Above 1 keV

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California LOS ALAMOS - NEW MEXICO

A New Method of Sampling the Klein-Nishina Probability Distribution for All Incident Photon Energies Above 1 keV

by

C. J. Everett

E. D. Cashwell
G. D. Turner

ON A NEW METHOD OF SAMPLING THE KLEIN-NISHINA PROBABILITY

DISTRIBUTION FOR ALL LNCIDENT PHOTON ENERGIES ABOVE 1 keV

by

C. J. Everett
E. D. Cashwell
G. D. Turner

ABSTRACT

Abstract

A Monte Carlo method is given for accurate determination of scattered photon energy in the distribution required by the Klein-Nishina cross section for Compton collisions. The relative error does not exceed 2.2% for all incident energies above 1 keV .

I. INTRODUCTION

In the Compton scattering of a photon of energy $\alpha\left(=E / \mathrm{mc}^{2}\right)$ on a free electron at rest, the KleinNishina cross section requires that the probability distribution for the ratio $x=\alpha^{\prime} / \alpha$ (of scattered to incident photon energy) be given by $P(x)=$ $F(x) / F(\xi), \xi \equiv(1+2 \alpha)^{-1} \leqslant x \leqslant 1$, where $F(x)=$ $\int_{x}^{2} f(x) d x, f(x)=x+x^{-1}+\mu^{2}-1$, and $\mu=1+\alpha^{-1}$ $-\alpha^{-1} x^{-1}$, as shown in LA-4448. Hence, sampling the distribution $P(x)$ for $x=\alpha^{\prime} / \alpha$ provides a Monte Carlo method of obtaining the new energy α^{\prime} and scattering cosine μ.

For an incident energy $\alpha>\alpha_{0}>2$, Section II shows that the relative error in replacing $P(x)$ by the simpler distribution $F_{1}(x) / F_{1}(\xi), F_{1}(x) \equiv \int_{x}^{l}$ $\left(x+x^{-1}\right) d x$, does not exceed $4 /\left(\alpha_{0}-2\right)$. Consequently, with this accuracy, x may be found from the latter distribution by a standard device involving two random numbers and no further approximation.

For $0.002 \leqslant \alpha \leqslant \alpha_{0}$, we set a random number $r=$ $P(x)=F(x) / F(\xi)$, and obtain $x=F^{-1}(r F(\xi)) \cong$ $Q(r F(\xi))$, where $Q(y)$ is an approximation function for $\mathrm{F}^{-1}(\mathrm{y})$. The function $Q(y)$, defined in Section III, is cubic on $\left[0, F\left(x_{0}\right)\right]$ and exponential on
$\left[F\left(x_{0}\right), F(\xi)\right], x_{0}$ being an α-dependent parameter subdividing the interval ($\xi, 1$).

Adopting the values of α_{0} and $x_{0}(\alpha)$, specified in Section IV, insures that the relative error in x does not exceed 2.2% over the entire range $0.002 \leqslant$ $\alpha<\infty$. The approximation function $Q(y)$ represents a considerable improvement over that proposed before, ${ }^{1}$ due to the α-dependence of x_{0}. The tests used for accuracy are described, and a flow diagram included, in Section IV.
II. THE METHOD FOR $\alpha>\alpha_{0}$

The function $f_{0}(x) \equiv f(x)=x+x^{-1}+\alpha^{-2}$ $\left(1-x^{-1}\right)\left(\xi^{-1}-x^{-1}\right)$ may be written in the form

$$
\begin{equation*}
\mathrm{F}_{0}(x)=\mathrm{F}_{1}(x)-\mathrm{F}_{2}(x), \quad \xi \leqslant x \leqslant 1 \tag{I}
\end{equation*}
$$

where
$f_{1}(x)=x^{-1}+x>0$
$f_{2}(x)=\alpha^{-1}\left(x^{-1}-1\right)\left[2-\alpha^{-1}\left(x^{-1}-1\right)\right] \geqslant 0$
Since $0 \leqslant f_{1}(x)-f_{0}(x)=f_{2}(x)<2 \alpha^{-1} x^{-1}<2 \alpha^{-1}$ $f_{1}(x)$, hence also $f_{0}(x)=f_{1}(x)-f_{2}(x)>f_{1}(x)-$ $2 \alpha^{-1} f_{1}(x)=\left(1-2 \alpha^{-1}\right) f_{1}(x)$, we have the inequality $0 \leqslant f_{1}(x)-f_{0}(x)<2 f_{0}(x) /(\alpha-2), \alpha>2$.

For the integrals $F_{i}(x)=\int_{x}^{1} f_{i}(x) d x$ therefore, $0 \leqslant F_{1}(x)-F_{0}(x)<2 F_{0}(x) /(\alpha-2), \xi \leqslant x \leqslant 1$
in particular

$$
\begin{equation*}
0<F_{1}-F_{0}<2 F_{0} /(\alpha-2) \tag{5}
\end{equation*}
$$

where $\mathrm{F}_{\mathrm{i}} \equiv \mathrm{F}_{\mathrm{i}}(\xi)$.
Consequently, the relative error $\varepsilon(x)$ in replacing $F_{0}(x) / F_{0}$ by the simpler distribution $F_{1}(x) /$ F_{1} satisfies

$$
\begin{align*}
& \varepsilon(x)=\left|\frac{F_{1}(x)}{F_{1}}-\frac{F_{0}(x)}{F_{0}}\right| \\
& \leqslant\left[F_{0}\left|F_{1}(x)-F_{0}(x)\right|+F_{0}(x)\left|F_{1}-F_{0}\right|\right] / F_{1} F_{0}(x) \\
& <\left[F_{0}\left(\frac{2}{\alpha-2}\right) F_{0}(x)+F_{0}(x)\left(\frac{2}{\alpha-2}\right) F_{0}\right] / F_{1} F_{0}(x) \\
& = \tag{6}\\
& \frac{4}{\alpha-2}\left(\frac{F_{0}}{F_{1}}\right)<\frac{4}{\alpha-2}
\end{align*}
$$

Similarly, one may show

$$
E^{\prime}(x) \equiv\left|\frac{f_{1}(x)}{F_{1}}-\frac{f_{0}(x)}{F_{0}}\right| /\left(\frac{f_{0}(x)}{F_{0}}\right)<\frac{4}{\alpha-2}
$$

for the relative error in the corresponding densities at each point. Note that $\varepsilon(x)<4 /\left(\alpha_{0}-2\right)$ for all $\alpha>\alpha_{0}$, and $\varepsilon(x) \rightarrow 0$ uniformly as $\alpha \rightarrow \infty$.

Since the function $F_{1}(x)$ has an inverse difficult to fit, we resort to the following well-known strategy. The variable x has distribution $F_{1}(x) / F_{1}$ iff it has density $f_{1}(x) / F_{1}$. We write $f_{1}(x)=$ $a_{1}(x)+a_{2}(x)$, where $a_{1}(x) \equiv x^{-1}$ and $a_{2}(x) \equiv x$. Setting $A_{i}(x)=\int_{x}^{1} a_{i}(x) d x$ and $A_{i}=A_{i}(\xi)$ this x density may be expressed in the form

$$
\frac{f_{1}(x)}{F_{1}}=\left(\frac{A_{1}}{F_{1}}\right) \frac{a_{1}(x)}{A_{1}}+\left(\frac{A_{2}}{F_{1}}\right) \frac{a_{2}(x)}{A_{2}}
$$

Hence, choosing the auxiliary density $a_{i}(x) / A_{i}$ with probability A_{i} / F_{1}, and x in the corresponding distribution $A_{i}(x) / A_{i}$, yields x with the required density $f_{1}(x) / F_{1}$.

Setting a random number $r=A_{1}(x) / A_{1}$ in the
usual way gives

$$
x=\exp [r \ln \xi] \quad \text { or } \quad x=\left[1-r\left(1-\xi^{2}\right)\right]^{1 / 2}
$$

in the two cases. For the probabilities A_{i} / F_{1} one requires the values $A_{1}=\ln \xi^{-1}, A_{2}=(1 / 2)\left(1-\xi^{2}\right)$, and $\mathrm{F}_{1}=\mathrm{A}_{1}+\mathrm{A}_{2}$.

Note: The inversion involved in the square root value of x above may be obviated, if desired, by setting $x=\xi+\max [(1-\xi) r,(1+\xi) s-2 \xi]$, where r, s are independent random numbers. ${ }^{2}$
III. APPROXIMATION OF $F^{-1}(x), 0.002 \leqslant \alpha \leqslant \alpha_{0}$
The function $f(x)=x+x^{-1}+\alpha^{-2}\left(1-x^{-1}\right)$ $\left(\xi^{-1}-x^{-1}\right), \xi \leqslant x \leqslant 1$, has the integral $F(x)=\int_{x}^{1}$ $f(x) d x=(1 / 2)\left(1-x^{2}\right)+\alpha^{-2}\left[\xi^{-1}(1-x)+\left(x^{-1}-1\right)\right]$ $+\left(1-2 \alpha^{-1}-2 \alpha^{-2}\right) \ln (1 / x)$. As before, ${ }^{1}$ we define
$G \equiv F(\xi)=\frac{2 \alpha(\alpha+1)}{(2 \alpha+1)^{2}}+4 \alpha^{-1}$

$$
\begin{equation*}
+\left(1-2 \alpha^{-1}-2 \alpha^{-2}\right) \ln (2 \alpha+1) \tag{7}
\end{equation*}
$$

For an arbitrary point x_{0} of $(\xi, 1)$, we find that $F \equiv F\left(x_{0}\right)=K_{1}+K_{2} \alpha^{-2}+K_{3} \alpha^{-2}$,
$\mathrm{f} \equiv \mathrm{f}\left(\mathrm{X}_{0}\right)=\mathrm{N}_{1}+\mathrm{N}_{2} \alpha^{-1}+\mathrm{N}_{3} \alpha^{-2}$
where
$K_{1}=\frac{1}{2}\left(1-x_{0}^{2}\right)-\ln x_{0} \quad N_{1}=x_{0}+x_{0}^{-1}$
$K_{2}=2\left(\ln x_{0}+\left(1-x_{0}\right)\right) \quad N_{2}=2\left(1-x_{0}^{-1}\right)$
$K_{3}=x_{0}^{-1}-x_{0}+2 \ln x_{0} \quad N_{3}=\left(1-x_{0}^{-1}\right)^{2}$.
If, on the interval $\left[\xi, x_{0}\right]$, we assume the approximation ${ }^{1} \mathrm{f}(\mathrm{x}) \cong \mathrm{Cx} \mathrm{C}^{-1}$, where $\mathrm{C}=(\mathrm{G}-\mathrm{F}) / \ln \left(\mathrm{x}_{0} / \xi\right)$, we shall have there also

$$
\begin{aligned}
& y=F(x)=\int_{x}^{x_{0}} f(x) d x+F\left(x_{0}\right) \\
& \cong L(x) \\
& \equiv F+C \ln \left(x_{0} / x\right)
\end{aligned}
$$

with $F(\xi)=L(\xi)$ and $F\left(x_{0}\right)=L\left(x_{0}\right)$. This leads to the approximation $x=F^{-1}(y) \cong Q(y) \equiv L^{-1}(y)$, where
$Q(y)=x_{0} \exp \left[-\frac{y-F}{G-F} \ln \left(x_{0} / \xi\right)\right], F \leqslant y<G$, which is exact at the end points.

In practice therefore, for a random number r such that $J \equiv(F / G) \leqslant r \leqslant 1$, we find from $r=F(x) / G$ the approximation $x=F^{-1}(r G) \cong Q(r G)=x_{0} \exp$ $[-\Lambda(r-J)]$ where $\Lambda=\ln \left(x_{0} / \xi\right) /(1-J)$.

On the interval $0 \leqslant y \leqslant F$, we assume a cubic $\underset{3}{\operatorname{approximation}} F^{-1}(y) \cong Q(y)=a_{0}+a_{1} y+a_{2} y^{2}+$ $a_{3} y^{3}$, and demand that Q and Q^{\prime} be exact at the end points. Since $F(1)=0, F^{\prime}(1)=-f(1)=-2$, and $F\left(x_{0}\right)=F, F^{\prime}\left(x_{0}\right)=-f\left(x_{0}\right)=-f$, this requires that $Q(0)=1, Q^{\prime}(0)=-1 / 2$, and $Q(F)=x_{0}, Q^{\prime}(F)=-1 / f$. It follows that the cubic $Q(y)$ has the form $Q(y)=$ $1+a(y / F)+b(y / F)^{2}+c(y / F)^{3}, 0 \leqslant y \leqslant F$ where $a=$ $-F / 2, b=F+F / E-3\left(1-x_{0}\right), c=-F / 2-F / f+$ $2\left(1-x_{0}\right)$. Hence for a random number on $0 \leqslant r \leqslant J$ $=F / G$, we take $x=F^{-1}(r G) \cong Q(r G)=1+a(r / J)+$ $b(r / J)^{2}+c(r / J)^{3}$. The essential features of $F(x)$ are shown schematically in the figure below, and further details may be found in the earlier report ${ }^{1}$, which was based on the fixed $x_{0}=0.3$.

IV. ACCURACY TESTS AND FLOW DIAGRAM

We adopt the value $\alpha_{0}=202$ insuring a steadi1y decreasing maximal relative error $\leqslant 4 /\left(\alpha_{0}-2\right)=$ 0.02 for all $\alpha \geqslant \alpha_{0}(\cong 101 \mathrm{MeV})$, in the sense of Section II.

The general method used in testing the accuracy of the Section III approximation $x^{\prime}=Q(y) \cong x=$ $F^{-1}(y)$ for a particular α_{h} on $[0.002,202]$ and $x_{h i}$ on $[\xi, 1]$ consisted in computing the exact value of $F\left(x_{h i}\right)=y_{h 1}$, the corresponding approximation $Q\left(y_{h i}\right)=x_{h i}^{\prime} \simeq x_{h i}$, and the relative error $E_{h i}=$ $\left(x_{h i}^{\prime}-x_{h i}\right) / x_{h i}$.

The α-interval $[0.002,2.002]$ was tested in this way for the 101 energies $\alpha_{h}=0.002,0.022, \cdots$, 2.002 , using the α-dependent division point $x_{0}=\xi$ $+\phi(1-\xi)$ for each of the values $\phi=0.15,0.17$, $0.20,0.25$, the interval $\left[\xi, x_{0}\right]$ being subdivided into 6 equal intervals, and $\left[x_{0}, 1\right]$ into 7 , by a sequence of test points $x_{h i}$. In the same way, the α interval $[2,52]$ was tested at $\alpha_{h}=2,2.5, \cdots, 52$ for $\phi=0.15,0.20,0.25$ and $[52,202]$ at $\alpha_{h}=52$, $53.5, \cdots, 202$ for $\phi=0.25$. The results showed the maximal relative error $|\varepsilon|$ to be minimal for the correlated α-ranges and ϕ values tabulated below. The accuracy could be still further improved, but the present bounds are sufficiently good for our purposes.

TABLE I

$0.002 \leqslant \alpha<0.962$	$\phi=0.25$	
$0.962 \leqslant \alpha<1.642$	$\phi=0.20$	$\|\varepsilon\|=0.0211$
$1.642 \leqslant \alpha<2.002$	$\phi=0.17$	$\|\varepsilon\|=0.0218$
$2.002 \leqslant \alpha<10$	$\phi=0.15$	$\|\varepsilon\|=0.0213$
10	$\leqslant \alpha<52$	$\phi=0.25$
52	$\|\varepsilon\|=0.0177$	
	$\phi=202$	$\phi=0.25$

These choices of parameters may be incorporated into the following schematic flow diagram for Monte Carlo determination of x, for a given incident energy $\alpha \geqslant 0.002$.

FLOW DIAGRAM

Determination of x in Distribution $F(x) / F(\xi)$.

$$
\left(\alpha_{0} \equiv 202\right)
$$

1. $n=1+2 \alpha$
2. $\xi=1 / \eta$
3. $N=\ln \eta$
4. $\alpha>\alpha_{0} \rightarrow$ (5), $\alpha \leqslant \alpha_{0} \rightarrow$ (11)
5. $T=1-\xi^{2}$
6. $\mathrm{F}_{1}=\mathrm{N}+(1 / 2) \mathrm{T}$
7. Generate $\mathrm{I}, \mathrm{r}^{\prime}$
8. $\mathrm{F}_{1} \mathrm{r}^{\prime}<\mathrm{N} \rightarrow$ (9), $\mathrm{F}_{1} \mathrm{r}^{\prime} \geqslant \mathrm{N} \rightarrow$ (10)
9. $x=+\exp (-N r) \operatorname{EXIT}$
10. $x=\sqrt{1-r T}$ EXIT (See Note, Part II)
11. $B=1 / \alpha$
12. Set $\phi=\phi(\alpha)$. (See Table I)
13. $x_{0}=\xi+\phi(1-\xi)$
14. $M=\ln x_{0}$
15. $K_{1}=(1 / 2)\left(1-x_{0}^{2}\right)-M$
16. $K_{2}=2\left(M+1-x_{0}\right)$
17. $K_{3}=x_{0}^{-1}-x_{0}+2 M$
18. $F=K_{1}+B\left(K_{2}+B K_{3}\right)$
19. $\mathrm{G}=\frac{2 \alpha(\alpha+1)}{\eta^{2}}+4 \beta+[1-2 \beta(1+\beta)] \mathrm{N}$
20. $\mathrm{J}=\mathrm{F} / \mathrm{G}$
21. Generate r
22. $r \leqslant J \rightarrow$ (23), $r>J \rightarrow$ (32)
23. $R=r / J$
24. $\mathrm{N}_{1}=\mathrm{x}_{0}+\mathrm{x}_{0}^{-1}$
25. $N_{2}=2\left(1-x_{0}^{-1}\right)$
26. $N_{3}=\left(1-x_{0}^{-1}\right)^{2}$
27. $f=N_{1}+\beta\left(N_{2}+\beta N_{3}\right)$
28. $a=-F / 2$
29. $b=F+F / f-3\left(1-x_{0}\right)$
30. $c=-F / 2-F / f+2\left(1-x_{0}\right)$
31. $x=1+R[a+R(b+R c)] E X I T$
32. $\Lambda=\frac{M+N}{1-J}$
33. $x=x_{0} \exp -\Lambda(r-J) \operatorname{EXIT}$

REFERENCES

I. C. J. Everett, E. D. Cashwell, Los Alamos Report LA-4448 (June 1970), "Approximation for the Inverse of the Klefn-Nishina Probability Distribution.
2. C. J. Everett, E. D. Cashwell, G. D. Turner, "A Method of Sampling Certain Probability Densities Without Inversion of the Distribution Functions," (in preparation).

