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A MONTE CARLO TRANSPORT ROUTINE FOR THE
“Y. S. STANDARD ATMOSPHERE" (1962) TO AN ALTITUDE OF 90 KILOMETERS

by
C. J. Everett, E. D. Cashwell, R. G. Schrandt

ABSTRACT

Following the 1962 U. S. Standard Atmosphere report (NASA, USAF,
USWB), the earth's atmosphere to 90 km is subdivided into eight hori-
zontal zones, in each of which the temperature is assumed a linear
function of altitude. The barometric equation is integrated on this
basis to obtain formulas for the numerical density function, which
closely approximates the tabulation of the report cited. Further
integration then yields Monte Carlo routines for the usual "distance
to collision” decision. A flow diagram is included, with all required
constants. The method, which is more realistic than an earlier one
based on a single exponential density, may be used in conjunction with
any neutron and/or photon code, but was intended primarily for the
existing (MCP) photon code, which allows for pair production, coherent
and incoherent scattering with appropriate form factors, and fluorescence
subsequent to photo electric absorption. A series of such problems was
run on the CDC-7600, with a monoenergetic photon point-source (.5, 1.5,
5.0 MeV) at 50 km altitude, directed vertically downward, using the
U. §. Standard Atmosphere, and for comparison, an exponential atmosphere
assumed in earlier studies. The direct transmission is tabulated, and
some discussion of the results is included. In general, the U. S.
Atmosphere allows less penetration with a factor of 1/2 or less not

uncommon.
I. THE DENSITY FUNCTION we assume a force variation
For a column of air above the earth's surface
S (Fig. 1), of area A, and height Z* = 90 km, F(z) = F(z + Az) + p(AAz)g
N and hence a pressure gradient
Z*
— dp/dz = -p(z)g(z) (1)
where p = nkT, p = (M/No)ﬁ, g = go/[1+(z/RE)]2- n
2+ Az being the molecular numerical density (see Table 1
z for notation). The constant percentage composition
(cf. [1]) for z<z* insures the constancy of the
average molecular weight M, and of the ratio
0 S € =n{z)/n(z) ; z<z*
A
Fig. 1

of atomic to molecular density.




TABLE I

1.380527 x 10716 erg/°K, Boltzmann constant
28.9644 gm, av. "molecular wt." of air,
constant for z < 90 km

6.02257 x 1023, Avogadro's number/mole

980.665 cm/secz, earth surface gravity (GME/RE)
= 6371 km, mean earth radius

Nok = 8.31432 x 107 erg/°K mole, gas constant
R/Mg, = 2.92713 x 10° em/°K

AIR COMPOSITION
(z < z*)

= x
"

x o P a =
M o
Wononon

% Numerical
Component Composition
N2 78.084

0, 20.9476
Ar .934
co, .0314
Ne .001818

Molecular

Substitution in (1) yields the differential
equation

d{nT)/(nT) = - Mgdz/RT

from which we obtain the basic density-temperature
relation

_ Z
i(z) = Ry(T,/T(2)) exp { |

r4

Mg(Z)dZ/RT(z)] (2)
i

where z; < z* is an arbitrary altitude, and

ﬁi = ﬁ(zi) . T, = T(Zi)

Following [1], we suppose the function T(z)
defined by a broken 1ine of 8 segments, as indi-
cated in Fig. 2, and given explicitly in Table II.
We have taken the exact vertices of [1; Table I 4e],
but assumed the T-segments linear in altitude z,
rather than in "geopotential altitude," to facili-
tate computation.
of the 8 zones, the exact value of ﬁi = ﬁ(zi) tabu-
lated in [1], and, to achieve "goodness of fit,"
take for g{z) a constant value §1 (Table II1) such
that integration of (2) gives ﬁ(zi+]) = ﬁi+1‘ This
procedure results in a function n(z) closely approx-
imating the tabulation in [1].

However, we use in (2), for each

T°K

2905
280
270
260
250
240
230
220
210
200!
190

180

The integral in (2) is easily evaluated for
each of the two types of temperature function T(z):

F. Flat case. T(z) = Tyonz, <z<z4..
From (2), we find

n(z)/ig = exp[-(z-2;)/H,] (3)
Hy = KTo(em) 5 Ky = R/MG;  (cm/°K)

S. Slant case. T(z) = Ti+ri(z'zi) on

2, €2 < 24, Integration in (2) yields

H;-1
n(z)/n; = {]+Ui(z-zi)r 1 (4)

U = Fi/Ti(cm']), Ho = 1/K;Ty, Ky = R/MG, (cn/°K)

Here, the slope Fi is in °K/cm, and Hi is demension-
Tess. These results are collected in Table II.

II. DISTANCE TO COLLISION

A beam of N "projectile" particles, of energy
E, passing through a thickness dl of air of atomic
density n(z{2)), and "macroscopic cross section”
o = o(E) (see below), suffers an attenuation



TABLE II
. - -Hp-1
Co 0= zg<z< z, (cm) T = To t Po(z-zo) n-= n0[1 + Uo(z-zo)]
¢ 2y <z <z T= ns= ﬁ] exp [-(z-z])/H]]
-H,-1
Cy 2, <z <2, T=T,+ P2(z-22) n-= nz[l + U2(z-zz)]
-H,-1
C3 23<z<2z, T=T,+¢ r3(z-z3) n= n3[1 + U3(z-z3)] 3
Cq 7, <z <z T:= n= 54 exp [-(z-z4)/H4]
-He-1
Cs 25< 2z < 24 T=Tg+ I‘s(z-zs). n= n5[1 + Us(z'zs)] 5
-H.-1
C6 gz <2z T= Tg * Ps(z-zs) ns= n6[1 + UG(Z'ZG)]
¢, 2;<z2<2z5* 9.10° T= n= ﬁ7 exp [-(z-z7)/H7]
STORAGE
4z Fy=dgly H, Uy en”! T, °K dgen r; °K/em
0 0 1 - 5.2558396 -.0225187992 - 05 288.15 2.5471 + 19 -6.488792 - 05
1 11.019 + 05 3.36611 6.3726298 + 05 cm - 216.65 7.5669 + 18 0
2 20.063 + 05 13.9148 34.162943 .0045779714 - 05 216.65 1.8305 + 18 .9918175 - 05
3 32.162 + 05 92.6252 12.2011335 .0120942095 - 05 228.65 2.7499 + 17 2.765341 - 05
4 47.350 + 05 858.101 8.0474151 + 05 cm - 270.65 2.9683 + 16 0
5 52.429 + 05 1613.01 -17.0817899 -.0072589562 - 05 270.65 1.5791 + 16 -1.9646365 - 05
6 61.591 + 05 4878.66 - 8.5407577 -.0154854764 - 05 252.65 5.2209 + 15 -3.9124056 - 05
7 79.994 + 05 61213.65 5.4302657 + 05 cm - 180.65 4.1610 + 14 0
(8) 90.000 + 05 - - - 180.65 6.5910 + 13 -

Note: x * y means x x 10%Y

TABLE III
61/90
.998269
.995134
.991810
.987621
.984449
.982329
.978096
.973775

\IO\U'I#(A)N—‘Ol-“

dN/N = -an(z(2))d2

and hence satisfies the "decay" law

2
N(2) = N(O) exp [- JO on(z(l))dz]

We therefore regard the exponential as the proba-
bility Q(&) of transmission through distance %, and
P(%) = 1-Q(&) as the distribution function for col-
lision at distance < 2. When n(z(2)) is well defin-
ed for all & < =, and Q(~) = 0, setting a random
number

2
r=Q(2) = exp [ - fo on(z(n))dl] (5)

serves to determine the distance £ to collision in
an infinite medium. This simple rule is subject to
various qualifications in the present case, as indi-
cated below.

In what follows, we suppose the earth to be
flat (z* << RE)’ and the atmosphere above it divided
into the 8 altitude zones of Table II. Thus a pro-
Jectile, travelling a distance £ > 0 in the direction

3



Q = (u,v,w) from a point of departure P = (X,Y,Z)
in the i-th such zone, will then be at an altitude
(Fig. 3)

z(L) = 7 + we

where the atomic density is

n(z(2)) = Ch(z(2)) = CF\1 . ﬁ(z(l))/ﬁi = Cﬁo(ﬁi/ﬁo)

(6)
x Ti(z(2))/Rg = (ng/Fy) R(Z+wR)/Ry 5 Fy = fg/ig

(see Table II).

Ziy it T4l
13
b
—— — Q
Z P
Zi ni’ Ti
S 0 (w = cos ez)

Fig. 3

Existing codes allow computation of the quan-
tity

A = 1on, (7)

where Ny is the atomic density of air at sea level,
and

c= ijoj(E)

is its "macroscopic cross section," the f, defining
its fractional atomic composition. In evaluating
(5), we will therefore use (6), (7) to express

on(z(2)) = (ong/Fy) A(z(2))/f; = (F )"

(8)
x F\(Z+w9.)/r'11

in terms of A, the stored Fi’ and the density ratios
of (3), (4).

It remains to show how a random number r is
used to determine the distance & to collision, in
each of the cases F, S above.

F. Flat case. Substitution of (8), (3) in (5)
gives

-~
n

a2) = exp[-(xrie)“ f: et dﬂ.] (9)

m
It

exp(Z-zi)/Hi ’ W= W/,

We are faced with the following possibilities.
Fe (w=0 From (9),
- -1
r=Q(g) = exp[-(AFiE) 1]

and we simply set

e=L; L = —xFiE tnr,1>r >0,

(10)
0€ £ <o
For w # 0, (9) becomes
r=Q(a) = exp[-(FEN) T (1 - e (1)
or %= -W an(1 - W) (12)

F(w<0) . In(11), Q(=) = 0, and {12) de-

finess ton0< L <woforl>»r>0

F+§w > 0) For W > 0, (11) shows that there
is a non-zero probability

Q) = exp|-(AF,EH)T] > 0 (13)

of transmission through an infinite medium with no
collision, and therefore only random numbers r > Q(w)
determine collisions with £ < =, In this case, we
therefore have the alternatives

Fre (1>r>0Q(x)), 0KHWL <1, 0< 2 < o from
(12),

Fto (Q(e) > r > 0), 1 <UL, 2 = =,




S. Slant case. Substitution of (8), (4) in

(5) yields

a H,-1
P =0 = en-0F)T [ e U e ()

V=1+ Ui(Z - Zi) >0

Note here that [H;| > 1, and V is the ratio T/T,
at the point of departure P.
possibilities.

S°(w = 0). From (14),

Hy+1 -1
r = Q&) = exp|- AFiV 2

and we therefore set

We again consider the

Hi+]
L=V L; L = -AFi tnr>»0, 12r>0,
(15)
0€2L< >
For w # 0, we obtain from (14),
r = QL) = exp -(AFiinHi)-1
(16)

-H. -H.
x [V To(v+ U we) H’]‘

-H1 -]/Hi
or & = {(V - LinHi) -V in (17)

with L as in (15).

In considering the remaining cases, it is well
to bear in mind that: n(z) is a positive decreasing
function of z; Ui’ Hi both have the sign of ri; and
Q(2) is a decreasing function of £ for w = 0, with
Q{0) = 1.

S (w<0, r, < 0). As in case F, we have
Q(«) = 0, and (17) defines 2 on 0 < & < » for
1>r>0.

S++(w >0, T. >0). This is analogous to Case
F+, since

Hy

-1..7
Q=) = exp [-(AFiinHi) v >0

and there are the alternatives

++ -Hi
Sll('l>r_>Q(oo)),0<LU,ini<V ,0€ 2 <o
from (17),

-H
sTe(q(=) > r > 0), V

< LinHi’ L=,

In these cases, T is increasing with 2, on the
1ine of flight. In the remaining cases, the oppo-
site is true, and neither n(2) nor Q(&) is defined
for T/Ti =V + inz < 0. However, since T/Ti re-
mains positive throughout zone i, we may proceed as
follows:

s w <0, . >0. Q1) is defined for

0 <& < 2%, where V + ini* = 0 and Q(2*) = 0.
Hence (17) defines 2 on 0 < £ < 2* for 1 > r > O,

S*(w>0, . <0). Q&) is defined on
0 < 2 < 2* as before, but now

a7
Q(2*) = exp -(AFiinHi) v > 0.

This leads to the alternatives
-H.
s"(1 2 r > Q(e*)), O < LUMH, <V T,

0<2 < 2* from (17)

+- -Hi
S =(Q(e*)>r >0}, V S LUwH,, 2= .

Note that the setting & = « is only a Monte Carlo
strategy which forces transport to the boundary.

III. ROUTINE FOR "DISTANCE £ TO COLLISION"

We enter from the free path routine of the
regujar code at the "x-point," with A = ong (cf. I1),
the point of departure parameters P = (X, Y, Z),

@ = (u,v,w), and the index { = 0,...,7 of the zone
in which P lies. For storage, see Table II.

The exit (D) refers to the "collision or es-
cape" routine of the regular code, which compares
the distance % with that to the boundary of the
current cell, along the line of flight. In case of
collision within the cell, the code resumes the free
path at the "A-point,” from which (A) was entered.
Escape connotes either escape from the system, or
passage to an adjacent cell, and entry of the free
path routine to obtain A for the new cell. In the



Z-z1
r E = exp T
i
\
L = -AF, mfgfj EL - L
Y \
el = 1870 v|w = 0ly
A
CFB L2 w=‘;{'—1
D V=W
\
y|¥ < Oly
\
Y V<l
\

<

= 1+U1(Z-zi)

E = exp(-Hi n V)
1
y{¥ = Oy
y
g = %L W= LUgwH,
\
y{¥ < Oy
\
y|¥ < Ely
2
\
exp(- }1{— an(E-W)} »E| |2 ==
i

% = ! en(1-v)

L = (E-V)/in

present application, A does not change from cell to
cell, but only upofi change of energy due to colli-
sion.

IV. COMPARISON OF Y. S. WITH AN EXPONENTIAL
ATMOSPHERE

Two series of 3 problems each weré Pun on the
CDC-7600, the first assuming the "U. S. Standard
Atmosphere" treated above, the second a pure “expo-
nential atmosphere", essentially that employed in
[2].

Both series involved an infinfte slab geometry,
of height 90 km, with monoenergetic photon point-
sources (.5, 1.5, 5.0 MeV) at altitude 50 km,

6

directed vertically downward. A 3-component atmos-
phere of N,, 0,, Ar was assumed, with molecular
abundancies 78.111%, 20.955%, .934%, respectively.
This corresponds to a ratic n/fi = C = 2(.78111)

+ 2(.20955) + (.00934) = 1,99066 and hence to a
fractiongl atomic composition

f, = .78478

N fo = .21053 f

A" .00469
The source cross sections per atom, and the f-aver-
aged macroscopic cross sections o used, are shown
in Table IV.




TABLE IV

barns/atom : Ser, I Ser. II
E MeV Oy % N o A U.S. cm. A Exp. cm.

.5 2.02465 2.31671 5.26680 2.10134 .0938559 + 05 .0776914 + 05
1.5 1.20219 1.37286 3.11429 1.24709 .1581466 + 05 .1309096 + 05
5.0 .63640 .73610 1.85800 .66311 .2974214 + 05 .2461974 + 05

The X of Series I is given by X = l/noo. where TABLE VI
ng = gt = 2.5471 x 10'7 x 1.99066 = 5.0704 x 1019 SOURCE £ = 1.5 Mev
atoms/cm3 is the sea level U. S. atomic density.
In Series II, a single exponential density RLef Q0. U5, QB
500z, .9835 .9859 500z, .9835 .9859
z vz .9726 9770 - - -
n(z) = ns e-Z/H; H=6.7 x 105cm. 0<z<9x Toscm zi*:l; .6680 .6857 50+z, L6570 .6760
13"22 .08672 1175 50*:2 .05698 07943
was assumed. The X of Series II in the table above 2%% 1145 - 04 6.622 - 04 50vz)  6.524 - 06 5.260 - 05
is defined as A = 1/nj o, with n§ = 6.12535 x 1019 3Ty 955-19 L6 -18 50vz, ~0 ~0
atoms/cm3 at sea level. This corresponds to an
electron density of 1020 cm~3 at 10 km, as postu-
TABLE VII

lated in [2]. The above value of H is also that
used in [2].

The direct transmissions, for a vertical path
through the 8 zones, may be computed at once from
the formulas (11), (16) for Q{&), and are given for
5 MeV in Table V, for each of the lower 5 zones.
Also included i{s the analogous transmission for the
path from source altitude z = 50 x 105 cm to the
lower boundary z, of its zone. These numbers were
realized with good precision in the Monte Carlo
runs.

The analogous transmissions Q(E) for energies
E # 5 MeV are easily obtained from the relation
Q(E) = QO(E)/U(S). The o(E) used in the problem
are given in Table IV. The analogue of Table V for

source E = 1.5, 0.5 MeV are given in Tables VI, VII.

TABLE V
SOURCE E = 5 MeV

Q U.S. At. Q Exp. At. QU.S. At. Exp. At.
50014 .9912 .9925 50»14 .9912 .9925
Zgvz, . 98535 .9877 - - -
24024 .8069 .8182 50013 .7998 8121
z3*Z, .2725 .3203 5()022 L2179 .2601
2,47y .008023 .0204 50’21 .00175 .00531
27z 2.62 - 10 2.91 - 10 50+2, ~0 ~0

SOURCE E = 0.5 MeV

QUu.S. Q Exp. Qu.s. Q Exp.
504z, .9726 .9764 50+z, .9724 9764
250z, .9543 .9616 - - -
2,02, .5067 .5295 50+z, L4927 .5170
z e, .016245 .02711 50+z, .008004 .01402
z,%z;  2.286 - 07  4.399 - 06 504z,  1.830 ~ 09 6.167 - 08
z)vzg 433 -31 6.04 - 31 50z, ~0 ~0
REFERENCES

1. "U. S. Standard Atmosphere, 1962," NASA, USAF,
USWB, Washington, D. C., 1962.

2. E. D. Cashwell, Conrad Longmire, J. R. Neergaard,
"The Scattering of Gamma Rays in an Exponential
Atmoiphere," Los Alamos Report LA-3944 (April
1968).

ALT: 428(150)



