trials bility, sampling, etc.
172 mf -1 ¥2 3 n
where there are m
alternatives for each
k1 +k2+.... trial.
¥
Poisson 2 >‘k X = mean value of k 2 _ test Describes the number Queueing, reliability, 15,23, 29,
e X X of occurrences in an quality control, 35
’ interval when the rate sampling.
of occurrence is
constant,
Hyper- ( (N-M) From formula 2 _ test Describes the proba- Reliability, quality 15,23,35
geometric * k/ \n-k X bility of an event oc- control, sampling
(N) mean value of k _ M curring k times ina
n n N’ sample of size n when
it is known that M
either M or N can be esti- events will occur in
mated if the other is known. the population of
size N.
ic* k- =
Geometric p(1 - p) 1 P = mean number of successes XZ - test Describes the number Quality control, 15,23,35
of trials to the first sampling, etc.
success in a sequence
of Bernoulli trials.
Pascal (also k - 1 nk P = mean number of 2 _ test Describes the proba- Quality control, 15,23,35
called nega- (" + k - ) (1-pp successes in a series of trials. X bility of exactly k sampling, etc.
tive successes occurring
binomial) * before the nill failure
in a series of Bernoulli
trials.
*Discrete Distributions
’ . - 1yt A 4 * g .

8¢



Complex Parametric Distributions:

TABLE 4.3 (Continued)

oo Recommended Parameter Goodness~of-fit |Random Number Generation Applications References
Distribution Functional Form of 1{x) Estimators Test (See Volume 1) PRl (See App. C)
Weibull (x_c)n ¢ can be estimated as outlined The WE test An analytic selection tech- | Data storage requirements 1,8,15,

n -1 "X in Ref. 8. can be used on nique requiring little data are small. 17,21, 22,
T(x'f) € For n and XA, a simple tech- storage and using moder- Random number selection 34,35, 36,
nique is described in Ref. 38 (x - )" ate amounts of computer is easy 38,51,55
x> : . — time is available. With :
A more complicated but more a little effort, very fast All values in variable range,
n,A>0 accurate method is the maxi- techniques requiring siz- especially in the tail of the
: mum likelihood estimate, as able data tables can be distribution, will be
outlined in Ref. 51, developed. represented.
For both techniques, the esti- Wide applicability. Has been
mates should be multiplied by used successfully for such
the unbiasing factors given in diverse cases as yield
Ref. 51, strength of steel, size dis-
tribution of fly ash, fatigue
life of steel, height of adult
males, and width of beans,
Johnson Calculation of skewness and SL: Use W -test Fairly fast analytic selec- | Almost universal applica- 15,21, 22,
SL: — kurtosis for data determines on In (xi - € tion techniques requiring bility. 35,37
27(x-¢) which type (S, Sp, or Sy little data storage are

exp }- 1’;[}, + ln(x-e)] 2’

|

X2€
g A .
sz;xexx+c
|

co |

€<X< e+

.n 1 .
vt
“/2—" N/ (x+c)2+)«2

o[l

2
sl )

n, x>0

-wCy, €<®

of distribution to use.

At some expense in computer
time, maximum- likelihood
equations can be solved numer-
ically. However, unbiasing
factors are not yet available.

Simpler, but less accurate,
methods are the percentile tech-
nique (Ref.35) for S; and Sg
and the moments method for

Sy (see Ref. 22).

Sg: Use W-test
Xi - €
on In (X_—+c-xi)

SU: Use W-test
on

X, - €
sinh_l( 1)‘ )

available. Very fast
numerical techniques
which would, however,
require sizable data stor-
age could be developed
with a little effort.

Data storage requirements
are small.

Random number selection
is easy.

All values in variable range,
especially in the tail of the
distribution, will be
represented.
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TABLE 4.3 (Continued)

Recommended Parameter

Goodness-of -fit

References

¢ abritibi . Random Number Generation .
Distribution Functional Form of f(x) Estimators Test (See Volume T1) Applications (See App. C)
Pearson Twelve types. See Table 8.1. E:eedT:t:;’tc:n(:zg%?::rt:e:::sbe xz-test Analytic selection techniquesf{Almost universal applicability. 5, 10, 12, 15,
This is described in detail for d-test may also wl:‘::: :r;ealflaztn%fu‘::h(::hc:xer:— All values in variable range, ;;' ig’ ii
each type in Ref. 10, be tried although q R especially in the tail of the |kt Bl
it is not strictly puter storage are available distribution, will be repre- 42
Alternatively the percentile tech- licable only for integral values of sented ’
nique, using tables and outline applicable. exponents and only for a :
given in Ref. 25, may be few types. In the general
employed. case, numerical techniques
The maximum likelihood technique, ngv? used which will
which requires considerable com- .
puter time may also be used. This 1. Moderate to large num-
method is more powerful than the bers of storage cells
others, but its bias has been in- for tabular data.
completely investigated (although . _
Refs, 12 and 5 consider the 2. ?nznf;;ir:g:f;gﬁzii_
bias for types 1 and 3). ting the selection
technique.
- s . ¢ e « .

0¢
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TABLE 4.4

Sequence of Activity Selection (By Figure Number)

Knowledge of Random Process Category

1 2 3 4
"
go Figure Figure Figure Figure
= 4.1 4.2 4.3 4.4
&)
*3 Figure Figure Figure Figure
A« 4.5 4.6 4.7 4.8
'E, . Figure - Figure Figure Figure
= 4.9 4.10 4.11 4.12
=

4.2 SELECTION TECHNIQUES

The following list provides a brief description of each selection
technique used in the selection procedures and provides the location of

further detailed discussion.

Sensitivity Analysis - Involves performing the simulation study

(Section 5. ) using several different distributional
assumptions or parameters to examine the
effect it has on the final results.

Graphical Analysis - Involves plotting a histogram and/or using

(Section 6.) probability paper to judge what distributions
appear likely. This analysis may reject
some ideas as inappropriate or suggest
several likely distributions. This analysis
applies primarily to the simple or common

distributions.
Analytic Curve Fitting - Refers to fitting the data to one or more of
(Section 7.) the complex or uncommon distributions such as the

Weibull, Johnson, and Pearson.

Parameter Estimation - Is the task of estimating the values of the
(Section 8.) parameters of a given distribution family
to obtain the best fit with the data.
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Goodness-of-Fit - Tests are used to determine if the candi-

(Section 9.) date distribution is an adequate represen-
tation of the actual random process based
on the data available.

Histogram - If all likely distributions fail the goodness -
(Section 6.) of-fit tests fail, a histogram should be used.

These techniques can best be applied by referring to the appro-
priate section. After application of any technique, refer to the appropriate

figure to determine subsequent selection techniques to employ, if any.



Figure 4.1

No Data, No Knowledge

Sensitivity
Analysis

Figure 4.3

No Data, Good Knowledge

Parameter
Estimation
(Arbitrary
Parameter
Selection

'

Sensitivity
Analysis
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Figure 4.2

No Data, Qualitative Knowledge

Graphical
Analysis
(Table of
Shapes)

f

Sensitivity
Analysis

Figure 4.4

No Data, Certain Knowledge

Parameter
stimation
Arbitrary
Parameter

Selection)

!

Sensitivity
Analysis




Figure 4.5
Some Data, No Knowledge

Graphical
Analysis

%

Parameter
Estimation

'

Goodness-~
of-Fit Test
(possibly)

Figure 4.7
Some Data, Good Knowledge

=~

Graphical
Analysis

'

Parameter
Estimations

l

Goodness -
of-Fit

Reject
a
Distribution

—»— Accept

Reject All Distributions

See

Figure 4.6
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Figure 4.6
Some Data, Qualitative Knowledge

a

Graphical
Analysis

{

Parameter
Estimation

#

Goodness-
of-Fit Test

—» Accept

Reject

Distripution / peject All Distributions

#

Sensitivity
Analysis

Figure 4.8
Some Data, Certain Knowledge

Parameter
Estimation

!

Goodness -
of-Fit

* Reject

— Accept

See
Figure 4.7
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- Figure 4.9 Figure 4.10

Ample Data, No Knowledge ' Ample Data, Qualitative Knowledge
Graphical Graphical
Analysis Analysis
Parameter
Estimation Insight
+ Into No
Random
Goodness- Process
of -Fit —— Accept
* Reject
. Analytic Curve S
Fittin 5] ©D€€
. ne * Figure 4.11
Parameter ,
Estimation Sge ——————
* Figure 4.9
Goodness-
of-Fit Test > Accept
* Reject
Use Histogram




Reject
a |
Distributio

‘Reject
a |
Distribution
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Figure 4.11
Ample Data, Good Knowledge

Parameter
Estimations

#

Goodness -~
of-Fit

= Accept

Reject All

'

Distributions

Analytic
Curve
Fitting

l

Parameter
Estimation

¢

Goodness-~
of-Fit

—3- Accept

Reject All Distributions

Y

Use
Histogram

Figure 4.12

Ample Data, Certain Knowledge

Parameter
Estimation

'

Goodness -

—p= Accept

of -Fit

* Reject

See
Figure 4.11
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5. SENSITIVITY ANALYSIS

The objective of sensitivity analysis is to determine the extent to
which the final results of the simulation study are sensitive to a given

probability distribution. To this end two general guidelines can be given.

The first is to attain a determination of sensitivity to the parame-
ters of a distribution. It might be reasonable to vary the parameters to
some extent in both directions. Suppose, for example, that a normal dis-
tribution with mean 100 and standard deviation 20 is postulated. Then
five runs might be made to test sensitivity of the final simulation results
to these parameters as follows [(mean, standard deviation)]: (100, 20),
(110, 20), (90, 20), (100, 18), (100, 22).

A second sensitivity test that can be performed is one of shape
of parametric family: it may be reasonable to make several simulations
with different probability distributions, especially if unlikely events are
important to the simulation results. In this case the shape of the tail of
the distribution is important. Suppose, for example, that a gamma dis-
tribution has been chosen; then a lognormal or Weibull might also be tried,

since these have similar shapes.
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6. GRAPHICAL TECHNIQUES

There are two graphical techniques that are applicable here.
The first deals with the empirical histogram and the second deals
ing with the empirical cumulative distribution polygon. Both tech-
niques can be quite useful in selecting a good functional fit to data.
These graphical techniques are intended primarily for use in select-
ing one of the common or simple distributions. Although graphical
techniques can be helpful in the selection of a complex distribution,

this is discussed as analytical curve fitting in Section 7.

Graphical techniques can often suffice to determine a satis-
factory probability model for a simulation variable. This is especi-
ally true if the simulation results are not sensitive to rare events of
the several random variables. An example is given in Section 6. 3 to

illustrate the histogram and cumulative distribution polygon methods.

6.1 USING THE EMPIRICAL HISTOGRAM

The empirical histogram can be used to determine what dis-
tributions are likely to fit a given set of data. This can best be
accomplished by a visual comparison to find curves representing
probability distributions that are similar to the data. The approach
taken in this section is to find such visual fits by examining a series
of figures representing the density function of most of the simple

distributions.

The procedure is very straightforward. First plot the histo-

gram from the data available. In some cases it may be helpful to
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sketch a smoothed version of the histogram, especially if the cells
of the observation groupings are large or the data are few. Then ex-
amine the shapes given in Figure 6.1 and select those distributions
whose densities are similar to the histogram. (Figure 6.1 does not
include the Weibull, Johnson, or Pearson distributions. For these
distributions, see Section 7.) It is also useful to rank the selections
according to how good the fit is.
6.2 USING THE EMPIRICAL CUMULATIVE DISTRIBUTION
POLYGON
An alternate technique is to use the cumulative distribution
polygon in conjunction with probability paper. The horizontal axis of
this paper represents the values of the variable under investigation;
the vertical axis is a probability scale. The spacing on the vertical
axis is constructed for a given probability family so that a cumulative
distribution function belonging to that family will appear as a straight

line on the paper.

The graphical method is quite general and can be applied to
any known distribution; however, the probability paper which is com-
mercially available is limited to the more commonly encountered dis-
tributions such as the normal (see Figure 6.2), lognormal, extreme

value, chi-square, gamma, binomial, and Weibull, *

The procedure for using this graphical method is extremely
simple although interpretation of the results is somewhat subjective.
The sample cumulative distribution is plotted on the probability paper

corresponding to the theoretical distribution of interest. If the points

*See, for example, TEAM Special Purpose Graph Papers, Box 25,
Tamworth, N. H. 03886, also K+E papers.
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fall on a straight line the theoretical distribution is accepted as rep-
resentative of the data. If the line is badly curved, other distributions

can be tried. The nature of the curve often suggests distributions

which might be of better fit.

Another useful aspect of the graphical procedure is that esti-
mates of the distribution's parameters can be read directly off the
graph. For example, on normal probability paper, the difference
in variable value between the .50 probability point and the .84 prob-

ability point on the fitted line corresponds to one standard deviation.
6.3 NUMERICAL EXAMPLE

An example will illustrate the use of these techniques. The
data for the example is given in Table 6.1. Observations ranging
from 66.75 to 75.25 have been divided into seventeen equal inter-
vals or cells of 0.50 each. The frequency with which observations
fall within each cell has been tabulated and summarized. This data
was then plotted in Figure 6.3 to produce what is generally referred

to as a histogram.

The histogram serves two purposes. First, it provides vis-
ual evidence on which to base preliminary selection of a distribution.
Second, in the case of limited data, it may provide as good an esti-
mate of the variability of the process as any other more elaborate

approach.

On the basis of its symmetry and bell shape, the histogram
of Figure 6. 3 appears typical of data from a normal distribution.
Making an assumption of normality, it is possible to proceed to the

application of other quantitative methods to determine its validity.
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TABLE 6.1
Sample Data

Cunmulative
Cell Relative Cumulative Relative
Boundaries Frequency Frequency Frequency Frequency
66.75-67.25 2 0.005 2 0.005
67.25-67.75 2 0.005 4 0.011
67.75-68. 25 5 0.014 9 0.025
68.25-68.75 6 0.016 15 0.041
68.75-69. 25 ( 0.019 22 0.060
69.25-69.75 24 0.066 46 0.126
69.75-70.25 36 0.099 82 0.225
70.25-70.75 48 0.132 130 0. 357
70.75-71.25 64 0.176 194 0.533
| 71.25-71.175 51 0.140 245 0.673
71.75-72.25 41 0.113 286 0.786
72.25-72.75 32 0.088 318 0.874
72.75-73.25 24 0.066 342 0.940
73.25-73.75 12 0.033 354 0.973
73.75-74.25 5 0.014 359 0.986
74.25-74.175 4 0.011 363 0.997
74.75-75.25 1 0.003 364 1.000

[
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The data given in Table 6.1 can also be plotted on normal proba-
bility paper. This will verify the assumption of a normal distribution and
also give the appropriate parameters for the distribution if the assumption
of normality is accepted. The cumulative relative frequency (sample
cumulative distribution function) when plotted on normal probability paper,
shown in Fig. 6.4, turns out to be reasonably linear. Thus it can be con-~
cluded, at least tentatively, that the data in Table 6.1 has been drawn from
a normal population. For many applications this will suffice to identify a
satisfactory distribution. Note that the mean (u) and the standard devia-

tion (@) can also be estimated from the graph.

Rather than go through the process of grouping the data into class
intervals or cells as in Table 6.1 one can plot the data directly onto proba-

bility paper in the following way. The n observations x -» X are

X
1, 2, e o
placed in ascending order (ranked) such that:

<---<x

X1) = *2)= *@)< (n-1) =*(n) *

To each x,., associate the ordinate value y,., = 1 and plot the

(1) (i) n+1
ordered pairs (X(i)’ y(i)) on the probability paper. This procedure is
extremely fast, with the exceptiam of having to rank the n observations.
Therefore, it is probably most useful for sample sizes in the range 1-50,
depending of course on how proficient one is at ranking observations.
Many excellent examples of the use of probability paper for extreme

value distributions may be found in Gumbel. (14)

This example is concluded with a visual verification of the selection
of a normal distribution to fit the data in Table 6.1. Figure 6.5 gives the
same information as Fig. 6.3 with the addition of the normal density curve

scaled to the frequency polygon.
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7. ANALYTICAL CURVE FITTING

Analytical curve fitting encompasses a variety of techniques to
smooth an empirical histogram for use. As discussed in Part I, the
purpose of analytical curve fitting is to obtain a reasonable functional

approximation of the empirical histogram to be used in a simulation.

For the purposes of Part II of this volume, analytical curve fitting
will be restricted to the use of three families of probability distributions.
These are the Weibull, Johnson, and Pearson distributions. The reader
who is unfamiliar with these distributions may wish to refer to Appendix A
to find a background discussion of these three distributions. The Weibull
family is the easiest to work with and the Pearson family is the most dif-
ficult to work with. It is, therefore, recommended that analytical curve
fitting be tried first with the Weibull, then if need be with the Johnson,

and finally if necessary with the Pearson distributions.

The procedure for selecting one or more of these families is based
on Table 7.1. The use of Table 7.1 is facilitated if qualitative information
about the random processes and a sketch of the probability density are avail-
able. Once one or more families have been chosen, the selection procedure

outlined in Section 4 should be followed.

Since using the Weibull, Johnson, or Pearson distribution is tanta-
mount to using a smoothed histogram, some consideration should be given
to using the histogram itself rather than a distribution. This is especially
true if the histogram is drawn from an ample set of data, if the Weibull,
Johnson, and Pearson curves do not give reasonably good fits, or if the

histogram is multimodal. In the latter case the underlying population may
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actually be several distinct populations, and unless the user is prepared

to separate that population by techniques not discussed here, using the

histogram may be most expedient.

Characteristics of Complex Probability Curves

TABLE 7.1

functions)

Number of General Figures for
Family Name | Parameters Characteristics Shapes of Densities
Weibull 3 Unimodal, finite left bound, Figure 7.1
tail to right

Johnson 4 Bounded or unbounded, Figures 7.2-7.3

(plus choice |variety of shapes,

of three mostly unimodal

functions)
Pearson up to 4 Great variety of curves Figure 7.5

(plus choice

of twelve
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Fig. 7.1.

Weibull Distribution for Various Values of
Parameter 7
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Fig. 7.2. Johnson Probability Density Functions for S

U
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8. PARAMETER ESTIMATION -

Once a specific type from a family of probability distributions has
been tentatively chosen to model a random variable, specific parameters -
for the distribution must be chosen. These parameters should be chosen
~ so that the resulting specific distribution will best fit the data and knowl-
edge available, This section is devoted to finding the specific parameter

values based on the empirical data (observations) available.

If no data is available, the parameters must be chosen a.rbitrafily.
In this case no estimation procedure exists that is better than the analyst's
intuition and judgment. If data is available, the parameters can be estimated .
- based on the sample of data. Estimates, in this case, always begin with
calculation of certain sample statistics which are given in Section 8. 1.
This section should be used in conjunction with the directions given in
Section 8.2. This latter section gives formulas for estimating the specific
parameters for all of the distributions considered. Since not all the sample
statistics in Section 8. 1 are needed for all the distributions and parame-
ters in Section 8.2, Section 8. 2 should be referred to before calculating
sample statistics.

8.1 CALCULATING SAMPLE STATISTICS

The sample statistics given in this section include the sample mean,
median, variance, skewness, kurtosis, 3rd moment, and 4th. moment.

To establish some standard notation, we define the following symbols:

n = number of data points

ith data point (observation) fori =1, 2,..., n .

ol
1]
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The sample statistics are calculated as follows:

Sample Mean (symbol x)

n

X = Z-xi /n

i=1

Sample Median

First rank the observations from smallest to largest. If n is odd,
the median is given by the value of the [(n+1)/ 2]th observation. If n is
even the median is given by the mean of the [n/ 2]th and [(n/2) + 1]th

observations.

Sample Variance (symbol s2)

n
g2 = Z (xi-:T:)2 /n
=1 |

or, more conveniently

n

= fo /n-}?2 )

i=1

Sample mth Centralized Moment (symbol pm)(only Kg and p 4 needed)

n
IJvm = Zl (xi-;{)m /n
i=

Sample Skewness (symbol /31)

31 = #3/83
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Sample Kurtosis (symbol /32)

.
By = By/s

Interpretation of the last two estimators is usually in terms of how well the
data fits the normal distribution. If the skewness is close to zero and the
kurtosis is close to three the normal distribution should provide a good
approximation to the distribution. Figure 8.1 gives an interpretation of

the skewness value. Zero indicates a symmetric distribution, negative
skewness means a long left tail, positive values a long right tail. Figure 8.2
illﬁstrates the kurtosis measure. If the kurtosis is greater than three the
distribution is more peaked than the normal (curve C). If it is less than

three the curve is flatter than the normal (curve A).
8.2 CALCULATING PARAMETER ESTIMATES

This section is divided into two parts. Section 8. 2.1 deals with
the simple distributions. This section will be the one more commonly
used. Section 8.2.2 is more complicated and deals with estimating parame-

ters for the complex distributions.

8.2.1 Simple Parametric Distributions

Refer to Table 4. 3 to obtain the recommended parameter estimates
for the selected distribution. Use Section 8.1 to obtain the sample statis-

tics required.

8.2.2 Complex Parametric Distributions

As can be seen in Table 4.3, estimating parameters for the Weibull,
Johnson, and Pearson distributions is more involved than for the simple
distributions. The reason for this is that the simple distributions generally
have one or two parameters, whereas the complex distributions have 3 to 5
effective parameters. Background for the material which follows can be

found in Appendix A.
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8.2.2.1 Weibull

The basic three-parameter Weibull distribution has a density given

by:
w3 wl (5] e
=0 X<c¢
where:
f(x) = Weibull probability distribution
e = location parameter
A = scale parameter
n = shape parameter

In most applications the location parameter, ¢, is known. In

cases where it is not known, it can be estimated from the observations:
= min|x.| .

(8)

Better estimates of ¢ can be obtained using techniques developed by Dubey;
however, the improvement is not usually sufficient to warrant the extra

effort involved.

The maximum likelihood estimators for the three-parameter Weibull
distribution result in a set of equations that can be solved by iterative
methods which are very tedious to perform. If the location parameter is

known or estimated, the maximum likelihood equations for X and 7 can .

be solved fairly easily(5 1) and are given by:
nn
X. inX. p
n & i
= = N —g—— mei=0 (8.1)
n
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and

X = (‘z?x?/n)l/77 (8.2)
where:

?7 = Maximum likelihood estimator of 7

X = Maximum likelihood estimator of )Y

Equation 8.1 can be solved by the Newton-Raphson iterative procedure.

k
o ..1_+§1'-S_3
~ n k
o M Sq
Mer1 ~ Mt 2
Kk Kk
. Sy SIZ - (S3)
5 A
U ( 2)

where:

i=1
n N
n

Sk = X. k
2 £

n ~
K Mk
S3 = 2. (In xi)xi
kK e
Sy ;(lnx) X,

The estimate n is biased and should be corrected using the unbiasing fac-
tors in Table B-1of Appendix B. Then, the estimate for ;\ can be obtained
directly from (8.2). Further improvement can be obtained by using Menon's

estimators. (38)
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8.2.2.2 Johnson Distributions

As indicated in Table 4. 3, there are three Johnson distributions. These
three are generally denoted SL’ SB, and SU because these distributions
are related to the normal distribution through a logarithmic transformation

(SL), bounded transformation (S and unbounded transformation (S

B> -
The problem of estimating parameters of the Johnson distribution thus be-
comes a two-step procedure. First determine which distribution to use, then

estimate the appropriate parameters.

The probability density functions for the three Johnson distributions

are:

2

p) .
S, ¢ fl(x) = %[11’+ Ln(x-e)] } ; X2e¢

—n__ -
2T (x-¢) P {

S . £ . n A 1 X-€ 2
B’ 2(x) B M (x-€) (\-x+¢€) €Xp 'Q[Yfﬂ n (k—x+€):, }

Ee<X<e+ )

n 1
Rt Jx-a2 R

2 11/2)
exp | - -12- (7 +m n {(X;e) + [(x;;) + 1] })

o LX < @

Syt f3(x)

In these distributions 7 and y are shape parameters, ) is a scale parame-

ter, and ¢ is a location parameter. These must satisfy:
n >0, x>0, ~~<y, e<+e

In Section 8.1, expressions are given for the skewness, Bl’ and
kurtosis, /32, of the sample data. These are used to determine which
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distribution, SL’ SB, or SU to use. This can be accomplished by plotting
the sample ﬁl and 32 on Fig. 8.3. The location of the sample point

(/31 ) ﬁz) indicates the distribution to select. One warning must be given,
however. Figure 8.3 is accurate for categorizing distributions given the
true value of ﬁl and ’32' The values for /31 and /32 derived from the
sample (Section 8. 1) are estimates of the true values. Thus if the sample
point falls near the edge of a region in Fig. 8.3, i.e., near the SL line,
then it would be prudent to try all three Johnson distributions or to select
one or more based on possible boundedness of the random variable in ques-
tion. Examining the density functions given above will aid in this

determination.

The parameter estimates for the Johnson distributions are given be-
low. The estimates of the Johnson parameters are not maximum likelihood
estimates, except for the SL (€ known) case, however they are the most
practical to use. The approach taken is to use percentile points from the
o 1S that
value of x for which P[x < x ]=a. We assume that the random sample
1< oo < Wn .
Then the kth order statistic will provide an estimate for the 100a percentile

data. Recall that a 100 ¢ percentile point for the population, x
Xpseeeer X has been ordered to give the order statistics W

of the population, where:

(8. 3)
k-1
" n-1
This will be required in subsequent application, SL (€ known). In
this case the estimators forn and y are respectively, -1/2
1 - . i
A p) 1
n=4= E [In(x; - ] - | = E In(x; - ¢
it i=1
and (8. 4)
. _n
y= -1 E
Y= -5 1n(xi - €)

i=1
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Thus, from the §amp1ehx1, oo Xy the parameters n and 9y can be readily

estimated with n and v, respectively.

SL (€ unknown)

Again, the maximum likelihood estimators may be obtained but with some
difficulty, and it is perhaps better to use the percentile approach. That is assume
the percentile points X, » Xq , and X, have been estimated. These are
required since there a.re1 threezparametexgs €, 1, and y to estimate. If
z, 1is defined as the value of the variable in the normal distribution function cor-

responding to the cumulative probability a, then.

Z, = YHM ln(xa1 -€)
z = y+1n In(x, =€)
az az

Zag = YN ln(xol3 - €)

Explicit solutions cannot be obtained for ¢, v, and n from these
equations although they can be determined iteratively. However, the following

example will illustrate the use of one simplification.

Suppose a sample size of n =51 has been obtained. The 6th, 26th, and

46th order statistic from W1 < W2 <0< W51 will be used to estimate the

following percentiles:

Xy = X4 = Wg
Xae = X5 = Wog
xa3 = X9~ W46

where a; 1=1,2,3, isobtained using Eq. 8.3. From Table B-2 in

Appendix B:
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Z4 = -1.28
zg =0
z.9 = 1.28

From Eq. 8. 4:

1
AW =W

. 16 ~ Va6

n = 1.28 [an| oro—2"

Woe - W

St 1 _e-1.28/n
Wog = We

. v/

€ = W26 e

The advantage of selecting o = 1- ag and a, =. 5 should be noted.
The percentiles chosen are, of course, rather arbitrary and, therefore, |
many estimates could be obtained for ¢, ¥ and n . In this case, comparisons

of the relative goodness-of-fit for each selection may be appropriate.

SB(e, A known)

This case implies both end points of the distribution are known. Using

the percentile method, estimators for y and n may be obtained:

zZ -2z
a *2 %
n %, -e)(e+k—xa) (8. 5)
In [\ _2 1 |
X =-¢€\[fe+X-X
* \ %
xa -€
&:z -n In 2
az €+ -X
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SB (General Case)

This case implies that none of the parameters are known and requires
that the appropriate number of equations of the form

X =€
.

AR e

be solved for the unknown parameters. Generally, this will lead to tran-
scendental equations which can be solved numerically. There is one simpli-
fication in the case where ¢ is known and the percentiles are selected such
that o = a = 1- ag and a, =. 5 (only three equations of the type

required for this case). The solution for 5\ for this case is

5" e)(xa— €) + (x. 5" e)(xl_a- €) - 2(Xa - €)(X1 o €)

- €)

X=(x5-€) :

® 5 - o° - (kg =9 (%14 9

Equation 8.5 may then be used to generate estimates for n and 7

since with 8.6 the problem reduces to one with both end points known.

Sy (General Case)

For ggneral case of the SU system, J olztzlg;m has generated tables
that are useful for determining the parameters. These are presented
in Tables B-3 and B-4 of Appendix B. The tables were developed from solu-
tions of equations defining the relationships of the first four moments to the

parameters.

Use of the tables first requires that the mean, variance, skewness
and kurtosis be calculated. The values for ./ Bl and 32 are then used to
obtain the estimates for vy and 7 from Tables B-3 and B-4, respectively.
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~

The X and & estimators are calculated using:

& s
5 (w-1) [w COSh(-wZ) + 1:, }
n
E=x+iﬁsinh(¥) (8.8)
n
where s is the sample standard deviation (see Section 8. 1)
~2
W = el/n

To illustrate use of the tables, assume a random sample gave
\’ﬁl =.5 and 32 =6 . From Tables B-3, B-4

y = -.3278 and 1n = 1.672

A and e may now be calculated directly from Eqs. 8.7 and 8. 8.
8.2.2.3 Pearson Distributions

_ There are twelve Pearson distributions. These are generally indicated
by Roman numerals: Type I through Type XII. The problem of estimating
Pearson parameters, like those of the Johnson, becomes a two-step problem. |
First determine which Pearson Type to use, then estimate the appropriate
parameters.

To determine which Pearson distributions to use, the skewness, Bl’
and kurtosis, 8,, of the sample data (see Section 8. 1) are needed. The
sample point (Bl, 32) should be plotted on Fig. 8.4. The location of the
sample point indicates what distribution to use. A warning needs to be given

on using this procedure. The point (31, ,§2) calculated from the data as in
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Section 8.1 is only an estimate of the true values. Thus if the sample point
falls near a line separating two regions in Fig. 8.4, the Pearson Type in
either region or in the line may fit the data. In this event more than one
Pearson Type should be tried. It should also be clear from examination of
Fig. 8.4 that only Types I, IV, and VI are indicated by regions; therefore,
in practice only these types will be indicated by strict application of this

selection procedure.

Selection of a Pearson Type may also be aided by examining the
Remarks column of Table 8.1. This table lists all twelve Pearson Types and
some information on each. The form of the density function should be ob-
tained from Table 8. 1.

The parameters for the density functions are given below.

Type I

X 1 X 2 m1 My
f(x) = Yo (1 + 5—) (1 - é—) where a— = a—-)
1 2 1 2

Calculate the quantities

r 6(32 - Bl = 1)/(6 + 331 - 232)

t = 2 s[B(r+2)7+16(r+ 1)]L/2

m, and m, are given by:

By
Bl(r + 2)2 +16(r + 1)

r-2zr(r+2)

=
I
Doj -

If Hg is positive, take m, to be the positive root

a; = t/(mz/m1 +1)



TABLE 8.1

Summary of Pearson Distributions

No. of type Equation to curve in form usually adopted (Pearson)
usually
adopted
(Pearson) Equation Origin Remarks
MAIN TYPES
I y=y (1+x/a )Val 1-x/a )Va2 Mode (antimode) Limited range (-a, to as); skew;
o 1 2 1 %m
usually bell-shaped, but may
be U-shaped, J-shaped or
o -1 twisted J-shaped
v y = yo(l + xz/az) Me vian "x/a va/(2m-2) after mean Unlimited range; skew; bell-shaped
VI _ flg 91 - . o
y = yo(x - a) “x a before start of curve Unlimited range in one direction
: (a to = ); skew; bell-shaped,
but may be J-shaped
TRANSITION
TYPES
'Normal' _ -x2/20 2 Mode (= mean) Unlimited range; symmetrical; bell-
curve Y =Y,° shaped
I y = yo(l-xz/az)m Mode (= mean) Limited range (-a to a); symmetrical;
usually bell-shaped, but U-shaped
2, 9 -m when 8, <- 8
Vil y = y0(1+x /a%) Mode (= mean) Unlimited Fange; symmetrical; bell-
shaped
I y = y0(1+x/a)'y"1e-‘yx Mode Unlimited range in one direction
(-a to «);usually bell-shaped,
D _~y/x but may be J-shaped
\' y=yx "e Y Start of curve Unlimited range in one direction
-m (0 to =); bell-shaped
VIII y =y (1+x/2) End of curve Range from infinite ordinate at -a to
e finite ordinate at 0 (or from -a(1-m)/
, m (2-m) to a/(2-m) with origin at mean)
X y= y0(1+x/a) End of curve Range from x = -a where y =0tox =0
where y =y (or from -a/m+1)/(m+2)
x/o a/(m+2) with origin at mean)
X y=Y,8 Start of curve Exponential from finite ordinate at 0
(or -0 with origin at-mean) to in-
-m finitesimal ordinate at « ; J-shaped
X1 Y =Y X b before start J-shaped; starts at x=b (or -b/(m-2)
with origin at mean) where ordinate
0‘J(3+Bl)+ VB4 §+x “/(Bl/(3+31)) is finite
X1 { Mean Twisted J-shaped; special case of

Y=Y GRS

Type 1

vl



75

)
i

9 t/(ml/m2 +1)

1 2
. - m, m, . ‘I‘(ml +m, + 2)
o m, +m, I(m, + )T'(m, + 1)
(m, +m,) 1 2 1 2
1 2
| Type 11
2\™
X
f(X) = yO (1 --—2)
a
The function parameters are found as follows:
582-9
m = 36- By
2
a2 ) 2s 82
= _3-—82

_ 1  T(m+1.5)
yO - aJn I"(m+1)

Type III

f(x) = Y, (1+x/2)72e™ 7%

The function parameters are given by:

25"

H3
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254 Hs
a = ——"5
B s
1 p+1
b
yo = a‘. p
e"T'(p+1)
Type IV
-m ‘
x2 -1
f(x) = Y, 1+75 exp(-vtan = x/a)
a

The function parameters are given by:

%(7+2)

=
1

(-2 C16(y - 1) - gy~ 22172

<
[

2 /2
a =55 s 0 - py(r- 2>2>]1

y, = V[aF(y, V]
where F(v,v) is given in Reference 42.
Type V
f(x) = yx © exp(-/%) (x > 0)

The function parameters are given by:

8+4‘/4+B
4 + 1

p = B,
y = s(p - 2) ¥(p-3)
y = ¥ lre-1)
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Type VI_

dy 4d
f(x) = yo(x -a) 2x 1

The function parameters are given by:

y = 6(8, - B - 1)/(6 + 38, - 28,)
a =1 [8y (B (y+2)? + 16(y+ 1)1/

d and -q; are given by:

q,d,"1
al ™2 r(q)
yO - F(ql - q2_1) F(qz + 1)
Type VII
-m

x2
flx) = Y, 1 +55

a

The function parameters are given by:

58, - 9
T 2(8,73)
2 _ 25”5,

By = 3
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Type VIII

f(x) =y, (1+x/a)

The function parameters are given by:

a = ts(2-m)J(3-m/l-m)
Vo, = (1 -m)/a
where m is the solution of
3 2
m(4-Bl)+m(9[31-12)-2431m+1631=0 0O<m«<1
Type IX
f(x) = y (1 +x/a)"

The function parameters are given by:

ts(m + 2) V{m +3)(m +1)

a

(m +1)/a

Yo

where m is the solution of
3 2
m(/31-4)+m(9/31-12)+24m/31+16/31 =0 m>0

Type X

f(x) = y, exp(-x/s)

The parameter is given by:

y, = 8
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Type XI
-“m
fx) = yx
The function parameters are given by:

Vo = p 1 (m - 1)

b = *s(m-2) J(m=3)/(m - 1)

where m is a solution of

m3(4 - 8,) + m2(9131 - 12) - 248, m + 168, = 0

Type XII
s(~/3+Bl+A/-ﬁ:+x ‘ﬁl;(3+ﬁl)
fx) =y
s (Brp - Vh) -

Yo is given by

y, = Tm + DI - m)/b
where

m = J8,/3+ B

b = 25 /3 +8,)
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9. GOODNESS-OF-FIT TESTS

Goodness-of-fit tests are statistical tests for evaluating whether a
group of data supports the assumption that the random variable from which
the data are drawn has come from the assumed probability distribution.
These tests are helpful in accepting or rejecting the conclusion that some

random variable follows a tentatively selected probability distribution.

The technique of applying statistical tests of distributional assump-
tions follows three basic steps:

1. A number known as a test statistic is calculated from
the observed data.

2. The probability of obtaining the calculated test statistic,
assuming the selected distribution is correct, is deter-
mined. This can often be done by using precomputed tables
of percentiles of the distribution of the test statistic.

3. 1If the probability of obtaining the calculated test statistic is
low, the conclusion is that the assumed distribution does not
provide an adequate representation. If the probability
associated with the test statistic is not low, then the data
provide no evidence that the assumed distribution is
inadequate.

It should be clearly understood that although this procedure allows
rejection of a distribution as inadequate, it never proves that the model is
correct. In fact, the outcome of a statistical test depends highly upon the
amount of data available - the more data there are, the better are the chances
of rejecting an inadequate model. If too few data points are available, even
a model that deviates grossly from the assumed model frequently cannot be

established as inadequate.
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Table 9.1 provides summary information on goodness-of -fit
tests and also indicates on which distributions the tests are applicable.
After a test is selected from this table, instructions on how to perform

the test can be found in the subsequent sections.

A comment on using goodness-of-fit tests on the complex distri-
butions (Weibull, Johnson, and Pearson) may also be helpful. These dis-
tributions are designed to fit almost any set of data well. It is, therefore,
unlikely that any of them will be rejected by a goodness-of-fit test. Using
goodness of fit tests on any of these distributions will not generally give
the analyst much further information on the form of the true distribution,
and he may elect to accept one of these complex distributions without a
goodness-of -fit test.

This brief background should suffice for practical use of goodness-
of -fit test in simulation modeling. In the following section, a simple selec-
tion procedure is given to determine what goodness-of-fit test to use based
upon the probability distribution tentatively selected to model the random
variable in question. In the following sections these tests are described
and instructions for performing the tests are given. Although there are

numerous statistical tests, these are the most powerful available.

9.1 CHI-SQUARE GOODNESS-OF -FIT TEST

The Chi-square goodness-of-fit test is probably the most widely used
and versatile technique for evaluating distributional assumptions. It can be
applied to test any distributional assumption without having to know the values
of the distribution parameters. Its major drawbacks are its lack of sensitivity
in detecting inadequate models when few observations are available and the
frequent need to arrange the data within arbitrary cells which can affect the
outcome of the test.
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TABLE 9.1
Goodness~-of-Fit Tests

APPROPRIATE : TABLES OR REFERENCES
PROBABILITY TEST APPLICABILITY EASE OF USE DATA REQUIRED GENERAL COMMENTS (SEE
DISTRIBUTICN |[(SUBSECTION) (APPENDIX B) APPENDIX C)

Test to evaluate a
Any Chi-square sample for any dis- Test is relatively easy Chi-square distribu- | A general and powerful statis- 4,15,20
test tributional assump- to apply. Requires tion table (1-2 pages), {tical test that is widely used.
tion for any type of placing the sample value$ However, it is not a good test
distribution. A non- into intervals and some for small samples.
(9. 1) parametric or dis- .minor computations.
tribution free test,
Any "d'" - test Test to evaluate the Test is easy to apply. d - distribution table |A powerful statistical test for 4,33
continuous Kolmogorov-' agregmept between the |However requires (1-2 pages). c_ontinuou§ theoretical distribu-
Smirnov test distribution of a set of |ordering of data which tions. It is a good test for
sample values and any |[may be tedious for small samples and where it is
Kolmogorov completely specified large samples. applicable it is usually a better
test continuous distribution, test than the Chi-square.
(9.2) A non-parametric or
distribution free test.
v
Il‘jg;nlzl?)lrmal "W - test :s:&,;%goﬁl?ﬁf :he Relatively easy to use, Tables (2-3 pages) A test more powerful than the 15, 47
Johnson sample comes from used with equations x“ for testing the normal
(see Table 4. 4) a normal or log- are required., distribution assumption.
{9.3) normal distribu-
tion
Exponential "WE" - test Test to evaluate the Relatively easy to use. Requires tables \A test more powerful than the 15, 47
{origin assumption that a sample (2-3 pages) used with | x 2 for testing the exponential
unknown) comes from an exponen- equations. distribution assumption.
tial distribution with
(9.4) origin unknown,
Exponential "WEO" - test |Test to evaluate the Relatively easy to use. |Requires tables A test more powerful than the 15, 47
(origin known) assumption that a sampie (2-3 pages) used with |x“ for testing the exponential
9.5) comes from an exponen- with equations. distribution assumption
tial distribution with
origin known.

€8
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The Chi-square test is used as follows:
Step 1. Estimate each of the unknown parameters of the assumed distribution.

Step 2. Divide the data into k classes or cells and determine the probability
of a random value from the assumed model falling within each class. Two
methods for this are presented: the first method is applicable if the data are
initially arranged in frequency classes, and the second applies when the data
are not initially tabulated in classes.

Method a. The number of cells, k, will be the number of classes of
the tabulated data subject to the restriction that the expected number
of observations in each cell under the assumed model is at least 5.
Let CL; and CU; denote the lower and upper bounds of the ith fre-
quency cell. The distribution of the assumed model (using the esti-
mated parameters) is then used to estimate:

Pr(CLin<CUi) , i=1,2,...k

Method b. When the number of observations, n, is large (>200) a
good rule is to take k as the integer closest to

K = 4[0.75(n-1)21/3

For moderate values of n a good rule is to make k as large as
possible but with the restriction k <n/6. The cell boundaries
X1,X9,...Xq are determined from the cumulative distribution for
the assumea model (using the estimated parameters) as the values
such that:

Pr(x le) ll{,Pr(x sz) i, Pr(x <X 1) ﬁ——)

Step 3. Multiply each of the cell probabilities by the sample size n. This
yields the expected number E; of observations for each cell under the
assumed model. For Method bb

El = n/k , i=1,2,...k

Step 4. If the data are not initially tabulated, count the number of observed
values, m,, in each cell. Otherwise, determine m, directly.
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Step 5. Compute the test statistic

For Method 2b this simplifies to

k

XN
1
=RE
S
ey Y
1
=

i=1

Step 6. Compare the computed value ¥ 2 with the tabulated percentiles for
a chi-square variate (Table B-5) using k-r-1 degrees of freedom, where r
is,the number of parameters that were estimated in Step 1. High values of

x = signify that the observed data contradjcts the assumed model. For
example, if the above calculated value x © exceeds the 0.95 tabulated value
of Chi-square, the chances are less than one in twenty that the data could
have come from the assumed distribution.

9.2 KOLMOGOROV-SMIRNOV TEST

This test is used to evalute the assumption that a sample belongs to a
speciﬁed known continuous distribution. It is a distribution-free test and is
a good test for small samples. In general, it is a more powerful test than
the Chi-square where it is applicable. Although the test is designed for com-
paring a sample against a specified and known distribution, the test is robust
enough that it may still be applied to distributions whose parameters are
estimated from the sample data. The effect of estimating the parameters of
the distribution from the sample is to reduce the critical level of the da(N)
statistic, i.e., the level of significance is really higher than the o« associated
with the chosen da(N)' Hence, if the chosen da(N) statistic value is
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exceeded in the test, it can be safely concluded that the discrepancy is
significant. Grouping observations into intervals also tends to lower the
value of d. For grouped data, therefore, the appropriate significance
levels for testing should be chosen smaller than the significance levels used

for a complete sample.
The test is used as follows:

Step 1. Rearrange the sample of size n to obtain the ordered sample
XysKgyee e X where Xy sz e an.

Step 2. The sample cumulative distribution then takes on values of
1/n, 2/n,...., n/n at the points Kipeonss X
Step 3. Calculate the cumulative frequency values for the assumed distri-
bution at the sample values of Xy5 Xgs soo Ko
Step 4. Determine the maximum deviation, d, between the sample cumula-
tive distribution and assumed cumulative distribution from Steps 2 and 3.

Step 5. Compare the calculated deviation d with the test statistic d_(n}
found from Table B-6 for the desired level of significance. I d exc&eds
the value d (n) then the assumption that the sample comes from the
assumed diffribution may be rejected at the 100a% significance level.

9. 3 W-TEST

This test is used to evalute the assumption that a sample has a normal
distribution. It can be used to test the assumption that a sample fits log-
normal distribution by using the log of the sample values. The W-test has
been shown to be an effective technique for evaluating the assumption of

normality against a wide spectrum of non-normal alternatives, even if only
| a -'rel'atively small number of observations are available. It is generally

more powerful than the x2, especially for small sample sizes.
The W-test is used as follows:

Step 1. Rearrange the sample to obtain the ordered sample XysXgyeee X s
where Xq < X9 =.. X
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Step 2. Compute

n 2
= Z (xi -x) = i X
i=1 i=1

where x is the data mean.

Step 3. If n is even, set k =n/2;if n is odd, set k = (n- 1)/2 Then
compute. 4

k
Z - 1+1 Xn-i+l ~ X))
i=1 , |
where the values of a,_q,7 for i=1,....k are givenin Table B-7 for
n=3,...,50. Note that when n is odd Xne1 does not enter into this
computation.

Setp 4. Compute the test statistic

W = b2/82

Step 5. Compare the calculated value of W with the percentiles of the dis-
tribution of this test statistic shown in Table B-8, This table gives the mini-
mum values of W that we would obtain with 1,2,5,10, and 50 percent proba-
bility as a function of n, if the data actually came from a normal distribution.
If the percentile is lower than the selected level of significance, then the
hypothesis of normality can be rejected and accepted otherwise.

9.4 WE-TEST

This test is used to evaluate the assumption that a sample has an ex-
ponential distribution with the origin unknown. Percentiles of the WE dis-
tribution have not yet been tabulated for sample sizes other than 7 to 35.

The comments on the W-test are also applicable here.
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The WE-test is used as follows:

Step 1. Calculate the test statistic:

n ’ 2
: X./n - X
(}_{_xi)z 1Z=1: i 1 |
WE = n 9 " n 9 n 2
PSR DAV
i=1

i=1 i=1

where x;, i=1,... n, arethe n observed values, X, is the smallest
value, and x is the data mean.

Step 2. Compare the computed value WE with the 95 percent and 90 percent
ranges given in Table B-9. This test is two-sided in that too-low or too-
high values indicate non-exponentiality. Thus, if the computed WE value
falls outside the 95 or 90 percent range, then the chances are less than
one in 20 or one in 10, respectively, that the observed sample was drawn
from an exponential distribution. o
9.5 WE_,-TEST

This test is used to evaluate the assumption that a sample has an expo-
nential distribution with the origin ¢ known. However, percentiles of the distri-
bution WEO have not been tabulated for sample sizes other than 7 to 35. The

comments on the W-test are also applicable here.
The WE ~test is used as follows:
Step 1. Subtract the known location ¢ from each of the sample values xi.'

Step 2. Calculate the test statistic
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where x., i=1,..., n, are the n sample values and x is the sample
mean.

Step 3. Determine whether the computed value WE lies outside the tabulated
95 percent and 90 percent ranges shown in Table B-90 as a function of n. This
test is two-sided in that too-low or too-high values indicate non-exponentiality.
Thus, if the computed value of WE  falls outside the 95 percent range, the
chances are less than one in twenty that the observed sample was drawn from
an exponential distribution with the assumed origin.
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A.1 INTRODUCTION

Although the reader probably has a good general knowledge
of the simple parametric distributions, he is likely to be unfamiliar
with the complex parametric distributions. The main text of this
volume indicates when and how to use these distributions, but all with-
out requiring a thorough understanding of the complex distributions.
This appendix is intended to give the reader some background informa-
tion on the complex distributions so that he will be better able to under-

stand and use the related material in the main text.



7o

o

.

AL




95

A.2 WEIBULL DISTRIBUTION

The Weibull distribution is best known for its application to reliability
analysis where it is known to fit a large class of life (time to failure) dis-
tributions (53). The basic distribution suggested by Weibull is to define

o(x), where the cumulative distribution function F is given by

Fx) = P[X<x] = 1-e-(p(x) = fx f(x)dx

One of the simplest forms for o(x) is

o(x) (35-;-\-6—)1’ X2c¢

in which case

_(x-9"
Fx) = 1-e¢ X X2c¢€
=0 X<¢€
and
_(x=9)"
f(x) = n/x (x-e)n-le A XzE€
=0 x<¢

The parameter ¢ is called the location parameter in the sense that it

defines the lower limit for the random variable x. For the special case

where ¢=0,

/X
f(x) = n/x xn'le-xn
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and

F(x) = 1_e-xn/)\

The values of n and X may be selected to provide a large number
of shapes some of which are sketched below in Fig. A.1. For this reason
n is called a shape parameter and X is called a scale parameter since it

scales the value of x.

(%)

Fig. A.1. Weibull Distribution for Various Values of
Parameter n
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It should be noted from Fig. A.1 that m4 = 1/2 might represent.
the shape parameter for the early failure region and n 3= 3 the shape
parameter for the wear-out region in a typical reliability application.
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A.3 JOHNSON DISTRIBUTIONS

These distributions were proposed by Johnson who used trans-
formations of the normalized normal random variable to generate
empirical distributions(21,22). The main advantages of this approach
are that percentiles of the empirical distribution may be obtained using
a table of the normal probability distribution, as will become apparent

later, and that the approach encompasses a broad class of problems.

To introduce the Johnson distributions, assume that it is de-
sired to obtain a probability density function for the random variable
X about which little or no information is available. Then, a general
transformation from X to Z is postulated, where Z is a normalized

normal random variable, as follows

Z = y+nTX) |,

where yand n and parameters to be determined.

In most situations, the transformation T(X) will be unknown.
However, Johnson proposed three families of distributions, referred

to as the SL’ SB’ and SU systems, respectively, defined as follows

SL(Log—normal)T(X) = in (x-¢) ; X>e¢
— X-€ .
SB(Bounded) T(x) = Ln(“G_x) ; e<X< €+

SU(Unbounded) T(x) sinh'l(%:—G) ; o< X <@

The undefined regions for x above imply T(x) = 0.
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Similar to the Weibull distribution, n and v are shape parameters,
A is a scale parameter, and € plays the role of location parameter
which shifts the region of relevancy for x. These parameters are

subject to the following constraints:
n>0 ; x>0

-c=<-y<co

o <€ < @

In some cases, these parameters may be identified from a
basic understanding of the process. For example, if the random

variable x must be non-negative, then ¢= 0 and the S_ , or lognormal

L’
distribution, might be appropriate. If X is restricted to a finite region,
€<X< ¢ +Xx, then SB (bounded distribution) may be appropriate.

An infinite range for X would suggest the SU (unbounded) distribution.

The probability density function for the distributions are as
follows:

2 2
-7-7:—2—[%'+ /(,n(x—e)] } ; X2Z¢

SL: fl(x) '

_n___
B (me) {

St f,® = Jg;? &= )(\x—x+c) exp {‘ %‘ [7 +7 4n (A}f;ie)]Z}

\

€e< X<e+ A

-1 1
1 [ (x-0)% 4 o8

2
2 1/2
exp -%(vwm :(’i;i)Jr[@i;l—JrlJ / })

<X L ®

SU: f3(x)
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The density function for the SL system is a three-parameter
distribution commonly called the log-normal distribution. This is
known to describe many familiar events such as amount of inheritance,

income, particle size from breakage, etc.

As previously mentioned, the class of situations encompassed
within these distributions is large. An indication of the flexibility
in defining a large number of shapes is evidenced in Figs. A.2 to
A. 4 which illustrate several forms of the SL’ SB and SU density func-
tions.

The difference between the three types of Johnson distributions
can be characterized by the relationship between the distribution skew-
ness and distribution kurtosis. Section 8 of this volume contains a dis-
cussion of skewness and kurtosis; however, a summary definition is

that
3
Bl=u3/S (skewness)
and
8, = /5" (kurtosi
9= Ky rtosis)

To help in the definition of the relative variation in B4 and Bos
Johnson prepared the results as shown in Fig. A.5. Note that the log-

normal distribution is defined by a line given by:

B, = (w-1) (w+2)® ;>0
’32 = w4+2w3+3w2-3 ; >0
where
2
w = e/m

is the shape parameter for SL’
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Fig. A.2. Johnson Probability Density Functions for SL (e = 0)
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y=0; 7=0.5
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. Fig. A. 3. Johnson Probability Density Functions for SB (e=0; A=1)



104

O

3

0.8

SIS
o
N e

Fig.A.4. Johnson Probability Density Functions for S

X



105

fp———— — m

Extension according to
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Fig. A.5.. Regions of Definition for Johnson Distributions Based on
Skewness and Kurtosis -
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It should be recognized that estimates for 1 and ‘82 may lead
to a wrong conclusion as to the type of distribution to be used. The
confidence that this will not occur is related to the accuracy of the

estimates. In case of doubt, a goodness-of-fit test may be used to
help in a decision.
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A.4 PEARSON DISTRIBUTIONS

A general class of probability density functions known as the

Pearson family(lo’ 35) , is given by solutions of the differential
equation:
dy . (x+a)y
dx 2
b0 + b1x + b2 X

The solutions of this equation were classified by Pearson into twelve
families of curves shown in Table 8.1. These curves are displayed

in Fig. A.6. The Pearson distributions are related to the standard
densities frequently discussed. For example: the gamma distributions
are Pearson's Type III curves, the normal is a Type VII, the beta

is a Type I while the beta with parameters ¢=8 is represented by

the Pearson Type II curves.

This system of density functions is very appealing from the
standpoint of fitting sample data, the reason being that only the first
four moments need be calculated. Pearson's methods of fitting sample

data consists of the following steps:

1. Compute the first four moments, Hqs Ko u3,'

by of the sample data.

2. Calculate the numerical value of the parameters
Bl and 32, where:
B 1° skewness,

Bg= kurtosis.
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TYPE I £ &)
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Fig. A.6. Typical shapes of Pearson distributions (Sheet 1 of 2)
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TYPE VIO | £ () -
' _ -
:v f(x) =y0(1 +§)
|
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1
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Note: Type 1V and VII appear as normal distributions.

Fig. A.6. Typical shapes of Pearson distributions (Sheet 2 of 2)
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These parameters determine the type of
Pearson distribution which appropriately
matches the sample data.

3. Equate the observed (sample) moments to
the moments of the appropriate distribution

expressed in terms of its parameters, and

4, Solve the resulting equations for those parame-
ters thereby completely specifying the distribution

function.

The relationships between ,31 and ,32 for a given Pearson distribution have
been represented in a convenient graphical form in the so-called ,31, ,32—
plane shown in Fig, A.7. The normal distribution corresponds to the point
,31 =0, ,32 =3 in the ,31, ,32 plane. Type III distributions are to be chosen
when the point BysBy is on the line 2/32—3,31 -6 = 0 and Type Vwhen (131, 132)

is on the cubic
2 _

In considering the subtypes under Type I, a biquadratic in 31 and 32
separates the area of the J-shaped curves from the regions of limited

range modal curves and the region of the U-shaped curves.

In summary, the curves traced in the (Bl’ Bz)- plane provide "
a means of selecting the Pearson distribution appropriate to a given collec-
tion of sample data. For further details and numerical examples
see Elderton(10) and Kendall(27).
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, TABLE B-1
Unbiasing Factors for the M.L.E. of n
n 5 6 7 8 9 10 11 12 13 14 15 16
B(n) .669 .752 .792 .820 .842 .859 .872 .883. .893 .901 .908 .914
n 18 20 22 24 26 28 30 32 34 36 38 40
B(n) .923 .931 .938 .943 .947 .951 .955 .958 .960 .962 .964 .966
n 42 44 46 48 50 52 54 56 58 60 62 64
B(n) .968 .970 .971 .972 .973 .974 .975 .976 .977 .978 .979 .980
n 66 68 70 72 74 76 78 80 85 90 100 120
B(n) .980 .981 .981 .982 .982 .983 .983 .984 .985 .986 .987 .990
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TABLE B-2
Percentiles of the Normal Distribution

2
F(x) =fx L e t/2 4

- A/ 27
T 00 01 02 03 .04 05 06 07 08 09

.5000| .5040/ .5080; .5120; .5160/ .5199| .5239 .5279; .5319| .5359
.5398; .5438 .5478 .5517| .5557| .5596| .5636| .5675 .5714] .5753
.5793 .5832| .5871| .5910/ .5948} .5987| .6026| .6064| .6103 .6141
.6179] .6217| .6255| .6293| .6331] .6368| .6406 .6443] .6480| .6517
.6554; .6591| .6628 .6664, .6700; .6736| .6772 .6808 .6844| .6879

.6915/ .6950| .6985 .7019| .7054| .7088) .7123 .7157| .7190| .7224
L7257, 7201 .7324( .7357| .7389| .7422| .7454| .7486| .7517| .7549
L7680, .7611| .7642 .7673) .7704| .7734 .7764| .7794| .7823} .7852
L7881F 7910 .7939] .7967) .7995 .8023| .8051| .8078| .8106{ .8133
.8159; .8186| .8212 .8238 .8264| .8289| .8315| .8340, .8365 .8389

.8413| .8438) .8461| .8485| .8508| .8531| .8554] .8577 .8599| .8621
.8643| .8665 .8686 .8708| .8729| .8749| .8770| .8790, .8810 .8830
.8849, .8869| .8888 .8907) .8925 .8944| .8962| .8980; .8997| .9015
.9032 .9049( .9066( .9082 .9099| .9115 .9131} .9147| .9162 .9177
L9192y .9207| .9222( .9236| .9251| .9265! .9279) .9292 .9306 .9319

.9332) .9345 .9357| .9370| .9382| .9394| .9406| .9418| .9429 .9441
.9452) .9463| .9474( .9484) .9495| .9505 .9515 .9525] .9535| .9545
.9554| .9564| .9573( .9582| .9591] .9599| .9608| .9616( .9625 .9633
.9641| .9649| .9656( .9664] .9671] .9678| .9686| .9693| .9699| .9706
.9713( .9719| .9726| .9732| .9738| .9744] .9750| .9756| .9761| .9767

.9772) .9778| .9783| .9788| .9793; .9798 .9803| .9808| .9812 .9817
.9821f .9826( .9830{ .9834( .9838 .9842 .9846, .9850| .9854| .9857
.9861) .9864| .9868( .9871 .9875 .9878 .9881( .9884; .9887| .9890
.9893| .9896( .9898 .9901 .9904| .9906{ .9909 .9911| .9913; .9916
.9918 .9920; .9922i .9925| .9927| .9929( .9931| .9932 .9934| .9936

.9938| .9940( .9941| .9943| .9945| .9946| .9948 .9949| .9951| .9952
.9953| .9955 .9956| .9957| .9959| .9960 .9961} .9962( .9963| .9964
.9965; .9966( .9967| .9968| .9969| .9970| .9971 .9972] .9973| .9974
L9974 .9975 .9976| .9977| .9977) .9978 .9979| .9979| .9980] .9981
L9981 .9982 .9982f .9983| .9984| .9984; .9985| .9985 .9986| .9986

L9987 .9987( .9987| .9988( .9988 .9989| .9989! .9989| .9990| .9990
.9990| .9991| .9991f .9991 .9992| .9992 .9992| .9992| .9993| .9993
.9993( .9993( .9994( .9994| .9994| .9994( .9994! .9995| .9995| .9995
.9995| .9995| .9995( .9996| .9996| .9996 .9996] .9996| .9996! .9997
.9997| .9997| .9997| .9997| .9997| .9997| .9997| .9997| .9997] .9998

W=D CRUDN RWNHO CRTSN RWNHD DTSN WO

WWWWW NIONNN NDNNNN e

z 1.282(1.645(1.960|2.326(2.576/3.000(3.291 |3.801 [4.417
F(z) .90 | .95 | .975| .99 | .995| .999| .9995| .99995| .999995
A1 — F(z)] 20| .10 | .05 | .02 | .01 | .002| .001 | .0001 | .000O01

(From A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill, 1950.)
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TABLE B-3

Tables to Facilitate Fitting Johnson Su Distribution

Values of — ?

<
™
o

005 0-10 015 , 020 025 0-30 0-35 040 0-45 0-50

>

0.3479 07372 1228 1.939 3.188 6.367
2332 4843 0.7762 1.145 1.662 2.488
1763 .3626 5710 08184 1.133 1.567 2.236 3.472
1424 .2911 4536 6397 8640 1.151 1.546 2.146

. 0.2440 03776 05270 07011 09136  1.187 1.565 2.139 3.157
1036 2106 3243 4495 5919 7602 0.9681 1.238 1.614 2188
.0916 .1856 2849 .3928 5134 6528 8197 1.028 1.302 1.687
0822 1663 .2546 3495 4544 5734 7127 0.8814 1.095 1.378
0746 1509 .2305 31585 4083 5122 6317 7733 09470 1.169

OVB®I> N
(=]
—
—_
©
5]

0.0685 0.1383 02109 02879 0.3713 04637 -0.5684 0.6902  0.8363 1.018
0633 1276 1943 2647 .3404 4234 5174 6243 7503 9031
0589 1188 .1806 .2456 3151 .3907 4755 .5708 6814 8132
.0552 112 1689 2294 2937 .3632 4397 .5265 6250 7407
0519 1046 .1588 2153 2752 3396 4100 .4891 5780 6811

0-4564  0-5382  0-6311
<0466 -0938 -1421 -1923 -2451 3014 -3622 4288 -5040 -56886
0444 -0893 -1352 1828 2327 -2857 +3426 4048 4744 -6520
-0424 -0852 1290 <1743 -2216 2717 -3254 -3836 4484 -6202
0408 <0816 1234 1666 2117 2592 -3099 -3648 4254 4922

COBINPr NRLNm
°
S
-
©
=
=)
&
>
a
©
@
—
-
©
-3
o
[ =]
=3
@
-~
=)
[
o
o
[E]
o
@
-
©
I
o
@
[-
IS
S

+ 0-0390 0-0783  0-1184  0-1597 - 0-2027  0-2480  0-2961 0-3479 04050 0-4674

- - 2 0-2848  0-3286  0-3765
<0316 -0635 0958 -1290 -1631 -1986 -2368 2752 3172 -3629
0307 -0616 -0930 1251 1582 1925 -2284 -2663 -3066 -3604
0298 -0599 0904 1215 -1536 <1868 2215 -25681 +2967 -3385
-0290 0583 -0879 1182 1493 -1815 -2151 2604 -2879 -3278

SOPVEG RABO=
=)
&
@
[
=]
=)
S
3
o
&
@ ...
S
o
@®
3
=)
—
w
w
=
=3
A
[~
@
-
=
D
S
S
D
=)
[
-
@
@

Y LPODPBP EUUWN WUNWY NGO RG PP PRF CNNAON NONNG NAARE AMAAA AWNEPE WHWH

1 0-0283 0-0568  0-0856  0-1151 0-1453  0-1766  0-2091 02433 027904  0-3180
2 -0276 05653 0835 ‘1121 1416 1719 -2036 2366 2718 -3088
3 <0269 0540 -0814 <1094 -1380 -1676 -1983 2304 -2643 -3002
4 <0263 0627 -0795 10687 -1347 1635 -1933 2245 2574 -2921
5 0257 ‘0515 0777 1043 1316 1596 -1887 -2190 2509 -2846
6 0-0251 0-0504 00760  0-1020 0-1286  0-1560 0-1843 0-2138  0-2448 0-2775
7 0246 <0493 ‘0743 0998 <1258 1625 1802 -2089 -2391 +2709
8 0241 0483 <0728 <0077 -1231 -1492 1762 +2043 -2337 -2646
9 -0238 <0473 0713 <0957 1206 -1461 1725 1999 2285 +2586
0 0232 <0464 <0699 0938 1182 -1432 -1690 1957 2237 2630
1 00227 00456 00686 00020 01159  0-1404 0-1656  0-1018 02190 0-2476
2 -0223 0447 0673 <0903 -1137 -1377 -1624 +1880 2147 -2426
3 <0219 -0439 0661 -0887 -1118 1352 -1694 ‘1844 <2105 2377
4 0215 0431 +0650 0871 1096 <1327 -1565 -1810 -2085 2331
5 ‘0212 0424 -0639 -0856 1077 1304 -1637 11777 -2027 -2287
6 00208 0-0417 0-0628 00842 0-1059  0-1282 01510 01746  0-1991 0-2246
7 0205 0410 -0618 -0828 1042 -1260 -1485 <1716 1956 2206
8 0202 -0404 -0608 ‘0815 1026 1240 -1460 <1687 1922 -2167
9 -0198 -0398 0599 0802 -1009 1220 1437 -1660 <1891 2131
0 0195 0392 -0590 ‘0790 -0993 1201 ‘1414 -1633 -1860 2095
2 00190 0-0380 0-0572  0-0767 0-0964  0-1165 01371 0-1683  0-1802  0-202

4 0185 -0370 0557 0745 0937 1132 -1332 ‘1637 -1749 -1968
6 <0180 -0360 <0542 <0725 0912 -1101 1295 1494 -1699 1912
8 0175 -0351 -0528 0707 -0888 11073 -1261 ‘1454 <1663 1859
0 ‘0171 <0342 0515 0689 0866 1046 1229 ‘1417 1610 -1810
2 —_ - _ — — — 01188 0-1382  0-1570 0-1764
4 —_ — —_ — — — 1171 1349 1632 ‘1721

(From E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians,

Vol. 2, pp. 288-291, Cambridge University Press, 1972).

Table B-3 corrected according to: N. L. Johnson, "Extensions and Corrections

to 'Tables to Facilitate Fitting S, Frequency Curves'," Biometrika 61, 203-205,
(1974). —_——
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TABLE B-3 (continued)

Values of —-? (continued)

0-55 0-60 0-65 0-70 075 0-80 0-85 090 095 100

S0

SODONE MAWNE OSOBIC RN

SCOVY YEEEP PPEDP PWNYY VWV NCCQP FCQRP QUNUG NNAUAN QRAAE ALASL BB
[-X"-X- KX N3 Ul

OBDEAN SVDVEG NbGNm= OORIG RGN

3714 -4184 -4701 -5276 -5924 -6663 -7521 8538 09765 1129

03508 0-4049 0-4542 0-5088 05700 0-6396 0-7197 0-8138  0-9265 1-085
+3491 -3923 -4396 -4915 5496 -8152 6904 -7780 +8820 1-008
-3390 +3808 -4258 4765 +6308 -6929 -8637 -7456 8420  0-9581
3297 3697 4131 -4607 6134 -5724 -8392 7181 -8060 -9132
3209 3595 -4013 4470 4973 -5536 6168 6892 ‘7733 -8729

0-3123  0-3500  0-3903  0-4341 0-4824  0-5359 0-6962 0-6646 0-7436  0-8364
+3046 -3410 3799 -4221 -4684 +5197 5770 6419 <7164 -8033
2973 -3326 3702 +4109 -4564 5045 5592 -8209 -8914 71730
2904 +3247 <3611 4004 -4433 -4904 5427 6015 6683 74563
+2839 <3172 3524 -3905 4318 4772 5273 -6835 -6470 7198

0-2778  0-3101 0-3443  0:3812  0-4211 0-4648  0-5130 0-5666 06272  0-6962 -
2719 3034 -3366 -3723 4110 4531 4995 -5509 -6087 <6744
-2664 2967 3203 -3640 4014 4421 4868 -5362 5915 -8541
-2611 -2907 3224 3561 3924 -4318 4749 -5224 <5754 63562
-2661 2849 -3159 -3486 -3838 4220 4636 -5094 5603 6175

0-2513 0-2795  0-3096 0-3415  0-3757 0-4127 0-4530 0-4972  0-5463  0-6010
-2467 -2742 -3037 3347 -3680 -4039 -4429 4857 -5328 6855
2423 -2692 +2980 -3283 -3607 3956 -4334 4747 5203 -5709
2381 -2645 -2926 -3221 +3537 -3876 4244 4644 5084 -55671
2341 -25699 32871 -3163 +3470 -3801 4158 4546 -4971 -6442

0-2303 0-2556  0-2822  0-3106  0-3407 0-3729  0-4076  0-4452 04864 05319
-2266 -2514 2774 -3053 -3346 +3660 -3998 4364 4763 +5203
-2230 2473 2729 -3001 -3288 -3594 3923 4279 4667 6092
-2196 2436 -2685 -20562 -3232 3531 3852 4199 4675 -4987
-2163 -2397 -2643 2804 -3179 -3471 3784 4122 4488 4888

0-2132  0-2362 0-2603  0-2869  0-3127 0-3413  0-3719  0-4048 0-4405 0-4793
+2101 -2327 -2564 -2812 -3078 3358 3857 -3978 4326 4702
2072 -2294 -2526 -2770 3031 +3305 35697 -3910 4248 -4616

2016 +2231 <2455 2691 -2041 3204 -3484 -3783 -4105 4454

01964 0-2172 0-2389  0-2617  0-2858  0-3111 0-3380  0-3666  0-3974  0-4305
11915 -2117 2328 -2548 -2778 -3025 3283 -3568 -3852 4189
— — — -2483 -2708 +2044 -3193 +3457 -3739 -4042
— — —_ -2422 2839 +2868 -3109 -3363 -3634 -3925
— — — -2365 2875 2798 +3030 -3275 3537 -3816
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TABLE B-3 (continued)

119

Values of —-Q (continued)

VB
s 105 1-10 1-15 120 1-25 1-30 135 1-40 1:45 150
]

54 2401 3.529

55  2.099 2.872

56 1.871 2450

57 1672 2.149

58 1547 1.921 2.532 3.892

59 1428 1.741 2223 3.122

60 1.327 1.595 1.989 2,653

61 1241 1.474 1.805 2.324

62 1167 1.372 1.655 2.078 2.819 5.129

63 1102 1.285 1.531 1.885 2.458 3.708

64 11044 1210 1.426 1.728 2.191 3.052

65 09933 1.143 1.336 1.599 1.983 2.634

66 09477 1.085 1.258 1.489 1817 2.334

67 9066  1.032 1.190 1.396 1.679 2.106

68 8694 09857 1.130 1.315 1.563 1.923 2.520 3.939

69 8356 9435  1.076 1.243 1.464 1.774 2.258 3.210

70 8046 9053 1.028 1.180 1.378 1.650 2.054 2.766

71 07762  0-8705 09840 1124 1.303 1.543 1.889 2.453

72 -7500 -8386 9444  1-074 1.237 1.452 1.752 2216

73 -7268 -8093 9083  1-028 1.178 1.372 1.636 2.028

7.4 -7034 7823 8753 0-9871 1.1256 1.301 1.536 1.874 2424 3.680
7.5 6825 75673 -8450 9495 1.077 1.238 1.450 1.745 '2.201 3.085
76 (6630 07342 08170 09151 1034 1-182 1.374 1.635 2.023 2.703
77 -6448 -7128 -7910 -8834 0945 1132 1.306 1.540 1.876 2425
78 -6278 -6924 -7670 -8542 9584  1-086 1.246 1.457 1.752 2.209
79 8117 -6736 7445 8272 9251 1-044 1.192 1.384 1.646 2.036
80 5067 -6659 7236 8020 8945  1:006 1.143 1.319 1.553 1.892
81 05825 06393 07040 07786 0-8661  0-9706  1-099 1-260 1472, 1.771
82 -56690 6237 8857 +7568 -8397 -9382  1-068 1-207 1.401 1.667
83 -5563 -6089 -6684 7364 -8152 9083 1-020 1-159 1.337 1.576
84 -5443 5950 -85621 7172 7923 -8805  0-9860 1115 1.279 1.496
85 -5328 -5818 6368 6991 -7709 8546 9542 1075 1.227 1.425
86 05220 05603 0-6223 06822 07507 0-8304 0-9246 1-038 1-180 1-361
87 5116 5574 -6085 -6661 -7318 -8078 8972  1:004 1-136 1-304
88 -5018 -5461 -56956 -6510 -7140 -7866 8716 0-9720  1-096 1-252
89 -4924 -5354 -6831 -6366 -6972 -7667 -8477 9436 1-060 1-204
90 -4834 5251 -5714 -6230 -6813 7480 8252 9163 1026 1-161
91 04748 0-5164 0-5601 0-6101 06663 0-7303 0-8042 0-8908 09943  1-121
92 -4666 -5060 -5494 -597° -6520 7136 7843 -8669 9651  1-084
93 -4587 4971 5393 5861 -6385 6977 -7656 ‘8445 9377 1-050
94 -4511 -4885 5205 5749 6256 -6827 -7480 -8234 9122 1019
95 -4439 -4803 5202 -5642 6133 -6685 7312 -8036 8882  0-9892
96 04369 04724 0-5112 0-5640 0-6016 0-6549 07164 07848 0-8657 09616
9.7 -4302 +4648 +5027 -5443 -6904 -6420 -7003 -7671 -8445 19359
98 +4237 -4576 -4945 -5349 5797 -6297 -6860 +7503 8245 -9117
9.9 -4176 -4506 -4866 -5260 -5695 -6180 -6724 7343 8056 -8889
10-0 4115 4438 -4790 5174 5597 -6067 -8594 7192 7877 -8675
102 04001 04311 04646 0-5012 0-5413 0-5857 06352 06910 0.7546  (-8280
10-4 -3895 -4192 -4513 -4862 -5243 +5664 -6131 -6664 7247 -7927
106 3796 -4082 -4389 -4723 -5086 5485 -5927 -6420 -6975 -7608
108 -3703 -3978 -4273 -4593 4940 5320 -5739 -6205 8727 -7318
110 -3615 -3881 -4165 -4472 4804 5167 5566 -6007 -6499 -7053
1122 0-3533  0-3789  0-4063 04358 04678  0-5025 0-5404 05823 0-6289  0-6811
114 3465 3703 -3968 4252 -4559 -4891 5254 -5653 -6095 -6588
116 - — — — — — — -6495 -5915 -6383
118 — — _ — — — — -5347 -5748 6192
12-0 — —_ — —_ — — — -5209 5592 -8015
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TABLE B-3 (continued)

Values of — /Y\ (continued)

JB

s 155 160 165 170 178 1-80 185 190 195 2:00
80 2453 3.828

81 2239 3.189

82 2066 2.792

83 1923 2508

84 1802 2.289

85 1.698 2.114

86  1.607 1.968 2594 4642

87 1527 1.845 2.363 3576

88 1455 1.739 2.180 3.058

89 1.391 1.647 2.029 2717

90 1334 1.566 1.901 2.465

91 1282 1.493 1.792 2.268

92 1234 1.428 1.697 2.107

93 1190 1.370 1613 1.972

94 1150 1.316 1.538 1.857 2.382 3.698

9.5 1.112 1.268 1.471 1.757 2.206 3.143

96 1078 1-223 1-412 1-670 2.060 2.790

97 1048 1-182 1-357 1-592 1.937 2533

98 1018 1-144 1-307 1-523 1.830 2.333

99 09881 1-100 1-261 1-460 1.737 2171

100 9819 1076 1-218 1.403 1.655 2.035

101 09374  1.046 1:180 1-361 1.582 1.919

10-2 9142 1017 1-144 1-304 1.516 1.818 2.311 3.494

103 8924  0-9906  1:110 1-260 1.456 1.730 2157 3.032

10-4 8718 .9655 1-079 1-220 1.402 1.652 2.027 2.723

10-5 -8523 0419 1-050 1-183 1.353 1.582 1.916 2.493

106 08338 09196 1022 1-148 1-307 1-518 1.819 2311

10-7 -8163 -8985  0-9963  1-118 1-285 1-461 1.734 2.161

108 7996 -8785 9720 1-085 1-226 1-408 1.657 2.035

109 7837 -8596 9490  1-087 1-190 1-360 1.589 1.926

11-0 7686 -8416 9274 1080 1:156 1:318 1.527 1.831 2.332 3.637
1111 07541 08246 08089  1.006 1-124 1-274 1471 1.747 2.183 3.126
112 -7403 -8088 8874  0-9811  1-085 1-236 1420 1.673 2.057 2.800
113 7272 7928 -8689 ‘9587  1-087 1-201 1.373 1.605 1.949 2.562
11-4 7145 -7780 -8513 9375 1-041 1-168 1.329 1.544 1.854 2.375
11-5 7024 1638 -8346 9174  1-016 1137 1.289 1.489 1.770 2223
116 06907 07503 0-8186 0-8983 09928 1-108 1-251 1-438 1.695 2,094
11-7 -8796 -7373 -8034 -8801 -9708,  1-080 1-216 1-301 1.628 1.984
11-8 -6688 7248 -7888 -8628 9499  1-054 1-183 1-347 1.567 1.888
11-9 -6585 7120 7749 -8463 9300  1-030 1-152 1-30" 1511 1.803
120 -6486 7014 7615 8306 9112 1-007 1-124 127 1.461 1.728
121 06300 0.6904 07487 0-8155 0-8932  0-0851  1.086 1-235 1414 1-680
122 -6297 -6798 7364 -8011 -8761 9844 1071 1-202 1-370 1-598
123 -6208 -6696 7246 1873 -8597 9447  1-048 1-171 1-330 1-542
124 -8122 8508 7132 1740 ‘8441 9260  1-024 1-143 1-203 1-490
12-5 -6039 6503 7023 -7813 -8281 9081  1-002 1-115 1-258 1-443
126 05959 0-6411 06918 0-7491 0-8148 0-8910  0-9811  1-090 1-225 1-309
127 -5881 -6323 -6816 1374 -8011 8747 9814  1-068 1-104 1-358
12:8 -5806 8237 -8718 -7261 7879 -8592 9427 1-043 1-165 1-320
129 -5733 -6154 -8624 71562 7752 8442 9248 1-021 1-138 1-284
130 -5662 6074 -8533 7047 7630 -8299 9078 1-000 1-112 1-251
132 — — — — 07400  0-8030  0-8758  0-9614  1.084 1-180
134 — — — — 7187 7181 -8466 9263  1-021 1-138
136 — — — — -6988 -7551 -8195 8941 09822  1-088
138 — — — —_ -8802 1336 1945 -8646 9486 1-045
140 —_ — — — -6628 1136 1712 -8373 9141  1-005
142 — — — — 0-6464 06949 07496 08121  0-8842  0-9690
144 — — — — -6311 8774 1295 7888 -8566 -9359
146 — - — - -8166 -8609 -7106 7668 -8310 -0056
148 — — — — -6029 -3454 -6920 7464 -8072 ‘8774
150 —_— — — — -5900 -8308 -8763 7213 1851 8514
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. TABLE B-4

Tables to Facilitate Fitting Johnson Distributions

Values of n

A
8 005 0-10 0-15 020 0-25 0-30 035 0-40 0-45 0-50
]
32 4-871 4787 5-004 5-369 5992 7-204
33 3-866 3-927 4-036 4-208 4-469 4-876
34 3-398 3-435 3-503 3-607 3-759 3-979 4-300 4813
35 3-081 3-108 3-156 3-227 3-328 3-4687 3-663 3-943
36 2-852 2-872 2-908 2-960 3-033 3-132 3-266 3-448 3-705 4-087
37 2-676 2-692 2-719 2-760 2-816 2-890 2-989 3-120 3.295 3-5640
38 2:535 2-548 2-571 2:604 2-648 2-707 2-783 2-882 3011 3-184
39 2-420 2-43% 2-450 2-477 2:513 2-561 2-623 2-701 2-801 2931
40 2-324 2:333 2-349 2-372 2-402 2-442 2-492 2:557 2637 2-739
41 2-242 2-250 2-264 2-283 2-309 2-343 2-385 2-439 2-505 2-588
42 2:171 2:178 2-190 2-207 2-229 2-258 2-295 2:340 2-398 2-4685
43 2-109 2-115 2:126 2-141 2-160 2-186 2-217 2-258 2-304 2-363
44 2-054 2-060 2069 2-082 2-100 2-122 2-150 2-184 2-228 - 2276
45 2-005 2-010 2:018 2030 2048 2-066 2-:090 2-121 2:157 2-202
46 1-961 1466 1-973 1984 1-998 2-018 2-038 2-085 2-097 2-136
47 1-821 1-825 1-932 1-842 1-855 1-971 . 1-991 2-0156 2-044 2-079
48 1-885 1-889 1-895 1-904 1-816 1-930 1-948 1-970 1-997 2-028
49 1-852 1-856 1-861 1-869 1-880 1-893 1-910 1-930 1-954 . 1-982
50 1-822 1-825 1-830 1-837 1-847 1-860 1-876 1-893 1-9156 1-941
51 1-793 1-796 1-801 1-808 1-817 1-829 1-843 1-859 1-880 1-903
-2 1-787 1-770 1-776 1-781 1-790 1-800 1-813 1-829 1-847 1-869
3 1-743 1-746 1-750 1-756 1-764 1-774 1-788 1:800 1-817 1-837
4 1-721 1-723 1-727 1-732 1-740 1-749 1-760 1-774 1-789 1-808
5 1-699 1-702 1-706 1-711 1-718 1-726 1-737 1-749 1-764 1-781
6 1-680 1-682 1-685 1-690 1-697 1-705 1-715 1-726 1-740 1-756
-7 1-661 1-663 1-686 1-671 1-877 1-685 1-694 1-705 1-718 1-733
8 1-643 1-645 1-848 1-653 1-658 1-666 1-674 1-685 1-697 1-711
9 1-627 1-628 1-631 1-636 1-641 1-648 1-656 1-668 1-877 1-691
-0 1-611 1-613 1-816 1-619 1-825 1-631 1-639 1-648 1-6859 1-672

1-596 1-698 1-600 1-604 1-609 1-615 1-623 1-631 1-642 1-863
1-582 1-583 1-586 1-590 1-594 1-600 1-607 1-615 1-625 1-636
1-568 1-570 1-572 1-576 1-580 1-586 1-593 1-600 1-610 1-620
1-556 1-557 1-559 1-563 1-567 1-572 1-579 1-586 1-595 1-605
1-543 °  1-545 1-547 1-550 1-554 1-569 1-565 1-573 1-581 1-591

1-532 1-533 1-535 1-538 1-542 1-5647 = 1-553 1-560 1-5668 1-577
1-520 1-522 1-524 1-527 1-530 1-535 1-541 1-547 1-555 1-564
1-610 1-511 1-513 1-516 1-519 1-524 1-529 1-535 1-543 1-551
1-499 1:501 1-502 1-505 1-509 1-513 1-618 1-524 1-531 1-5639
1-490 1-491 1-492 1-495 1-498 1-502 1-507 1-513 1-520 1-528

SIS b

1-480 1-481 1-483 1-485 1-489 1-492 1-497 1-503 1-509 1-517
1-471 1-472 1-474 1-476 1-479 1-483 1-487 1-493 1-499 1-506
1-462 1-463 1-485 1-467 1-470 1-474 1:478 1-483 1-489 1-496
1-4564 1-455 1-456 1-458 1-461 1-465 1-469 1-474 1-480 1-487
1-445 1-446 1-448 1-450 1-453 1-456 1-460 1-485 1-471" 1-477

1-438 1-438 1-440 1-442 1-445 1-448 1-452 1-457 1-462 1-488
1-430 1-431 1-432 1-434 1-437 1-440 1-444 1-448 1-454 1-480
1-423 1-423 1-425 1-427 1-429 1-432 1-436 1-440 1-445 1-451
1-415 1-416 1-418 1-419 1-422 1:425 1-428 1-433 1-438 1-443
1-408 1-409 1411 1-412 1-416 1-418 1-421 1-425 1-430 1-435

1-395 1-396 1-397 1-399 1-401 1-404 1-407. 1-411 1-416 1-421
1-383 1-383 1-385 1-386 1-388 1-391 - 1-394 1-398 1-402 1-407
1-371 1-372 1-373 1-374 1-376 1-379 1-382 1-385 1-389 1-394
1-360 1-361 1-362 1-363 1-365 1-367 1-370 1-373 1-377 1-381
1-349 1-350 1-351 1-352 1-354 1-356 1:359 1-362 1-366 1-370

— — — —_ — — 1-349 1-352 1-355 1-359
— —_ — —_ —_ — 1-339 1-342 1-345 1-348

P VXDDE® PUUIN WUWUI NGQQQ QCORP SMNUGA A

BN ORSRN SEBDIST B

(From E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians,
vol. 2, pp. 292-295, Cambridge University Press, 1972).
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Values of n {(continued)

VA
P 0-55 0-60 0-65 070 0-75 0-80 0-85 090 095 1-00

]

3-8 3-424 3776

39 3-105 3-346

40 2-872 3-049 3-294 3-659

41 2-694 2-830 3-013 3-269

42 2-552 2-662 2-804 2-996

43 2-436 2:526 2-641 2-791

44 2-338 2-414 2-510 2-631

45 2-255 2:320 2:401 2-502

46 2-183 2-240 2-309 2-395 2-503 2-641 2-828 3-093

47 2-120 2-170 2-231 2-304 2-395 2-511 2-662 2-868

48 2-085 2109 2162 2-226 2-306 2403 2529 2-694

49 2-015 2-066 2-100 2-159 2-227 2-312 2418 2-555

50 1-971 2-007 2-049 2-099 2-160 2-234 2-328 2-441 2-592 2-799
51 1-931 1-863 2-001 2-045 2-100 2-165 2-245 2-:344 2-472 2-641
52 1-894 1-924 1-958 1-099 2-048 2-1056 2-176 2-262 2-371 2-512
53 1-860 1-888 1-919 1-857 2-000 2-052 2-1156 2-191 2-285 2-4068
5-4 1-830 1-855 1-884 1-918 1-958 2-0056 2-081 2-128 2-211 2-315
55 1-801 1-824 1-851 1-883 1-918 1-962 2-012 2:073 2-146 2-237
56 1-776 1-796 1-821 1-850 1-884 1-923 1-969 2-023 2-089 2170
57 1-760 1-770 1-794 1-820 1-851 1-887 1-829 1-979 2-038 2-110
5-8 1-728 1-748 1-768 1-793 1-821 1-855 1-893 1-939 1-092 2-067
59 1-706 1.724 1-744 1-767 1-7904 1-824 1-860 1-902 1-951 2-009
60 1-886 1-703 1-722 1-743 1-768 1-797 1-830 1-868 1-913 1-067
61 1-687 1-683 1-701 1-721 1-744 1-771 1-802 1-837 1-879 1-928
62 1-649 1-664 1-681 1-700 1-722 1-747 1-776 1-809 1-847 1-892
63 1-633 1-647 1-663 1-681 1-701 1-7256 1-7562 1-782 1-818 1-860
64 1-817 1-830 1-645 1-662 1-682 1-704 1-729 1-758 1-791 1-830
65 1-602 1-814 1-629 1-645 1-663 1-684 1-707 1-735 1-766 1-802
66 1-587 1-599 1-613 1-628 1-646 1-666 1-688 1-713 1-742 1-776
67 1-574 1-585 1-598 1-813 1-629 1-648 1-669 1-693 1-721 1-752
68 1-561 1-572 1-584 1-598 1-614 1-632 1-652 1-674 1-700 1-730
69 1-548 1-559 1-:571 1-584 1-599 1-616 1-638 1-656 1-681 1-708
70 1-637 1-547 1-558 1-571 1-585 1-601 1-618 1-639 1-663 1-689
71 1-525 1-536 1-548 1-558 1-572 1-587 1-604 1-623 1-645 1-870
7-2 1-514 1-524 1-534 1-546 1-569 1-573 1-590 1-608 1-629 1-653
73 1:504 1-513 1-523 1-534 1-647 1-561 1-576 1-594 1-614 1-63¢
7-4 1-494 1-503 1-512 1-523 1-535 1-548 1-563 1-580 1-599 1-62(
75 1-484 1-493 1-502 1-512 1-524 1-537 1-551 1-567 1-585 1-60¢
7-6 1-475 1-483 1-492 1-602 1-513 1-525 1-539 1.556 1-572 1-59])
77 1-466 1-474 1-483 1-492 1-503 1-515 1-528 1-543 1-559 1-57¢
78 1-458 1-465 1-473 1-483 1-493 1-504 1-517 1-531 1-547 1-561
79 1-450 1-457 1-465 1-474 1-483 1-494 1-507 1-520 1-536 1-56:
8-0 1-442 1-448 °~  1-456 1-465 1-474 1-485 1-497 1-610 1-524 1-54]
81 1-434 1-440 1-448 1-456 1-466 1-476 1-487 1-500 1-514 1-52¢
82 1-426 1-433 1-440 1-448 1-457 1-467 1-478 1-490 1-504 1-51¢
83 1-419 1-425 1-432 1-440 1-449 1-458 1-469 1-481 1-494 1-50¢
84 1-412 1-418 1-425 1-433 1-441 1-450 1-460 1-472 1-484 1-49¢
85 1-405 -1-411 1-418 1-425 1-433 1-442 1-4562 1-463 1-475 1-48¢
86 1-399 1-405 1-411 1-418 1-426 1-435 1-444 1-455 1-467 1-47¢
8-7 1-392 1-398 1-404 1-411 1-419 1-427 1-437 1-447 1-458 1-47.
88 1-386 1-392 1-398 1-404 1-412 1-420 1-429 1-439 1-450 1-46:
89 1-380 1-386 1-391 1-398 1-405 1-413 1-422 1-431 1-442 1-45.
9-0 1-374 1-380 1-385 1-392 1-399 1-406 1-415 1-424 1-434 1-44
92 1-363 1-368 1-373 1-37¢ 1-386 1-393 1-401 1-410 1-420 1-43
94 1-353 1-357 1-362 1-368 1-374 1.381 1-389 1-397 1-406 1-41
9-6 —_ —_ — 1-357 1-363 1-370 1-377 1-385 1-394 1-40
9-8 —_ —_ —_ 1-347 1-353 1-359 1-366 1-373 1-381 1-39
10-0 - — — 1-337 1-343 1-349 1-355 1-362 1:370 1-37




S

123

TABLE B~4 (continued)

Values of ﬁ (continued)

JB

P ' o108 1-10 1-15 1-20 1-25 1-30 135 1-40 145 1-50

]

54 2-460 2-632

55 2:353 2-505

56 2:270 2400

57 2-199 2-311

58 2-136 2-234 2:362 2-630

5.9 2-080 2-168 2-278 2-423

60 2031 2-109 2-208 2:331

61 1-986 2-056 2-143 2-253

62 1-945 2-009 2-087 2-184 2-309 2-476

63 1-808 1-966 2-037 2-124 2:234 2-378

64 1-876 1-928 1-892 2070 2-168 2-294

65 1-843 1-893 1-861 2022 2109 2-221

66 1-815 1-860 -~ 1.814 1-978 2-057 2-156

67 1-788 1-830 1-880 1-939 2-011 2-100

68 1-763 1-803 1-848 1-803 1-969 2049 2-151 2-281

6-9 1-740 1-777 1-820 1-870 1-930 2003 2:094 2-210

70 1-719 1.763 1-793 1-840 1-895 1-962 2:044 2-148

71 1-698 1-731 1-768 1-811 1-863 1-824 1-999 2-093

7-2 1-679 1-710 1-745 1-785 1-833 1-880 1-958 2-043

73 1-661 1-690 1-723 1-761 1-808 1-858 1.921 1-898

7-4 1-644 1-671 1-703 1-738 1-780 1-829 1-887 1-958 2:046 2-167

75 1-628 1-654 1-683 1-717 1-756 1-802 1-856 1-921 2-001 2-102

76 1-613 1-637 1-685 1-697 1-734 1-776 1-827 1-887 1-880 2-051

77 1-598 1-622 1-648 1-878 1-713 1-753 1-800 1-856 1-923 2-008

78 1-584 1-607 1-632 1-660 1-693 1-731 1-775 1-827 1-889 1-885

79 1-671 1-693 1-616 1-644 1-675 1-710 1-751 1-800 1-858 1-928

80 1-569 1-579 1-602 1-628 1-657 1-681 1-730 1-776 1-829 1-894

81 1-547 1-566 1-588 1-613 1-640 1-672 1-709 1-7562 1-802 1-862

82 1-636 1-554 1-6756 1-598 1-626 1-6556 1-890 1-730 1-777 1-833

83 1-624 1-542 1-562 1-585 1-610 1-639 1-671 1-709 1-754 1-806

84 1-514 1.531 1-550 1-571 1-596 1-623 1-654 1-690 1-732 1-781

85 1-504 1-520 1-538 1-559 1-582 1-608 1-638 1-672 1-711 1-758

86 1-494 1-510 1-527 1-547 1-569 1-594 1-623 1-856 1-692 1-736

87 1-484 1-500 1-517 1-536 1-557 1-581 1-608 1-639 1-674 1-715

88 1-475 1-490 1-507 1-525 1-545 1-568 1-594 1-623 1-657 1-695

89 1-467 1-481 1-497 1-514 1-534 1-566 1:580 1-608 1-640 ‘1677 °

9-0 1-458 1-472 1-487 1-504 1-523 1-544 1-568 1-594 1-625 1-660

91 1-450 1-463 1-478 1-485 1-513 1-533 1-566 1-581 1-610 1-643

92 1-442 = 1-455 1-469 1-485 1-603 1-522 1-544 1-568 1-596 1-628

93 1-4356 1-447 1-461 1-476 1-493 1-512 1-533 1-556 1-583 1-613

9-4 1-427 1-440 1-453 1-468 1-484 1-502 1-522 1-545 1-570 1-599

95 1-420 1-432 1-445 1-459 1-475 1-492 1-512 1-534 .1.558 1-586

96 1-413 1-425 1-437 1-451 1-466 1-483 1-502 1-523 1-548 1-573

97 1-407 1-418 1-430 1-443 1-458 1-474 1-492 1-513 1-56356 1-560
.98 1-400 1-411 1-423 1-436 1-450 1-466 1-483 1-503 1-524 1-5648

99 1-394 1-404 1-416 1-428 1-442 1-458 1-474 1-483 1-514 1-538
10-0 1-388 1-398 1-409 1-421 1-435 1-450 1-466 1-484 1-504 1-627
101 1-382 1-392 1-403 1-414 1-428 1-442 1-458 1-475 1-496 1-516
10-2 1-376 1-386 1-396 1-408 1-420 1-434 1-450 1-467 1-485 1-506
103 1-371 1-380 1-390 1-401 1-414 1-427 1-442 1-468 1-477 1-497
10-4 1-366 1-374 1-384 1-396 1-407 1-420 1-435 1-460 1-468 1-488
10-5 1-360 1-369 1-378 1-389 1-401 1-413 1-427 1-443 1-460 1-479
10-6 1-356 1.363 1-373 1-383 1-394 1-407 1-420 1-435 1-452 1-470
10-7 1-349 1-358 1-367 1-377 1-388 1-400 1414 1-428 1-444 1-462
10-8 1-3456 1-353 1-362 1-372 1-382 1-394 1-407 1-421 1-437 1-464
109 1-340 1-348 1-367 1-366 1-377 1-388 1.401 1-414 1-429 1-446
11-0 1-335 1-343 1-362 1-361 1-371 1-382 1-394 1-408 1-422 1-439
11-2 1-3268 1.334 1-342 1361 1-360 1-371 1-383 1-396 1-408 1-424
11-4 1:318 1-325 1-332 1-341 1-350 1:360 1-371 1.383 1-396 1411
11-6 - — —_ - —_ - — 1-372 1-384 1-398
11-8 — —_ —_ —_ —_ — —_ 1-361 1:373 1-386
120 —_ — — —_ - — — 1-351 1-363 1-375
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TABLE B-4 (continued)

Values of N (continued)

vh
8 1-55 1-60 1-65 1-70 1-7% 1-80 1-85 1-90 1.95 200

1

80 1-974 2:074

81 1-836 2:028

82 1-801 1-985

83 1-869 1-847

84 1-840 1811

85 1-812 1-879

86 1.787 1-849 1-926 2-018

8.7 1-763 1-821 1-891 1.978

8-8 1-741 1795 1-860 1-840

89 1-720 1-771 1-831 1-808

9-0 1-700 1-748 1-8056 1-874

9:1 1-682 1-727 1-780 1-844

92 1-664 1-707 1-757 1-817

93 1-648 1-688 1-736 1-792

9-4 1-632 1-670 1715 1-768 1-831 1-810

95 1-617 1-653 1-696 1-745 1-8056 1-879

9-6 1-603 1-637 1-678 1-725 1-781 1-849

97 1-589 1-622 1-660 1-706 1-758 1-822

98 1-576 1-608 1-644 1-686 1-736 1-796

99 1-564 1-504 1-62¢ 1-669 1-716 1-772
10-0 1-852 1-681 1-614 1-652 1-697 1-750
10-1 1-541 1-569 1-600 1-636 1-679 1-729 .
10-2 1-530 1-557 1-587 1-621 1-662 1-708 1-768 1-834
10-3 1-520 1-545 1-574 1-607 1-646 1-691 1-744 1-809
104 1-509 1-534 1-562 1-594 1-630 1-673 1-723 1-784
105 1-500 1-623 1-560 1-581 1-616 1-656 1-704 1-761
106 1-491 1-513 1-539 1-568 1-602 1-640 1-686 1-740
107 1-482 1-504 1-528 1-656 1-588 1-825 1-669 1-720

108 1-473 1-494 1-518 1-545 1-5676 1-611 1-652 1-701

109 1-465 1-485 1-508 1-534 1-5664 1-597 1-637 1-683

110 1-456 1:476 1-499 1-524 1-562 1-584 1-622 1-666 1-717 1-780
111 1-449 1-468 1-489 1-514 1-541 1-672 1-608 1-649 1-699 1-758
112 1-441 1-460 1-481 1-504 1-530 1-560 1-594 1-634 1-681 1.737
113 1-434 1-452 1-472 1-494 1-520 1-549 1-581 1-619 1-664 1.717
114 1-427 1-444 1-464 1-4856 1-510 1-538 1-569 1-606 1-648 1-698
115 1-420 1-437 1-456 1-477 1:500 1-527 1-557 1-592 1-633 1-681
11-6 1-413 1-430 1-448 1-468 1-401 1-517 1-546 1-580 1-618 1-664
11-7 1-407 1-423 1-441 1-460 1-482 1-507 1-635 1-567 1-604 1-648
11-8 1-400 1-416 1-433 1-452 1-474 1-498 1-526 1-566 1-591 1-633
119 1-394 1-409 1-426 1-445 1-466 1-489 1-515 1-545 1-579 1-618
120 1-388 1-403 1-419 1-437 1-458 1-480 1-506 1-534 .1-867 1-605
12-1 1-383 1-387 1-413 1-430 1-450 1-471 1-496 1-524 1-555 1-591
12:2 1-377 1-391 ©  1-406 1-423 1-442 1-463 1-487 1-514 1-544 1-579
123 1-371 1-385 1-400 1-417 1-435 1-456 1-478 1-504 1-533 1-567
12-4 1-366 1-379 1-394 1-410 1-428 1-448 1-470 1-495 1-523 1-555
125 1-361 1-374 ‘1-388 1-404 1-421 1-440 1-462 1-486 1-513 1-544
126 1-356 1-369 1-382 1-398 1-415 1-433 1-454 1-477 1:504 1-534
127 1-351 1-363 1-377 1-302 1-408 1-426 1-446 1-469 1-495 1-523
128 1-346 1-358 1-371 1-386 1-402 1-420 1-439 1-461 1-486 1-514
129 1-341 1-353 1-366 1-380 1-396 1-413 1-432 1-453 1-477 1-504
13-0 1-337 1-348 1-361 1-375 1-390 1-407 1-425 1-446 1-469 1-495
13-2 — —_ — — 1-379 1-394 1-412 1-431 1-453 1-478
13-4 — —_ — — 1-368 1-383 1-400 1-418 1-438 1-461
13-6 — _— — — 1-358 1-372 1-388 1-405 1-426 1-446
13-8 — — — — 1-348 1-362 1-377 1-393 1-412 1-432
140 — — —_ — 1-339 1-352 1-366 1.382 1-399 1-419
142 —_ —_ — — 1-330 1-342 1-356 1-371 1-388 1-406
144 — — — — 1-321 1-333 1-346 1-361 1-377 1-394
146 — —_ —_ — 1-313 1-326 1-337 1-351 1-366 1-383
14-8 — — — — 1-305 1-316 1-328 1-342 1-356 1-372
15-0 —_ —_ —_ — 1-298 1-308 1-320 1-333 1-346 1-362

e



Percentiles of the Chi-Squared Distribution

TABLE B-5

u x(n—2)/2e—x/2

F(u) = n/2 dk
0 27 7T(n/2)
Degrees
of
freedom

) 0.005 0.010 0.025 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.975  0.990  0.995 Y
1 0.0%393 0.0°157  0.0%982  0.02393  0.0158  0.0642  0.148  0.275  0.455 0.708 1.07 1.64 27 3.84 5.02 6.63 7.88 1
2 0.0100 0.0201 0.0506 0.103 0.211 0.446 0.713  1.02 1.39 1.83 2.41 322 4.61 5.99 7.38 9.21 10.6 2
3 0.0717 0.115 0.216 0.352 0.584 1.00 1.42 1.87 2.37 2.95 3.67 4.64 6.25 7.81 9.35 113 12.8 3
4 0.207 0.297 0.484 0.711 1.06 1.65 2.19 2.75 3.36 4.04 4.88 5.99 7.78 9.49 1L 133 14.9 4
5 0.412 0.554 0.831 1.15 1.61 2.34 3.00 3.66 4.35 5.13 6.06 7.29 9.24 111 12.8 16.7 5
6 0.676 0.872 1.24 1.64 2.20 3.07 3.83 4.57 5.35 6.21 7.23 8.56  10.6 12.6 14.4 16.8 18.5 6
7 0.989 1.24 1.69 2.17 2.83 3.82 4.67 5.49 6.35 7.28 8.38 9.80 12.0 14.1 16.0 18.5 20.3 7
8 1.34 1.65 2.18 2.73 3.49 4.59 5.53 6.42 7.34 8.35 9.52 11.0 13.4 15.5 17.5 20.1 22.0 8
9 1.73 2.09 2.70 333 4.17 5.38 6.39 7.36 8.34 9.41 10.7 12,2 14.7 16.9 19.0 21.7 23.6 9
10 2.16 2.56 3.25 3.94 4.87 6.18 7.27 8.30 9.34 10.5 11.8 13.4 16.0 18.3 20.5 232 25.2 10
11 2.60 3.05 3.82 4.57 5.58 6.99 8.15 9.24 10.3 11.5 12.9 14.6 17.3 19.7 21.9 247 26.8 11
12 3.07 3.57 4.40 5.23 6.30 7.81 9.03 102 11.3 12.6 14.0 15.8 18.5 21.0 233 26.2 28.3 12
13 3.57 4.11 5.01 5.89 7.04 8.63 9.93 1Lt 12.3 13.6 15.1 17.0 19.8 22.4 24.7 21.7 29.8 13
14 4.07 4.66 5.63 6.57 7.79 9.47 10.8 12.1 13.3 14.7 16.2 18.2 21.1 23.7 26.1 29.1 31.3 14
15 4.60 5.23 6.26 7.26 8.55 10.3 11.7 13.0 14.3 15.7 17.3 19.3 223 25.0 2.5 30.6 328 15
16 5.14 5.81 6.91 7.96 9.31 11.2 12.6 14.0 15.3 16.8 18.4 20.5 23.5 26.3 28.8 320 343 16
17 5.70 6.41 7.56 8.67 10.1 12.0 13.5 14.9 16.3 17.8 19.5 21.6 24.8 27.6 30.2 334 35.7 17
18 6.26 7.01 8.23 9.39 i0.9 12.9 14.4 15.9 17.3 18.9 20.6 22.8 26.0 28.9 31.5 34.8 37.2 18
19 6.84 7.63 8.91 10.1 1.7 13.7 15.4 16.9 18.3 199 21.7 23.9 27.2 30.1 329 36.2 38.6 19
20 7.43 8.26 9.59 10.9 12.4 14.6 16.3 17.8 19.3 21.0 228 25.0 28.4 314 342 37.6 40.0 20
21 8.03 8.90 10.3 11.6 13.2 15.4 17.2 18.8 20.3 22.0 239 26.2 29.6 32.7 35.5 38.9 41.4 21
22 8.64 9.54 11.0 123 14.0 16.3 18.1 19.7 21.3 23.0 249 273 30.8 33.9 36.8 40.3 42.8 22
23 9.26 10.2 1.7 13.1 14.8 17.2 19.0 20.7 223 24.1 26.0 28.4 32.0 35.2 38.1 41.6 44.2 23
24 9.89 10.9 12.4 13.8 15.7 18.1 19.9 219 233 25.1 27.1 29.6 33.2 36.4 39.4 43.0 45.6 24
25 105 1.5 S13.1 14.6 16.5 18.9 20.9 22,6 243 26.1 28.2 30.7 344 377 40.6 44.3 46.9 25
26 11.2 12.2 13.8 15.4 17.3 19.8 21.8 23.6 25.3 272 29.2 31.8 35.6 38.9 41.9 45.6 48.3 26
27 11.8 12.9 14.6 16.2 18.1 20.7 22.7 24.5 26.3 28.2 30.3 329 36.7 40.1 43.2 47.0 49.6 27
28 125 13.6 15.3 16.9 18.9 21.6 23.6 255 27.3 29.2 31.4 34.0 379 413 44.5 48.3 51.0 28
29 131 14.3 16.0 17.7 19.8 22.5 24.6 26.5 28.3 30.3 325 351 39.1 42.6 45.7 49.6 52.3 29
30 138 15.0 16.8 18.5 20.6 234 25.5 274 29.3 31.3 335 36.3 40.3 43.8 47.0 50.9 53.7 30
35 172 18.5 20.6 225 24.8 27.8 30.2 323 343 36.5 38.9 41.8 46.1 49.8 53.2 57.3 60.3 35
40 207 22.2 24.4 26.5 29.1 323 349 371 39.3 41.6 44.2 47.3 51.8 55.8 59.3 63.7 66.8 40
45 243 25.9 28.4 30.6 334 36.9 39.6 42.0 44.3 46.8 49.5 52.7 57.5 61.7 65.4 70.0 73.2 45
50 280 29.7 32.4 348 317 41.4 44.3 46.9 49.3 51.9 54.7 58.2 63.2 67.5 71.4 76.2 79.5 50
75 472 49.5 52.9 56.1 59.8 64.5 68.1 71.3 74.3 71.5 80.9 85.1 9.1 96.2 100.8 106.4 1103 75
100 67.3 70.1 74.2 * 779 82.4 87.9 92.1 95.8 99.3 1029 106.9 1117 1185 1243 129.6 135.6  140.2 100

(From G. J. Hahn and S. S. Shapiro, Statistical Models in En

Wiley & Sons, New York, 1967, pp. 314-315.)

1Al
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TABLE B-6
Percentiles of the Maximum Absolute
Difference Between Sample and
Population Cumulative Distributions*

Sample Level of significance («)
size
(N) 0.20 0.15 0.10 0.05 0.01
1 0.900 0.925 0.950 0.975 0.995
2 -0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669
6 0.410 0.436 - 0.470 0.521 0.618
7 0.381 0.405 " 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514
10 0.322 0.342 0.368 0.410 0.490
11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356
25 0.21 0.22 0.24 0.27 0.32
30 0.19 0.20 0.22 0.24 0.29
35 0.18 0.19 0.21 0.23 0.27
over 35 1.07 1.14 1.22 1.36 1.63
v'N vN v'N vN vN

*Values of da(N) such that ]
Pr{max - > =
[max[s (x) - F Gx)[>d ()] =a,
where Fo(x) is the theoretical cumulative distri-
- bution and SN(x) is an observed cumulative dis-
tribution for a sample of N observations.

(From F. J. Massey, "The Kolmogorov-Smirnov Test for Goodness of Fit,"
J. Amer. Stat. Ass. 46: 70 (1951).)
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TABLE B-7
£Fici .
Coefficients [an—l+l] Used in the

W Test for Normality

n
)\\ 3 4 5 6 7 8 9 10 3| 12 13 14 15 16 17 18

1 07071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886
2 0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 03291 03315 03325 0.3325 03318 0.3306 0.3290 0.3273 0.3253
3 0.0875 0.1401 0.1743 0.1976 0.2141 0.2260 02347 02412 02460 02495 0.2521 0.2540 0.2553
4 0.0561 0.0947 0.1224 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027
5 0.0399 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587
6 0.0303 00539 0.0727 0.0880 0.1005 0.1109 0.1197
7 00240 0.0433 0.0593 0.0725 0.0837
8 0.0196 0.0359 0.0496
9 0.0163

n
,\ 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 04808 04734 0.4643 04590 0.4542 04493 0.4450 04407 04366 04328 04291 04254 04220 0.4188 04156 0.4127
2 03232 03211 03185 03156 03126 03098 03069 0.3043 0.3018 0.2992 0.2968 0.2944 0.2921 0.2898 0.2876 0.2854
3 02561 0.2565 02578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487 0.2475 0.2463 0.2451 0.2439
4 02059 02085 02119 02131 02139 02145 02148 0.2i51 02152 02151 02150 0.2148 02145 02141 02137 0.2132
S 0.1641 0.1686 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870 0.1874 0.1878 0.1880 0.1882
6 01271 01334 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630 0.1641 0.1651 0.1660 0.1667
7 00932 0.1013 01092 O0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415 0.1433 0.1449 0.1463 0.1475
8 00612 00711 00804 00878 0.0941 00997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219 0.1243 0.1265 0.1284 0.1301
9 0.0303 00422 00530 00618 0.0696 0.0764 0.0823 0.0876 0.0923 00965 0.1002 0.1036 0.1066 0.1093 0.1118 0.1140
10 00140 00263 00368 0.0459 00539 00610 00672 0.0728 00778 00822 00862 0.0899 0.0931 0.0961 0.0988
1 00122 00228 0.0321 0.0403 00476 0.0540 0.0598 0.0650 0.0697 0.0739 0.0777 0.0812 0.0844
12 ' 00107 0.0200 0.0284 00358 0.0424 0.0483 0.0537 0.0585 0.0629 0.0669 0.0706
13 0.0094 00178 0.0253 00320 00381 0.0435 0.0485 0.0530 0.0572
14 0.0084 00159 0.0227 0.0289 0.0344 0.0395 0.0441
15 0.0076 0.0144 0.0206 0.0262 0.0314
16 0.0068 0.0131 0.0187
17 0.0062

n
i 35 36 3 38 39 40 41 42 43 44 4s 46 47 48 4 50
1 0.4096 04068 04040 0.4015 03989 0.3964 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 02834 02813 02794 02774 02755 02737 02719 02701 02684 02667 0.2651 0.2635 0.2620 0.2604 02589 0.2574
302427 02415 02403 02391 0.2380 0.2368 0.2357 0.2345 02334 02323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260
4 02127 02121 02116 02110 0.2104 0.2098 0.2091 02085 02078 02072 02065 0.2058 0.2052 0.2045 0.2038 0.2032
5 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847
6 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1317 0.1331 01344 0.1356 0.1366 0.1376 0.1384 0.1392 01398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430
9 01160 01179 0.1196 01211 0.1225 01237 0.1249 0.1259 0.1269 0.1278 0.12:6 0.1293 0.1300 0.1306 0.1312 0.1317
10 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108 0.1123 0.1136 0.1149 0.1160 0.1170 0.1130 0.1189 0.1197 0.1205 0.1212
11 00873 0.0900 00924 0.0947 0.0967 0.0986 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870 0.0891 0.0909 0.0927 0.0943 00959 0.0972 0.0986 0.0998 0.1010 0.1020
13 00610 0.0645 00677 0.0706 00733 00759 00782 0.0804 00824 00842 00860 00876 00892 00906 0.0919 0.0932
14 00484 0.0523 00559 0.0592 0.0622 0.0651 00677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15 00361 0.0404 00444 0.0481 00515 0.0546 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 00713 00731 0.0748 0.0764
16 00239 0.0287 0.0331 0.0372 0.0409 0.0444 00476 00506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 00119 00172 0.0220 0.0264 0.0305 0.0343 0.0379 0.0411 0.0442 00471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608
18 0.0057 00110 0.0158 00203 0.0244 00283 0.0318 00352 00383 0.0412 0.0439 00465 0.0489 C0SI1 0.0532
19 0.0053 00101 00146 00188 00227 0.0263 00296 0.0328 0.0357 0.0385 0.0411 00436 0.0459
20 0.0049 00094 0.0136 00175 00211 00245 00277 0.0307 0.0335 0.0361 0.0386
21 0.0045 00087 00126 0.0163 00197 0.0229 0.0259 0.0288 0.0314
22 0.0042 00081 0.0118 00153 00185 0.0215 00244
23 00039 0.0076 0.0111 0.0143 0.0174
24 0.0037 0.0071 0.0104
25 0.0035
(From G. J. Hahn and S. S. Shapiro, Statistical Methods in Engineering,

John Wiley & Sons, New York, 1967, pp. 330-331).
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TABLE B-8
~Percentage Points of the W Statistic

n 1 2 5 10 50

3 0.753 0.756 0.767 0.789 0.959
4 0.687 0.707 0.748 0.792 0.935
5 0.686 0.715 0.762 0.806 0.927
6 0.713 0.743 0.788 0.826 0.927
7 0.730 0.760 0.803 0.838 0.928
8 0.749 0.778 0.818 0.851 0932
9 0.764 0.791 0.829 0.859 0.935

10 0.781 0.806 0.842 0.869 0.938
11 0.792 0.817 0.850 0.876 0.940
12 0.805 0.828 0.859 0.883 0.943
13 0.814 0.837 0.866 0.889 0.945
14 0.825 0.846 0.874 0.895 0.947
15 0.835 0.855 0.881 0.901 0.950
16 0.844 0.863 0.887 0906 - 0.952
17 0.851 0.869 0.892 0.910 0.954
18 0.858 0.874 0.897 0914 0.956
19 0.863 0.879 0.901 0917 0.957
20 0.868 0.884 0.905 0.920 0.959
21 0.873 0.888 0.908 0.923 0.960
22 0.878 0.892 0911 0.926 0.961
23 0.881 0.895 0914 0.928 0.962
24 0.884 0.898 0.916 0.930 0.963
25 0.888 0.901 0.918 0.931 0.964
26 0.891 0.904 0.920 0.933 0.965
27 0.894 0.906 0.923 0.935 0.965
28 0.896 0.908 0.924 0.936 0.966
29 0.898 0910 0.926 0.937 0.966
30 0.900 0912 0.927 0.939 0.967
.31 0.902 0914 ~ 0.929 0.940 0.967
32 0.904 0915 - 0.930 0.941 0.968
33 0.906 0917 0.931 0.942 0.968
34 0.908 0.919 0.933 0.943 0.969
35 0.910 0.920 0.934 0.944 0.969
36 0912 0.922 0.935 .0.945 0.970
37 0914 0.924 0.936 0.946 0.970
38 0.916 0.925 0.938 0.947 0.971
39 0.917 0.927 0.939 0.948 0.971
40 0.919 0.928 0.940 0.949 0.972
41 0.920 0.929 0.941 0.950 0.972
42 0.922 0.930 0.942 0.951 0.972
43 0.923 0.932 0.943 0.951 0.973
4 0.924 0.933 0.944 0.952 0.973
45 0.926 0.934 0.945 0.953 0.973
46 0.927 0.935 0.945 0.953 0.974
47 0.928 0.936 0.946 0.954 0.974
48 0.929 0.937 0.947 0.954 0.974
49 0.929 0.937 0.947 0.955 0.974
50 0930 0.938 0.947 0.955 0.974

(From G. J. Hahn and S. S. Shapiro, Statistical Methods in Engineering,
John Wiley & Sons, New York, 1967, p. 332.)
128
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TABLE B-9
Percentage Points for the WE Statistic

957 Range 909, Range
Lower Upper Lower Upper
n  Point  Point Point  Point
7 0062 0.404 0.071  0.358
8 .0.054 0.342 0.062  0.301
9 0.050 0.301 0.058  0.261
10 0.049 0.261 0.056  0.231
11 0.046 0.234 0.052  0.208
12 - 0.044 0.215 0.050  0.191
13 0.040 0.195 0.046 0.173
14 -0.038 0.172 0.043  0.159
15 0.036 0.163 0.040 0.145
16 0.034 0.150 0.038  0.134
17 0.030 0.135 . 0.034. 0.120
18 0.028 0.123 0.031  0.109
19 0026 0.114 0.029  0.102
20 0.025 0.106 0.028  0.095
21 0.024 0.101 0.027  0.091
22 0.023 0.09%4 0.026  0.084
23 0.022  0.087 0.025  0.078
24 0.021  0.082 0.024 0.074
25 0021 0.078 0.023  0.070
26 0.020 0.073 0.022  0.066
27  0.020 0.070 0.022  0.063
28  0.019 0.067 0.021  0.061
29 0019 0.064 0.021  0.058
30 0.018 0.060 0.020 0.054
31 0.017 0.057 0.019  0.052
32 0017 0.055 0.019  0.050
33 0017 0.053 0.018  0.048
34 0.017 0.051 - 0.018 0.047
35 0.0l6 0.049 0.018  0.045

(From G. J. Hahn and S. S, Shapiro, Statistical Methods in Engineering,
John Wiley & Sons, New York, 1967, p. 335.)
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TABLE B-10
Percentage Points for the WEo Statistic

959 Range 907; Range
Lower Upper Lower Upper
n Point  Point Point  Point
7 0.025 0.260 0.033 0.225
8 0.025 0.230 0.032 0.200
9 0.025 0.205 0.031 0.177
10 0.025 0.184 0.030 0.159
11 0.025 0.166 0.030 0.145
12 0025 0.153 0.029 0.134
13 0.025 0.140 0.028 0.124
14  0.024 0.128 0.027 0.115
15 0.024 0.119 0.026 0.106
16 0.023 0.113 0.025 0.098
17 0.023 0.107 0.024  0.093
18 0022 0.101 0.024  0.087
19 0022 0.096 0.023  0.083
20 0.021 0.090 0.023 0.077
21 0.020 0.085 0.022 0.074
22 0.020 0.080 0.022  0.069
23 0.019 0.075 0.021 0.065
24 0.019 0.069 0.021 0.062
25 0.018 0.065 0.020 0.058
26 0.018 0.062 0.020 0.056
27 0.017 0.058 0.020 0.054
28 0.017 0.056 0.019  0.052
29 0016 0.054 0.019  0.050
30 0.016 0.053 0.019  0.048
31 0.016 0.051 0.018 0.047
32 0.015 0.050 0.018 0.045
33  0.015 0.048 0.018 0.044
34 0014 0.046 0.017 0.043
35 0.014 0.045 0.017 0.04]

(From G. J. Hahn and S. S. Shapiro, Statistical Methods in Engineering,
John Wiley & Sons, New York, 1967, p. 334.)
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Bain, L.J., and C. E. Antle, "Estimation of Parameters in
the Weibull Distribution", Technometrics 9(4):621-627 (1967).

A new method of estimation is used to obtain two simple esti-
mators of the parameters in a Weibull distribution. These
estimators are similar to the estimators given by Gumbel,
Miller and Freund, and Menon. Monte Carlo methods were
used to determine the variances and biases of the estimators
for various sample sizes. Comparisons of the estimators
can be made and unbiasing factors calculated in some cases.

Bhattacharya, P.K., "Efficient Estimation of a Shift Parameter

'From Grouped Data', Ann. Math. Statist. 38:1770-1787 (1967).

This paper considers two populations having frequency functions
f(x) and f(x-6) where the common form f and the shift param-
eter 6 are unknown. A method of estimating § when one sample
is reduced to a frequency distribution over a given set of class-
intervals is suggested by the likelihood principle and the asymp-
totic efficiency of this estimator relative to the appropriate
maximum likelihood estimator based on the complete data is
found to be the ratio of the Fisher-information in a grouped
observation to the Fisher-information in an ungrouped observa-
tion.

Birnbaum, Z. W., Probability and Mathematical Statistics,
Harper & Brothers, New York (1962).

General theory of tests of statistical hypotheses is presented
along with a detailed discussion of the Chi-squared distribution
and test. Also distribution free tests are discussed including
the Kolmogorov test and Smirnov test. Also included are the
likelihood function and likelihood ratio statistics.

Brunk, H.D., Mathematical Statistics, Blaisdell Publishing
Co., Waltham, Massachusetts (1965).

Basic theory of testing hypotheses is presented including a
discussion of testing a simple hypothesis against a simple al-
ternative, choice of null hypothesis, the power function, most
powerful tests and consistent tests. Specific tests described
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are Chi-squared test, Kolmogorov-Smirnov test for goodness
of it, t-test, F-~test, runs test, median test, and likelihood
ratio test.

Choi, S.C., and R. Wette, "Maximum Likelihood Estimation

of the Parameters of the Gamma Distribution and Their Bias'",
Technometrics 11(4):683-690 (1969).

The maximum likelihood method is recommended for estimating
the parameters of a gamma distribution. - Numerical techniques
for carrying out the calculation are examined. A convenient

‘table is obtained to facilitate the estimation of parameters.

The bias of the estimates is investigated by Monte Carlo; the
indication is that the bias of both parameter estimates pro-
duced by the maximum likelihood method is positive.

Cornell, R.G., and J.A. Speckman, "Estimation for a Simple
Exponential Model", Biometrics 23:717-737 (1967).

Graphical, maximum likelihood, least squares, weighted least
squares, partial totals, moment, finite differences, Fisher,
and Spearman estimation procedures are presented for estima-
ting the parameter A in the exponential model with expectations
given by 1 - e AT for different values of T. The estimators
are described, referenced, illustrated, and compared. Tables
are cited which make several of the estimation procedures
easier computationally. Included in the comparison of the
estimators is a review of some Monte Carlo computations.

The method of maximum likelihood, which can be used for

any spacing of T-values, has very desirable large sample prop-
erties. The simple method of partial totals is a possible alter-
native for small samples of equally spaced T-values while the
Fisher and Spearman method are suggested alternatives for

‘T-values whose logarithms are equally spaced.

Cramer, H., Mathematical Methods of Statistics, Princeton
University Press, Princeton (1945).

Chapter 30 of this book describes ''goodness of fit' statistical
tests. The two tests described in detail are the Chi-squared

‘test and Cramer-von Mises test. However, statistics for the

Cramer-von Mises test and examples are not presented.
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Dubey, S.D., "On Some Permissible Estimators of the Location
Parameter of the Weibull and Certain Other Distributions",
Technometrics 9(2):293-307 (1967).

An estimator for the location parameter of the Weibull distri-
bution is proposed which is independent of its shape and scale
parameters. Several properties of this estimator are estab-
lished which suggest a proper choice of three ordered sample
observations insuring a permissible estimate of the location
parameter. This result is valid for every distribution which
has the location parameter acting as the origin or threshold
parameter. Asymptotic properties of such an estimator of
the location parameter of the Weibull distribution is discussed.
Finally the paper contains a brief discussion on a percentile
estimator of the location parameter of the Weibull distribution
and includes some numerical illustrations.

Elandt, R.C., "The Folded Normal Distribution: Two Methods
of Estimating Parameters From Moments'', Technometrics
3(4):551-562 (1961).

The general formula for the rth moment of the folded normal
distribution is obtained, and formulae for the first four non-
central and central moments are calculated explicitly. Two
methods, one using first and second moments of the sample

and the other using second and fourth moments, of estimating
the parameters of the parent distribution are presented and
their standard errors calculated. The accuracy of both methods
is discussed.

Elderton, W.P., Frequency Curves and Correlation, 4th Ed.,
Cambridge University Press, Cambridge, (1953).

A thorough covering of the Pearson system. Describes each
type of distribution and gives relevant formulae for the type
of curve.

El-Sayyad, G.M., "Information and Sampling from the Expo-
nential Distribution", Technometrics 11(1):41-45 (1969).

Methods of sampling an exponential population in order to obtain
a prescribed accuracy in the determination of the unknown
parameter are discussed. The concept of information due to
Shannon is used and it leads to well-known schemes.
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Gnanadesikan, R., R.S. Pinkham, and L..P. Hughes, ""Maxi-~
mum Likelihood Estimation of the Parameters of the Beta

Distribution from Smallest Order Statistics', Technometrics
2(4):607-620 (1967).

- Numerical methods, useful with high-speed computers are

described for obtaining the maximum likelihood estimates of
the two parameters of a beta distribution using the smallest
M observations, 0 <uq <ug<... <.. uM, in a random sample
of size K (= M). The maximum likelihood estimates are func-
tions only of the ratio R + M/K, the Mth ordered observation,

‘ _ M 1/M - M
Uprs :al}d the two statistics, G = [Hi=1ui] and G2 = [I'Ii=1
1/M ' ' )
(l-ui)] . For the case of the complete sample (R = 1),

however, the estimates are functions only of G1 and G2, and
hence, for this case, explicit tables of the estimates are pro-
vided.

Some examples are given of the use of the procedures described
for fitting beta distributions to sets of data.

Govindarajulu, Z., "Certain General Properties of Unbiased
Estimates of Location and Scale Parameters Based on Ordered

Observations', SIAM J. App. Math. 16(3):533-551 (1968).

Some upper bounds are derived for the variances of least squares
estimators based on a subset of the ordered observations in

a random sample of (i) location, (ii) scale, and (iii) both loca-
tion and scale parameters of a distribution.

Gumbel, E.J., "'Statistical Theory of Extreme Values and

Some Practical Applications', National Bureau of Standards,

Applied Math Series 33, (Feb. 1954). ’

Hahn, G.J., and S.S. Shapiro, Statistical Models in Engineering,
John Wiley and Sons, New York, 1967 (1967).

Discusses many continuous and discrete distributions. Gives
functional form, discusses theoretical basis, and mentions
applications. In some cases describes parameter estimation
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techniques. Discusses advantages to fitting data to empirical
distributions. Describes Johnson system and displays plot

of B1,B9 values. Fitting procedures for Johnson distributions
are outlined and examples are given. Describes Pearson
system of distributions and displays 81,89 plot. Does not
attempt to describe Pearson fitting procedures. _

Discusses general techniques of goodness of -fit tests. Two
procedures are discussed: a series of tests developed by ”
Shapiro and Wilk, known as W tests (including the WE test),
and the Chi-squared goodness of fit test. The W tests are
used to evaluate the assumption of a normal and exponential

-distribution for a set of data. The procedures for using these

techniques are presented in a detailed step-by-step manner.

Haight, F.A., Index to Distributions of Mathematical Statistics,
J. Res. Natl. Bureau Stand. - B. Math. and Math. Phys 65B
(1):23-60 (1961).

A fairly complete index of references to results on statistical
distributions published before January 1958 is presented.

The material given for each distribution is a list of references
relating to: (a) functions and constants which characterize

the distribution, (b) derived distributions, (c) estimation,

(d) testing statistical hypotheses, and (e) miscellaneous.

The distributions covered are characterized as normal, type
OI, binomial, discrete, distributions over (a,b), distributions
over (a,»), distributions over (-»,»), miscellaneous univariate,
miscellaneous bivariate, and miscellaneous multivariate.

The number of entries varies from one or two for less well-
known distributions to several hundred for the normal distri-
bution.

Harter, H.L., '"Maximum-Likelihood Estimation of the Param-
eters of a Four-Parameter Generalized Gamma Population
From Complete and Censored Samples', Technometrics 9
(1):159-165 (1967).

The four-parameter generalized gamma distribution includes
such distributions as the usual three-parameter gamma, the
Weibull, the exponential, and the half normal. For these dis-
tributions this paper develops the maximum likelihood equations.

Iterative computer techniques are needed to solve these equations.

Some results of applying this to various distributions are pre-
sented.
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Harter, H.L., "A New Table of Percentage Points of the Pearson
Type IO Distribution"”, Technometrics 11(1):177-187 (1969).

A table of percentage points for the type IIl Pearson distribution.

Hodges, J.L., Jr. and E.L. Lehmann, "A Compact Table
For Power of the t-Test'", Ann., Math, Statist, 39, No. 5
(1968) _

The paper gives a one-page table for t-power which covers
any values of the (one-sided) significance level a in the range

from 0.005 to 0.1, any value of the second-type error probability

B in the range from 0.01 to 0.5; and any number of degrees

of freedom greater than 2. The table gives reasonably accurate
answers without iteration and using only linear interpolation.
Eight examples are provided which illustrate a variety of t-power
problems,

Hogg, R.V. and A. T. Craig, Introduction to Mathematical
Statistics, the Mac Millan Company, New York (1965).

Includes chapters on order statistics, sufficient statistics,
statistical hypotheses and statistical tests. It provides the
theoretical basis of the Chi-square tests and Bayesian tests.
It also describes Likelihood Ratio tests and the sequential
probability ratio test.

Johnson, N.L., "Systems of Frequency Curves Generated by
Methods of Translation", Biometrika 36:149-176 (1949).

Introduces Johnson system of distributions. Reviews literature
on systems of distributions. Provides a theoretical background
to Johnson system. Compares Johnson and Pearson systems
for skewness and kurtosis values. Gives some numerical ex-
amples.

Johnson, N, L., "Tables to Facilitate Fitting S
Curves'", Biometrika 52:547 (1965).

U Frequency

In fitting empirical data to a distribution from the Johnson
family, one usually adjusts the parameters of the Johnson
distribution to match the first four moments of the original
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data. However, given the first four moments it is not a trivial
problem to calculate the correct Johnson parameters. This
paper provides tables from which the Johnson parameters can
be obtained.

Johnson, N.L., and S. Katz, Distributions in Statistics: Dis-
crete Distributions, Houghton-Mifflin Co., Boston, (1969).

Thorough covering of all known discrete distributions. Gives
functional form, moments, and other information and discusses
the estimation of parameters for each distribution.

Johnson, N.L., and S. Katz, Distributions in Statistics: Con-
tinuous Univariate Distributions, Vol. 1 and 2, Houghton-Mifflin
Co., Boston,(1970). :

Thorough covering of all known continuous distributions (except
empirical families). Gives functional form, moments, and
other information and discusses the estimation of parameters
for each distribution. E :

Johnson, N.L., E. Nixon, D. E. Amon, and E. S. Pearson,
"Table of Percentage Points of Pearson Curves', for given

vB1 and B2, expressed in standard measure", Biometrika 50:
459-498 (1963). T

For the general Pearson system of distributions, this paper
gives tables of percentiles (or solutions of the inverse equation)
as a function of skewness and kurtosis.

Kagan, A.M., "Estimation Theory for Families with Location
and Scale Parameters and For Exponential Families", Proc.
Steklov. Inst. Math. 104:19-87 (1968).

This theoretical paper investigates families of distributions
and estimators. The conditions for admissible estimators are
discussed. ' '

Kendall, M.G., and A.S. Stuart, The Advanced Theory of
Statistics, Vol. 1, Distribution Theory, Charles Griffen &

Co. (1958).
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Kodlin, D., "A New Response Time Distribution', Biometrics
23:227-239 (1967).

A skewed, two-parameter distribution is described which has
been found useful in the analysis of human survival time data.
-(ct+lkt2)

The density has the form f(t) = (c+kt)e . This form
is integrable and has manageable first and second moments.
Since the distribution has non-zero density at the origin, it
may be of value in connection with those types of responses
which take place even before observation begins. Description

of a maximum likelihood technique of estimating the parameters

is followed by discussion of damage models that incorporate
the distribution.

Langton, N, H., 'Statistical Distribution', Brit. Chem, Engr.
8:478-484 (1963).

This paper is an elementary article which gives the basic
concepts and formulae characterizing probability distributions
and sampling. It discusses the binomial, Poisson, and normal
distributions and the fitting of empirical data to these distri-
butions using moments method.

Malik, H.J., "Estimation of the Parameters of the Pareto
Distribution", Metrika 15:126-136 (1970).

In this paper, sufficient estimators for the parameters a and

v of the Pareto distrlbutlon are obtained. It is shown that
=Min (X;, ..., is sufficient for a when v is known,
sample é‘eometr%};I mean g is sufficient for v when a is

Y.
known; and (Yl’ 121 in Y1 e
for (a,v) when both are unknown. The exact distribution of
the maximum likelihood estimator is derived.

-)isa joint set of sufficient statistics

Mandel, J., "A Method for Fitting Empirical Surfaces to Physical

or Chemical Data", Technometrics 11(3):411-429 (1969).

A method, largely graphical, for fitting a distribution to bi-
variate data is presented. An example is given. The method
does not require prior assumptions as to the form of the

o



L 7%

32.

33.

34.

141

distribution to be fit.” However, it may not have general appli-
cability and needs further investigation.

Marshall, A.W., and I. Olkin, "A Multivariate Exponential
Distribution", J. Amer. Stat. Assoc. 62:30-44 (1967).

A number of multivariate exponential distributions are known,
but they have not been obtained by methods that shed light on
their applicability. This paper presents some meaningful
derivations of a multivariate exponential distribution that serves
to indicate conditions under which the distribution is appropriate.
Two of these derivations are based on ''shock models', and one

-is based on the requirement that residual life is independent

of age. It is significant that the derivations all lead to the same
distribution..

For this distribution, the moment generating function is obtained,

comparison is made with the case of independence, the distri-
bution of the minimum is discussed, and various other proper-
ties are investigated. A multivariate Weibull distribution is
obtained through a change of variables.

Massey, Frank J., Jr., '""The Kolmogorov - Smirnov Test

- for Goodness of Fit", J. Am. Stat. Assoc., 46 (1951).

The Kolmogorov-Smirnov test which is based on the maximum

. difference between an empirical and hypothetical cumulative

distribution is discussed. Percentage points are tabulated,
and a lower bound to the power function is charted. Confidence
units for a cumulative distribution are described. Examples
are given. Indications that the test is superior to the Chi-
square test are cited. :

Mann, Nancy R., "Point and Interval Estimation Procedures
for the Two-Parameter Weibull and Extreme-Value Distributions",
Technometics 10(2):231-256 (1968).

Point estimators of parameters of the first asymptotic distri-

_ butions of smallest (extreme) values, the extreme-value distri-

bution, are surveyed and compared. Since the logarithms of
variates having the two-parameter Weibull distribution are
variates from the extreme-value distribution, the investigation
is applicable to the estimation of Weibull parameters. Those



35.

36.

317.

38.

142

estimators investigated are maximum-likelihood and moment
estimators, inefficient estimators based on only a few ordered
observations, and various linear estimation methods. A com-
bination of Monte Carlo approximations and exact small-sample
and asymptotic results has been used to compare the expected
loss (with loss equal to squared error) of these various point
estimators. Interval estimation procedures are also discussed.

McGrath, E.J., Fundamentals for Operations Research,
West Coast University, 1970, Chapter 3.

Discussion of probability distributions and estimators for most
basic distributions. Weibull - describes distribution and typical
curves and discusses estimators for parameters. Johnson -
defines distribution, displays typical curve shapes, and gives
skewness - kurtosis diagram for family. Extensive discussion,
with examples, of estimation of parameters. Pearson - defines
distribution types and gives skewness-kurtosis plot for family.
Discussion of X2-test for evaluation of fits.

Meier, F.A., "Non-Normal Statistical Distributions and Their
Use in Industrial Engineering', Amer. Inst. of Indust. Eng.,
Tech. Papers, 20 Inst. Conf. and Conv. 71-83 (1969).

Both the gamma and Weibull distributions are described with
comments on calculational methods and approximations. A
thorough review of methods for estimating parameters is given.

Mengel, P.R., "Fragility Curve Preparation Methods', unpub-
lished memo, 1970.

Presents a methodology for fitting data from failure levels
to a lognormal distribution. Theoretical reasons underlying
the use of the lognormal for this case are discussed.

Menon, M.W., "Estimation of the Shape and Scale Parameters
of the Weibull Distribution”, Technometrics 5(2):175-182 (1963).

Estimates ¢ and b are proposed for the shape parameter c
and the scale parameter b of the Weibull distribution on the
assumption that the location parameter is known. Firstan
estimate d of 1/c is found, the ¢ is obtained as 1/d. When
b is unknown, d is a cons1stent and non-negative estimate of
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d, with a bias which tends to vanish as the sample size increases

and with an asymptotic efficiency of about 55%. When b is known,
d is an unbiased, non-negative, and consistent estimate of d,

and its efficiency is approximately 84%. An estimate 4n b

of 4n b is found with an asymptotic efficiency of 95%. It is
proposed that exp ({n b) be used to estimate b.

Neave, H.R. and C.W.J. Granger, "A Monte Carlo Study
Comparing Various Two-Sample Tests for Differences in Mean'',
Technometrics, 10 (3) (1968).

A study was conducted on eight tests for differences in means
under a variety of simulated experimental situations. Estimates
were made of the power of the tests and measures made of

the extent to which they gave similar results. In particular

the performance of a new quick test developed by Neave was
studied.

Pearson, K., "Mathematical Contributions to the Theory of
Evolution - Supplement to a Memoir on Skew Variation', Trans.
Roy. Phil. Soc. London 197:443-459 (1901).

One of the classic papers introducing some of the Pearson
system distributions and giving some examples.

Pearson, K., '"Mathematical Contributions to the Theory of
Evolution - Second Supplement to a Memoir on Skew Variation",
Trans. Roy. Phil. Soc. London A216:429-457 (1916).

Classical -paper setting forth the properties of the Pearson
system and the distributions in it.

Pearson, E.S., and H.O. Hartley (eds), Biometrika Tables
for Statisticians, Vol. I, sections 23-24, Cambridge Univ.
Press (1958).

The basic functional forms and some properties are given for
each distribution in the Pearson system. Some applications
showing the fitting to empirical data are discussed.

Pickands, J. I, "Efficient Estimation of a Probability Density
Function”, Ann. Math. Statist. 40(3):854-864 (1969).
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Some theoretical results in using the '"kernel method' to esti-
mate a probability density function are derived.

Plait, Alan, "The Weibull Distribution - with Tables', Indus-
trial Quality Control 19(5):17-26 (1962).

Describes Weibull distribution and gives extensive tables to
aid in curve fitting. -

Press, S.J., "The T-Ratio Distribution', J. Amer. Stat. Ass.
64:242-252 (1969).

The distribution of the ratio of correlated student T-variates

is of interest in problems in econometrics and ranking and
selection. The density of this ratio is derived and computer
graphs of the density are given in terms of standardized variates.
Fractiles are given for selected parameter values. It is shown
that the distribution contains no moments.

Schwartz, S.C., "Estimation of a Probability Density by an
Orthogonal Series", Ann. Math. Statist. 38:1261-1265 (1967).

The estimation of an unknown probability desnity function from
a realized sequence of random numbers is considered. An
approximation in terms of a sum of Hermite polynomials is
made and equations for the coefficients are derived. Conver-
gence to the correct density function is proven and convergence
rates are calculated. Comparison to the kernel method is
made.

Shapiro, S.S. and M. B. Wilk, "An Analysis of Variance Test
For Normality (Complete Samples)', Biometrika, 52

(1965). , _
A new statistical procedure (W Test) for testing a complete
sample for normality is presented. The test statistic is ob-
tained by dividing the square of an appropriate linear combin-
ation of the sample order statistics by the usual symmetric
estimate of variance. Presented are derivation, properties,
and applications of the W test and comparison with other tests.

Suzuki, Giitiro, "On Exact Probabilities of Some Generalized
Kilmogorov's D-Statistics', Institute on Statistical Mathematics,
Annals, Tokyo, 19 (1967).

o
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‘This paper gives a unified computational method for exact

probabilities of the most generalized form of the D-statistic
proposed by Kolmogorov for non-parametric tests of fit. -
First, a historical survey of the subject is given and then
goodness-of -fit D-tests are stated (based on some general
bounds) by constructing general acceptance and confidence
regions, sizes of which are calculated in a distribution-free
way. The method is also applied to calculation of the exact
power of tests for a certain continuous alternative. A com-
putational method for the functional a,,(. ..) is presented.

Takahasi, K., and K. Wakimoto, "On Unbiased Estimates

of the Population Mean Based on the Sample Stratified by Means

of Ordering"”, Ann, Inst. on Stat. Math., Tokyo, 20:1-31 (1968).

In many experimental situations, it is costly and time-consuming
to make accurate measurements while at the same time judg-
ments as to relative order of size can be made easily. This
paper describes techniques for ordering subgroups of a large
sample, then picking a smaller sample, using the stratification
induced by the ordering. Accurate measurements are made

only on the smaller sample. An unbiased estimate of the popu-
lation mean can be generated from this small sample with much
less variance than would be obtained in estimating from a sample
of similar size, but randomly chosen. This is basically an
example of stratified sampling, but as applied prior to experi-
mental measuring rather than to choices made in simulation.

Tarter, M.E., R.L. Holcomb, and R.A. Kronman, "After

the Histogram, What? A Description of New Computer Methods
for Estimating the Population Density', Proc. ACM 22nd Natl.
Conf. P-67:511-519 (1967).

The kernel method for estimating a probability density function
from a sequence of random observations is discussed. As

an alternative, a Fourier expansion is considered for an esti-
mate of the density. Restrictions on the function and the optimum
order of the expansion is derived, Computer implementation

of this algorithm is discussed and several applications are
displayed.

Thoman, D.R., L.J. Bain, and C. E. Antle, "Inferences on
the Parameters of the We1bu11 D1str1buhon”, Technometr1cs
11(3):445-460 (1969).
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The problems of estimation and testing hypotheses regarding
the parameters in the Weibull distribution are considered in
this paper. The following results are given:

1. Exact confidence intervals for the paraimeters
based on maximum likelihood estimators are
presented.

2, A table of unbiasing factors (depending upon
sample size) for the maximum likelihood esti-
mator of the shape parameter are given.

3. Test of hypotheses regarding the parameters
and the power of the test regarding the shape
parameter are developed and presented.

4, Sample sizes at which large sample theory
may be useful are presented.

Thornber, H., "Finite Sample Monte Carlo Studies: An Auto-
regressive MNlustration", J. Amer. Stat. Assoc. 62:801-818
(1967). —

In this paper the problem of choosing among point estimators
on the basis of their small sample properties is discussed
from the sampling point of view. The indeterminacy of most
Monte Carlo studies is analyzed and resolved within the frame
work of statistical decision theory. A first order auto-regres
sive model is worked through in detail both for its own sake
and to illustrate how a complete Monte Carlo study might be
done.

Weibull, W., "A Statistical Distribution Function of Wide
Applicability', J. App. Mech, 18(3):293-297 (1951).

Introduces the Weibull distribution and gives several examples
of fitting to it.

Weiss, L., and J. Wolfowitz, '""Maximum Probability Estima-
tors', Ann. Inst. Stat, Math. Tokyo 19 193-206 (1967).

A new class of estimators, called maximum probability esti-
mators, is suggested as an alternative to maximum likelihood
estimators.
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White, J.S., "The Moments of Log-Weibull Order Statistics',
Technometrics 11:373-386 (1969).

Formulas for the moments of the order statistics of a general
distribution are derived. Then the log-Weibull distribution

is introduced and the moments of its order statistics are cal-
culated. An application showing how this can be applied to the
fitting of a Weibull distribution to empirical data is given.
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