
OAK RIDGE NATIONAL LABORATORY
operated by

UNION CARBIDE CORPORATION

for the
U. S. ATOMIC ENERGY COMMISSION

3
*
.?
c

Volume II

RANDOM NUMBER GENERATION
for

SELECTED PROBABILITY DISTRIBUTIONS

E. J. McGrath

D. C. Irving

ORNL-RSIC-38
(Vol. II)

c

-
RADIATION SHIELDING INFORMATION CENTER

This report was prepared as an account of work sponsored by the United
States Government Neither the United States nor the United States Atomic
Energy Commission, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness or
usefulness of any information, apparatus, product or process disclosed, or
represents that i t s use would not infringe privately owned rights.

I I

a

ORNL-RSIC-38 (Vol. 11)

J

8
U

.

Contract No. W-7405-eng-26

- c

TECHNIQUES FOR EFFICIENT

MONTE CARLO SIMULATION

Volume I1

. - RANDOM NUMBER GENERATION FOR
SELECTED PROBABILITY DISTRIBUTIONS

E. J. McGrath
D. C. Irving

APRIL 1975

Reprinted December 1974

Prepared for the

Office of Naval Research (Code 462)
Department of the Navy
Arlington, Virginia 22217

by Science Applications, Incorporated

NOTE :

This work partially supported by
DEFENSE NUCLEAR AGENCY

Reprinted by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830

UNION CARBIDE CORPORATION
for the

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

operated by

.

,/

SAT -72 -590 -L J

.*

TECHNIQUES FOR EFFICIENT
MONTE CARLO SIMULATION

VOLUME I1
RANDOM NUMBER GENERATaON FOR

SELECTED PROBABILITY DISTRIBUTIONS

Scientific Officer, Office of Naval Research (Code 462)
J. R. Simpson

Principal Investigator -
E. J. McGrath

Co -Author
D. C. Irving

b

.

.
b

V

ABSTRACT

Algorithms for efficient generation of random numbers
from various probability distributions a r e presented, in both a
flowchart form and as a sample Fortran subroutine. Twenty-
two different distributions, including all commonly encountered
discrete and continuous functions, the Weibull, Johnson, and
Pearson families of empirical distributions, and histogram dis-

tributions, are covered. The general techniques to apply in
deriving a random number selection scheme for an arbitrary
distribution are discussed. A machine-independent subroutine
f o r generating uniform random numbers is also described.

(.

L

.

v i i

CONTENTS

FOREWORD .. x i i i

.

1 . INTRODUCTION 1

COMPARISON OF RANDOM NUMBER GENERATION
....................................... 3 PROCEDURES

GENERATION OF RANDOM NUMBERS FROM
5 SELECTED DISTRIBUTIONS

3.1 Uniform Random Number Generators 10
12 3.2 Exponential Distribution

3.3 Normal Distribution 14
3.4 The Binomial Distribution 17
3.5 The Multinomial Distribution 22
3.6 Poisson Distribution 24
3.7 Hypergeometric Distribution 26
3.8 Geometric Distribution 28
3.9 Pascal or Negative Binomial Distribution 31
3.10 Cauchy Distribution 34
3.11 Rayleigh Distribution 36
3.12 Gamma Distribution 38
3.13 Beta Distribution 41
3.14 Pareto Distribution 43
3.15 Log-Normal Distribution
3.16 Folded-Normal Distribution 47
3.17 Kodlin’s Distribution 49
3.18 Extreme Value Distributions 51 53 3.19 Weibull Distribution
3.20 Johnson Distributions 55
3.21 Pearson Distributions 61
3.22 Histogram Distributions 86

2 .

3 .

45

APPENDIX A - General Techniques for Generating Random

APPENDIX B - MIRAN - A Machine Independent Package for
Numbers From Desired Distributions
Generating Uniform Random Numbers

APPENDIX C - References and Abstracted Bibliography

89

97
108

.
L

.

i x

FIGURES

c

3-1.

3-2.
3-3.

3-4.

3-5.

3-60

3-7.

3-8.

3-9.

3-10.

3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

3-17.

Random number generation algorithm for exponsntial
distribution .
Normal distribution .
Random number generation algorithm for binomial
distribution (Sheet 1 of 3) .
Random number generation algorithm for binomial
distribution (Sheet 2 of 3) .
Random number generation algorithm for binomial
distribution (Sheet 3 of 3) .
Random number generation algorithm for multinomial
distribution .
Random number generation algorithm for Poisson
distribution .
Random number generation algorithm for hyper -
ge om e tr ic distribution .
Random number generation algorithm for geometric
distribution (Sheet 1 of 2) .
Random number generation algorithm for geometric
distribution (Sheet 2 of 2) .
Random number generation algorithm for Pascal
distribution (Sheet 1 of 2) .
Random number generation algorithm for Pascal
distribution (Sheet 2 of 2) .
Random number generation algorithm for Cauchy
distribution .
Random number generation algorithm for Rayleigh
distribution o
Random number generation algorithm for gamma
distribution
Random number generation algorithm for beta
distribution .
Random number generation algorithm for Pareto
distribution .

13

16

19

20

21

23

2 5

2 7

29

30

32

33

35

37

40

42

44

.

X

3-18.

3-19.

3 -20

3-21.

3-22.

3-23.

3 -24

3 -25

3-26.

3 -27.

3-28.

3-29.

3-30.

3-31.

3-32.

3 -33.

3 -34.

Random number generation algorithm for log-normal
di s t r ib t ion
Random number generation algorithm for folded-
normal distribution
Random number generation algorithm for Kodlin' s
distribution
Random number generation algorithm for extreme
value distributions
Random number generation algorithm for Weibull
distribution
Random number generation algorithm for Johnson SL
distribution
Random number generation algorithm for Johnson SB
distribution
Random number generation algorithm for Johnson Su
distribution
Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Type1 distribution
Type II distribution
Type m distribution
Type distribution .

Type V distribution
Type VI distribution
Type VI1 distribution
Type VIII distribution
Type M distribution

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

.
5

f

x i

3-35.

3-36.

3-37.

3-38.

3-39.

B-I .
B-2.
B-3.

B- 4.

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for the Pearson

Random number generation algorithm for a histogram
distribution 88
Random number generation algorithm for an equal
probability bin histogram distribution 88

Fortran listing of URAND 105

Type X distribution . 80

Type XI distribution 82

Type XI1 distribution 85
\

...............................

Fortran listing of RANSET 106
Logic flow chart for URAND. 107

Logic flow chart for RANSET. 108

x i i i

FOREWORD

f

Monte Carlo simulation is one of the most powerful and commonly

used techniques for analyzing complex physical problems. Applications can
be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include analysis of antisubmarine
warfare exercises and operations, prediction of aircraft o r sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of applications has

been broadening and the size, complexity, and computational effort required
have been increasing. However, such developments are expected and de-

sirable since increased realism is concomitant with more complex and exten-
sive problem descriptions.

In recognition of such trends, the requirements for improved simula-
tion techniques are becoming more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-
tions. This can generally be attributed to one or more of the following reasons:

Analysts usually seek advanced computer systems to perform
more complex simulation studies by exploiting increased
speed and/or storage capabilities. This is often achieved
at a considerably increased expense.

Many efficient simulation methods have evolved for specialized
applications. For example, some of the most impressive
Monte Carlo techniques have been developed in radiation trans-
port, a discipline that does not overlap into areas where even
a small number of simulation analysts are working.

Known techniques are not developed to the point where they can
be easily understood o r applied by even a small fraction of the
analysts who are performing simulation studies o r developing
simulation models.

x i v

In addition to the above reasons, comprehensive references describing ef -
ficient methodologies to improve Monte Carlo simulation are not available.
It is the intent of these volumes to help alleviate the above shortcomings in
Monte Carlo simulation.

This document is the third of three volumes which present techniques
and methods for developing efficient Monte Carlo simulations. Each volume

is essentially a self-contained discussion of useful techniques which can be

applied in reducing computational effort in one of the following three major
aspects of Monte Carlo simulation:

0 Selecting Probability Distributions -- Volume I

0 Random Number Generation For Selected Probability
Distributions - Volume II

0 Variance Reduction - Volume III

The purpose of these volumes is to provide guidance in developing
Monte Carlo simulations that accurately reflect the behavior of various char -
acteristics of the system being simulated and are most efficient in terms of
computational effort. The basic intent is to provide understanding of the con-
cepts and methods for reducing analysis and computational effort as well as
to serve as a practical guide for their application. They have been prepared
primarily for the systems analyst and computer programmer who have a
basic background and experience in simulation and elementary statistics.
Thus, the material is presented so as to preclude extensive knowledge of
statistical techniques or of extensive literature search. However, it is
assumed the reader has a grasp of the fundamentals of Monte Carlo methods,
simulation modeling, and elementary statistics.

1

1. INTRODUCTION

I

.

In developing any Monte Carlo simulation, it is necessary to generate
random numbers from the stochastic models used. In Volume I, the process
and techniques of selecting probability models for the simulation were pre -
sented. The objective of this volume is to provide a convenient source of
efficient and simple random number generators for all the probability dis-

tributions considered in Volume I. To this end flow charts and FOR,TRAN
listings of these random number generators are provided here as well as
descriptions of the techniques employed.

It is the purpose of this document to provide a convenient mechanism
to select and implement these random number generators without having to
resort to an understanding of the underlying concepts used in their develop-
ment. Accordingly, the remainder of this report has been organized as
follows :

0

0

0

SECTION 2, "Efficiency Comparison of Random Number
Generators, '' demonstrates improvements in running times
expected from using the techniques developed here over those
commonly used. This section has been included to provide an
appreciation for the magnitude of improvements possible in
using the techniques described herein.

SECTION 3, "Generation of Random Numbers from Selected Dis-
tributions, '' provides algorithms defined by flow diagrams and
standard Fortran subroutines that can be applied directly.
section is introduced with a convenient summary table defining
where in the section a specific algorithm can be found.

This

Appendix A, "Fundamental Considerations for Generation of
Random Numbers, '' describes the fundamentals on which random
number generation techniques for arbitrary distributions can be
developed.

t

3

.

2. COMPARISON OF RANDOM NUMBER GENERATION PROCEDURES

The improvements in calculational efficiency realized by using the
random number generation techniques provided here depend on the particular
problem. However, by utilizing these techniques, near optimum results can
be assured.

It is of interest to compare the random number generation techniques
presented here with those commonly used to generate random numbers. This

comparison was performed during the course of the study for several distri-

butions, and it was found that improvements in computer time of factors vary-
ing from 2 to 5 were possible. Results for a few of the more common distri-
butions are shown in Table 2.1 which compares the running times of the
preferred techniques with those commonly used. For example, consider the

normal (or Gaussian) distribution. The usual procedure is to generate 12

random numbers uniformly distributed over the interval [0,11 say R 1' * ' 7 5 2 ,
and determine

1 2
RN = R.-6 .

1
i=l

By virtue of the central limit theorem, (6) % is approximately distributed
according to the normal distribution. Assembly language time on a Univac
1108 was 105 microseconds per calculation using this approach. Procedures
studied here were the rejection technique (see Appendix A) and a technique
developed by Marsaglia. (5) The corresponding running times were respec -
tively 74 and 30 microseconds. Not only a re the running times significantly
reduced, but also the more efficient ones presented here are exact (within
machine roundoff errors).

Similar results were obtained with the exponential distribution where
the Marsaglia technique gave a reduction in running times of a factor greater

4

Commonly
Used Reject iona

Distribution Technique Technique

than three (Table 2.1). The standard method used is the inverse (see
Appendix A). The rejection method is discussed in Appendix A and the
Marsaglia method is reported in Ref. 3.

M a r sag liaa
Technique

As implied above, there are several methods that may be used to
generate random numbers for a given distribution. However, where alternate
approaches could be identified o r developed, comparisons were made and the

most efficient procedure selected. These generators are presented in the
next section.

It should be noted that the more efficient techniques are slightlymore
complex to program; however, the slight additional effort involved gener-
ally pays off substantially in computer time.

TABLE 2.1

Exponential

Normal
(Gau s s ian)

64

105

29

74

19

30

aSee*Appendix A for a brief description of these techniques.

bAll times in microseconds of UNIVAC 1108 Assembly Language time.

5

3. GENERATION OF RANDOM NUMBERS FROM SELECTED
DISTRIBUTIONS

In this section, efficient algorithms are presented for a large number
of probability distributions. These are summarized in Table 3-1 which
gives the name of the distribution, the theoretical form, parameters in the
distribution to be specified by the user, other random number generators
used, and where the particular routines or algorithms can be found in this

section of the report. Also shown under the name of the distribution is the
FORTRAN subroutine name assigned to the random variable.

Once a distribution of interest has been identified, it is only necessary
to define the values of the parameters indicated and to implement the
algorithm from the specified pages of this section. In the subroutines,

the parameters are represented by mnemonics which should be recog-
nizable. For example, SIG is used to represent a and SIGSQ to repre-
sent

ing point value such as ALAM for X .
2 In some places the mnemonic starts with an A to provide a float-

It will be noted that certain distributions rely on other distributions
to generate random numbers. For example, generation of random numbers
for the Rayleigh distribution requires random numbers from an exponential
distribution. The exponential distribution in turn depends on a uniform
random number generator. Based on the frequent requirement for the uni-
form, exponential and normal distribution, it is usually convenient to pro-
vide a basic random number generation package consisting of subroutines
to generate uniform, exponential, and normal random variables as an inte-
gral part of any complex simulation program. Throughout this section these
three random number generation subroutines will appear as UNFRN(R),
EXPRN(R), and ANRMRN(R), respectively, where R is a dummy function

6

TABLE 3 . 1

Efficient Algorithms for a Large Number of Probability Distributions

n o f
Generate
imbers

Page

Loca
A lgor i thm

Random
Subsection

Nnnic o f
Distrihution

(Function Title)

Other
Random Number
Generators Used

Parameters
To Be Specified Functional Form

3.1 10 Uniiorm
(UKFRN)

None

Uniform Exponential
(EXPRN) 3.2 12

Normal
(ANMRN)

Uniform,
Exponential

1 e-(X - p) 2 / 2 0 2

0 6 14 3.3

Binomial
(KBINOM)

(;) Pk(l - P Y k ;

k = O , l , , . . , n

Uniform,
Exponential 17 3.4

hfultinomial
(MULNOM)

m, n, pi, ..., P, Uniform 3.5 22

L p l + ... +p, = 1

kl + %+. . . + km = n

A > O - A k ,
e k l '

k = O , l , ...
A Uniform 3.6 24 Poisson

(KPOIS)

~

26 Hyper-geometric
(KHYPRG)

Uniform 3.7

~

P 3.8 28 Uniform,
Exponential

Geometric
(KGEOM)

k = 1 , 2 , 3 , . . .

Pascal (also
called negative
binomial)
(KPASCL)

(" + E - 1) (1 - p)"pk

k = O , l , . . . , n

Uniform,
iExponential

31 3.9

9

7

TABLE 3.1 (Continued)
~~

Functional Fo rm

Location of
Algorithm to Generate

Random Numbers Other
Random Number
Generators Used

Uniform

Name of
Distribution

Pa rame te r s
To Be Specified

P

Page Subsection

3.10

.
34

Exponential 3.11 36 Rayleigh

(GAMRN)

(I

Uniform,
Exponential

3.12 38

(BETARN) L Gamma 3.13 41

Uniform 3.14 Pare to
(PRTORN) I 43

--
[I P, (I Normal 3.15 45 Log-normal

Folded Normal Normal 3.16 47

x > 0;

Exponential Y t ? Kcdlin's
Distributions

Extreme
Value

49 3.17

3.18 Exponential 51

51

Maximum value:

; (I: 0 1 1 - k - P)

Minimum value: 3.18

8

TABLE 3.1 (Continued)

Location of
Algorithm t o Generate

Wndom Numbers Other
Random Number
Generators Used

Name of
Distribution

(Function Title)
Pa rame te r s

To Be Specified Functional Fo rm Page Subsection

Exponential 53 3.19

Normal

~

3.20.1 55

X S F

V t Y , Normal 3.20.2 51 7 A sB: -
fin (x - r) (A - x + r) *

Normal 3.20.3 59

exp. [- (y + 7 +

[k# + l]l”i f]
Gamma 3.21.1 61 Pea r son‘

System

(TYPlRN)

Gamma 3.21.2 63 a , m

m z -1
-a < x < a

Gamma

3.21.3 Type m: 65

,

9

Not applicable

TABLE 3.1 9 (Continued)

Upper and lower
limits and intermed-
iate break points in
distribution

~~

Location of

Random Numbers
Other Algorithm to Generate

Random Number Name cd
Distribution

Pa rame te r s
To Be Specified

m, Y , a

Functional Fo rm Generators Used Subsection Page

07 Type IV: Uniform,
Exponential

3.21.4

Type V: P, Y Gamma 69 3.21.5

’(TYP5RN)

(TYPGRN)

Gamma 71 Type VI: 3.21.6
x - a z o

q2 -91 q1 > q + 1 > 0 C(x-a) x 2

Type VII: Normal,
Gamma

3.21. 7 73

c(l+$ jm ; m z 2.5

~

Type VIII: Uniform 3.21.8 75

(TYPBRN)

Type M: Uniform 3.21.9 77

(TYPSRN)

(TPIORN)

(TP11RN)

Exponential 3.21.10 Type X:

- 1 e-x/u ; 0 2 0
x > 0

Type XI: ,

79

Uniform 3.21.11 81

Type XII: 3.21.12 83 Beta

(TPIZRN)

Uniform I Histogram
(AHSTRFT)

10

argument. In the flow diagrams, these are indicated as U(0, l), E(0,l)
and N(0, l), respectively.

3 .1 UNIFORM RANDOM NUMBER GENERATORS

The uniform random number generator is, of course, fundamental
to all random number generation. For the purposes here, it is assumed
that the computer system available will have such a generator as part of
the basic software package. If one is not available or the generator is
expected to be faulty, the machine independent package presented in Ap-
pendix B (MTRAN) can be used. The following paragraphs describe the
technique used in most computers for generating random numbers and pro-
vide insight into the assessment of such generators.

The method used for almost all uniform generators is the multiplica-
tive congruential method. ('I A sequence of integers, xo, xl, . . . , is generated
by the congruence

P
= xn.X(mod 2) . n+l X

.

I

Here P is the number of bits (excluding sign) in a word on the particular
computer employed and X is called the generator which is a carefully selected
integer as described below. From this sequence random fractions are pro-
duced using

.

-P R = ~ * 2 . n n

The sequence of random fractions, Rl,RZ,. . . , is output by the subroutine in
floating point form.

On most computers the multiplicative congruential method is accom-
plished by an integer multiplication of x and A. Only the low-order half

(P bits) of the product is retained as x ~ + ~ . This is then treated as a binary
fraction, converted to floating point, and normalized.

n .

11

.

This method is fast and will produce numbers whose properties a p
proximate randomness sufficiently $close f o r valid use in Monte Carlo
simulations provided the following caveats are observed:

1. Choose a generator,. X , with particular care. In particular,
generators with a -- small number of '1' bits in their binary repre-
sentation sh-ould be avoided. A number of generators of the form
21u k 3, 2x4 f 3, 210 * 3, etc. , are particularly abundant. A t
one time, they were used because they were thought to be good
and especially fast. However, further research has shown them
to be faulty and a number of simulations have produced erroneous
results as a consequence. Small generators such as X = 101
are also faulty and must be avoided. The gener tors X = 515 or X
have been well tested and are quite safe to use.(4

2. Check the computer word length. It is best for P to be at
least 35 in the congruence. For machines with P 5 32 a multi-
ple precision multiplication should be used to generate an ade-
quate congruence.

3. Do not trust, on blind faith, random number routines distributed
by the computer manufacturers with standard subroutine libraries.
These have been found to contain, with high probability, the faulty
generator values.

13 = 5

The uniform random number generator will be referred to as UNFRN(R)
in subsequent routines and U (0 , l) in the flow diagrams.

12

3.2 EXPONENTIAL DISTRIBUTION

The simplest method to generate random numbers from the exponential
distribution, f(x) = e-X, is to use the inverse solution,

x = ,
where Ru is a uniform random number. This is not, however, the fastest
method. An extremely rapid technique has been developed by G. Marsaglia
which, although it is several times faster than the logarithm, requires a
sizable block of computer storage (-600 words). When computer storage

is critical o r when the exponential distribution is not of crucial importance,
the Von Neumann rejection technique is a good general method. This method,
usually faster than the logarithm, is shown in Fig. 3 -1.

(3)

To select from a generalized exponential, (l/X)e -[(x-r)/XI, it is

merely necessary to select from e-x then multiply by X and add E. For
best efficiency in general, the basic exponential subroutine should select from

e , and it should be left up to the calling program to supply the multiplication
and addition where needed.

-X

The exponential distribution is referred to as EXPRN(R) in subsequent
routines and as E (0 , l) in the flow diagrams.

Sample 'Routines

Simplest method (use inline in calling program) :

R = -ALOG (UNFRN(R))

Von Neumann rejection technique:

100

105

110

115

120

FUNCTION EXPRN(DUMMY)
I = O
R = UNFRN(X)
X = R
Y = UNFRN(X)
IF (X.LT.Y) GO TO 120
X = UNFRN(X)
IF (X. LT. Y) GO TO 105
I = I+1
GO TO 100
EXPRN = R+I
RETURN
END

.

13

i = O

f(x) = e-x ; x 2 0

-
I 7

START 0
i = i + l

Yes
m

t

Generate z +U(O, 1)
J

.

Figure 3 -1. Random number generation algorithm
for exponential distribution

14

3.3 NORMAL DISTRIBUTION
2 2

The normal distribution, f(x) = l/(a.J27r)e -(x-cs /2u , has received

considerable attention by the designers of random number generators. One
of the earliest methods, which is still found frequently in simulations today,
uses the central limit theorem to approximate the normal by summing up
several uniform random variables. (6) This approach has two serious defects.
First, it is only an approximation. Second, it is much slower than other
methods. The fastest method by far is a technique designed by G. Marsaglia.
However, considerable storage is needed for this technique. Another

technique by Marsaglia, (4) illustrated in Fig. 3 -2, is fair ly fast without
requiring much computer storage. This is the best technique known for
general usage.

.

(5)

A s with the exponential routine, the basic normal random number
generator should be written to select from the normal distribution with unit
mean and zero standard deviation (referred to as ANRMRN in the routines
and as N(0,l) in the flow diagrams).
to multiply by the standard deviation and add the mean if a generalized normal
deviate is required. That is,for a distribution with mean p and variance a , 9

the correct random number would be oN(0,l) + p , where N(0,l) is a ran-
dom number from a distribution with p = 0 and a = 1.

It is then left up to the calling program

2

b

2

Sample Routine

FUNCTION ANRMRN (DUMMY)
R = UNFRN(R)
IF (R. GT. 0.8638) GO TO 10

RETURN
IF (R. GT. 0.9745) GO TO 20

RETURN

ANRMRN = 2. *(UNFRN(X) + UNFRN(Y) + UNFRN(Z) - 1.5)

10
ANRMRN = 1.5*(UNFRN(X) + UNFRN(Y) - 1.0)

15

I

8

20 IF (R. GT. 0.997302039) GO TO 100
X = 6. *UNFRN(X) - 3.0
Y = 0.358*UNFFW(X)
XSQ = X*X
GX = 17.49731196*EXP(-XSQ*. 5)
AX = ABS(X)
IF (AX. GT. 1.0) GO T O 30

25

IF (Y. GT. (GX-17.44392294 + 4.73570326*XSQ + 2.15787544*AX))
GO TO 25

ANRMRN = X
RETURN

IF (AX. GT. 1.5) GO TO 40
IF (Y. GT. (GX-AX3-2.15787544*(1.5-AX))) GO TO 25
ANRMRN = X
RETURN
IF (Y. GT. (GX-AX3)) GO T O 25
ANRMRN = X
RETURN

IF (UNFRN(X). GT. 3/X) GO TO 100

ANRMRN = X
RETURN
END

30 AX3 = 2.36785163*(3-AX)**2

40

100 X = SQRT (9+2*EXPRN(X))

IF (UNFRN(X). GT. 0. Q X = -X

.
n

II
n

x w

W

d

I N

+ a
10 d

- d

I1

X

T

1

- d 0
-
5
 a" a

4 4

8

l. 8

d

T

cu'
I

I
m

17

3.4 THE BINOMIAL DISTRIBUTION
k The binomial distribution, pk = (E)p (l -~)" -~ , is a discrete distri-

bution describing the number of successes encountered in a series of Bernoulli
trials, It has two parameters, p, the probability of success in a single trial,
and n, the number of trials in the series.

The algorithm for selection from the binomial distribution is divided
into three subranges for the parameter p. For moderate values of p, the ran-
dom number generation is based on a straightforward simulation of the under -
lying basis for the distribution; n Bernoulli trials are generated and the num-
ber of successes are counted. For small values of p, it becomes more efficient
to use a technique based on the geometric distribution. Conversely, for large
values of p it is efficient to reverse the geometric technique and perform the
counting on the number of failures rather than successes.

For large values of n , all three algorithms become inefficient;
the computing time involved is directly proportional to n . The binomial
distribution approximates a normal distribution with mean np and
standard deviation 4- for large n . One should consider replacing
the binomial with the approximate normal for large values of 0 (n > 10 p/(l-p)
or n > 10 (l-p)/p).

Sample Subroutines

For p < .25
WNCTION KBINOM (N, ALNQ)

KBINOM = 0
M = O

5 R=EXPRN(R)
J = 1 +R/ALNQ
M = M + J

10 KBINOM = KBINOM + 1
GO TO 5

15 KBINOM = KBINOM + 1
20 RETURN

END

C ALNQIS -ALOG (1. -P)

IF @I - N)10, 15, 20

18

F o r . 2 5 < p < . 7 5
FUNCTION KBINOM (N, P)
KBINOM = 0
DO 15 M = 1, N
R =UNFRN (R)
IF (R. LT. P) KBINOM = KBINOM + 1

1 5 CONTINUE
RETURN
END

For p > .?5
FUNCTION KBINOM (N, ALNP)

KBINOM = N
M = O

C ALNP IS -ALOG (P)

5 R = E X P R N (R)

M = M + J
J = 1 +R/ALNP

IF (M-N)IO, 15, 20
KBINOM = KBINOM - 1 10
GO TO 5

20 RETURN
15 KBINOM =KBINQM -1

END b

19

4

Generate
R i- E(0, I)

(Yes

Figure 3 -3. Random number generation algorithm
for binomial distribution

20

Figure 3-4. Random number generation algorithm
for binomial distribution (continued)

?

21

Figure 3-5. Random number generation algorithm
for binomial distribution (continued)

22

3.5 THE MULTINOMIAL DISTRIBUTION

The multinomial distribution,

m n k

p(kl, k2, ..., k m) = (1 2 k k ... k m)p;l ,;.....,,

is a generalization of the binomial distribution to trials having m different
outcomes with discrete probabilities. Random number generation is accom-
plished by a straightforward simulation of the underlying process of identical
trials. Note that a 'random number' for this distribution is an array con-
taining the number of realizations of each possible outcome.

Sample Routine
SUBROUTINE MULNOM (N, M, K, P)
DIMENSION K (M), P (M)
P IS INPUT ARRAY OF PROBABILITIES
K IS OUTPUT ARRAY OF OUTCOMES
D O l O J = l , M

D 0 3 0 1 = 1 , N
R = UNFRN (R)
DO 20 J = 1, M

IF (R. LT. 0) GO TO30

C
C

10 K(J) = 0

R = R - P(J)

20 CONTINUE
30 K(J) = K(J) + 1

RETURN
END

C

,

23

L

Generate R +U(O,
-1 --II

.

Figure 3 -6. Random number generation algorithm for multinomial
distribution

24

3.6 POISSON DISTRIBUTION
k

la-’ - A X is a discrete distribution The Poisson distribution, pk = e
describing the number of occurrences in an interval when the rate of occur-
rence is a constant. The technique for selecting from the Poisson distribu-
tion is a combination-transformation method described in Ref. 2.

The computer time spent in this selection is directly proportional to
A, the mean value of the Poisson variable. For large h , this selection
can be very time consuming. It is possible to approximate the Poisson dis-

tribution by a normal distribution with a mean of X and a standard deviation
of (A for X sufficiently large (X > 10).

Sample Routine
FUNCTION KPOIS (EXPLAM)

Y = 1.0
KPOIS = 0
Y = Y * UNFRN (Y)
IF (Y. GT. EXPLAM) GO TO 10
KPOIS = KPOIS + 1
GO TO 5

10 RETURN
END

C EXPLAM IS EXP (-LAMBDA)

5

25

Figure 3 -7. Random number generation algorithm for
Poisson distribution

26

3 . 7 HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution,

describes sampling without replacement. It has the parameters N , t ie
size of the total population, n , the size of the population sampled, and M ,

the number of events in the total population. The random variable k is
the number of events occurring in the sample. The hypergeometric dis-
tribution is generated by simulating sampling without replacement.

Sample Routine
FUNCTION KHYPRG (NTOT, MTOT, N)
NTOT IS TOTAL POPULATION SIZE, MTOT IS TOTAL
EVENTS IN POPULATION, N IS SAMPLE SIZE
KHYPRG = 0
EM = MTOT
EN = NTOT
DO 10 I = 1, N

R = UNFRN (R)
IF (R. GT. P) GO TO 10
KHYPRG = KHYPRG + 1

C
C

P = EM/EN

E M = E M - I .
10 E N = E N - 1.

RETURN
END

27

4

.

Figure 3 -8. Random number generation algorithm for hypergeometric
distribution

28

3.8 GEOMETRIC DISTRIBUTION

The geometric distribution, pk = p(1- - , describes the

number of trials to the first success in a series of Bernoulli trials. For
p 2 .25 , the geometric distribution is most efficiently sampled by a
direct solution of the discrete inverse equation. When p < .25, it becomes
more efficient to generate a geometric variate by truncating an exponential
random number.

Sample Routines

For p < .25:
FUNCTION KGEOM (ALNQ)

R = EXPRN (R)
KGEOM = 1 + R/ALNQ
RETURN
END

C ALNQ IS -ALOG (1 - P)

For p a .25:
FUNCTION KGEOM (P)
A = P

KGEOM = 1
R = UNFRN (R)

IF (R. LT. 0) RETURN
KGEOM = KGEOM + 1
A = A * Q
GO TO 10
END

Q = l - P

10 R = R - A

4

29

Generate R E (0 , l)
I

START 0

Figure 3 -9. Random number generation algorithm
for geometric distribution

.

30

START 0
Generate R +U(O, 1) I

I No

Figure 3-10. Random number generation algorithm
for geometric distribution (continued)

.

.

31

L

3 . 9 PASCAL OR NEGATIVE BINOMIAL DISTRIBUTION

The Pascal distribution,

describes the number of successes occurring before the n L failure in a
ser ies of Bernoulli trials. For low or moderate values of p , the Pascal
distribution is efficiently generated by a direct simulation of a sequence
of Bernoulli trials. A s p becomes large (p > .75) , it becomes more
efficient to sample by generating a geometric variate for the number
of trials to each of the n failures.

Sample Routines

For p I. 75:
FUNCTION KPASCL (P, N)
KPASCL = 0
DO 20 J = 1, N

10 R =UNFRN (R)
IF (R. GT. P) GO TO 20
KPASCL = KPASCL + 1
GO TO 10

20 CONTINUE
RETURN
END

FUNCTION KPASCL (ALNP, N)
C ALNP IS -ALOG(P)

KPASCL = 0
DO 10 J = 1, N

KPASCL = KPASCL + I
RETURN
END

For p >. 75:

I = EXPRN(R)/ALNP
10

32

pk = ?;-I) (1 - p)" pk * p I O . 75

START 0
j = O

I 1

k = k + l Generate R t U (0 , 1)
A .

Yes

j = j + l

No

c

,

Figure 3 -11. Random number generation algorithm
for Pascal distribution

33

I

Generate R + E(0,l)

1

j = j + l .
4

i = R/[- In p]

L

,

START 0

1

k = k + i

No

Figure 3-12. Random number generation algorithm
for Pascal distribution (continued)

34

3.10 CAUCHY DISTRIBUTION

The Cauchy distribution,

- a J < x < m 1
2 ’ f(x) =

+ (X - d 1
represents the distribution of the ratio of two normally distributed numbers.
It also represents the tangent of a random angle. It is easily generated by a
rejection technique which selects x and y uniformly in a unit circle, then cal-
culates the tangent x / ~ .

Caution: The moments of the Cauchy distribution are infinite; the behavior
of Cauchy variates in a simulation will be erratic.

Sample program:
FUNCTION COCHRN (AMU)

10 X = UNFRN(Y)
Y = 2. *UNFRN (X) - 1.
IF (X * X + Y * Y. GT. 1) GO TO 10
COCHRN = AMU + Y/X
RETURN
END

c

b

35

L

1 f(x) =
I7 [I + (x - d2]

START I
I Generate I

R1 + R2 5 1 ;
1 Yes

x = R2/Rl+ v
Figure 3 -13. Random number generation algorithm

for Cauchy distribution

36

3.11 RAYLEIGH DISTRIBUTION

The Rayleigh distribution,

2 2 x -x /20 , f(x) = T e
U

c

is derived as the radial e r ror when the x and y e r ro r s are independent normal
variates. It has a simple inverse which provides the most efficient method for
generating Rayleigh variates.

Sample routine:

FUNCTION RAYLRN (SIGMA)
RAYLRN =SIGMA * SQRT (2. *EXPRN(R))
RETURN
END

t

37

Generate
R +- E(0, 1)

Figure 3-14. Random number generation algorithm
for Ray leigh distribution

.

38

3.12 GAMMA DISTRIBUTION

The gamma distribution

describes the time for exactly r) events to occur when events occur at a
constant rate A. When 7 is an integer, there is a simple combination tech-
nique for generating gamma variates. However, as the gamma distribution

is one of the Pearson family of distributions, there is a need for selecting
gamma variates when 7 is non-integral even though there is no physical
model for this. This is a much harder task but can be accomplished by a
combination of the usual technique for the integral part of r) with a composite

rejection technique designed to select from x e where f is the fractional
part of q.

f -x

Sample routines:

For r) integer:

FUNCTION GAMRN (ALAM, NETA)
Y = l
DO 101 = 1, NETA
Y = Y * UNFRN (Y)
GAMRN = - ALOG(Y)/ALAM
RETURN
END

10

For r) general:

FUNCTION GAMRN(ALAM, ETA)
N = ETA

IF(F.EQ. 0) GO TO 100

IF (R.LT. F/(F + 2.71828)) GO TO 20
Y = UNFRN(Y) ** (l/F)
IF (UNFRN(R). GT. EXP(-Y)) GO TO 10
GO TO 50

F = ETA - N

10 R = UNFRN(R)

8

i

39

100 Y = 0
GO TO 70
Y = 1. + EXPRN(Y)
IF(UNFRN(R). GT. Y** (F-1.)) TO TO 10
IF(N.EQ. 0) GO TO 150

D O 8 0 1 = 1 , N

‘LO

50
70 Z = 1.0

80 z = z* UNFRN(Z)
Y = Y - ALOG(Z)

150 GAMRN = Y/ALAM
RETURN
END

40

1 N o

I

I
Ccnerate R -U(O, 1)

Yes No

* 1

Generate Generate

R - U(0, 1)
Y -E@, 1)

S u -U(O, 1)

I I

Note Itrat il r) Is llnilted to integral values. this simplifies to:

I e n e r a t e y1,y2, ..., yn+U(O, 1) I
I

Figure 3-15. Random number generation algorithm
for gamma distribution

4

41

3.13 BETA DISTRIBUTION

The beta distribution,

with x limited to the interval (a, b), is a basic statistical distribution fre-
quently encountered for bounded variables. The parameters, y and rj ,
are limited to positive values. Beta variates for most values of the parame-
ters a re best obtained as a ratio of two gamma variates. If y and 77 are
both small integers, a beta variate may also be generated by choosing
y + q - 1 uniform random numbers, arranging them in order of increasing
magnitude, and selecting the y

th random number as the beta variate.

Sample routine

FUNCTION BETARN (GAM, ETA, A, B)
Y = GAMRN (l., GAM)
Z = GAMRN (l . , ETA)
BETARN = (Y/(Y + Z)) * (B - A) + A
RETURN
END

c

42

Generate y from gamma distribution
with parameter y

1

START 0
V

*

Figure 3-16. Random number generation algorithm
for beta distribution

43

3.14 PARETO DISTRIBUTION
x -1-1 The Pareto distribution, f(x) = A € x , has a simple inverse

which provides the quickest procedure for random number selection.

Sample routine
FUNCTION PRTORN (EPS, ALAM)
PRTORN = EPS * UNFRN(R)**(-1.’/ALAM)
RETURN
END

44

x -x-1 f(x) = x € x

Figure 3-17. Random number generation algorithm
for Pareto distribution

45

3.15 LOG-NORMAL DISTRIBUTION

The log -normal distribution

describes a random variable whose logarithm is normal. It is a simple

matter then to invert this transformation to generate log -normal variates.

Sample routine:
FUNCTION ALNMRN (EPS, AMU, SIGMA)
R = ANRMRN(R)
ALNMRN = EPS + EXP (SIGMA*R + AMU)
RETURN
END

46

t

Generate R t. N(0, 1) . I

Figure 3-18. Random number generation algorithm
for log -normal distribution

47

3.16 FOLDED-NORMAL DISTRIBUTION

The folded-normal distribution,

f(x) = - 1 7 [,-(X-r3 + e -(x+p)2/202] 9

describes the distribution of the absolute value of a normal variate, which
provides the simplest procedure for generating from the distribution.

Sample routine
FUNCTION FNRMRN (AMU, SIGMA)
FNRMRN = ABS (AMU + SIGMA * ANRMRN(R))
RETURN
END

48

START
,

+ e
- (x+p)2’2u21 f(x) = -

Generate R N(0, 1) -

b

1

Figure 3-19. Random number generation algorithm
for folded -nor mal distribution

49

3.17 KODLIN'S DIST-RIBUTION

Kodlin suggested as a distribution for survival time data the functional
form,

This Kodlin form has a moderately simple inverse, and thus it is not difficult
to generate random varities.

Sample routine

FUNCTION AKODRN (ETA, GAM)
R = EXPRN (R) * 2. * GAM/(ETA **2)
AKODRN = ETA/GAM * (SQRT(1. + R) - 1.)
RETURN
END

c

50

-(qx+fyx2)
f(x) = (rl + Y X) e

START 7 w

Generate R +- E(0, 1) I Generate R +- E(0, 1) I

Figure 3 -20. Random number generation algorithm
for Kodlin's distribution

51

3.18 EXTREME VALUE DISTRIBUTIONS

t

4

There are two extreme value distributions. The first is for the maxi-
mum value,

and the, second is for the minimum value,
\

The inverse function for both is straightforward and provides an efficient
selection procedure.

Sample routines

For the maximum value:
FUNCTION AMAXRN(AMU, SIC)
R = EXPRN (R)
AMAXRN = AMU - SIG * ALOG (R)
RETURN
END

For the minimum value:
FUNCTION AMINRN (AMU, SIG)
R = EXPRN (R)
AMINRN = AMU + SIG * ALOG(R)
RETURN
END

52

4

START
r

1 Maximum value: f(x) = - 1 exp[- - 1 (x- p) - e - (x- cs/o
U U

Generate R +- E(0, 1)

1 Minimum value: f(x) = - exp[- (x- p) - e
U

START I
c

*

*

Figure 3-21. Random number generation algorithm
for extreme value distributions

53

3.19 WEIBULL DISTRIBUTION

The Weibull distribution, f(x) = q/X (x-c)' -' exp[-(x-Sq/A], is a three-

parameter (c , A, q) family of empirical distributions having wide usefulness.
The random variable x is bounded below by 6 . The inverse cumulative
function is straightforward and provides the best general method for

generating Weibull random numbers.

Sample - routine:
FUNCTION WIBLRN (EPS, ALAM, ETA)
WIBLRN = EPS + (ALAM * EXPRN (ALAM)) ** (1. /ETA)
RETURN
END

.
,

54

Generate R +- E(0, 1)
I

START TI

x = (X*R) + € -
r

Figure 3-22. Random number generation algorithm
for Weibull distribution

.

55

t

3.20 JOHNSON DISTRIBUTIONS

3.20.1 Johnson SL Distribution

is easily generated by transforming a normal variate. (The reverse of the
transformation used in deriving this Johnson distribution.) The SL dis-

tribution is also known as the log-normal (Section 3.15).

Sample routine,:

FUNCTION SLRN (EPS, GAM, ETA)
R = ANRMRN (R)
SLRN = EPS + EXP ((R-GAM)/ETA)
RETURN
END

4

56

START

Figure 3-23. Random number generation algorithm
for Johnson SL distribution

57

3.20.2 Johnson SB Distribution

The Johnson SB distribution,

is easily generated by a transformation on a normal variate.

Sample routine:

FUNCTION SBRN (EPS, ALAM, GAM, ETA)
R = ANRMRN (R)
EX = EXP ((R-GAM)/ETA)
SBRN = E P S + ALAM * EX/(l . + EX)
RETURN
END

4 .

58

START

n

I

L
X- e 1

f(x) = - r) x e - 2 I Y + ~ ~ n ~ k i Z)]
f i (x - €)(A - x + e)

Figure 3-24. Random number generation algorithm
for Johnson SB distribution

,

59

3.20.3 Johnson Su Distribution

Like the other Johnson family distributions, the Su distribution,

1/2 2
f(x) = -2- 1 e..[-: (l . n . n ((y) + [(y f + 1] 1) 3 9 fidjzjm

is easily selected by reversing the transform which generated the distribu-
tion from a normal distribution.

Sample program:
FUNCTION SURN (EPS, ALAM, GAM, ETA)
R = ANRMRN(R)
SURN = EPS + ALAM * SINH ((R - GAM)/ETA)
RETURN
END

60

Gene rate
R +-N(0, 1)

i",.i/ x = c + X sinh -

Figure 3 -25. Random number generation algorithm
for Johnson Su distribution

61

3.21 PEARSON DISTRIBUTIONS

3.21.1 Pearson T w e I Distribution

The Type I distribution of the Pearson system of frequency functions
is given by

where C is a normalization constant. The limits on the distribution are
-a ex < a -1 and m2 > -1.

x + a
By the linear transformation Z = - , the Type I distribution can be a + a 2 1
transformed into a beta distribution which may be derived from gamma vari-
ates as given in Section 3.13.

and there are further constraints that ml 1 2

Sample routine:
FUNCTION TYPlRN(EM1, EM2, A l , A2)
U = GAMRN (1. ,EMl+l.)
V = GAMRN (1. ,EM2+1.)
TYPlRN = (A1 + A2)*U/(U+V) - A1
RETURN
END

62

START v
Generate U from a gamma distribution

with parameter (mr + 1)

Generate V from a gamma dishbution
with parameter (m + 1) 2

z = u/(u + v)

X = (a l+a2) Z - al

END

Figure 3-26. Random number generation algorithm
for the Pearson Type 1 distribution

63

3.21.2 Pearson Type II Distribution

The second distribution in the Pearson family is given by

x2 m

a
f(x) = c (1 - 7) 9

where C is a normalization factor. The limits on the distribution are
-a < x < a and m > -1. This is a special case of Type I where m 1 = m2
and a = a As such it may also be derived from gamma variates. 1 2'
Samde routine :

FUNCTION TYPEBRN(EM, A)
U = GAMRN (1. EM+ 1)
V = GAMRN (10, EM+ 1)
TYP2RN = A*(U-V)/(U+V)
RETURN
END

64

2
f(x) = c (l +) m

a

Generate U and V from gamma
distributions with parameter

Figure 3-27. Random number generation algorithm
for the Pearson Type II distribution

65

3.21.3 Pearson Type III Distribution
F

The Pearson Type III distribution is given by f(x) = C(l + x/a) e -w,
where C is a normalization constant. The distribution is limited to
-a x < a (or to a < x < -a if a is negative) and is further constrained
by y a > -1. A few simple transformations, x = a(y-1) and = a 7 , will

turn this distribution into a special form of the gamma distribution
f(y) = C ' y e x -xy

Samde routine:
FUNCTION TYP3RN (GAM, A)
P = GAM*A
Y - GAMRN(P,P+~.)
TYP3RN = A*(Y-l.)
RETURN
END

66

f(x) = c (1 + x/a)Ya e -Yx

I Generate Y from gamma distribution
with parameters A , X + 1

Figure 3 -28. Random number generation algorithm
for the Pearson Type IT1 distribution

67

3.21.4 Pearson Type IV Distribution

The Type IV distribution of the Pearson system is given by

f(x) = c (I + x 2 /a 2) -me-ytan-l(x/a) 9

where C is a normalization constant. By a trigonometric transformation,
x = a tan -1 (c p - n/2), the function can be transformed into f(0) = C '(sin a) r e -Y(6 ,
where y = 2m - 2. In this form there is one limit on the parameters, namely
r > 3, while cp ranges from 0 to T . Picking from this function can be
accomplished by a selection from
rejection conditioned on (sin cp) .

truncated at cp = n , followed by a
r

Samnle routine:
FUNCTION TYP4RN(EM, G A W , A)
DATA PI/3.1415962/HAFPT/l. 5707981/
R = 2*EM-2

PHI = AMOD(PHI/.GAMMA, PI)
IF (UNFRN(R). GT. (STN(PHI)**R)) GO TO 10
TYP4RN = A*TAN(PHI-HAFPI)
RETURN
END

10 PHI = EXPRN(R)

68

m

-1 2 2 -me-Ytan (%/a) f(x) = c (I + x /a)

Generate y c U(0 , l)

START I

-

n y = 2m-2

no
y <(sin cp)r

c

END

c

69

3.21.5 Pearson Type V Distribution

The fifth type of distribution in the Pearson system of frequency func-
, where C is a normalization constant.

x < . The parameter Y must be positive
0) , and p must be greater than 1 The Type V random

tions is given by f(x) = C x -P e -Y/x

The range of the argument is 0

(for y < 0, -= <x
variable x is the inverse of a gamma variate; this provides the simplest

means of picking from the Type V distribution.

Sample routine:

FUNCTION TYP5RN (P, GAMMA)
TYP5RN = 1. /GAMRN(GAMMA, P-1.)
RETURN
END

70

f(x) = c x -P e-Y/x

START

Generate R from the gamma distribution with parameters
'7 = p - 1 and A = Y

X = l / R

END

Figure 3-30. Random number generation algorithm
for the Pearson Type V distribution

c

.1

.-

.

71

3.21.6 Pearson Type VI Distribution

Type VI of the Pearson family of distributions is given by
f(x) = c(x-a)q2 x -ql , where C is a normalization factor and q1 and q2
are parameters limited by q1 > q2 + 1 > 0. For a > 0 the range of the
distribution is a < x < = while for negative a it is -a< x < a. By the

simple transformation x = a/y the distribution is converted into a form of
the beta distribution

which can be obtained from two gamma variates as described in 3.13.

Sample routine :

FUNCTION TYPGRN(A, Q1, Q2)

V = GAMRN(1. ,Q2+1.)
TYPGRN = A*(U+V)/U
RETURN
END

U = GAMRN(1. ,Ql-Q2-1.)

.

72

92 -41 f(x) = C(x-a) x

Generate U from gamma distribution
with parameter '1 = q1 - 92 -

t

Generate V from gamma distribution
with parameter 77 = q2 + 1

Figure 3-31. Random number generation algorithm
for the Pearson Type VI distribution

73

3.21.7 Pearson Type VII Distribution

Type VII of the Pearson family of distributions is given by

where C is a normalization factor. The range of x is - to where
the distribution m must be greater than 2.5. By setting z = z2

is transformed into

2 a
a + x

-1/2 m-3/2 g(2) = C' (1 - z) 2

which is a special case of a Beta distribution with y = m-1/2 and
7 = 1/2. The beta variate z can be obtained as a ratio of two gamma
variates, z = u/(u+v) . A s x = a(l/z - 1)ll2 , we have x = a (v/u)
Now v is a gamma variate with parameter Q = 1/2. This special case

2 of a gamma variate can be obtained from v = y /2 , where y is a
normalized normal variate. This gives x = ay (1/2u)lI2 . Selection
from the Pearson Type VI1 is achieved by combining the above transform-
ations with the selection routines for the gamma and normal variates.

1 /2 .

Samtde Routine
FUNCTION TYP7RN(A, EM)
Y = ANRMRN(Y)

TYP7RN = A*Y/SQRT(U)
RETURN
END

U = GAMRN (.5,EM -*5)

74

2 2 -m f(x) =c (l + x /a)

Generate U from a gamma distribution
with A = . 5 and q = m - 1 / 2

Generate Y from a normal distribution
with mean = 0 and ~7 = 1

x = a*Y/U

Figure 3-32. Random number generation algorithm
for the Pearson Type VII distribution

75

a

3.21.8 Type VIII Pearson Distribution

The eighth distribution in the Pearson family is given by

where C is a normalization constant. The range of x is -a < x < 0
(or 0 < x < -a for a negative) while the range of m is 0 5 m 5 1.

If we set y = (1 + x/a) , the distribution becomes

ffy) = C' y-m where O < y < 1.

This form of the distribution has a simple inverse.

Sample Routine
FUNCTION TYP8RN(A, EM)
R = UNFRNR)
TYP8RN = A*(R**(l./(l.EM)) - 1 .)
RETURN
END

.

76

Figure 3 -33. Random number generation algorithm
for the Pearson Type VIII distribution

c

.

77

3.21.9 Pearson Type IX Distribution

The Pearson Type IX distribution is given by

f(x) = c (1 + x/a>m,

where C is the normalization factor. The range of x is -a to 0 while
m must be greater than zero. This function has a simple inverse.

Sample Routine

FUNCTION TYPESRN(A, EM)
R = UNFRN(R)
TYPSRN = A* (R**'(l. /(EM + 1.))-Is)
RETURN
END

78

START

Generate R c U (0, 1)
I

Figure 3 -34. Random number generation algorithm
for the Pearson Type M distribution

f

79

3.21.10 Pearson Type X Distribution

The Pearson Type X distribution is a form of the exponential
distribution given by

This is easily obtained from the standard exponential distribution
routines.

Sample Routine
FUNCTION TPlORN (SIGMA)
TPlORN = SIGMA*EXPRN(SIGMA)
RETURN
END

.

.

80

-x/a f(x) = 1/0 e

START

Generate R c E(0, 1)

~ = c i * R

END

Figure 3 -35. Random number generation algorithm
for the Pearson Type X distribution

.

81

3.21.11 Pearson Type XI Distribution

The eleventh in the series of Pearson distribution is given by

f(x) = C(b/x)m

where C is a normalization factor. The range of x is limited to
b <x a. The parameter m is greater than 1 . This distribution has
a simple inverse.

Sample Routine
FUNCTION TP11RN@, EM)
R = UNFRNR)

TPllRN = B/Y
RETURN
END

Y = R** (I. /(EM- 1.))

/

82

f(x) = C(b/x)m

Generate R c U (0 , l) +
fi x = b/y

Figure 3-36. Random number generation algorithm
for the Pearson Type XI distribution

83

3.21.12 Pearson Type XII Distribution

Type XII of the Pearson system of distributions is given by

where C is a normalization factor, u is the standard deviation, and
fl = p /p (skewness). The range of x is 2 3

1 3 2

the distribution becomes

By setting

x+a
Y = b = f

the distribution transforms to f(y) = C’ym (1 - ~) - ~ which is a special case
of the Beta distribution.

.

84

Sample Routine
FUNCTION TY 12RN(SIGMA, BETA 1)
R = SQRT(BETA1)
S = SQRT(BETAl+3)
EM =R/S
A = SIGMA*(R+S)
B = SIGMA*(S -R)
Y = BETARN(EM+l, 1-EM)
TP12RN = (B+A)*Y-A
RETURN
END

85

Generate y from a beta distribution
with

y = m + 1 and q = 1-in

I x = (b + a) y - a I

Figure 3-37. Random number generation algorithm for
the Pearson Type XI1 distribution

r

86

3.22 HISTOGRAM DISTRIBUTIONS

Frequently, empirical data regarding a probability distribution
is obtained in a histogram form. That is, intervals (xo, xi) , (xl, x2),

x) and probabilities pl, pz, , p a re given such that pi is (xn-l’ n n
the probability that the variable x is found in the interval from xi-l to
x.. (It is presumed that the histogram is normalized, i. e. C pi = 1.)

Within each interval it is assumed that the probability is constant.

n

i=l 1

Selecting a random number from such a histogram distribution is

simple. It is necessary first to select the interval in which the random
number falls, and then to choose where in that interval the random number
lies. This is basically an inverse distribution technique. Selection of
the interval i is accomplished by generating a uniform random number and
subtracting off successive values of pi . The value of i when this result
first goes negative is the desired interval index. Generation of a second

uniform random number and scaling it to f i t in the interval from xi - to x. 1
completes the task.

A more efficient (much more efficient if the size of the data table
is large) generator can be produced if it is possible to cast the histogram
data in a form such that pl = p = . . . = p = l /n by choosing values of 2 n
x. appropriately. Such a representation is known as equal probability
bins. This greatly simplifies selection of the interval i as all n intervals
have the same probability. Successive subtraction of values of p. is
no longer needed and can be replaced by a direct calculation of i from

1

1

a uniform random number.

In the sample Fortran routines below, the array X(1) is presumed
to contain: X(1) = xo , X(2) = x1 , , X(N + 1) = xn. In the first routine
use is made of the fact that, at the conclusion of selection of i, R will be
uniformly distributed between 0 and - pi .

87

Sample Routines

For general histogram selection
FUNCTION HISTRN (N, X, P)
DIMENSION X (N), P (N)
R =UNFRN ('R)
DO 10 I = 1, N

I F @ . L T . O)GOto20

HSTRN = X(I) - R * (X (I + 1) - X (I))/P(I)
RETURN
END

R = R -P(I)

10 CONTINUE
20

For selection with an equal probability bin histogram
FUNCTION HSTRN (N, X)
DIMENSION X(N)
R = N * UNFRN (R) + 1
I = R
R = R - I
HSTRN = X(I) + R * (X(I + I) - X(1))
RETURN
END

,

START

Generate R-U (0, 1)
i = l

1

v
R = R - p i

i = i + l No

0 (Xi - x) R x = x - -
i-1

Pi
i-1

END

START 0
Generate R+U (0 , l)

I

i = integer portion of y
f = fractional portion of y I

Figure 3-38. Random number generation algorithm Figure 3 -3 9. Random number generation
for a histogram distribution algorithm for an equal

probability bin histogram
distribution

= . 0 ,

c

APPENDIX A

GENERAL TECHNIQUES FOR
GENERATING RANDOM NUMBERS
FROM DESIRED DISTRIBUTIONS

4

91

APPENDIX A

GENERAL TECHNIQUES FOR GENERATING RANDOM
NUMBERS FROM DESIRED DISTRIBUTIONS

When given a particular distribution, f (x), and the task of
selecting random numbers distributed according to that function, the

investigator has a large number of possible alternatives at his disposal.
The primary task is to derive a method which will accomplish the
desired selection. A secondary task is to choose the method which is
least time -consuming computationally.

Unfortunately, it is not possible to give a straightforward
methodology for deriving random number generation techniques which
can be applied in all or even in most cases. The situation closely

parallels that of finding an integral of an arbitrary function. When one
encounters the need to integrate an unfamiliar function, the first step, of
course, is to t r y to look it up in a table of integrals. That failing,one must
try to simplify, transform variables, integrate by parts, use trigonometric
substitutions, or employ other similar tricks to reduce the integral to a familiar
form. There is no guarantee of success, and much depends on the ingenuity
and experience of the researcher. When all else fails you can "grind out"

a numerical solution.

Faced with the task of generating random numbers from an unfamiliar
distribution, a similar procedure is needed. The first step is to t r y to look
it up somewhere -such as in Section 3 of this report. If not found there,
there are a number of techniques - inverse, rejection, transformations,
combinations, etc. available. These are described in this Appendix. There
is no guarantee of success in using them, and the experience and ingenuity

.

92

of the analyst is very important. A s a final resort, there are numerical

methods which can be applied.

The following description of general techniques, while not universally
applicable should give the reader some notion of how to proceed in deriving
random number generation algorithms.

A. 1 THE INVERSE METHOD@)

The first technique which one should consider is the inverse. To
apply the inverse method, the distribution function is integrated to give
the cumulative distribution, F(x) = sx f(x')dx'. This is the probability of

selecting a number less than or equal to x. This is equated to the proba-
bility of selecting a random number, R, from the uniform distribution.
Thus, F(x) = .rX f(x') dx' = R. The question then is whether or not this

-cD

- -cJ
equation has a simple closed-form solution, x = F-l(R). If the inverse
function exists, then it is a solution to our task, for, if R is distributed
uniformly, then x = F'l(R) is distributed according to f(x). If F'l(R)
not only exists,but is also moderately simple to compute, it is most likely
the most efficient way to generate the desired random numbers.

A. 2 REJECTION TECHWQUE(~)

If the inverse function cannot be easily calculated, then the rejection
technique should be considered. Suppose that the function, f(x), h a s a
maximum value M where x varies over the range of interest from a to b.

Random numbers are then chosen by the following two-step procedure.

0

0 Select a second uniform random number, y, and accept

Select x from a uniform distribution on the interval (a, b)

the value x only if y < [f(x)]/M.

If x is rejected, then go back to-the first step to select a new x and con-
tinue this procedure until some value of x is accepted. The probability of
selecting x in the first step is [l/(b-a)] dx, while the probability of 1

93

acceptance at the second step is f (x)/M. Thus the x values will be genera-

ted with the desired probability f(x) dx.

The constant term l/[M(b-a)] represents the efficiency of the rejec-
tion. Its reciprocal, M(b-a), is the average number of trials the rejection
technique will rewire to generate a single random number and is, therefore,
linearly proportional to the computation time required. If M(b-a) is very
large, the rejection technique is too inefficient and a better technique should

r

a

be sought.

The rejection technique need not be based on variables from a uniform
distribution but can be developed from other distributions. For example
the fact that

can be used to develop a rejection technique for picking from a normal distribution.
First select x from the exponential distribution emX. Then accept x if

a second (uniform) random number 'f

2

&. e

-x /2 e
-X Y <

2 -(x-1) /2 = e

The essential ingredient of the rejection technique is to find a second dis-

tribution function, g(x), for which a selection procedure is known and such
that f(x) 5 C g(x). Selection of x from g(x) is followed by acceptance if

The average number of trials needed for an acceptance is C. Note that if

g(x) is close to f(x), then C will be close 1 and the technique will be very
i efficient.

A. 3 TRANSFORMATION

To simplify the derivation of inverse o r rejection methods, it is best
to transform the random variable into its simplest form. Thus, if one had

f(x) = g(Xx + F), one would first make the substitution, y = Ax + F, then

94

search for a technique fo r generating numbers from g(y). After generating
a random number y, set x = (y-c)/X to get the desired random variable.
In doing transformations correctly we must be careful to transform not just

the function f(x) but the probability f(x) dx. Thus, properly, we have
f(x) dx = g(xX + c) dx = g(y) dx = g(y) d y h as the substitution y = xX + c
implies dy = X dx. The correct normalized distribution for y is then
1/X g(y). A s a second example, assume f(x) dx = 2x e-x dx. Try

the transformation y = x . A s dy - 2x dx, f(x) dx = 2x eBX dx = emY dy.

Therefore, selecting y from the exponential e-y and taking x = f i will

give a random x from f(x).

A. 4

2

2 2

COMBINATION OF RANDOM VARIABLES (2)

A s a step beyond transformations, consider various combinations

of random variables such as adding subtracting, or multiplying two
random numbers, taking the maximum or minimum of several random
numbers, etc.

but must be worked out through the laws of probability. For example, the
sum of two uniform random numbers has a triangular distribution,

f (x) = 1 - 1x - 1 1 while the product has the distribution, f (x) = - In x.
More complex examples seem even farther removed from simple ration-
ality. If x and y are random numbers from the gamma distributions,
l / r (n) x e and l/€'(m) y e , then z = x/(x+ y) has a beta

m- 1 distribution r (m + n)/r(m)r(n) zn-' (1 - z)
distribution may also be obtained by taking n + m - 1 uniform random
numbers, arranging them in increasing order, and selecting the nth num-

ber in the sequence. Thus, although combinations can be a very powerful
method fo r transforming simple random variables into selections from

other distributions, it is impossible to give guidelines or to arrive at a
methodology for determining the proper combination needed to arr ive at a
desired distribution. The investigator must simply learn the frequently
used combinations and must use his inventiveness when confronted with an
unfamiliar dis t r ibu ti on.

The results of such combinations follow no intuitive pattern

n-1 -x m-1 -x

. However, the beta

95

A. 5 COMPOSITION TECHNIQUE (6)

'C

Another method of general applicability is the composition technique. If
the desired distribution can be written as a (generalized) integral over a
family of density functions, then the sampling can be accomplished in a two-
stage process. On the first step, a particular density function is selected
from the family, and on the second step, the desired random number is

drawn from the particular density function. In the usual application of
this technique, the desired distribution is broken down into discrete parts,
generally on separate intervals.

,

A. 6 NUMERICAL METHODS

If no exact method can be derived, there is a numerical technique
which can be used. This consists of generating the cumulative function,
solving for its inverse numerically, tabulating the inverse, and then gener-
ating the random numbers from the tabulated data. If equal probability intervals
are used in tabulating the inverse, then generation from the tabulated data
can be quite fast. It does, however, require a certain amount of computer
storage to hold the tabulation.

Improvements in the accuracy of numerical inverses can be made by

For some functions with long using C hebyshev interpolating polynomials j6)
tails, the tabulated inverse must be replaced with some sort of approximating
function in the tail of the distribution to achieve reasonable accuracy.

A. 7 MARSAGLIA

If a particular distribution is very central to a frequently used simu-
lation program and the generation subroutine will be called a great many
times to produce random numbers, it may be worthwhile to design a very
fast selection procedure to reduce the computer time needed. A number of
super-efficient techniques have been developed by G. Marsaglia. (3) These

are based on composition methods where the function is expressed as
the sum of three or more parts. The parts having highest probability are

fast to select from and the parts difficult o r slow to select from have very

96

small probability. In one of Marsaglia's methods, the function is broken
into :

0 A histogram

0 A collection of saw-toothed functions where an efficient
rejection technique selects from the 'almost-linear' dis-
tribution of each sawtooth.

0 The tail of the distribution.

This method is very fast but requires moderate amounts of computer storage.
In another method distributions are fitted to an approximation of the form
C(M + ul + u2 + us), where M is a discrete variable and the u's are uniform
variables. A small fraction of the time a more lengthy rejection procedure
is needed to correct the e r ro r in the approximation. This method is fair ly
fast without great storage requirements.

These methods have been applied very successfully to the exponential
and normal distributions. They do, however, require considerable effort
in manhours to develop and thus should be applied to other distributions only
when the payoff can justify it.

1

97

APPENDIX B

MIRAN

A MACHINE INDEPENDENT

PACKAGE FOR GENERATING
FROM DESIRED DISTFUBUTORS

c

. .

c

.

99

APPENDIX B

MIRAN - A MACHINE INDEPENDENT PACKAGE FOR GENERATING
UNIFORM RANDOM NUMBERS

B. 1 GENERAL DISCUSSION

The standard technique for producing uniform random numbers on
modern high-speed computers is an algorithm known as the multiplicative
congruential method. This .method is expressed mathematically as

= X . Rn (modulo P) . Rn+ 1

Since the R's are integers ranging from 1 to P-1, successive real random
numbers uniformly distributed from 0 to 1 are generated by dividing Rn by P.

The properties of this technique as a random number generator (RNG) are
highly dependent on the choice of the generator, A, and the modulus, P.

Unfortunately, there are many RNGs in current use which do not approximate
randomness closely enough to be sufficient for all Monte Carlo calculations
and, what is far worse, do manage to pass some of the simple tests for
randomness. There are, however, several choices of X and P which have

been thoroughly tested, both theoretically") and through many years of actual
use in Monte Carlo calculations, and which appear to be sufficiently random
for general usage.

f-

3,

1

For reasons of convenience and efficiency, P is generally taken to
be 2" where m is the number of bits, excluding the sign bit, in a single
word on the particular computer being used. The generation process starts
with a fixed generator, A, and a starting value,
from the multiplication of X and Ro would usually f i l l two computer words;
however, the modulo P in the algorithm means that we only need the single

word, R1, comprising the low order half of the A-R product. The random
number generation is completed by converting R

The full product
RO'

0
to a real variable and 1

100

dividing by P. R

and the process is ready to begin anew.
replaces Ro in storage in the random number subroutine 1

In this sort of a process there have been two barriers to developing
a Fortran RNG subroutine which would be independent of the particular com-
puter for which it was designed. The first is the modulus P, which varies
from computer to computer as the word length varies. [Choosing a universal
value of P to f i t the smallest computer is not a good solution as the proper-
ties of a RNG become less random as P is made smaller, to the extent that
Coveyou and MacPherson") consider them questionable for P = 2 31

(IBM 360 series) and borderline for P = 235 (IBM 7090, Univac 1108, etc.).]
The second problem is that the sign bit of Rl may need to be cleared follow-
ing the multiplication. Clearing the sign bit generally requires some trickery
in Fortran which varies from computer to computer as the mode of represen-
tation (one's complement, two's complement, uncomplemented, etc.) of
negative numbers varies.

The way around these obstacles is to use an explicit multiple pre- ..
cision representation. The integers and operations involved in the RNG
algorithm a re separated into component parts in such a way that all operations
a re kept within a single computer word and no overflows into the sign bit are
made, thus avoiding the sign-clearing problem. Through multiple precision
a sufficiently large modulus for good RNG properties may be used even
though the actual computer word size is small. An initialization call must
be made to convey to the RNG the maximum integer allowed on the particular
computer being used so that it can set up an appropriate multiple precision
representat ion.

The advantage of a RNG that is machine independent is simple: it
greatly facilitates the exchange and checkout of Monte Carlo programs between
different computers. The price paid for this advantage is also simple: it
is a much slower method of producing random numbers. However, it is

*

I

101

,

.

still fast enough - (several thousand random numbers generated in one second)
that the time difference will not be noticed in most Monte Carlo applications.

B. 2 CHOICE OF A SPECIFIC ALGORITHM FOR MIRAN

The work of Coveyou and MacPherson") has provided a thorough
theoretical analysis of many commonly used RNGs. They show that the cor-
relation properties of a RNG are strongly dependent on the modulus P.

For values of P = 231 or 2
graininess to the joint distribution of two, three, and four consecutive ran-
dom numbers that could lead to incorrect results for some Monte Carlo cal-

culations. For P = 2 , the departures from true randomness are small
enough as to be negligible for practical calculations. Among the specific

15 generators, X , tested by Coveyou and MacPherson, there is one, X = 5 ,
which has good statistical properties and which may be easily produced by
a machine independent subroutine. (In a subroutine designed for use on com-
puters of varying word length, specifying a fixed 47-bit integer through
data statements would be difficult. However, 5 may easily be produced
by multiplying 5's after the exact multiple precision representation needed
has been established.) In addition the choice of P = 247 and X = 515 has
an added advantage: this particular choice of a RNG has seen long usage
(several thousand hours on a CDC 1604 at Oak Ridge National Laboratory)
in Monte Carlo computations without any apparent problems.

35 , there must necessarily be a waviness or

47

15

B. 3 MULTIPLE PRECISION REPRESENTATION

In the basic algorithm used by MIRAN, X and the Rn values will

be 47-bit integers. This may exceed machine capacity. To keep all arith-
metic operations from overflowing a single machine word, these integers
are stored in an array wherein each word of the array constitutes a 'digit'
in a representation of the integer to a particular base. This basis, called
BASE, is chosen at execution time so that (BASE) does not exceed the maxi-

mum integer allowed on the particular computer being used. Thus, for

2

102

17 example, on a machine with 35-bit words (unsigned), BASE would be 2

and each 47-bit integer would be broken down into 3 words as follows:

blb2.. . . . b13b14.. . . b30b31* Ob47

hat the 'digits' are stored the array Note

47 -bit Integer Multiple Precision Repre sentation

word 3 + O Obl
+o... . . 0 b14.. . . b30 word 2

+o..... 0 bgl.. . . b47 word 1

b13

n 'reverse' order, i. e.,
word 1 is the least significant 17 bits of the number. Also, since 17 does
not go evenly into 47, the last word contains only 13 bits.

Arithmetic in a multiple precision representation is carried out in
the same manner as arithmetic is normally done by hand. The addition of
two numbers, for example, is done digit by digit. When two 'digits', or words,

th are added there may be an overflow into the 18

be detected, the overflow cleared out, and a carry of 1 added into the next
higher 'digit'. Multiplication is slightly more complex. It is again carried
out digit by digit and the resulting products are added, keeping them in appro-
priate columns, to get the final product. The multiplication of two 'digits'

produces, of course, a two-digit product which is initially contained in a
single computer word. This must be broken down into a high-order digit and
a low-order digit with the high-order digit being added into the next higher

bit of the result. This must

column of the result. A s each column is added, a carry over into the next
higher column may be needed. Thus, in our example where three words were
used for each integer, nine multiplies and several additions would be needed
to form the six-word full product as schematized below.

3

.

.

.
d

103

11 4, hll

h21 ‘2 1

h12 ‘12

h31 ‘3 1

h22 ‘22

h32 ‘32

h13 ‘1 3

h23 ‘ 23

h33 $33

‘6 s5 s4 s3 s1

where h.. and 4.. are the high and low order parts of the product of
di and d ’ .

B. 4

1.l 1.l

j

USE OF MIRAN PACKAGE

Initialization:
Before generating any random numbers, it is necessary to make an

initialization call. This is done by the statement

CALL RANSET (MAXINT, NSTART)

where MAXINT is the maximum integer allowed on the computer (or compiler)

being used. NSTART is the starting value,
number sequence. If NSTART is less than or equal to 0 , a default value

of 2001 is supplied for NSTART. If NSTART is even, the next higher odd
number will be used.

to be used in the random RO’

i

104

For example MAXINT = 235 - 1 on a 1108, 248 - 1 on a CDC-6600, etc.
Good values for NSTART are any odd integer although frequent use of
small odd integers is not recommended for calculations employing a re-
latively small number of random numbers.

The random numbers are generated in subroutine URAND which may
be used as either a function subroutine or as an ordinary subroutine return-
ing a value. Thus, either

. CALL URAND(R)
or

R = URAND(X)

will store a uniform random number in R. (Note that in the second form
the same random number will also be stored in X. Thus. X must be a

--
~~ ~~~ _____

Fortran variable and not a constant.)

Limitations of MIRAN:

MIRAN will work on all computers where MAXINT is greater than
1023 and less than zg4. (These limits are practical and not theoretical and
could be extended if it were ever necessary.)

B. 5 MIRAN PROGRAM DETAILS

The Fortran listings of the two MIRAN routines URAND and RANSET
are presented in Figures B-1 and B-2. The accompanying logic flow is de-
tailed in Figures B-3 and B-4. Additional explanation of the last step in the

URAND logic is provided below.

The two subroutines URAND and RANSET communicate through a
labelled common, MTRNG which contains

RAN(10) - An array containing the 'digits' of the current (or last)
multiple precision random integer

4

t

105

4

c

Figure B-1. Fortran listing of URAND

1

b

106

Figure B-2. Fortran listing of RANSET

107

For i = 1, NWRD-1
Separate ith word of SUM into a single 'digit' plus the carry

into the next higher column
th Add the carry into the (i + 1) word of SUM 4

START

1

c

I

c

Clear out SUM array

?-A
I

I For i = 1, NWRD and j = 1, NWRD+1 - i:
1 Multiply ith 'digit' of RAN by th 'digit' of GEN

Separate the 'two-digit' product into a high-order part HPROD

Add LPROD into the (i + j - l) th column of SUM
Add HPROD into the (i + j)th column of SUM

and low-order part, LPROD

Reduce the last word of SUM modulo MOD

I P. Return this as the random number I
END

Figure B-3. Logic flowchart for URAND

108

START 7
IB+l 1 [Determine IB such that 41B < MAXINT < 4 . <

IB 1 BASE = 2

Calculate the number of words needed to represent 47-bit
integers to the base, BASE.

Calculate REM, number of bits in the last word of the
REM I representation. MOD=2 I Get floating point values of BASE and MOD

I I Clear out random number and generator arrays

Calculate A = 515 by multiplying by 5 15 times 1
4 1

I
If user gave NSTART = 0, setNSTART to default value of

2001
Make sure NSTART is odd.
C onve r t NSTART to multiple precis ion rep r e sent at ion.

1

t

Figure B-4. Logic flow chart for RANSET

109

15 GEN(l0) - An array containing the generator A(= 5) in multiple
precision rep r e s ent at ion

- The number of words used in the multiple precision

representation of an integer
NWRD

BASE - The base used in the multiple precision representation

MOD - The maximum value of the highest order 'digit' in the

multiple precision representation
FBASE - Floating point value of BASE
FMOD - Floating point value of MOD

RAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are
Fortran real quantities.

An alternative method (unfortunately, not machine independent) of giving
the routine a starting value is to save the array RAN at the end of a run and to
restore RAN at the start of the new run (just after the RANSET call).

In the last step of the URAND flow the objective is conversion
d of the multiple precision integer random number R to a floating point

random number X between 0 and 1. The multiple precision integer
s - produced by the random number algorithm is represented by the 'digits'

rl, r2,. , r (remember that r is the lowest order digit. Thus, n 1

N -1 +.. . .+ (BASE) R = rl + (BASE). r2 + (BASE) r3 .rN . 2

Notice that we have, from the manner in which N and MOD were established,

P = BASE)^-^. MOD .

110

The uniform random number desired is given by R/P. Thus we have,

3 r
+ 2 r

+ 1 r R

MOD (BASE)N-2* MOD MOD x = F =

N r
+ - N-1 r

BASE-MOD MOD +....+

rl). . . .)) 1 (r + 1 1 - -(r + -(r -
B A S E 2 B A S E MOD N BASE N-1 + * * * *

Starting from the right it is easy to compute this iteratively.

B. 6 FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN

For checkout purposes, Table B-1 lists the first 100 random num-

bers produced by MIRAN when the default value of NSTART, 2001, is used
as the starting random number.

a

a
4 6

TABLE B-1

100 Random Numbers Produced by Machine-Independent Random
Number Generator

.9bl;hS62

.896/4935

.27Lh822

.4543266

. 6 P S B S O O

. 2 7 8 1 0 9 5

.7 3 4 9 9 7 s

,3714798

,TI 04638

.241379G

.4108350

, 0 3 15737

. i 3 a s e i 9

, 6 9 9 8 5 2 7

, 9 2 7 2 6 7 5

.?0608UO

, 0 7 6 5 7 1 0

, 1235697

, 6 9 2 1 146

.005M372

e 5 0 7 9 3 U O

.b@U5930

1319806

.56b1.661

.472ua77

. ~ ? 8 9 3 7 7 7

.063UZ!25

, 0 3 2 2 7 9 5

.E2769275

e 9 Q 3 U 1 6 1

,2304957

, 2 8 8 6 9 9 2

.A203205

. h u E. 6 0 2 d

, h9u779Q

. be6230 D

. 0 4 1 @ 9 1 h

e 4 0 170 6 3

.34 lJ09U9

e 4 1 4 U 5 0 9

.9 6 4 698 b
-1
--I

-1
.uea5?e3

aa! 3375

,5348431

. e 0 9 0 1 4 6

113

APPENDIX C
REFERENCES AND ABSTRACTED

BIBLIOGRAPHY

i

115

APPENDIX C
REFERENCES AND ABSTRACTED

BIBLIOGRAPHY

c

* .

1. Coveyou, R. R., and R. D. MacPherson, "Fourier Analysis
of Uniform Random Number Generators, '' Journal of the ACM,
14 pp. 100-119, 1967.

A method of analysis of uniform random number generators is de-
veloped, applicable to almost all practical methods of generation.
The method is that of Fourier analysis of the output sequences of
such generators. With this tool it is possible to understand that
predict relevant statistical properties of such generators and com-
pare and evaluate such methods. The results of many such analyses
and comparisons are given. The performance of these methods
as implemented on differing computers is also studied. The main
practical conclusions of the study are: (a) Such a priori analysis
and prediction of statistical behavior of uniform random number
generators is feasible. (b) The commonly used multiplicative
congruence method of generation is satisfactory with careful choice
of the multiplier for computers with an adequate (>-J 35 bit) word
length. (c) Further work may be necessary on generators to be
used on machines of shorter word length.

2. Kahn, H . , Applications of Monte Carlo, Rand Corp., AEC-3259,
USAEC, April 1964.

A classic publication in the field of Monte Carlo methods that describes
general Monte Carlo methods, random number generation schemes
and variance reduction techniques. The volume is divided in two
parts. Part I describes basic techniques with random numbers (such
as fundamental random number generation techniques) and Part fl
details several variance reduction schemes. The general areas of
application addressed are problems in radiation transport.

MacLaren, M. D., G. Marsaglia, and T. A. Bray, "A Fast Procedure
for Generating Exponential R.andom Variables, '' Communications of
the ACM, - 7, May 1964.

3.
-

A very fast method for generating exponential random variables in a
digital computer is outlines. A detailed flow diagram and required
tables are provided.

116

4. Marsaglia, G, and T. A. Bray, "A Convenient Method for Generating
Normal Variables, 'I SIAM Review, 5 1964.
A very fast yet small Fortran routine for generating normal random
variables in terms of a sequence of random variables uniform over
[0, 13 is presented. A random variable X is generated in terms
of uniform variables U U in the following way: 86 percent
of the time, x = z (u ~ + u ~ ~ u . , ~ ~ i: i), 11 percent of the time, x = I. 5
(Uh+U2 - l), and the remaming 3 percent uses a complicated pro-
ce ure.

Marsaglia, G. , M. D. MacLaren, and T. A. -Bray, ''A Fast Procedure
For Generating Normal Random Variables, '' Communications of the
ACM, 7, 1964.

L

*

.
5.

- -

A technique for generating normally distributed random numbers is
described. It is faster than those currently in general use and is
readily applicable to both binary and decimal computers.

6. National Bureau of Standards Applied Mathematics Series 55, June
1964, Handbook of Mathematical Functions, Numerical Methods,
pp. 949-953.

This section of the handbook reviews various methods of generating
random numbers including the rejection and composition methods.
Also presented are specific techniques for various discrete and con-
tinuous distributions such as the normal and exponential distributions.

7. Spanier, J., and E. M. Gelbard, Monte Carlo Principles and Neu-
tron Transport Problems, Addision Wesley Publishers, 1969.

This is one of the more recent comprehensive references on Monte
Carlo methods as applied to radiation transport problems. Basic
fundamentals of Monte Carlo are first reviewed. Next the concepts
of discrete and continuous random walks are introduced followed by
a discussion of variance reduction techniques. Finally, advanced
concepts and applications to radiation transport are presented.

i

I

I . O R I G I N A T I N G A C T I V I T Y (Corpomte author)

Science Applications, Inc

La Jolla, California 92037
1250 Prospect Street

3

2a. R E P O R T SE C U R I T Y C L A 551 F I C A T I O N

Unclassified
26. GROUP

7

6. R E P O R T D A T E

March 1973

NO0014 - 7 2 4 -0293
On. C O N T R A C T OR G R A N T NO.

b. P R O J E C T N O .

7b. NO. O F R E F S 711. T O T A L NO. O F P A G E S

134 7
Oa. O R I G I N A T O R ' S R E P O R T NUMBERIS)

SA1 -7 2 - 5 90- LJ

Techniques for Efficient Monte Carlo Simulation
Volume 11: Random Number Generation for Selected Probability Distributions

Final Report

Elgie J. McGrath, David C. Irving

4. D E S C R I P T I V E N O T E S (r V p e ofreport and Inclusive dates)

8. AuTHORISI (Flrsr name. middle inltlal, last name)

1 1 . S U P P L E M E N T A R Y N O T E S 1 2 . SPONSORING MIL1 TARY I C T I V l T Y

Office of Naval Research (Code 462)
Department of the Navy . . .

Ob. O T H E R R E P O R T NOISJ (Any other numbers that may be aselgnad
thls report)

Security Classification

i

119

ORNL- RS IC- 3 8
VOl. I1

INTERNAL DISTRIBUTION

327.

328 *
J

329.

1. L. S. Abbott
2. R. G. Alsmiller, Jr.
3. C. E. Clifford
4. R. R. Coveyou
5. F. C. Maienschein
6. F. R. Mynatt
7. R. W. Peelle
8. F. G. Perey
9. H. Postma
10. M. W. Rosenthal
11. D. Steiner
12. D. B. Trauger
13. D. K. Trubey

14.
15.
16.
17.
18.
19.

20-320 -
321-3 22.

323.

324.
325.
326.

\- 330 e

331.

332.

333.
334.

335-336.
337.
338.

EXTERNAL DISTRIBUTION

G. E. Whitesides
A. Zucker
H. Feshbach (Consultant)
P. F. Fox (Consultant)
W. W. Havens, Jr. (Consultant)
A. F. Henry (Consultant)
RSIC
Central Research Library
ORNL - Y-12 Technical Library
Document Reference Section
Laboratory Records Department
Laboratory Records, ORNL, R.C.
ORNL Patent Office

P. B. Hemmig, Division of Reactor Research and Development, ERDA,
Washington, D.C. 20545
D. C. Irving, Science Applications, Inc., Box 2351, La Jolla,
California 92037
E. J. McGrath, Science Applications, Inc., Box 2351, La Jolla,
California, 92037
Capt. R. G. Powell, Defense Nuclear Agency, Washington, D.C.
20305
L. K. Price, Division of Controlled Thermonuclear Research, ERDA,
Washington, D.C. 20545
Burt Zolatar, Electric Power Research Institute, 3412 Hillview
Avenue, Palo Alto, California 94304
Directorate of Licensing, NRC, Washington, D.C.
Directorate of Regulatory Standards, NRC, Washington, D.C.,
Attn: Director
Technical Information Center, ERDA, Oak Ridge, Tennessee
Research and Technical Support Division, ORO, Oak Ridge, Tennessee
Reactor Division, ORO, Oak Ridge, Tennessee

?

b

