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ABSTRACT

This report is written to serve as & gulde to those persons
who, having no previous experience with Monte Carlo methods, wish to
apply these methods to their own problems. Particular emphasis is
given to techniques which are useful in dealing with problems concerned
with the diffusion of particles (and gamma rays) in material media of
some complexity, both from a geometrical and & nuclear standpoint.
Included as an appendix are brief summaries of a variety of problems
of the above-mentioned type to which the methods described herein have

been applied successfully.






FOREWORD

The present report is a summary of the Monte Carlo method as it
applies to problems involving the interplay of neutrons and photons with
bulk matter in geometric systems of varying compléxity. It 1s intended
to serve as an introduction and practical guide for the fast-growing
group of people who are concerned with such systens,

A brief resumé of some of the unclassified problems successfully
treated by the methods here outlined is included as an appendix and may
serve to emphasize the practicality and flexibility of these sampling
procedures. A similar resumé of some of the classified problems which
have been handled is issued separately as LAMS-2121,

The general method was originally developed by Fermi, Ulam and
von Neumann; many others have contributed special techniques and devices.
No attempt has been made to give all sources in the text, and naturally

no claims to originality are made for the procedures included.
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CHAPTER I

BASIC PRINCIPLES

1. General nature of the probiem. All problems treated in the

present manval involve estimation of what percentage of particles emanat-
ing from a given source, after undergoing specified processes in a
material medium of known geometry, can be expected to terminate in certain
stipulated categories,

If all relevant probabilities are known for the elementary events
in the "life history" of such a particle, the Monte Carlo method ié
applicable, and indeed is usually fhe only method aveilable.

Moreover, its technique is pre-eminently realistic, consisting in
actually following each of a large number of particles from the source
throughout its life history to its "death" in some one of the terminal
categories, using the elementary probabilities at each stage of its
career in determlining lts fate.

The present state of development of high-speed digltal computers
permits the use of samples of a size sufficiently large to ensure satis-

factory accuracy in most practical problems.

-111-



2. Outline of procedure. In any particuler problem, a particle

is completely characterized by a set of parameters which are sufficient

to determine its (probability) behavior in all situations it mey encounter
during its history. These always include its position and direction
coordinates, and in most cases its energy. ﬁuch more will be sald about
these and other particle parameters in the sequel (the appendix to this

report and LAMS-2121).

The Monte Carlo method of dealing with problems of the kind we have
indicated breaks up naturally into a well-defined set of subroutines,
which we shall briefly describe here, postponing their detalled treatment
to subsequent chapters. They are schematized in the following generalized
flow diagram (Fig. 1). This is only intended as a general guide to the
chapters of the text, and is subject to many revisions, depending on the
special circumstances of the problem.

(¢). The proper assignment of all particle parameters to a source
particle involves the spatial and angular distribution of the source, and
its energy distribution, in case of a non-monoenergetic source.

(ﬁo). A special routine may be provided to determine the position
of first collision in cases of high transmission, where it is desirable
to distinguish between this and subsequent collisions.

(B). A general routine is designed to decide whether a particle,
starting with known parameters from an arbitrary point of departure, in
a particular zone of the system either suffers a collision within this
zone or reaches the boundary of this zone on its line of flight without

incident. The essential physical concept involved in this decision is

-]l?Pw
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the mean free path. The subsequent procedure depends on the nature of
this decision, as indicated in Fig. 1. The particle parameters at the
point of collision or escape are computed before proceeding. In case
of escape, one proceeds to (B) or to (e) according as to whether

the escape is to an adjacent zone, or from the system.

(7). The collision routine naturally depends upon the physics of
the medium and is subject to the widest variation. Its objective is to
decide the exact nature of the collision and the immediate fate of the
particle after collision. This includes the eventuality that the particle
may terminate its career under the conditions of the problem; if this
occurs, a tally is made in the appropriate terminal category counter,
and one returns, as in all cases of termination, %o an entry (¢) which
leads to the source routine (¢) for introducing a fresh particle. In
the event that the particle is to be followed further, the essentisl
information required before proceeding to (6) is a knowledge of the
laboratory angle of deflection from the line of flight and the energy
and "weight" of the particle after deflection.

(8). A purely geometric roﬁtine determines the direction param-
eters of the deflected particle, and leads to (B). At this point, all
particle parameters should be evaluated as they obtain at the point of
collision, after deflection.

(€). In the event that escape from the system occurs in the (B)

routine, terminal classification is made and one returns to (a).

“1l-



This is the general scheme of the method as it operates in all
problems we propose to dlscuss. The chapters that follow are designed
to elaborate on each of these subroutines in detail, the necessary
physical concepts and their preparation for computation being developed
as they are needed.

Before this, however, must come a brief discussion of random
numbers and the "fundamental principle of Monte Carlo," upon which all

else rests.

3. Production of random numbers. It is necessary to have upon

call some source of random numbers equidistributed on the interval

0%r<1l. Ideally, one might spin a wheel of uniform scale, and indeed

there exist lists(l’z) of such numbers generated in truly random fashion.
There are computational algorithms adapted to digital computers which

appear to serve our purpose just as well. One can find descriptions of

(1,2)

such methods in the literature, together with discussions of the

(1)

Cf. articles in U, 5. Department of Commerce, National Bureau of
Standards, Applied Mathematics Series #12, Monte Carlo Method,
Washington, D, C., 1951.

)1y Rana Corporation, A Million Random Digits with 100,000 Normal
Deviates, Free Press Publishers, Glencoe, Illinois, 1955.

D. H, Lehmer, Mathematical Methods in Large-Scale Computing Units,
Proceedings of a Second Symposium on Large-Scale Digital Calculating
Machinery, Harvard University Press, Cambridge, Massachusetts, 1951,

Herbert A, Meyer, ed., S sium on Monte Carlo Methods, John Wiley &
Sons, Inc., New York, 1956.

«15-



"tests of randomness" which have been applied to them. We do not enter
here upon such questions since the method adopted will probably be
dictated by the type of machine used and other practical considerations.
A description of the method we have employed will be found in Ch. IX,

§ 3a, b. We should like to call attention especially to the short paper
by von Neumann, cited in footnote (1), which contains some words of
wisdom for those who may be troubled by the "state of sin" accompanying

the use of deterministic "random numbers."’

4, The fundamental principle of Monte Carlo. Suppose that a

homogeneous medium consists of nuclei of three different types A, B, and
¢, and one knows that, in the event of a collision of a neutron in the
medium, the probability of collision with type A 1is .2, with B 1is
.3, and with C is the remaining .5. It is intuitively clear that,
if a large number N of random numbers are produced, approximately

.2 N will fall on the interval 0Sr<.2

.3 N will fall on the interval .22 r <.5

.5 N will fall on the interval .58 r<1
and that this approximation will improve with increasing N; indeed,
this is the salient feature we demand of any scheme of random number
production., It is clear therefore how reference to a random number can
be used to decide which of the three types of nuclei is hit in the event

off a collision.

-16-



One of the decisive features of digital computers now existing
is their ability to make decisions at high speed, with no limitation on
the number of logical possibilities involved. The typical Monte Carlo
flow diagram is largely occupied with intricate decision features.

As & first example of how a flow diagran$3) schematlzes the pro-~
cedure in the above example we may note Fig. 2.

[@ére generally, if El’ ceey En are n independent, mutually
exclusive events wiﬁh probabilities Pys cees Ppy respectively, and

Py toeee ¥ P, = 1, we will agree that
pl+ LI I +Pi-l=<=.r <Pl+ L] +Pi

determines E,. This is thé "fundamental principle" insofar as it applies
10 the discrete case of a finite number of eventualitieé:]

We may use 1t to furnish a heuristle approach to the continuous
case, in which it is desired to determine from s random number one of a
continuum of values of a variable x. In this connection it is conven-
ient to bear in mind the fact that the latter case may always be regarded
as approximable by a large finite number of distinet cases; indeed, in
computation with a fixed number of digits, ‘we are always actually

concerned with the discrete approximation.

(3)In all flow diasgrams of this report we adopt the convention: xﬁ
means x 20, x~ means x<0. A box containing r always denotes
reference to the special subroutine generating the next random number

of the sequence.

-17-
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Suppose that we arbitrarily assign a variable x on the interval

£

X <n to the events E,, ..., E , with the agreement that

- o

i-1 £ x ¢1 vrepresents the event ”gu. Let us construct a probabllity

density function p(x) by the definition

{1143
»
A
=
e
1
,_I

-

-
=

13(x)‘=':o:.L i-1

Thus p(x) will be a step function(l*) like that of Fig. 3. Now

suppose that we define the probability distribution funetion

X

P(x) f SORT

o)

whose graph is a broken line as indicated in Fig. 4. Note that P(0) = 0,

P(n) = 1. Since P(i) = Py + e + Py, We may interpret P(x) to mean

the probability of the inequality & £x, for x=1, i =1, csey N

Moreover, 1t is clear that the equation

x |
r=P(x)=f p(¢) dat !

o]

determines X uniquely as s function of », in such a way that if r

is uniformly distributed on the interval 0 £ r <1, x falls with

frequency P, in the interval 1 -1 £ x < 1, ‘thereby determining the

event Ei under our agreement.

(W)

The figures are drawn for the simple A, B, C example.




P(x)

5 *——
03 =
29
-
1 2 3
Fig. 3
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" We may state at once the fundamental principle as it applies to
the continuous case: If p(x) dx is the probability of x lyiﬁg

between x and x + dx, with a £x <¢b, and

b

J p(t) dt = 1

a

then
b'd

r = P(x) = f p(¢) as
A .

determines x wuniquely as a function of r; moreover, if »r is
uniformly dlstributed on O £ r < 1, ‘then x falls with frequency
p(x) dx 1in the interval (x, x + dax).

{}s a completely trivial first example, consider the case of

neutrons that are to be located uniformly on an interval a § x <b. gz;

b
We have p(x) dx = ax/(b-a), f p(t) d¢ = 1, and r = P(x) = }%
sx p(e) d¢ = (x-a)/(b-a), wheice x = a+r (b-a) determines x as a
a

function of the random number r:]

5. Application of the principle. It may be noted that the

equation

X

r = P(x) =f p(e) as
a,



can be expected to give rise to difficult implicit problems, since x
must be determined from r. At worst, some successive approximation
routine can be provided for the solution of the implicit equation
r = P(x) when P(x) is obtainable in closed analytic form. Such time-
consuming processes can be obviated in various ways, a few of which we
indicate here.

The simplest method, applicable in all cases, even when P(x)
is known only in experimental tabular form, consists in subdividing the
(a,b) interval, storing accurate values of P(xi) = P, for the end
points X, = &< xl < vee & xn = b of the subintervals, and using the
discrete method for determining the subinterval (Xi-l’ Xﬁ) on which
x falls, together with an interpolation for the actual value of x.
If i 1is the first value of the index for which r - Pi is negative,
r being the current random number, we may determine x from one of the

formulas

Pi -Tr
X=X, = m———e— (X, - X%  .) (1)
1 Pi Pi-l i i-1
P, -r
2 i 2 2
Vel 05 -4 (2)
r -P ‘
2 i-1 2 2
xl/x—-—-—-— X - %) (3)
i Pi - Pi-l i 1-1



fhe linear interpolation in (1) distributes x uniformly on the
interval (Xi—l’ xi) and is strictly valid only when p(x) 1is a step
function. For sufficiently small subdivisions, (2) or (3) may give
better results at the cost of an additional square root and are appro-
priate when P(x) is concave up or concave down, respectively.

One may contrast the latter formulas (2) and (3) with that

resulting from a linear assumption for p(x) on (Xi-l’ xi):

NP S (x - % )
+py (x - x )+ =
i-1 i-1 i-1 Xy = Xyq 2

r="P

which ié more complicated when solved for x, requires additional
storage of the P> and uses a trapezoid rule for the Pi'

Very useful also is a device employed by von Neumann, esPecialiy
when p(x) is readily computable and storage space is at a premium.
This consists of "throwing" points (&,7) uniformly into the rectangle
bounded by the lines x=a, x=Db, y=0, y=1 and rejecting the
points lying above the curve

y = p (x) = p(x)/max p(x)

x being assigned the value ¢ whenever (&,7n) fall below the curve. In
many trials, the ratic of the number of points retained with £ between
x and X + dx to the number of points retained altogether will be

approximately the ratio of the areas

-23~




* box b
v (axf [ B a)ay - slxax] [ p(e)as = plx)ax
a a

The method is illustrated by the flow diagram of Fig. 5.
Obviously the device in this form is impractical if the area under the
curve y = p*(x) is a small fraction of the enclosing rectangle. How-
ever, modifications involving other enclosing areas can cbviously be
devised.

One may also retain only points (&,n) above the curve y = p*(x),
assigning the value & to x and adjusting the "weight" of the particle
by a factor p(x) fb (1-p (/1 - p(x).

Finally, a cimbination of the two methods may be used, a first

random number determining the interval (Xi-l’ xi) by reference to the

P,, and the von Newmann device then used on p(x) on this interval.

The method is then accurate, and the efficiency high.

T r Pt =a+rp-ayHly=pr@>| r | r-y [T t-x "

A

Fig. 5

Pl



CHAPTER II

THE SOURCE ROUTINE

1. Introduction. It is the purpose of the present chapter to

describe how a problem is initiated by the machine, how "print-outs”
are automatically effected, and how the particles are drawn from the
source.

Suppose that we let N denote the number of particles already
processed, so that N = O at thé start of the problem. After the
machine has processed any given number N of particles it will contain
in various counters the numbers Ni of these . N whose careers have
terminated in a set of disjoint, all-inclusive categories Ci' Thus
the ratios Ni/N constitute the output of the problem and serve as
estimates of the probabilities of a source particle terminating in the
various categories Ci' It is ordinarily desirable to print the cumula-
tive totals Ni periodically during the course of the problem, say
every N* particles, so that convergence and "reasonableness" can be
observed.

Thus the beginning of a flow dlagram usually resembles that in

25



Fig. 6. It will be noted that N' denotes the number of particles
processed since the last print-out, being reset to zero after each print,
whereas N cumulates during the entire problem. The computation may be
stopped at any time at which the stability of the Ni/N or other
statistical considerations indicaete that sufficient accuracy has been
attained. The (@) entry, as has been mentioned, is that point to
which the machine returns after the particle it was following has

terminated its career in some one of the categories Ci.

O N+1—N
Nt +1 — N!

0— N, 0—+ N ©
! _ hN'-—-N*——*@
(all 1) 0 — N' :

Oy
Print N,
all Nj
0 — N' -
Fig. 6
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The (o) exit leads to that pert of the flow diagram devoted to
assigning particle parameters to a source particle.

There are two types of storage involved in all mechine problems.
"Permanent storage" places are reserved for constants like 0, 1, Nt
which do not change their values during the course of the problem,
while "dynamic storage'" refers to storage positions in the machine which
contain values of parameters like N, N', Ni’ which are subject to
change as the problem progresses.

It is desirable to keep a record of all storage of both kinds
introduced into the flow diagram as it is constructed so that none be
overlooked, and so that some estimate of the "size" of the problem can
be gained as one proceeds. Occasionally it'becomes clear that the
memory of the machine is being exceeded, and various devices must be
introduced for reducing the permanent storage (e.g., by multiple

storage) or the length of the code itself.

2. Particle parameters. From a consideration of the physical

and geometric features of the problem, one fixes upon a set of particle
parameters whose values at any time suffice to completely characterize
the particle. We proceed to discuss these in detail.

We shall limit our examples to two types of coordinate systems
for space and direction; namely, we shall either employ space
coordinates x, y, z, together with direction cosines u = cos a,

v=c¢08 8, w=cos y for direction of flight, where ao, B, 7 &are

_-ye



the angles made by the line of flight with the x, y, z axes, respective-
ly, or (in cases of spherical symmetry only) we shall use the radial
distance R of the particle from the center 0, together with the

cosine w = cos vy of the angle ¥ which the directed line of flight
makes with the positively directed radius vector. These coordinates

are indicated in Fig. 7. We may note that 0 & o, 8, v £ = and

on this range the cosines assume all values on the range -1 £ u, v,

w £ + 1 once and only once. It is also helpful to remember that the

&=

direction coordinates (u, v, w) may be regarded as defining & point on

the unit sphere u2 + v2 + w2 = 1 1in direction space U, V, W,

Considerable advantages attend the use of parameters R, w in
cases where spherical symmetry warrants it. However, we have found
that in more complicated geometries, for example in cylinders, even
when symmetry obtains, the use of coordinates indicated by the symmetry
is hardly worth while. The main reason for this is that a particle
which proceeds from some point of departure to a new place changes its
directional coordinates in the latter case. The x, y, z; u, v, w system
has the great advantage that u, v, w remains unchanged under linear

displacements.

All problems require the use of spetial and directional coordinates.

Other parameters are dictated by the nature of the problem.
Most problems are energy dependent; that is to say, the physical
processes involved have elementary probabilities which are functions of

the particle energy. 1In such cases we carry an energy parameter E

«28a
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and usually an energy group index g. Cross sections are usually too
complicated as functions of energy to be accurately fitted by simple
formulas, so that in practice the whole range of energy involved in
the problem is subdivided into suitable groups g = 1, ..., G by lower
bounds El > E2 > e D EG’ and all necessary functions of energy are
tabulated for these intervals.

Moreover, systems encountered in practice are frequently non-
homogeneous, being composed of zones y= 1, «ve, 2} of varying densities
or of different materials. This usually involves storing physical
quantitlies as functions of ¥ es well as of g. Permanent storage
then contains numbers Kg’} with two independent indices, which
necessitates an additional particle parameter } to indicate the zone
presently occupied by the particle.

In problems involving high transmission, capture, fission, (n-2n)

reactions or other such features, it is desirable, although not

necessary, to introduce a particle parameter W, called its weight,

which is initially unity at the source. To illustrate its use, consider

a problem in which, upon collision of a neutron with a nucleus, there
is a probability p of capture. We have the alternatives of (é) not
employing weights, using a random number r 1in case of collision to
determine whether capture occurs or not, by reference to the capture
probability p, and if r < p, losing the neutron to a capture cate-
gory, returning to (a); or (b) using a weight parameter W, tallying a

weight pW in the capture category deterministically, and continuing



with a neutron of weight (1-p)W, which now scatters on the proper

nucleus. In the latter case we lose no trajectories to capture and

get a better picture of the capture distribution itself.

Certain problems are concerned with the time a particle takes to
travel from the source to its death, which calls for a parameter T
giving the "age" of the particle at all phases of its life. A parameter
v 1is employed for the number of collisions suffered 5y a particle in
some problems, e.g., in those dealing with thick target corrections.

We include for easy reference a list of these most frequently -
used particle parameters, and will adhere throughout to the notation

indicated here.

Particle Parameters’

Space coordinates X,y,z or R

Direction coordinates u,v,w or w

Energy E
Energy group index g
Zone number 7
Weight W
Age T

Number of collisions v
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3. Remarks on units. It is perhaps desirable to mention briefly

the matter of units at this point. We use the centimeter-gram-second
systems of units, with the following qualifications. (a) Neutron ener-
gies are expressed in electron volts (ev), Kev (103 ev), or Mev(106.ev).
For the uninitiated, voltage has dimensions of energy per unit charge;
one ev is by definition the energy acquired by an electron which has
dropped through a potential difference of one (practical unit) volt,
Since the latter is 108/c of the electrostatic unit of voltage,(S)

and the charge on the electron is e = 4.8025 x 10-10 esu, it follows
that one ev 1is eV = 4.8025 x 10710 x 108/c = 1.60203 x 10712 erg,

(b) The energy of a photon is measured in (dimensionless) units of

m 02, where m is the rest-mass of the electron. This is explained

0
more fully in Ch., VI,

We include here the formule for computation of the time 4 7 in
seconds for a neutron of energy E Mev to traverse a distance of 4 cm.
Letting Xk = 1.60203 x 10'6 ergs per Mev, we have in the non-relativistic

(6)

range of neutron energies

(5) ¢ = 2.99776 x 1010 cm sec™T

(6)The relativistic kinetic energy is (m—ml)cz, where m = ml/VIL-ﬁa

and 8 = v/c. As an exercise one may determine the relative error
(1.1%) in computing v from the two formulss when E = 1k Mev, the
highest neutron energy involved in the present report, which is thus
confined to the non-relativistic range of neutron energies. We do
give the relativistic treatment of the Compton effect in Ch. VI,
however. »

, the velocity of light in vacuo.
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where m)(gm) is the mass of the neutron and v its speed in cm sec™,

Thus

v =V2Ek/ml

Now one "gram atomic mass" of any physical particle contains
Avogadro's number A = 6.0228 x 10°3 particles. Taking 1.00893 for the

atomic mass of the neutron, we have

v = k' VE(Mev) em sec™t

where k' = 13.83 x 108 numerically. Thus a 1 Mev neutron travels about

14 meters per microsecond (u sec). We have then

At =k"d/ YE sec
for the transit time 47, where k"= 7.231 x 10710,

L, . Space coordinates for source particles. We have indicated in

g1 of the present chapter how the machine is led from the "start" of
the problem to the point (¢ ) at which it sets up a source particle,
or having finished processing a particle, it is returned to (o) via
(o), while in §2 we have discussed the various kinds of parameters

as they are carried throughout the career of a particle. We are now
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ready to consider how initial values are assigned to these parameters
as a particle issues from the source. We hope to give enough examples
to indicate the nature of the procedure.

(a). Uniform source on an annulus of radii R < R,. Determina-

——

tion of coordinates x,y (cf. Fig. 8). The probability density function

p(R) is 2= R/:r(Ri - Ri), so that the fundamental principle sets

R
r = P(R) __.f p(R) aR = (R® - R)/(RS - R®)
R o] 1 o

Having thus located the radius R, we note that p(¢) d¢ = d¢ /2ﬂ

so that the next random number determines ¢ Dby

@
r=f g%:(¢+ﬂ)/21r

T

We have therefore the routine indicated in Fig. 8.

(v). Uniform source in & spherical shell. The final result is

R= Rg + r(Ri - Rg) if spherical symmetry admits use of the single
space coordinate R. If x,y,z must be specified, we shall have
x = Ru, ¥y = Rv, 2z = Rw, where (u,v,w) is a point uniformly distributed
on the unit sphere u2 + v2 + w2 = 1. How such points may be obtained
will be discussed in the next section (5a) on direction parameters

u, v, w, where the same problem arises.

(¢). Parallel-beam source incident on lateral surface of right

circular cylinder of radius Rl’ height H, or on a sphere of radius Rl.

——
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If the beam is taken in the positive y-direction (u =0, v =1, w = 0),
and the cylinder in the position shown in Fig. 9, one may use the
routine there indicated.

For a similar beam incident on a sphere of radius Rl’ we have
X = Rl}/Fj y o= - Y(Rl -x7) = - Ry y(l -r), z=0, aésuming symmetry
about the y axis.

(d). Isotropic point source at distance dsifrom right circular

cylinder. Here the determination of the x, y, z coordinates of the
point of entry to the cylinder is correlated with the direction param-

eters u, v, w. We therefore postpone this problem to the next section.

5. Direction coordinates for source particles. We next consider

the problem of assigning direction cosines u, v, w, or simply w in
the spherically symmetric case, to source particles. If the latter are
liberated in a material medium, the directions may be expected to be
drawn from an isotropic distribution, whereas particles emanating from
a surface are naturally limited to half of direction space and usually
are distributed in some non-isotropic distribution about the normal to
the surface.

(a). Isotropic source; u,v,w direction cosines. The problem

involved is tantamount to that of choosing a point (u,v,w) uniformly

distributed on the unit sphere u2 + v2 + w27= 1. The element of area

for this sphere in spherical coordinates 7y, ¢ is siny dy de¢ =

- dw d¢ , where ¢ 1is the longitude, and we have used y instead of
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the traditional 6 for the remaining angle since » has already been
introduced for this angle by way of w = cos y (cf. Fig. 7). The
probability density function p(w) is therefore given by p(w) dw =

- 27 siny dy /hm = % dw. We may therefore first determine w Dby

ot o ) - e
% r=f_l%dw=52£(w+1)

and ¢ subsequently by

¢ @
- | oo as = [TgE - A (erm)

2n
-1 r

Reference to Fig. 10 then completes the argument for the isotropic

source; we need only remember that P = Y(u2 + v2) = V(l - we).

(b). The cosine distribution.(7) This refers to a point source

emanating from a surface. If we agree that the outer normel to the

surface at the point has the directiom u =0, v = 0, w = 1, then the

cosine distribution has by definition the probability density function

p(w) = 2w, with w 3 0. Thus

w o
r = j~ 2w dw
o

(7)For a discussion of the way in which the cosine distribution governs
particles emanating from a surface one may refer to F. W. Sears, An
Introduction to Thermodynamics, the Kinetic Theory of Gases, and

Statistical Mechanics, Addison-Wesley Publishing Co., inc., Cambridge,

Massachusetts, 1955. Cf. the chapter on kinetic theory.
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and w = 1/T in this case. The flow diagram of Fig. 10 may be used

with the replacement of w=2r -1 by w= l/r.

(¢). 1Isotropic and cosine sources in spherically symmetric

systems. In case spherical symmetry indicates the use of coordinates

R, w defined in Fig. 7, we may have to assign the direction parameter
w for point sources of the above kinds. Such sources will be located
on spherical surfaces, and in case of a cosine source, the latter will
be relative to the normal to such a surface, i.e., to the radius vector.
It is therefore clear that the formula w = 2r - 1 1is valid for the
isotropic case, while w = vf?' applies to outwardly directed, and

W= -‘/F' to inwardly directed cosine sources.

(d). 1Isotropic point source at distance ds from cylinder of

radius R,, height H (cf. Fig. 11). This problem presents some

/

features of interest. Clearly, if we proceed naively to assign direction
parameters u, v, w to particles as they leave the source 8, using the
method of (a) above, most particles will fail to hit the cylinder, the
size of which may be greatly exaggerated in the figure. The physical

problem is naturally concerned with questions relative to the number of

incident particles, not with the problem (an interesting one, incidentally)

of what solid angle is subtended at the source by the cylinder. How the
latter question may be attacked by Monte Carlo we leave as an exercise.
In this connection it is worth mentioning that many purely geometrical
problems which present forbidding analytical difficulties are apt to

arise in photon problems, and may be (many have been) successfully
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treated by the simple sampling methods which we are discussing.

To return to our point source, we observe first that the only
particles which can hit the cylinder are limited to the wedge defined
by the two tangent planes to the cylinder through the source S. This
means that directions are limited, in u, v, w space at the source to
those with longitude ¢ on the range - ¢,& ¢ & ¢, vhere ¢, =
arc sin Re/ds’ and ¢ is equidistributed on this range. Moreover, for
all those particles issuing from the source between ¢ and ¢ + d¢ ,
the direction cosine w = cos ¥ is limited by the end points of the
element of the cylinder determined by ¢, and on this range w has a
constant probability density function, since the element of surface area

on the unit sphere is -dw d¢ .

Now from the figure, the half-chord c, = \/[RS - (dB sin ¢)2],

so that the distance d2 = dS cos ¢ - oo Thus for this ¢, the range

. 2 2
of w is -w,§ W § V,, vhere w, = (H/2)/ﬂ(ﬁ/2) +d2]. The

routine for setting up x, y, z, u, v, w at the point of entry there-

fore appears as in Fig. 12, where ¢2, c2,d2, v, are given by the

above formulas. The last box follows from the fact that

z/d, = tan(m/2 - 7) = coty = cosy/siny = w/p.

(e). General distribution in half of direction-space. Occasion-

ally it is necessary to consider a point source with w 5; 0 having
some experimentally determined distribution in w, which may be given
in the form of a table. We may then tabulate Fj = 0< P1< e < PI =1,

Wy = 1> Wy > e > wp o= 0, where Pi is the probability of a cosine

~ho.
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W 2 W, and proceed as in Fig. 13a (cf. also formulas (2) and (3),

Ch. I, B5). When various distributions are to be tried, it is prefersble
to run a number of different problems, each for a specific w; the re-
sults may then be weighted to give terminal percentages for any desired

source.,

(£). A prejudiced source. It 1s sometimes desirable to sample

certain ranges of source directions more thoroughly than others. To
illustrate, suppose that we have an isotropic source, with w uniformly

distributed on -1 § v £ 1, but that the position of & counter mekes
S S
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more important those particles ﬁhich leave the source on the range

-1§ w§ ¥ < 0. |We may then give source particles equal likelihood
of starting on this range or its complement, provided we assign weights
(W + 1) and (1 - %), respectivei;;] In this way about half of all
source particles, of relatively smaller weight, originate in the
important cone, the total weight processed for N particles having
expectation -]2-‘- N(W + 1) + -é'—- N(1L - %) = N. The procedure is schematized

in Fig. 13b.

6. Energy of source particles. In the case of energy dependent
problems, one usually decides upon a set of energy ranges with lower
bounds El > E2 Dees > EG’ with storage of physical quantities for
each of these ranges, EG being the lowest energy permitted to particles
in the problem. Particles which by chance reach lower energies are
relegated to a terminal category reserved for such losses. An index
g=1, «¢o., G designates the group number. If the source is mono-
energetic, one simply sets E, —> E, g, —> g, that is, E and g are
assigned thevalues of the initial energy E, and the index g, of the
group in which this energy falls; g, may or may not be unity; one
may wish to study the behavior of a series of sources of various initisl
energies.

If the source particles are not monoenergetic but are chosen
from some given energy distributioh,,one tabulates PO =0< 00 < PG

= 1 together with E, > ... >E

1

o and proceeds exactly as indicated

“}5..




in $§5e above, reading g for i, Eg for w,, and E for w.

7

T. Other source parameters. The other parameters mentioned

in Ch. II, §2 ; if called for, have the following values at the source:
(a) } is set equal to the number of the zone into which source
particles enter (which may depend on the values assigned to spatial and
directional coordinates, and thus involve a decision routine); (b) the
weight W is usually unity at the source; (c) age + = O initially;

and (d) » = O for the number of collisions undergone.

8. Source for a -type calculations. In an important class of

problems, including those which are designed to determine the rate of
growth of a neutron population in a fissionable material, the source
consists of a specified number of neutrons Ng,},i in group g,

zone b,, and direction range 1i. We will illustrate for the case of a

homogeneous sphere of radius RZ , where these ranges are determined by

bounds

EO>E1> eee > By
0 = Ry« Rl< ...<RZ
1 wo>wl>...>wI = -1
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The object of such a problem is the determination of the distri-
bution N’ oy in which this initial distribution results at time
207
AT, and then to use the output N'g , @8 the input source distri-

LN 24
bution for the next cycle. A suitableymdification of the (a) and
(¢) routines is indicated in Fig. 14. The determination of E, R,
and w on their ranges may be achieved by appropriate interpolation,
or, if preferred, by deterministic assignment of suitable mean values,
The initial values of Né,zai are arbitrary in a -calculations, but
are guessed as well as possible to hasten convergence to the limit
distribution. The E,E} i refer to the category being processed, and
must be distinguished from the neutron parameters g,;, i, which are
subject to change while the category from which the neutrons arose is

being processed. The feedback of N' for N is subject to suitable

renormalization to preserve a reasonable source size.
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CHAPTER III

THE MEAN FREE PATH AND TRANSMISSION

1. The cross section concept. The cross section ¢ of a

stationary "target" particle for particles of energy E, relative to

8 given single process may be thought of as the area presented by the
target, assumed stationary in the laboratory system, to a beam of
(point) particles of this energy, relative to the laboratory system.
If we regard a thin slab of materisl of area @, thickness d l , numer-

ical density N (target particles per cm3),

traversed by a parallel
beam of particles (of energy E) normal to o, the total area presented
to the beam by target particles is oNa(d{), assuming al so small
that no "shadowing" exists, The fraction of beam-particles undergoing

the process in this volume should be o Na(d L) /e . Ve » therefore,

have the attenuation law

dn = -nNe(dl)

for the number n of particles in the beam, and

n = n exp ( -Nod)
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represents the number of particles remaining in the beam after traversing
a distance Y in such a uniform infinite medium, o, being the number of
particles in the beam at { = 0. Note that we are assuming no other
competing processes exist.

It is, therefore, supposed that

p()al = [exp (-NO»Q)] N o (ad)

is the probability for a first collision between L ana L+ d9~,<and

P(Q) = /ﬂexp (-No ) No(al) =1 - exp (-Neld)

(o}

is the corresponding probability distribution function for a first

collision at distance =J{.

2. The mean free path. The average distance A to first collision

is defined as the first moment of the function p(l), i.e.,

(0.0] [0 0]
A= fo 22(R) dR:fo exp (-NeoQ) NofQ(ad) = 1/No

and is called the mean free path for the process at this energy.

It follows that the Monte Carlo determination of distance { from

an arbitrary point of departure to first collision, assuming the medium




homogeneous and infinite must be

r=P(Q) =1-exp (-4/2)
or

L= -a In (1 - 1)

Since 1 - r is equidistributed on O é=r L1 if r is, we may use

simply

Q=-Aﬂnr

In practice, we are almost always concerned with a complex of
different processes, each presenting its own cross section to the beam.
Specifically, we may have to deal with a medium containing different
types A, B, C, ..., Oof nuclei; moreover, each type A nucleus may have
a variety of different types of cross section, for example, an elastic
scattering cross section aA(el.), an inelastic cross section aA(in.),
a cross section cA(fiss.) for fission, oA(cap.) for cepture, and so
on.

The sum of the cross sections aA(el.) + oA(in.) + ... of all
types for a particular nucleus A 1s called its total cross section
oA(tot.). If the medium contains nuclei of types A, B, C, ... in
numerical densities N

A
section”" for the medium is defined to be

, NB’ NC’ .+s, respectively, the "total cross
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Z=0N UA(tot.) + N cB(tot.) + v

A B
Reference to the preceding discussion mekes it clear that the
the simple N o of that argument should be replaced by I in the general

case, and the mean free path for the medium is, therefore,

A:]_/E

The Monte Carlc metheod is always concerned with the distance Q
from point of departure to collision, and only in case of collision,
turns to a consideration of the nature of target hit, and the type of
process involved. Thus it is always the mean free path A= l/ £ that
is used and never the free path for any of the individual processes.

It must be remembered that cross sections are, in general, de~
pendent upon the energy of the particle (picturesquely, the size of the
target depends on the speed of the arrow); thus we write 0g(el.), coe
, and A

o g(tot.), z as functions of energy E, and, in practice, the

E E
free path 1s usually tabulated as Ag, g=1, ..., G, where g is the
energy group index,

Moreover, in systems consisting of zones of differing composition,

7

we will have an additionel zone index on the free path, thus A.g.

-52-



3. An example. Consider the problem of determining A for neu-
trons of energy E = 3 Mev in a medium of CH2 of density ¢ = .92 gm cm-3.
At this energy, C has an elastic scattering cross section vc(el.) = 1,14
barns (1 barn = lO-Zu cm?) while H has a similar cross section <7H(el.)
= 2,23 barns. No other processes are involved.,

The atomic weight of C is 12 and of H is 1, so that the molecular
weight of CH2 is 12 + 2(1) = lﬂ. In one gram molecular weight G of any
compound are A = .6 x lO24 molecules. The mass of one CH2 molecule is,
therefore, G/A gm. Since 1 cm3 of CH2 has mass & gm, the number of

2k

molecules of CH, in 1 cmS is N = 4/(G/A) = 8A/G = .0394 x 10 em™3.

Hence, the numerical densities of C and H are NC = N, = 2N, and

Ny
Z = N, o®(tot.) + Ny o (tot.) = N(oc(el.) + 2 aH(el.)) = .221 em™t,
Thus finally A= 1/2 = 4.52 cm.

In problems involving many zones of the same material at different
densities, it may be necessary to store only the basic nuclear constants,
‘together with zone densities, and provide for the machine to compute its
own Akghwhen needed, by reference to the stored quantities. For instance,

in the preceding example, taking energy dependence into account, we should

have

where K = % (o




and Q?are stored quantities. OSuch a procedure is time—consuming,
especially when it necessitates computation of the probabilities for
type of collision upon each collision.

The concept of free path as we have formulated it applies to
photons in their interaction with electrons and nuclei as well as to
neutrons interacting with nuclei., A discussion of photons will be
found in Chapter VI. Throughout the report, except in Chapters V and
VI, we speak in a general way of "particles" which may be photons or

neutrons.

4, "Small" systems and transmission. Consider a homogeneous

medium having mean free path A for particles of a monoenergetic
source. If the distance from source S to the boundary of the system
along a given direction is L, then, of a beam of N source particles
leaving the source in this direction, N exp (- L/A) will escape un-
deterred, It is clear that if the dimensions of such a system are
small compared to the free path A, most source particles will escape.
This is especially undesirable if the assignment of source parameters
is complicated, and,in any case,requires needlessly large sources to
produce an effective sample.

Now there is nothing to prevent us from regarding a single
mathematical particle leaving the source in a given direction as
representing a large set of W actual particles. Since the output

of all problems is a set of ratios Ni/N’ where N is the total number
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of source particles, the initial value assigned to W may be taken as
unity.

We may then argue that, for a particle of weight W (=1) leaving
the source in the situation described above, a partial weight W exp (-L/A)
is transmitted, the latter weight heing tallied in a category T reserved
for total transmission (without collision). Then we determine a position
of first collision on the interval O S__ﬂ < L within the medium for the
remaining particle of weight W (l - exp (-L/A)) according to the formula
r = P()/P(L), where P({) = 1 - exp (-1/)A), as derived in a preceding
section, Solving for Q, one obtains {= -a dn {l -r[1 - exp (-L/A)]}.

If the medium is non-homogeneous, but may be regarded as consisting
of a number of zones, each homogeneous in itself, the 1‘)ortion of the line
of flight lying within the medium may be decomposed into successive in-
tervals of lengths Ll 3 eesy Lm, where L? is the segment lying in zone ‘g/
with free path A_ . The transmission is then clearly t = exp (-Ll/Al)
 exp (-Ly/A,) «ae exp (<L /A_) = exp -{Ll/Al +oeee Lm/Am}. The
probability of a first collision at a distance é:Q §=L from the point of

origin is, therefore, 1 - exp (-P), where P is defined by

1 7-1 -1 v
and
o Ll 1_1 9\" (Ll + ees t L’_l)
= — + ) + +
A A
1 7-1 1r



Thus p 1is the number of free paths represented by ﬁ .
therefore may record the weight Wt as transmitted, and force a first
collision of the weight W(1 - t) on the line of flight at a distance

2 < L by means of the formula

r=(1-e")/(1 -1

Thus P = - {n[1 - r(1 - t)] determines w by means of the inequalities
L L L
A, +_7__<,,<_1 .
A LN =
1 7-1 N 7

and Q by the eguation

= 1 _7_]
,Q—Ll+ +L7_1+A7 [:p-(xl- e + 7—1)

5. The "forced first collision" routine. We illustrate the use

of the device in two typical problems in this and the following section.
Consider a parallel-beam monoenergetic source incident on the lateral
surface of a cylindrical shell of radii Ro<: Rl’ and height H, composed
of homogeneous material having free path A at this energy. We suppose
that the source routine has already assigned to a source particle its
parameters at entry, say, u=1, v=0, w=0, and x, y, z (in the manner

indicated in Chapter II, 8u4c), together with E = Eo’ g =8y v = 0, and
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W= 1. The exit from (¢) should then lead to the (B8,) routine for
forced first collision as indicated in Fig. 16, based on the geometric

properties of Flg. 15.
A

It\

\

Y
s

Fig. 15




The procedure naturally depends on whether or not the line of
flight crosses the hole. This is the reason for the |y| - Ro decision.
The distance L 1is the total path length of the line of flight lying
within the medium. The transmission TS is based on the free path for
initial energy group 8,° The distance traversed within the medium from
point of entry to point of collision is denoted by Q. Note that the
exit leads to the collision routine (7) with all parameters as they

exist at the point of collision, momentarily before impact.

6. Remark on the device in spherical problems. Although we

shall not include an example of the forced first collision device in
a system treated with spherical coordinates, we should mention that,
if it is used to determine a weight W and a radial distance RQ at the

(8)

point of first collisionm, one should exit to an entry such as (»')
discussed in Chapter IV, 83, which sets up the direction w and

radius R as they exist at the point of collision, before entering

(7) itself.
As an example of the forced first collision method in a none-
homogeneous medium, consider a parallel beam of particles directed

vertically upward (u = 0, v = 0, w = 1) and incident on a sphere

x2 + y2 + z2 = Ri subdivided into spherical homogeneous shells by
the radii RO.> R1.> cee > Rk = 0, zZone > having total mean free path

(8)

If R,w are the source parameters, and 1 the distance from source
to forced first collision, R2 = R® + {2 + 2R{w in the solid homo-
geneous case. X
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)g7for the incident energy. A set of storage places Pl, ve.y P, are
reserved in the machine for the numbers of free paths represented by
segments (z',2z") of the line of flight in the zones through which it
passes. The method is illustrated in Fig. 16a; It is assuﬁed that

X = Ro v?: ¥y = O have already been set for the point of entry in the

source rdutine, symmetry obtaining about the z-axis.
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T. The transmission in subsequent history. The device of

forcing collisions of the non-transmitted weight may, of course, be
applied to collisions after the first. If applied consistently to
2ll collisions, then no trajectory ever terminates in escape, and one
would ordinarily rely on a weight cutoff for termination. Usually the
geometric complexity of paths after first collision renders use of the
device for further ccllisions impractical. We do not consider forced

collisions other than the first in the present manual.

8. Prejudiced first collision in "large" systems. In problems

concerned with "large" systems, such as those arising in shielding,
the transmission must be very small and yet one may have to obtain
energy-angle distribution of escape and space distribution of various
types of collision (e.g., inelastic collision and radiative capture of
neutrons in determining ?¥ -sources) throughout the system. Moreover,
the existence of energy cutoffs makes very unlikely the arrival of
particles in the farther reaches of the system after many collisions.
In such cases, one may overcome the dwindling of first collisions due
to the exponential by prejudicing the distribution of first collisions
and weighting accordingly.

We illustrate with a simplified example. Consider a thick plane
slab of two layers (free paths Ais AE at incident energy) bounded by
the planes z = 0, 2 = LP Z = L2, with a source directed vertically

upward and incident on the surface z = O, One may then determine the
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position z of first collision, together with the weight at this point
by the scheme of Fig. 16b. Note that the formula z = rL2 distributes
first collisions uniformly throughout the slab, while the weighting

gives the correct expectation for first collision between z and z + dz,

namely,
az 2 -p_ -paz
L2 Am Mo

If N source particles are processed, the expected total weight
assigned to these at first collision is then N(1 - TO), where T
L L, - L
1 2 1 s s
=exp -\ v t— is the transmission.
1 Mo

> = > —
r 7 rL2 Z L1

© ®
'
m=1 m =2
L z—-L
1 1
p=z/\ p =t
1 hl AZ
t=e-p
Y
L
2
W=-i—t
m
O
Fig. 16b
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CHAPTER 1V

THE COLLISION OR ESCAPE ROUTINE

1. Introduction. 1In the last chapter, we discussed a special

routine for "forced first collision." Conceptually, this routine con-
ducts a particle from a special point of departure, namely, the source,
to a point of collision within the system, with no escape alternative
for the trajectory itself. When this (Bo) routine is used, it is
entered only once, namely, directly from the source, and has only one
exit, the collision routine (7).

In all problems, whether this device is used or not, & routine
(B) is required which is designed to conduct a particle from a perfectly
arbitrary point of departure in an arbitrary zone, at which the particle
parameters are known, to its next point of collision within the zone,
or to its point of departure from the zone, in the event the boundary
is reached without collision, (Cf., however, 89 of this chapter.)

This (B) routine is entered directly from the source, in prob-
lems not using the (By) device, and in various other situations, namely,

as a particle departs from a collision, as it enters a new zone, or
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upon re-entry into the same (central) zone, after crossing a central

hole, etc.

Aside from the initial determination of the distance L to
collision (calculated for an infinite homogeneous medium), this routine
is purely geometric, and consists essentially in comparing the distance
X with the distance 4 to the boundary of the zone along the line of
flight. If 2 <d, space and direction coordinates are set at the point
of collision, and one proceeds to ( ¥ ). If} >d the particle is con-
sidered to reach the zone boundary. In this case its parsmeters are
set at the boundary point, and one returns to (8 ).

It is clear that when a problem involves zones of different
geometric shapes, several such routines (BA), A= 1,2,... may be
required, each designed for the geometric problem of its own type of
sector. In such cases the particle carries an additional parameter
which indicates the type of geometric zone it occupies at any given
time. Transfer is made from source points, points of collision, and
so on to the appropriate (ﬁ‘).

One may also note that, undexr our procedure, a particle reaching
the boundary of a zone is referred back to (B8 ), unless escape from the
system is involved, and is then treated anevw relative to the zone
entered. An alternative procedure using & single random number to
determine the eventual position of collision, or escape from the system,
by reference to all path segments defined on the line of flight by all

zone boundaries may be used but seems clumsier to handle, and we do not
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discuss it. The method involved should be clear from the discussion

at the end of §4, Chapter III.

2. A roujcine for the spherical shell. Consider the problem

of a particle with parameters R, w, E, g, 3 at a point of departure in

a shell of radii R The flow diagram of Fig. 17 will be seen

3._1< R}'
to keep computation at a minimum. Here, Rk is the radial distance to

the point of collision in an infinite medium of free path A;; t is the

tangential distance to the inner boundary from the point of departure
at R, and w_ = -t/R 1s the cosine of the angle 7, from OR to this

tangent (cf., Fig. 18). Reference to the cos ¥ curve of Fig. 19 shows

2

that, w being negative, w 2. w < O implies thet the line of flight

t
cuts the lnner bohndary. Moreover, if 312 -
2

;-l is non-negative, the
sign of'aez -~ 17 distinguishes between a point of collision on one or
the other side of the inner boundary.

It will be seen that for "solid spheres" with no central hole
this flow diagram will work automatically if 3.= 1 is the index of the
innermost zone, provided Ro = 0 be stored together with the other zone
radii Ry<..e<R,. Thus no special (8 ) routine is required for the
central spherical zone. The exits (7') indicate collision within zone

(cf. the next section).
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3. Reorientation formulas for the spherical shell.(9) In case

of collision (?'), one provides a routine for computing the parameters
R,w as they exist at the point of collision, before proceeding to (7)
itself. This is indicated in Fig. 20. Moreover, in the event of escape
at R?, we have two alternatives. If Y =’?r , the number of the outer-
most zone, the particle leaves the system, and one proceeds to (e),
while if 7(?, the particle enters a new zone 7+ 1. Classification
of an escaping particle may or may not involve its direction of escape.
In the latter case, one may by-pass the reorientation part of the escape

routine of Fig. 20 by putting the + 1»% and - boxes first. One
7 v

obtains the w' formula of the latter routine from the relation w'

= cos 7! =\/[l - sin’2 7'] and the law of sines: sin 7/R7= sin 7'/R.

Note that cos 7> ' takes the positive square root since an entry to a

zone from the inner boundary has acute angle of entry.

Similarly, one obtains w' = —‘/[l - (R/R'g-l)g(l - WE)] for the
entry cosine at R}-l‘ For solid sphere problems, the escape contingency
at R _, occurs only if 7> 1, and involves the substitutions w' ¥ w,
using the latter formula for w', R}’ _l-)- R, '7 - l->7 , and thence passage
to (B).

If the central zone 7= 1l is vacuum, escape at Rl from zone 7:: 2
necessitates re-entry of zone Y= 2 after crossing the hole. Thus for

the hollow sphere problem, we have the routine of Fig. 21,

(9)All the geometric relations involved in the present section are
indicated in Fig. 22 and Fig. 23.
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k, Flux problems in spherical geometry. Certain problems, one

of which is that of a central neutron source in homogeneous air, require

study of the number of neutrons of energy E which traverse (imaginary)

spherical surfaces at varying distances from the source. Such situations

may be handled by subdivision of the medium into spherical zones, and

"

incorporating into the "Escape at R}rand 37_1 routines a cumulative

tally in counters N . These are not terminal categories, except for

7,8

?-=1,'and do not enter into a "sum check," but count all neutrons of

all energy groups whenever they cross a spherical boundary R?,

5. A routine for the finite cylinder. We consider now the case
of a particle with paraméters X, ¥, 2, u, v, w, E, g at some point of
departure within a finite homogeneous cylinder of radius Rl’ héight H
(cf. Fig. 24). The procedure is indicated in Fig., 25. Note that before
entering (?) in the event of collision, &ll paresmeters are stored in the
machine as they obtain at the point of collision. The direction coor-
dinates u, v, w are the same at the entry to (7) as they were at the (8)
entry, and do not require new evaluation, as was the case for w in
spherical geometry. The exit (e) denotes, as usual, escape from the
system and leads to a classification routine for escaping particles.

Such routines are discussed in a later chapter.
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6. The finite cylindrical shell with central hole., Let

X, ¥, %2, u, v, w, E, g Dbe the particle parameters as they obtain at
an arbitrary point of departure within a finite cylindrical shell of

radii RO< R, and height H. The procedure of §5 may be used unless

1
the line of flight x' = x + ut, y' =y + vt, z2' =z + wt, ©20

cuts the (infinite) inner cylindrical surface x2 +\y2 = RO2 at two

real, distinct distances

I

1l - w2

t o=

2

where $ = ux + vy and AO = 82 . (L - wa)(x2 + ¥y - Roz). In the

latter case one provides an additional routine as indicated in Fig. 26.
Study of the flow diag;am together with Fig. 27 should make

the method clear. Note that the case w = 1 and the case of a line

of flight tangent to the 1nn¢r cylinder are handled automatically.

Nevertheless, some caution may be required at entry to the "t" boxes

if 1 - w2 is very small. Such a case may be handled easily by a pre-

liminary comparison of [- bt AO] - k(1 - w2) with O, where X is

a constant larger than the largest distance within the shell. In case

the latter difference is positive, one may consider Iztl as essentially
infinite and may route the flow to the proper box directly, by-passing

the explicit computation of t and Zy e
An alternative method which is very convenient when several

cylindrical zones are involved is that of Fig. 27a. This has the
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advantage of effecting the decision between escape or collisgion with a
minimum of square roots, sets up the space parameters at escape position
with little repetition of code, and avoids the "infinity decision" re-
ferred to above{ It is understood,that the inner and outer radii

0% Ro< Rl and base plane z-coordinates H' and H" are properly set as

a particle enters one of the system of zones. Moreover, a parsmeter

2 x2 + y2 is carried throughout with x, ¥y, z, and an additional

i

R

p2

i

1- w2 together with u, v, w. An index X is also used, being
set equal to zero at the source. The latter is of a purely computa-

tional character.
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It may be helpful to note that q = -1 or q = +1 according to
whether the directed line of flight does or does not cut the inner (in-
finite) surface, while d is "plus" or "minus" according to whether the
point of collision is outside or inside the (infinite) base planes.
After first transit through the box in which Xy s yt, zt, Ri are com-
puted, these quantities refer to the point of intersection of the line
of flight with the base plane z = H, when 4 2 O, and to the point of
collision when 4 < 0. The exits ﬁR and gH indicate escape from the
zone through the inner or outer lateral surface, and from one of the
bases, respectively. In an actual problem involving several sectors,
such exits must lead to rather involved routines for deciding the sector

2

next entered and setting up its geometric parameters Rg, Rl’ H', H', and

}yor classifying escape if such is the case.

7. The spherical shell in absolute space. Even when the medium

is spherically symmetric, it may be necessary to keep track of the direc-
tion of a particle in absolute space, e.g., in case emergent particles
are to be classified with respect to their directions relative to a
given source direction. In such caseé, it is convenient to use x, y,

z, u, Vv, w parameters. The metho& is similar to that of the preceding
section and should require no further explanation. The procedure fol-
lowing a "core hit" depends on the problem and may involve an absorption,
passage to an inner zone, or crossing of a central vacuum. We do not
elaborate this case further. The procedure is indicated to some extent

in Fig. 28,
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8. Slab geometry. In problems on plane slabs, the medium can

be considered to occupy the region of x, y, z space defined by Z0 $z¢< ij
the coordinate 2z and the cosine w of the angle ¥ which the line of
flight makes with the positive z-axis being the only relevant coordinates,
The slab may consist of zones of different kinds of media, with upper

boundaries defined by Zl < ees < Z_. The (B8) routine for such a problem

may be like that in Fig. 29.
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9. Problems run in cycles of time 47. In problems involving

the distribution of particles (in energy, position, and direction) at a
given time AT from their origin in some source distribution, a parti-
cle is followed until it is lost to some terminal category such as es-
cape, capture, etc., or until the allotted time 4 7 has expired. Such
problems arise naturally in o -determinations (cf. Chapter II, §8), the
computation being performed in successive cycles, the output distribu-
tion of each cycle being used as the input of the next. The (B8) routine
in such cases must be modified so that the essential decision between
collision within the zone or arrival at the zone boundary is contingent
upon the qualifying condition: "if time permits." Thus, the distance
d to collision or boundary must be computed, and the time (cf. Chapter
II, §3)

™= 7 + k"d/VE
of these events 1is then compared with cycle time A7, If +'< 47T one
substitutes r'—>r and proceeds as usual, whereas, if +' 2 41, time
runs out before the event can occur., One then computes the distance

fr=(ar-m)x VE
that the particle can travel in the time remaining, and the position
and direction after this distance is traversed. The particle is then
classified in an energy, position, and direction category NS(?31 and
one réturns to («). We include in Fig. 30 an example for a homogeneous
sphere with radius Rz. See §82,3 of the present chapter for (y') and

7

Chapter II, §8, for (&). (L refers to loss from the boundary.)
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CHAPTER V

THE COLLISION ROUTINE FOR NEUTRONS

1. Introduction. We have seen in the last chapter how the

geometry of the system determines the immediate fate of a particle, on
the bésis of the equation = - Afn r, as a collision or an escape at
the boundary of the zone. The present chapter is devoted to the methods
involved in dealing with the former contingepcy in the case of neutrons
colliding with nuclei. In the following chapter, we consider the collision
routines for photons.

It may be that the media occupying different zones 7= 1, 2, ...,:y
are so diverse in the types of nuclel contained, and thus in the types of
neutron processes involved, that it is not worth while to attempt a gen~
eral code for (7) covering all contingencies. In such cases, different
collision routines ( 7?) may be provided, each economically adapted to
its own type of medium.

The basic object of this chapter and the next is to show how,
after collision of a neutron or photon in & given medium, the new E, g,

v, and W are obtained, as well as the cosine of the laboratory angle of
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deflection from the incident line of flight. The exit (%) from the
(7) routine refers to a purely geometric procedure which determines
the new direction parameters u, v, w (or simply w) from the incident
direction parameters and the laboratory deflection cosine, and thence

leads back to (B). The (8) routine is developed in Ch. VII.

2. Capture and selection of the type of collision. It is impos-

sible to give a perfectly general procedure for the (v) routine, so
diverse are the various types of processes. BEach problem must be studied
in its own individuality.

If the number v of collisions is among the neutron parameters, we

may begin with

®>Crizrh

Unless the medium in question consists of only one type of nucleus,
and that nucleus has only one type of cross section for neutrons, we
must next proceed to decide on the type of nucleus hit, and the type of
collision. Recalling the discussion of cross sections (Ch. III,§§1,2,3),
it is clear that the total area presented to a beam of neutrons of energy
group g in the thin slab there defined is (NA 02 (tot.) + ...) add.

Hence, assuming a collision in the medium, the probability that the

collision be with & nucleus of type A 1s the ratio of areas:

«8lim




N, og (tot.) adﬁ/(NA og (tot.) + ...) adl

where the adl may be cancelled.

If one or more of the nuclei A, B, C, ... present admits
capture, or some other process which may be regarded as terminal for
purposes of the problem (e.g., inelastic collision in monoenergetic
problems), we may decide to use a weight parameter W, as discussed
previoﬁsly. (cf. Ch, II, 8§2.) It is then economical to store deter-

ministic fractions Eé of weight captured on collision, where

Eé = [NA 02 (cap.) + ...]/[NA 02 (tot.) + ... ]

the summations being over nuclear types A, B, ... . We should then
include at the outset the routine of Fig. 31. Here TL_ is a "terminal"
category in the sense that capture is a final event in the life of a
physical neutron. However, the use-of weights prevents the loss of the
geometfic path being followed and greatly improves the statistics.
When weights are used, it is advisable to use a "weight cutoff" Wo’
below which weights are negligible, and an additional terminal category
LW, to catch weights falling below the cutoff., This category is ter-
minal in the mathematical sense that one returns to (@) for a new

source neutron in case of such a loss, the trajectory terminating at

this point. If the weight W of the uncaptured beam exceeds Wo, we
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proceed to decide, if necessary, upon which type of nucleuws A, B, C, ...
the scattering takes place, probabilities being now dependent on the
assumption that a non-capture collision occurs.

Suppose for simplicity only two nuclear types A and B are
present. For machine purposes, we assign to type A a "type parameter"
value e =1 and to B the value e = 2, We store in addition to the

above Eé the probabilities

—-|CW+L - L =] a-C)WoW|l—>|W -W
g c c g

Fig. 31
1—e

©,

r r— A —
a— —— g

®
2—+ e
Fig. 32
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A, =N, (og (tot.) - ag (cap.))/[N, (ag

. (tot.)

- og (cap.)) + Ny (ag (tot.) - ag (cap.))]

for non-capture collision on type A, and enter the decision routine of
Fig. 32 for determination of the parameter e.

We then proceed to routines designed to decide the type of colli-
sionon A (e=1) oron B(e=2). If the processes involved in the
two cases are sufficiently similar one may join the exits of Fig. 32 as
shown and go to a common routine which, by use of the variable e, can
handle both cases. Otherwise,one provides separate routines for the two
types. In any case there is at this point a real‘disjunction, the neutron
hitting one or the other type of nucleus.

It remains to declde whiéh type of collision is undergone, assuming
it to be non-capture on nuclear type e. This involves reference of a
random number to an additional set of probabilities, the number of which
will depend on the number of kinds of processes other than capture which
nuclear type e admits.

For example, if e =1 and A is uranium, we might have three
possibilities: elastic scattering, inelastic scattering, i.e., (n-n)
reaction with loss of energy, and fission. We should have to store in

this case the probabilities

éé = ag (e1.) / [og (tot.) - dg (cap.)]
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1 - [,g (e1.) + o (in.)]/[a‘g* (tot.) - oo (cap.)]

and proceed from the box [1ye] of Fig. 32 to the flow diagram of Fig. 33.
It may be preferred, even if capture is to be treated by weights,
to first declde on the type of nucleus hit, by reference to the total

probebilities

A
N, ¢ (tot.
a % (tot.)/z,

A B .
NA.ag (tot.) + Np % (tot.)/zg, etc.

and then to store individual capture fractions

ag (cap.)/ag (tot.)

for each type of nucleus, allowing the uncaptured weight to undergo one
of the remaining processes by use of probabilities such as £g and Qg
above.

If capture is not treated by weights, but is regarded as an event
terminating the trajectory, the procedure of this section is modified in
the obvious way, and we do not include it.

In any event, at the present stage of the flow diagram, we should
have effected the decision of the type of nucleus hit, and the type of
collision undergone by the incident neutron, with assignment, if necessary,

of a nuclear parameter e, and adjustment of the neutron weight.
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The possibilities include, of course, return to {¢) if capture or weight
cutoff terminates the career of the neutron in question.
We proceed to discuss routines for various individual processes

commonly encountered in practice.

""’r'—““r—-ﬁg
© ©

el. coll,

-4

T g
Jv® ®‘

in. coll. fiss.

Fig. 33

3. Elastic collisions in general. We discuss in this section the

collision between two particles, assuming conservation of momentum and
energy. We reserve capltals for vectors, and make the following conven-
tions: R = (%,y,z) denotes the position vector of a point in the lab-
oratory system, V = R = (%,¥,2), the velocity vector of the point R.

If Ri = (xi,yi,zi) are the position vectors of a set of polnt masses
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m, i=1, ..., n, and m=Zm is their total mass, then R = m":]'z:miRi
defines the position of the center of mass of these particles. We also
recall that if A = (al, 85 a3), B = (bl, b,5 b3) are any two vectors,

thelr inner product is AB = Ea.ibi, A2 = 2a§ s the norm of A is

defined as |A] = ‘/;2_, and the cosine of the angle @ between A and B
is given by cos @ = AB/|A||B|.

Now consider two point masses m and ) with laboratory wvelocity
vectors Vl and V2,. respectively. The total momentum of the system is
the vector P = LmiVi s 1ts total kinetic energy is the scalar

k =£;2L- m, V:E.L, and its total mass 1s m = Emi. Since the equation

ny = zmi Vi holds for the velocity V of the center of mass, we have

elways P = mv.

U

It is customary to define the velocities, total momenta, and kinetic

energies, relative to the center of mass, by the equations

Pl

n

1
):mi Vi

1 2
t — 1)
k —22 mi Vi

We find from these definitions the following relations between

absolute and relative quantities:



)
]
t
=
<3
i
™M
3]
~~
<
-+
<3
e
=
+
e )

- pi 1 L ' '
k—):emiV? 5 Imy (V+V')-— mwe + VP! + k
or, since P = mV,
— 1 1]
=m V)tV
I - '
i

Note that the first of these equations states that, relative to
the center of mass, the particles always travel on the same straight line
with oppositely directed velocities.

We assume now a collision between these two particles, adopting
the notations indicated below for the relevant quantities before and

after collision:
Before After

v, W,
P Q
k £
v W
Vi WJI.
P Q'
X' yx
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and restate the fundamental relations

P'=0=Q" (1)
P=mnV Q=mW (2)
k = % n V> + k' 2= % n W + ya (3)

Now the defining relations for elastic collision are

Since P=Q and P=uV, Q= mW, we have V = W, which states that
the center of mass of the system proceeds unperturbed by the collision.
This equality, together with the equations (3), end the fact that k = .2,
implies that k' = f', that is to say, the relative kinetic energy is
unchanged.

Now P' = O in general, and we have therefore the equations
m V! = - mVy, mivf = n5v?, and novi® - mivi® = 0, with identical
results for the relative velocities Wi, Wé after collision.

Hence the equations
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2
are satisfied by Vig, Vég and also (since k' = f') by Wiz and Wé .

. . R ) . 1 2 2
Since the determinant of the linear system is - 2(ml m, + My mz) f 0,

2 2 2 2
3 3 1 P 1 1 — 1
the solution is unique and Wl =V w2 = V2 ‘

We have, therefore, the following very simple picture (cf. Fig. 3&),

in the center of mass system, of elastic collision,

The upper part of Fig. 34 indicates the relations we have derived:
The center of mass velocity is unchanged, the relative incoming (and out-
going) velocities are collinear and oppositely directed, and the relative
speeds are unchanged. The dashed lines are coplanar, as are the solid
lines; however, the two planes they determine are not necessarily the
same .

The conditions for elastic scattering do not determine the angle
of scattering, as defined (say) by the angle py from W to Wy (nor
the angle between the two planes referred to above). This must be given
in the form of a distribution law which depends in our case upon the
neutron energy and the nucleus hit. Such distributions will be discussed
in the next section. Our irmmediate object is the derivation of formulas
for the angles ¥y of scattering in the laboratory system, that 1s, the

angles between W and the Wi, and. for the kinetic energiles

2

li = % m, Wi of the two particles in the laboratory system, as functions

of an arbitrary angle wi.

We first consider the W?:







wi = (W + Wi)2 = (V + wi)2 = v2 . 2vws o+ wie = V2 . viz + 2|v]|w| cos 2
= v+ %+ 2)v|| V] cosyy
W = 0+ W)® = (v ug)® = vP e ey ¢ W = VP wp® v 2|v| Wy | cos vy
= v+ vg® - 2|v||vy| cos vl
Next, we compute the cos ¢i:
cos y = Wy /|V||w,| = v+ w)/|v|[wy| = v(v + W)/ |v|w)

= (vF + )/ |v|[wy| = (v + |v||wl] cos¥1)/|v||w]

i}

([v] + [v;] cos v3)/[w)]
cos v, = W /|V|[W,| = V(W + WA/ (V][ Wy | = V(V + W)/ |V]|W,]

2

= (v + wip)/|v]|w,| = (V2 + \vllwyl coswy)/|vilw

2l

= (|v] - vyl cos wi)/|wy|

where the |wi|2 are given above., These formulas provide the general
solution to our problem. In most cases the energies of neutrons are
sufficiently greater than the (thermal) velocities of nuclei to admit
the assumption that the latter are effectively stationary in the

laboratory system.



We proceed therefore to specialize to the case of neutrons of mass

m, laboratory velocity Vl scattering on nuclei of mass ) velocity

V. = 0. In this case we have

2
W o= mV, +mV, =mvV |v]= n7tm, |v. |
¥y * Mp¥p = MV, 11Y1
VI =V, V=V, ~m V. = mimv
1° " 1 ™V o'
V=V, -V=V=-nmy
2= 'n 1’1

Substitution gives us
2 _ .2 -2 2 -2 2 -2 ,’}
Wl = Vl {m m, + m m2 + 2m m._Lm2 cos l[Jl

1 2 _ 1 2 .
and hence, if [l =5 mlwl R kl =5 mlvl are the (laboratory) energies

of my after and before colliaion, we obtain

2.2 2 }
/l/kl—m {m1+2m1m2+m2 -2mlm2+2m1m2 cos '//l

1 - ?_'m-zmlm2 + 21:1_2m1m2 cos ¢;

It is convenient to introduce the quantities A = m2/m ,

T

_ 2 2 - 2 -2

= (A-1)%A+ 1) = (m -m)/(m +m)° =1 - mm,

=1 =Y = 1 - o2 _l =y L2 -
S = 5 (L+r)=1-2n m, and T 5 (1L -r)=2m m, 1, 5 obtaining
finally

jl =k, (8 +T cos ;)



Moreover,

— -1 -1 '
cos ¥ = |V1| {m m +mom, cos Yl }/lwll |
1 -1 22 22 - ,
= {m m +m m, cos ll’i}/‘/{m 2’ml +m g+ 2m 2mlm2 cos "bl}

= {1 + A cos tbi}/\/{l + A2 + 2A cos upi}

Although we make no use of them in the sequel, we include for

completeness the results for the scattered nucleus xr12

wl
’(2/1{1 = T{l - CO8 1}}1}: 2T Sin2 (__}é)

t

and cos '/’2 = V—é— (1 - cos lpi) = sin(t%) ; Which the reader may verify
as an exercise.

The salient results of this section are the formulas

E'=E (S, + T_#)

a ={l +Ae"}/‘/{l +A§ + 2Aeﬂ}

where vwe agree on the following definitions:

m_ = mass of nucleus of type e

m = mess of neutron

Ae=me/m

T, = (&, - 1%/(a, + 1)®
o} 0eE,

l:Ee =% (1 ——e)

E = neutron energy before scattering
laboratory system
E' = neutron energy after scattering

«Q =



u = cos wi

P! = angle of deflection in center of mass system from original

line of flight (coincident with V = W since v, = 0)

a = cos wl

<=
il

| angle of deflection in laboratory system from original line

of flight

The constants A_, S, Te are nuclear (energy independent) constants,
the subscript e, if required, being set in the routine of the preceding
section.

It may be noted that in the case of scattering on hydrogen, we
1

may assume A = 1, and the formulas become simply r = 0, S = T = 5
1

E' = 5 E(Q1+ n), and a = ‘/!2‘- (1 + u). Several remarks are of interest

here: (a) we have the relation E' = Eae; (b) scattering on hydrogen is

always forward in the laboratory system, viz., a = cos wl 2 0; ()

a = cos ¢l = v/% (1 + cos wi) = cos (wi/2) implies V¢. = wi/2; (d) the

1
formula a = % (1 + #) should be used for hydrogen, since the general
formula is indeterminate at u= -1; (e) if scattering on H is isotropic
in the center of mass system (a good assumption, incidentally), we have
#=2r -1, and a = ‘Vg; which shows that the laboratory scattering is
in the cosine distribution. (Cf. Chapter II, 85b.)

Finally we observe that for "heavy" elements (Ae large) we have

the following approximate results: ;e =1,8 =1, Te =0, E'=E, a=u,

e
If these relations are of acceptable accuracy, one may ignore the energy

change and determine a directly instead of # by the methods of the
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next section. In this connection one should refer to Chapter VII, 85,

for the case of scattering isotropic in the laboratory system.

4. The differential elastic scattering cross section. We have

geen in the last section that the preservation of total momentum and
kinetic energy characterizing the elastic scattering process does not
serve to detemine the angle wi of scattering in the center of mass
system, but does determine ‘the new energy E' of the scattered neutwon
and its deflection cosine a in the laboratory system in terms of a
glven M = cos :/Ji .

The determination of # is govérned by a physical distribution
function o; (), whose units are barns per steradian, and which depends
upcn the scattefing nucleus e and the energy E of the incident neutron.
Specifically, 0; () 49 is defined as the cross section (in the sense
of Chapter 11T , 81) presented to incident neutrons of energy E by a
nucleus of type e for the process of scattering in the center of mass
system at an angle in the dQ neighborhood of the direction £ with the

incident line of flight. Thus by definition,

fag () av = "; (el)

the integration being over the entire surface of the unit sphere in
direction space U, V, W, and "E (el) being the (total) elastic scatter-
ing cross section for the element e at energy E. In terms of spherical

coordinates (azimuthal angle @, polar angle ¥], Fig. 35), we have




w

incident |line of flight
1 deflected line in C.M, system
dy! i//
1
Ny
0 A\
@
de
Fig. 35
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s 2r
of (w1, @) sin p! aPd vl =S (el.)
fwi=of4>=o E Y1 1 1°%E

In all problems of the text o e

B is independent of @ and we

have
T
e . . Voo e
gnofaE (.pl) sin vy a ¥y g (el.)

or, in the form usually given,

I

1
e e '
2"[1 L (#) au 70 (el.)

it

It follows that Pg (#) = 27 o5 (4)/ % (el.) is the probability
density function for elastic scattering at the direction ll’]" from the
line of flight in the center of mass system.

Hence, the Monte Carlo procedure sets

H
r=f Pg (1) au (-1 & u<1)
-1

for the determination of , from the random number r.
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5. A routine for elastic scattering. Suppose that elastic

scattering on the (light) element e is isotropic in the center of
mass system. This means that the function oe(u) is a constant, and

the final formula of the preceding section gives simply #= 2r - 1,

In such a case, we should enter a routine like that in Fig. 36. Here
E, represents the "energy cutoff," namely, the last of the lower bounds

G

E,>E;> ... >E

1 of the energy groups adopted. ZEnergies falling below

G
this necessitate classification of the corresponding weight in a terminal
category LE reserved for loss to energy cutoff. The loop on Eg - E
begins by comparing the new energy E with the lower bound Eg of the
group which the neutron occupied before scattering, since elastic
scattering cannot raise the energy. Note also that EG - EX 0 at entry

to this loop ensures its termination at some g i G. If EG > 0, the

previous E - E  decision is mandatory. The formulas for E' and a

G
are fully discussed in the preceding 83. As remarked there, the pro-
cedure for the special case of hydrogen ig simpler and is indicated in
the lower half of Fig. 36. For the case of scattering isotropic in the
laboratory system, we again refer to Chapter VII, €. This applies
approximately to the case of heavy elements with an isotropic law in
the center of mass system.

The (6) of Fig. 36 refers to a routine for fixing the final

laboratory direction parameters of the scattered neutron (cf. Chapter

VII) before returning to (B8).
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(e not indicating hydrogen)-l

™ r [|#k=2r—1f—> E'=ES,+T_u—~E

g*+*+1—+g|le«e—e] E —E W + LE:" L

E
®L_8 5 «@)

2 ‘
= +
a=(1 Ae“)/\/ 1+ Ae + 24 4

(hydrogen routinf)/

—! r +——>|Er—+- E |— EG-—-E
®
©)
\ \
+ — — —
g1g<6EgE W+ Lo =~ Lo
5 -®
'
a=vr
Fig. 36
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Most elements have more complicated differentisl cross section
functions, usually characterized by preferential forward (and sometimes
backward) scattering, an effect which tends to increase with higher
incident energies. The problem of choosing # from such a distribution
is essentially that (already discussed in Chapter II,§5) of selecting
the direction parameter w from a given source distribution.

If the problem can be restricted to a single energy, or to

(10)

relatively few energy groups over each of which the differential

function o (#) may be considered constant, one may well store tables

for the probabilities Pg 3 of scattering at cosines u 2 lh
2

= -1 are suitably chosen bounds of subintervals of the

, where

”>u>-oo
17 2 My

cosine range, and the

are pre-computed by numerical integration and stored. The routine for

determining # is then that of Fig. 13, where we read j for 1, Pg j
2

for Pi’ a4, for AP and 4 for w.

J

Aslde from its demands on storage space, this is subject to the

errors of interpolation, which may be difficult to minimize in cases of

(1O)These need not coincide with ror be as numerous as the energy groups
reserved for free path and scattering-type probabllities. It is not
unusual to carry two or even three different sets of energy classifications
with corresponding indices g, h,... as neutron parameters.
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very forward scattering.
If the original curves o g (#4) can be simply fitted, the simplest
scheme may be the von Neumann device (Chapter I, §5). We should then

have a formula for the function

A

" .
o (e, E,u) = "E (ﬂ)/{nax ag (#) on -1 S u 1}

* *
and use the routine of Fig. 5 with a = -1, b =1, p o (e, B, u),

"

reading # for § .
. *
Occasionally, the function ¢ (e, E, # ) may be fitted easily for

each energy E as a function of 4, say,

*
o (e, E, u) =A% + B + ¢S 4P Sy

E t Bg g #

Un

1

but the coefficients may prove intractable as functions of E. In such

a case we may be able to store the coefficients

e
g

e _e
Ag’ Bg, C
for each of a reasonable number of energy groups, and use the routine
*
of Fig. 5 as indicated above, the machine computing ¢ (e, g, u) =

Ae + BZM + Cz H 2 from # and the stored coefficients.

g
Finally, and in the worst cases, it may be necessary to store

* .
' e o g of ¢ = 0 where o =
a table of value m,n m,n/ ;mri "m,n} s m,n

2

o(u 0’ En) is the differential cross section for a particular element
(we drop the index e temporarily) evaluated at a suitable set of

values Mo = 1>... >IIM = -1 and EO> ...>EN, where Eo is at least
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~

the highest energy encountered in the problem, and EN EG the least
such energy. The energies and cosines used for this purpose may be
hand~picked, and need not coincide with those used for other purposes

elsevhere in the problem. We store a table of the form

-
n ~
ym 0 1 ... N “mﬁ
* ~
0 000 MO
1 "~
Ky
* ~o
M M N ||*M
E — ~ ~ ~
n EO El o e o EN
Fig. 36a

and resort to the double interpolation routine of Fig. 37.
However we may determine # , the routine should lead to a
determination of E and g after collision and the deflection cosine

a for the laboratory system as indicated in Fig. 36.
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r p=2r—~1
~ Y
By ~H o=
T =& o~ 4——Nm—p‘ l1-m
“m ”m-—l @

o' =

* + * - ¥
“m-1,n ("m.-1,n-1 "’m—1,n>'O

l

o" = g¥ + (og* — X P
m,n m,n~1 m,n

\

o = g + (0" -— o-") T —

Fig. 87
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6. Differential elastic cross section for the laboratory system.

If a differential cross section QL(a) is given for elastic scattering
relative to the laboratory cosine a = cos wl, cne may choose between
the following two alternatives.

(a) One may employ o._(a) directly to determine a, Jjust as

¢

the center of mass differential cross section o (#) was used to determine

# . It is then necessary to use the formula

2
w=p"t {-(l - a2) + (sgn a) ‘/(1 - ae) - (1 - a2) + aaAz} (&)

to determine the corresponding center of mass cosine #, which is needed
in computing the new energy BE' = E(S + Tu).

The above formula is obtained by solving the equation

a=(l+Au)/V[l+A2+2AH] (5)

for # in terms of a. The (sgn a) choice of sign on the radical is
dictated by the following considerations: From equation (5) it is clear
that the sign of a is always that of 1 + Au . In solving equation (5)

for # we obtain

1+ Au = al + v [(r - a2)2 - (1 - ag) + a2a°]

so that the sign of the right side must always be that of a. It is
clear graphically that for the function f(a) = a2 t ¥ g(a) to have the
gign of a, it is necessary and sufficient that one use the upper branch

for a > 0 and the lower for a < 0.
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Formula (4) may be rewritten in the form
2
b . ' b
U= ~-= +8 1 - —
A A2

where b= =1 - a .

(b) Alternatively, we may use the defining relation

o(u) ae = a (a) da

to compute the center of mass function o (#) in advance, and then use

the usual procedures of'§5 directly. This may be done by means of the

formulas

o(n) = o (a (W)
vhere au) = (1 + Au)/Wl + A% + on]
and S _[a%(a 0]/ [1+ 4% + 2au] /2

T. A weightﬂdevice for elastic scattering. In problems involving

wany collisions in a medium admitting elastic scattering on light elements,
it may prove worth while to avoid loss of trajectories, which are usually
followed through many collisions, to the energy cutoff EG' These losses
may be obviated by the following device, whichvmakes further strategic

use of weights.

We have seen that the relation between emergent and incident energies
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in such collisions is E' = E(S + Tu), where # is the center of mass
deflection cosine, chosen randomly by the equation
1
r=fﬂ Py (#) a# =B, ()

Now, for a given incoming energy E > Eb) the least emergent energy

is B! . 0= E(S - T). 1If this exceeds E,, the energy cutoff for the
problem, one proceeds as usual, with no possibility of loss to energy.
However, if E(8 - T) & E,»

there exists a critical cosine ”c’ depending on E, such that

*
that is to say, if E ¢ EG/(S -T)=E,

E(S + Tuc) =By, with -1< 2 <1, and

Eb
[*
£=1f(u,) = pg (#) av
-1
represents the probability of scattering with # on -1< # < #, with

the resulting energy E' < EG. Moreover, assuming 4 > o

1 1
e e 0 an/ [ pg ) an = ap (1)
" #e

is the proper Monte Carlo formula for determination of the cosine
on the range #_ < # <1, with a resulting energy E' j'EG. We may
therefore proceed as in Fig. 38.

For the simple case of scattering isotropic in the center of

mass system, we have the formulas f = % (1 + uc), p= Qﬁl(r) = l-r(l-l%),

"= P'l(

EI')=1—21‘.

Finally, we note that a neutron being followed by this method
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automatically has weight

G

number r = 1 does not actually occur in our sequence.

|

W >0 and energy E >E,, i1f the random

r —> E* - E
© @b
y
E
_pl -_q__)
b=Pp () “c'(E s/r
y
f=1@,)
i:‘W+LE—»LE
1-HW-—=>W
W -W
@ ° ®: W+Lw—>Lw
} .
b= Qg @
v Y
E* = ES + Tu) - E
A
Eg & g+tl—g
©
a (Cf. §5) ~® Fig. 38
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8. Fission. Suppose that a neutron causes fission of some
{(heavy) nucleus, resulting in the production of an average number v
of neutrons with energies of release independently distributed in a
given fission spectrum, and whose emergent direction distributions are
isotropic in the laboratory system.

It is possible to invent a probability distribution p(n) with
v, = Zn p(n), decide on the number n of progeny in a given fission
by chance, and follow these n neutrons individually. This may be
done even in supercritical systems if recourse is had to time cycles
and census taking. However, this is unnecessary and undesirable. We
may instead follow a single neutron, of weight vy times that of the
incident neutron, chosen from the fission spectrum of energies, and
directed isotropically. This may reduce fluctuations, enormously
simplifies the code, and decreases machine running time.

Suppose that f£(E) dE is the probability of fission energy E
between E and E + dE. We choose a set of energy intervals with
bounds ﬁ; > ia_> ...>‘§h, where 'Eg is the highest significant fission
energy and 'Eh the energy cutoff for the problem. These EL need
not agree with bounds of energy groups used for other purposes. Define

o]
Fh =f~ f(E)dE

Ey

We may then refer to Fig. 39. Note that if the 'E£ are differ-
ent from the Eg used for (say) storing free paths Ag’ one must deter-

mine the index g, beginning the loop with g = 1 8ince fission can
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raise energy above the incident energy E in group g. The exit (3)
refers to the routine of Chapter VII,§5,for scattering isotropic in the
laboratory system.

In some problems, designed to find the distribution, say, in
a number of cylindrical shell zones defined by radii Rl‘i R2< ...<R]n
and heights H1_< H2<<...<:Hn, of fissions resulting from & given spatial
distribution of Tissions, fission is & terminal event, and counters
Ni,j are reserved for the number of neutrons terminating in fission in

radiael zone i,height zone j. In the event of fission we should then

follow the simple classification routine of Fig. 40, rather than that

of Fig. 39. .
h+1~-h
O)
—wly W— W r » 1~ h - r — F
0 h C)

fﬁl ~
E=Eh+<r-—Fh> Fh'l_Fh
- h-1 "~ "h
l1—g
b 3
E —E +1-
el o

Fig. 39 ®
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—i+1—1 i +1-3

—_—] 2 2 2 2 2 o
R =x + T l1—1i R —R 11— z—H
y i ] 1o
Y
WrN TN
Fig. 40

9. Inelastic (n-n) collisions in general. Using the notation

and procedure of §3 of this chapter, we now discuss a type of collision

in which an incident neutron of kinetic energy k =5 m1V strikes
a nucleus of mass m2 R imparting to the latter & known energy of excita-
tion e, and emerging with an energy 11 5 mlw =K', We obtain again

the fundamental relations

P' =0=Q' (6)
P = mV Q = i (7)
k=—;-mve+k' ﬁ=%mw2+[' ~(8)

The momentum and energy conservation laws now read
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P=Q
k=A+¢€
however, and we find V =W as before, but now
k'= g + ¢
We find again that the equations

1 ..2.,1 2
s m¥y + 5y =

2 -
m12"’1 - mng =0

determine Wig and Wé2 uniquely, the difference being only that f'

is not simply k' but k' - €. Thus the speeds of departure of m
and m, in the center of mass system are uniquely determined, although
they are not simply the incident relative speeds as before. The angle
¢;i must be determined according to some physically determined distri-
bution law, and from this the laboratory energy and deflection cosine

mey be computed.

We will derive the relevant formulas. First, solving the sbove

system for Wiz, Wég, suppose that we first rewrite the system for
2 2,
Vl s V2 .
2P e gyt ek = e
2 2 _
mv;® - vy = 0

in the form
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2

1 2 _
(Vi - 61) * 3 mz(Vé - ‘2) =4

2, 2 2,2 _
my (V1 - €q) - mg(Va™ - ep) = O

1 1
- € € = € — — =
vhere €, = 2m, /mlm, p = 2my! /mem, and 3 m €, + 5 M€, = €,
—miel + m,ge2 = 0. We see at once that
- TR
Wl = Vl él H W2 = V2 62

We deal only with the neutron ml. Computing W2 as before

"in terms of cos ://]'_ , we obtain

W W 2 v wif x 2|v|{wy| coswy

1

2 12 - 12 - '
v+ vy € 2|v| ‘/ (vy €) cos ¥l

and for cos z/}l , the laboratory deflection cosine,

W

i

2.

2
1 )

= (V + W]'_)2 =V

it

cos y, = vwl/lv[ |wl| = V(W + Wi)/l"HWﬂ = V(V + wi)/|v||wl_|

- (VP + vwi)/[v||w1| - (V° 4 |v”wi| cos wi)/|v\|w1\

([v] *\/Vie"l cosys )/|W,|

0, V= m‘lmlvl, v o= m"lmevl,

.
]

(|v| + \w]'_[ cosw]'_)/lwll

I

Again specializing to the case V2

we obtein

T T P A R

It

lvll 2 {m_gmi + rrfgmz2 - (Gl/vi) + 2!111'2mlm2 cos ¥1 VL ~(m® él/mgvi)}
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and therefore

[l/kl = m_2 {mi + Emlm2 + mg - (meel/Vi) - amlm2 + aulmzcosinl-(meél/mgvi)}

= (1 - 2m1m2/m2) - (el/vf) + emlmz,m'2 cos t%Vl - (meél/mgvi)

- 2 2 _ -
But €, = 2m2€/m1m, so that m el/mgvl = me/makl = me/ng, and

hence, finally, replacing [1 by E' and k, by E

1

E' = E {s -(:—-g) (me/ng) + T cos ¥ V1 - (me/maE)}

Moreover,

i

cos ¥ (m’lmllvll + cos ¥ V(m emgvi - € l))/lwl[

il

|V, {m—l’“l + m"'m, cos ‘”:'Lvl - (maél/mgvi)} /|y

or

-1
m

s v = m, + m"]‘m2 cos ¥ Vl - (me/maE)
1 5 ,
{m_gmi + m~2mg -(%) (me/sz) + 2m“2m1m2cosw]'_ ‘/1 - (me/ng)}l/a
m

Finally
1 + A cos 'I']'..Vl - (me/sz)

{1 + A% [1 - (me/sz)] + 20 cos tl/i"/l - (me/maE)} Y

Now the reaction can occur only if Ir=x' - e 20 ; since k' =

1.2 1 2 .2 2 .2l.2 _ - ,
2-2—, m V" =5 {mlmam + mynm }Vl = mym g , the condition is simply

cos d;l =

wll7=




E g mm, €. If we define this critical energy as €. we may write

. 2 e
E' = E{S _(-l—é—:li:) (E-C) + T cos !Pi ‘/l - (GC/E)}
) 1+ A cos ¥ ‘/1 - (GC/E)
cos ¢1 =

{l + A% [1 - (e./E)] + 2a cos wim} 172

About these formulas we make the following remarks: (a) For
Gc = 0, they reduce, as they should, to those for elastic scattering,
(b) for €7 0 and A large (heavy nuclei), they become approximately
E' = E -€e and cos ¢l = cos wi, as we should expect.

It must also be pointed out that a nucleus may have wvarious
exclted states each with its own excitation energy ¢, and a correspond-
ing inelastic cross section oE(e) for neutrons of energy E 2 (m/m2)e =€
For light nucleil these must be dealt with individually, using the above
formulas with the appropriate ec.

For heavy nuclei, the states may be well separated in some cases,
and may be dealt with individually,using the simple relations of remark
(b) above. If, however, the excited states are very close together,

one resorts to such methods as those of the following two sections.

10. 1Inelastic (n-n) collisions on heavy nuclei. If the states

of the nucleus are closely packed on the energy scale, it is customary

to give a table of experimentally determined probabilities for

Py,h

-118-



an incident neutron of energy group h to produce in (n-n) reaction a
neutron of energy E' 2’E£,, where h' Z h, and Eg> cee >3§iis a suitable
set of lower bounds for energy. -One may then proceed to determine the
energy E' in the usual way by use of =& random numbery and linear inter-
polation, as in Fig. 41, which is drawn for the case of isotroplc
scattering in the laboratory system, and therefore exits to () (Chap-
ter VII, 85). Note that the Ph,h' form & triangular matrix, with P,
non-zero only for h' Zh, and P

sh!

h,H = l’ h = l’ evey H.

Some inaccuracy is unavoidable iun such a method, since, strictly
speaking, Ph nt is a function not only of the group h, but of the energy
b 4

E in this group.

11. Inelastic (n-n) collision with Maxwell distribution, Con-

sider an (n-n) collision of a neutron of energy E < E with a heavy
nucleus for which it may be assumed that the emergent energy E'

probability density function 1s proportional to

a(E') = E' exp(-E'/T) 0<E'CE

where T = ¢V(E/E), ¢ being a given constant. -
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r —*h— h Vr—Ph,h' @= h-h
@ ©®
¥ Y
E,_,~ E*| |E—~ E*
Y Y

E* - E
E' =E_, + ( - P )
B Py - Py,

Et - E
ht — h
\ ~ 4
E —E f—rlg+1—
g @g g
©
Y
5

. Fig, 41
If A(E) =f E' exp(-E'/T) dE'
o]

we have

PE(E') dE' = (1/A(E)) E' exp(-E'/T) 4B

and the Monte Carlo principle involves determination of E' from

and 1 by means of

E'
r =f PL(E') 4B’
[¢]
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The solution for E' is difficult and we use instead the

device of Chapter L,§5. The latter requires the function

b (E') = n(E')/mx N(E')
the maximum being for the range 0 < E' ¢ E. Now the maximum of n(E')
is at E' =T, and we may use this provided T = aV(E/E) < E, which
ﬁeans that the incident energy E shall exceed aa/fﬂ Let us suppose

for simplicity that az/ﬁ'< EG, the energy cutoff (as is usually the

case). We have then
% Rk
e = (@ e /T <

for all incildent energies E on the range Eh < E é £ and we may pro-

ceed in the usuval way, with E' = rE, etc.

12. A combined transfer matrix for fissionable nuclei. If the

nature of a problem involving a fissionable nucleus does not demand
keeping the individual types of collision separate (for example, for
purposes of tabulating capture, fission, etc.) and if the neutrons
emerging from each type of collision are all emitted isotropically in
the laboratory system, a much simpler method can be used to great
advantage, in place of the several individual procedures indicated in
previous sections. Let us adopt the following notations, in addition

to the usual oh(cap.), Oh(el.), ah(in.), ah(fiss.), oh(tot.):
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p(h,h')= probability of scattering from group h to group h'

(inelastic collision)

vo = average number of emergent neutrons per fission

f(h') = probability of fission neutron energy in group h'

dh n' - Kronecker 6 function, with value 1 for h=h', 0 otherwise
2

Now, assuming a collision of a neutron of group h with the

nucleus, it is clear that the expected number ;h n of neutrons emerging
)

from the collision in group h' 1is

Vh,h' ={ah(cap.) « 0+ ah(el.)éh’h, + ah(in.)p(h,h') +

o, (fiss.) f(h' )vo}/ah(tot. )

Thus, the total expected number of neutrons per collision is
Fh= 4‘, Fh {(el +a(1n)+0 fiss. }/6 (tot.)

Hence, the probability of an emergent neutron from such a colli-

gion being in group h' 1is

U,n = “nn/

We may therefore store a table of =
y U, h 2k=1 9y

h=1,.e., H, h' = 1,..., H, and Qh’o=0, h=1l,..., H, as shown

below,and proceed according to Fig. L42.
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13. Collisions shattering a nucleus. We consider in this

gection a type of collision in which a neutron of rest-mass my and

velocity V., enters a nucleus of rest-mass m, and velocity V

1 2 2

resulting in a shattering of the neutron + nucleus system into a set

= 0,

of fragments of masses nj and velocities Wj’ Jd=12,... , the

total rest mass n = Z:nj of the fragments being greater than m = m1+m2.
We treat the mechanics of the collision non-relativistically, using the
formula % mV2 for kinetic energy of a particle of rest mass m, and
velocity V, and we suppose that m = n at various points of the argu-
ment. The actual mass-difference n - m corresponds to an energy

e = (n - m)c2, where c¢ 1is the velocity of light, and in order for the
process to occur, part of the kinetic energy of the neutron must be

used to supply this energy €.

Proceeding as in §§3 and 9 of the present chapter, we have the

general equations

(note the assumption m = n), and the conservation laws now read

P =gQ
k:/(—}-é
As usval, V =W, and so k' =,[' +€ . Just as in §9, we find

that in order for the reaction to take place, we must have k'= m2m"1E 2 €
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or

Assuming such an incideht energy E, the conditions on the

relative velocities w3 of the fragments are

2—é-naw3-j' =nmtE - >0

MWL =0
ZnJ p

In contrast to the situation in §9, these relations do not deter-
mine the w&z if more than two fragments exist (including the original
neutron). We propose instead to single out an arbitrary one of the

fragments n 3 and discover the maximum relative energy with which it

can emerge.
We adopt the convention that Z' refers to summation on all
j#J. Thus we define n' = X' 5 to be the mass of the remaining

fragments, and n'W, = z! nJ.W 3 defines the velocity W, of their

own center of mass., Now Wé = WR - W denotes as usual the velocity of

the residual center of mass R relg,tive to that of the whole system.

j-—WRf-"(Wj+W) '(WR+W)=WJ‘“wa0r

all J # J. Now the above system becomes

Moreover, we define W‘j =W

(9)
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But observe that the following relations hold for the residual

system:
):nw —En (WR+T,J)=nWR+ zanJ (10)
1 _3; 12 — 1 1‘ 1 " — 1 12 1 t " t "
L'zl =x5"3 n, (Wg +wJ) 2an +sznjwj+zejj(11)
Now we know by definition that
'n W, = n'W
'y R
so that
] H = 1 1
X' ny (W+WJ.) = n (W+WR)
and hence

' n W = n'W!
I ns R (12)
Reference to (10) yields
"nW., =0
Z gt
and this result with (11)gives us the familiar

1 .l 72 . !‘_ t |2 t l 112
Eznjwj =5 n'Wp + 25 ij (13)
Now to return to the system (§¢), its second relation together
with (12)tells us that

e 1
nWR nJWJ
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so that % n'Wé2 = /n )(2 n W' ). We may therefore rewrite (13)as
1 1 2
t = 1 = t t 1
' anJ /n ) 3 anJ )+ X 5 njwj

The latter, substituted into the first member of the system (9),

gives us finally

(m/n')(5 ;%) 5

It follows that the maximum relative energy of ny must be
(n'/md" = (n'/m)(m ™8 - )

Thus, in sumary, if the incident energy E exceeds the minimal
energy m mélé required for the process, the maximal relative speed
of any fragment J is given by

2n'm2
- e _ -1
Wy —V/ 5 (B -m m,, €)

an

Suppose that we now construct the laboratory velocity WJ and

the corresponding laboratory deflection angle wJ by the usual addition

wJ =W + w& =V + w& . Reference to Fig. 43 makes it clear that the

possible end points of the vectors WJ occupy the sphere of radius GJ
about the end point of V. Moreover, it is apparent that three essentially

different cases arise, depending on the vrelative magnitudes of ﬁj and

|V|, or, equivalently (using the above formula for WJ),the relative

magnitudes of E and € = n'e/(m - nJ). If we are interested only in

neutron masses n,, the latter reduces to m e/(m ml)
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Case 1. W < |V| or E<€. The angle ¥; is limited to the
range 0<% ll'J < arc sin ('WJ/IV[), and the possible speeds |WJ| corres-
ponding to any given ¥ 5 on this range are bounded from zero.
vy =|V] or E ='€. The angle v is limited to the
range O < ¢J<= n/2 but for a given such V¥ 7 ‘the possible le| range

Case 2.

from O to a maximum.

J
0% ¥ ¢ m, and ‘WJ\ for a given le ranges from O to its upper bound.

Case 3. w.> |V| or E >¢. The angle l//J has its full range

In any case, the maximum speed WJ associated with a given

possible llJJ is given by the greater root of the quadratic equation

Fig. 43

P =
J g

for the maximal laboratory energy % an§ of the J

+ Ve -2 levl cos ¥ . Substituting for Wy and writing €;

th fregment associated
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with the laboratary deflection angle qu we obtain

- [amwl(man;E)l/2 cosgj] éi/a + T [n'e- (m, - nJ)E] =0

If we apply this to any neutron nJ, we have nJ = m1 and

n' = m, , 80 that finally
€~ (2m-1m \ﬁE cosy.) el/2 + mml [m.e - (m, - JE] =0
J 1 SR P 2 T

The discussion of this section thus serves to show why the in-
elastic cross section GE(in.) for such a process becomes zero for
incident energies E below mn méle , and how the energy range of
neutrons emerging from the reaction depends on the incident energy

and the cosine of the laboratory angle ¢J.

14. The (n-2n) reaction in deuterium. As an example of the

preceding theory, we consider the reaction
2 1
n o+ 1H —> E" + 2n

in which a neutron disrupts the deuterium nucleus into its constituent
proton and neutron.

Adopting the atomic masses of the following table

neutron 1.00893
H 1.008123

H 2.014708

we find an excess of .002345. This gives an actual mass of



.002345/A gm per deuterium atom. Multiplying by c® and dividing
by the number 1.60203 x 10'6 of erg per Mev (Chapter II, §3) gives
o=2,184 Mev. Hence m méle = 1.5€¢ is the minimal energy for the
process to occur, and the three cases mentioned in the preceding section
depend on the relative sizes of E and m,e /(m2 - ml) = Q€.

We will suppose that a "cross section” -rE(E', ¥) is defined in

such a way that

2mTo(E', ¥) 4B’ d(cos w)l“ﬂ-s—-‘-—'i

is the expected number of neutrons of energies between E' and E' + dE',

and directions between ¥ and ¥+ d¥ resulting from such inelastic
collisions of a beam of B neutrons of energy E traversing a medium
of numerical density N and thickness sf. (Contrast Chapter III, §l.)

Now
20 (in.) Naf.B

is the total expected number of neutrons in this traversal, since each
such collision produces two neutrons.

Hence we have

1 €. (E,¥)
2 R
o T (E', ¥) dE' d(cos ¥ ) = 20_(in.)
J‘—ljel(E,!‘ll) E ) B

where the ¢ i(E, Y ) are the upper and lower energy bounds referred to

in the precedlng section.
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Moreover,
o E"l(in.)'rE (E',¥) dB' d(cos ¢)

is the probability of an emergent neutron being in the range (E, E + dE)
and (¥,¥ + d¥), assuming such a collision occurs.

The Monte Carlo procedure is therefore clear. We decide in the
usual way whether the collision is of this kind by reference of a random
nunber to C’E(in. )/aE(tot.). If 'r is less than this ratio, inelastic
collision occurs. We then double the weight W of the incident neutron
and determine its cosV¥ = a and its energy E' from the above probability
-distribution. We may do this in two steps, using first the probability

density function

€
- 2
PE(B‘) = ﬂoE l(in‘)je ‘r-E (E', l/’) ag’
1

to determine the a = cos ¥, and then finding the energy E' using the

density function for E':
€
2
ag(a,E') = TE<E',w>/f o(E', ¥) aB'
€
1

for the a = cosy determined.
A more complicated example involving an energy cutoff and
critical angles in the same way as indicated in §7 of this chapter may

be found in LA-1606 (not available).
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15. An (n-2n) reaction on heavy nuclei. As a further illustra-

tion of the use of weights, consider a collision of a 14 Mev neutron with
a heavy nucleus vhich results in the emission of a pair of neutrons,
isotropically distributed in the laboratory system, one neutron being in

the energy dlstribution

un

EI

7AN

E!' exp(-—E’/Tl) ag' , o €, T.< €

and the other in a similar distribution

[1WAN

E' exp(aE'/Tz) dE' , OSE'S¢ e, T, <€

where €, Tl’ T2 are constents.

€

Let A = J E'exp(-E'/Ti) dE' = T¢ {1
o]

(1 + ,1,6—) exp(- e /Ti)}
i
for i =1,2. We have then
pi(E‘) aB' = Ail B exp(-E'/Ti) de!

for the probability of the ith neutron emerging between E' and

E' + dE'. Since the expected number of neutrons in the latter range,
per collision, is pl(E')dE' + pa(E')dE', we may properly assume one
neutron of weight W suffering such a collision gives rise to a neutron

of weight 2W, chosen in the energy distribution

p(E')AE' = 5 [py(E') + py(E")] @B’

ol
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Since the maximum max p(E') on the range 0< E' < ¢ can be
computed in advance, we may use the von Neumann device of Chapter I,§5,
followed by an induction loop for determining the new energy group, and

the procedure of Chapter VII, §5,for the final direction parameters.

16. Capture in a small zone. Certain problems involve determina-

tion of absorption in a small zone of material, surrounded by a relatively
large system of moderator, which slows down neutrons by scattering on light
nuclei., The slim chance of a neutron hitting this small capture zone
may be improved by various devices, of which we indicate only one.

Suppose for simplicity that a spherically symmetric system con-

*
tains a small central core of capture material of radius R IetR ” R

1.
If a neutron undergoes collision

1
be chosen comparatively close to Rl'
at g point of radius R > R* we may proceed as usual. However, if

R & R*, we may process from this point to termination m neutrons each
of weight W/ﬁ;, instead of the customary single neutron of weight W.

If the multiplicity m is sufficiently large and R* - R, sufficiently

1
small, some of the m descendants are very likely to hit the absorbing
core.

ISuch a scheme requires modification of the over-all flow dilagram.
We call attention especially to the following changes: (a) the source
routine (o) sets a new parameter m = O for each fresh neutron leaving

the source; (b) the (B) or (BO) routine exits, in event of collision,to

& new entry (7) which is preliminary to the usual capture routine (7);

«)l33=




(c) the (7) routine, in case the multiplication trick is indicated,
stores all parameters R, w, E, g, W,... of the "parent" neutron at
the point of collision in new positions designated by R, W, B, B, Wyers
for reference in processing each of the m progeny from this point to
terminations (d) the (@) entry, to which one returns on termination of
any particle, is modified to order complete’processing of m progeny
before starting out a new source neutron. The parameter m = 1,2,... m
indicates the number of the descendant being processed. The following
flow diagram (Fig. 44) includes the essential modifications.

Note that the entry (») excludes using the multipliéation trick
on & descendant. That is, we do not iterate the process. In practice
the device is usually of a more elaborate nature, using different
multiplicities m for different critical radii R*. Moreover, the
capture cross section of the core usually becomes significant only at
low energies, so that the multiplication decision may also rest upon

* *
8 decision on E - E vwhere E 1is some stipulated low energy.
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17. Capture by a "point" detector. The method of the preceding

section may be ineffective if the capture zone is extremely small. The
present section presents a much simplified example of such a case.

Consider a spherical shell (radii Ry < R2) of a single light
element which can be considered (perhaps by use of transport cross
sections) to scatter neutrons isotropically in the laboratory system,
Suppose further that a detector of very small radius RO<<< Rl is located
at the center of the hole (vacuum), and it is desired to find the dis-
tribution into energy groups of neutrons impinging on the detector, con-
sidered as a perfect absorber,

Specifically, let EO > El> ees > B denote the bounds of the

G
energy groups adopted, E; being the "cutoff" energy, below which neu-
trons are lost to a category Lp. Consider a collision C at x, y, 2z,
R, Rl ¢ R< R2 of a neutron with incident direction u, v, w. The
fraction f of total solid angle subtended at C by the detector is
1 2 2

E(l-mmﬂ%%%l—(l-%o%)=%o g%sin

g =-l~R2/R2 ; Where ¢
‘ y o
is defined by sin a==RO/R. Observe that we are only considering a case
where these approximations are very good.

Let the direction from C to the origin be denoted by u", v",
w', and letn =uu"+ v v'+ w w" Dbe the cosine of the angle between
this direction and the incident direction. Finally, let E" %be that

new energy which would result from a scattering from the direction

u, v, v to the direction u", v", w".
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We proceed in two essentially different ways according as this
energy E" 1is below or above EG. If below, we allow the colliding
neutron of weight W to scatter isotropically in the laboratory system
into a: new direction u', v', w', If the new line of flight cuts the
detector, or if it falls outside of the solid angle subtended at C Dby
the detector and corresponds to a scattered energy below cutoff, we de-
posit phe weight W in LE. Otherwise, we follow the scattered neutron
furthe? to escape or its next collision by the usual (8) routine. It
will bé seen that this is the orthodox way of treating a collision,
except that we assume that directions within the very small detector
solid angle have the same behavior as the direction u", v", w" insofar
as resultant energy ls concerned,

However, in case the energy E" corresponding to u", v", w" 1is
above cutoff, we deterministically add a weight Wft to the category Dj’
which records neutrons impinging on the detector with energies in the
group containing the energy E". Here f has its assigned meaning and
t = exﬁ {— (R - Rl)/A (E")}- is the transmission for neutrons of energy
E" in the direction toward the center of the detector. We then allow an
isotropic scattering into the direction u', v', w'. If this direction
falls‘within the counter solid angle, we force a first collision of weight
w(1 - t) at x + u'Q, y + v, z + w'{, where = “A(E"n(1 - r(l -t)] .
(cf. Chapter IT1I, 85.) If the scattered direction u'v'w' is outside
this s;lid angle, we determine the corresponding new energy E' and
deposit weight W in L. if E' is below the cutoff EG or follow

E

the weight W further in the usual (B) routine if E' is above E.
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In a large number N of collisions of the second kind (E" > EG)
the expected number hitting the detector will be NWft (with the proper
energy distribution), as it should be. Moreover (Nf) neutrons will
gscatter into the detector direction, on the average, resulting in a
total weight of (Nf) W (1L - t) = (M) £ (1 - t) having first collisions
in this direction, and these are distributed spatially in the correct
exponential distribution. Finally,an expected number N(1 - f) of
neutrons will scatter outside the detector solid angle, with total weight
N(L -f) «W = (W)(1 - £), and these are correctly processed in their
subsequent history.

The method has the great virtue of deterministically contributing
a correct positive weight to the detector on every collision of the second
kind. (Collisions of the first kind (E" < EG) cannot do so physically.)

A\flow diagram covering the method is given in Fig. W4a. For the
u# formula, one may refer to 56 of the present chapter. The computational

parameter Q@ is set to zero at the source (s).
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18. Remarks on thermal neutrons. In all neutron problems with

which we are concerned, the energy range of neutrons actually followed
is bounded from zero by some minimum energy E* > 0. This bound may be
some stipulated energy E* above the mean thermal energy of the medium,
neutrons with energies falling below this upon any collision being of no
interest in the particular problem, The energy E* then serves as the
lower bound EG of the loyest energy group for which cross sections are
stored,

However, when neutrons are to be followed down to the mean thermal
energy of the medium, this energy serves as the minimum E*, and several
remarks are in order. All cross section considerations and scattering
formulas have been based on the assumption of target nuclei which are at
rest in the laboratory system. It is clear that our procedure is un-
justified in that part of the energy range approaching the thermal energy
in the case of light elements. Moreover, if the mean energy of the medium
is in the range below the molecular binding energies involved, simple
nuclear cross sections may no longer be applicable.(ll)

If neutrons reaching "thermal energy" are dropped, we again have
E* = EG as above, neutrons with energies below E* being thrown into
a counter LE for losses to cutoff.

When the problem necessitates actually following neutrons which

have reached the thermal energy range, we require a lowermost energy

(ll)Cf. 8. Glasstone, M. C. Edlund, The Elements of Nuclear Reactor

Theory, D. Van Nostrand Company, Inc., Princéfan, N. J., 1952,
on thermal neutron cross sections.
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group for such "thermal neutrons," a suitable "average free path," and
differential scattering laws for this group, as well as probabilities for
differént types of reactions. It is impractical to deal with the actual
case of a distribution of neutron energies 1n the thermal range, and all
methods assume neutrons within this group have a fixed energy and upon
elastic collision retain this energy. For heavy elements, isotropy in
the laboratory system seems to be a valid assumption for elastic scatter-
ing. However, the cholce of proper averages for the other nuclear con-
stants referred to depends on the elements involved and on complicated
questions of the actual energy distributions obtaining, which are non-

Maxwellian in media with strong thermal capture.

19. Remark on determination of photon sources. Collisions of

neutrdns with particular types of nuclei may result in the production of
y -rays; radiative capture and certain (n-n) inelastic processes are
examples. One of the applications of Monte Carlo to neutronics problems
which is becoming of increasing importance is the determination of
photon production by neutrons in shields. The latter information may be
used in turn for the input energy and spatial distribution in the Monte
Carlo treatment of photon diffusion, discussed in the followiﬁg chapter.
Insofar as the neutronics of such shielding medis is concerned, one
need only record as they occur the number of radiative captures, and the
number of (n-n)radiative collisions caused by incident neutrons of energy

group g, in each of a set of spatial zones.
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This, together with a knowledge of the ¥ energies produced in
capture and the production cross sections for ¥ 's by neutrons of energy
group g in (n-n) reactions, yields the desired distributions for the

source in the related photon problem.
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CHAPTER VI

PHOTON COLLISIONS

' 1. Introduction. The procedures discussed in the present

manual are adapted to problems involving the scattering of photons on
electrons and nuclei insofar as photons may be considered as "particles"
subjeqt to mean free path and differential scattering laws. It is for
this ﬁeason that we speak of particles in the text. It is only in the
collision routine ( 7 ) that the physical character of the particles
need be distinguished. We have discussed many of the collision proc-
esses for neutrons with nuclei in Chapter V. We now turn to problems
involving photons. The principal types of photon-electron collisions
are: (1) Compton scattering, which is the strict analogue of elastic
scattering of neutrons on nuclei; (2) pair-production; (3) photo-
electric effect. These we proceed to discuss from the point of view

of the Monte Carlo technique.

2. Basic concepts and constants. We shall use
1

c = 2.99776 x 1010 cm sec — for the velocity of light in vacuo
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h = 6.624 x 10"27 erg sec for Planck's constant

28

m, = 9.10658 x 10" gm for the rest-mass of the electron, and

e = 4.8025 x 10710

esu for the electronic charge

A photon is characterized (for the purposes of this chapter) by
its energy € (ergs). To such a photon is ascribed a frequency v (sec'l)
by means of the relation e = hv and a wave-length A (cm) by the equa-
tion AV = c. The "equivalent mass" m (gm) of such a photon is defined
by mc2 = € . The speed of all photons in vacuum being c, we may
assign to a photon a momentum (vector) mV, where V is the velocity
vector of the photon in the laboratory system. Then

vl =c, and |mV| = mc = hv/c

An electron is characterized for our purposes by its cherge
e (esu), rest-mass m, (gm), and its velocity vector V. Its mass is
then m = mo/]/(l - ﬂz) vhere B= |V/| /c. The momentum vector of
the electron is mV and its total energy mc2.

It is customary to express photon energies by means of a dimen-
sionless parameter E = hV/mbce, vhich gives the ratio of photon energy
to the rest-mass energy of the electron, namely, m.oc2 = ,81837 x 10’6 erg
or .51083 Mev, recalling thet 1 Mev is 1.60203 x 10'6 erg (Chapter IL,§3).

This parameter E 1is the one we adopt for photon energy in the remainder

of the chapter.

3. Compton collisions. A Compton collision is by definition

a collision of a photon with an electron (the latter assumed free and

«1lha




at rest in the laboratory system), with preservation of total momentum

(vector) and total energy.

We may, therefore, proceed in much the same

way a8 we did in the case of elastic collision between neutron and

nucleus (Chapter V, §3), except that we do not introduce & center of

mess. We agree on the notations and relations of the following table:

Before collision

After collision

Photon Electron Fhoton Electron
_ 2 _ ~ 2 _ B
Mass m = hv/c m, = m n, = hv'/c n, = mo/Vl B?
B = vy/c
Velocity V1 V2 = 0 Wl W2
Speed |vy| =< ‘Va\ =0 |W1‘ = ¢ |Wa| = v,
Momentum m._LVl m.2‘V2 nlwl ng'w2
~ _ 2 2 . . 2
Total energy e = hy = mlc mac €' = hy' = nlc n2c
We have the two conservation laws:
lel + m2V2 = nl'wl + néwz
2 B 2
m,C + mye” = n,cC + nc
or equivalently,
(hv/ce) vV, = (hv'/ca) W. + nW (1)
1 1 22
hy = hy' + 2 (n, - m.) (2)
2 2

2
Introducing the energy parameters E = hv/m.oc2 and E' = hv'/moc ;

we read
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o 2
BV, =EW, + /|1 -8 (3)

E-E'=l/‘/ -8% -1 (4)

remembering that, contrary to our usual practice, the capitals E, E'
represent scalars.

From (L4 ) it follows that

2

[1+(@®-E)]%-1=2(@®-8)+(E-8)2=8%01-8% (5

while from ( 3) we obtain
2 . 22 2 2
E2v1 - 2 EE |V1HW1‘cos v, +E 2”1 =W, /(L -8%)
where wl is the deflection angle from Vl to Wl. Hence,

(E2 + E'2 - 2 EE' cos Wl)

(B -E')% + 2 EE' (1 - cos ¥ )

£%/(1 - 82) (6)

Eliminating ,32/(1 - ,32) from the two equations (5 ) and (6 ),
. 2 _ 2
2(E -E') + (E -E')" = (E - E*) +2EE'(l-cosdfl) or
E -E'=EE' (1 - cos wl)

Thus we have finally the relation

E'=E/[1+E(L - a)]
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where we use 8 = COS wi

, 88 usual for the laboratory deflection cosine

of the incident particle. This is the analogue of the neutronics rels-

tion E' = E(S + T u) of Chapter V, §3.

It is noted that, as in the case of neutrons scattering on

nuclel heavier than hydrogen, there is a positive minimal energy -

]
E min

As a side remark, observe that the relation
E -EB'=EE' (1 - cosd&)

leads at once to the familiar wave-length relation

v

\ 2h 2 (1

N Qﬁ)
Q

if we first write

I 1 2 Wi)
Ei CF - 2°in &E

= E/1 + 28 for the scattered photon, attained for a

= COSWl = "'10

and use the reletions E = hV/moc2 and vA=c for both primed and

unprimed variables E,V,A, The "Compton wave length" Ao is defined

to be h/moc = 024264 B (1 R = engstrom unit = 10'8 cm), and the

relation is sometimes written

n

W
2Ab sina(—l)

4A 5

We have seen how a = cosui determines E', the resulting energy

of the photon. We have still to show how the kinetic energy and

defection cosine cosw2 of the scattered electron are found in terms

of E and E'.
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To be sure, equation (2) answers the first gquestion, since
c2(n2 - m2) = hv - hy' = moc‘?(E - E'); thus the kinetic energy of the

scattered electron is

By = .51083 (E - E') Mev

We use equation ( 3 ) to determine cos ¥, as follows:

cos W, = WV, / |w2| \vl| = W vy (BV) - E'W,)/une
- Vl—-ﬂ_a(Ev'f =B |V, | |y cos wy)/ume

m (E - E'a)/8

(8 - £'a)/(8 /Vl——ﬂe)

where B//1 - 132 is known from either equation (5) or (6).

il

Summarizing the results of this section, we have

photon deflection cosine a = cos wl

scattered photon energy E'

E/ [1 +E(1 -a)] (units of moc2)

recoil electron K.E. E

1l

.51083 (E - E') Mev

electron deflection cos ¥, = (E - E'a)/( .8/‘/1 -8 2)

B/ 1-8° = V[(E-E')2+2(E—E')]

As an example, suppose an 8 Mev photon scatters at an angle of

v, = 60°. Then
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1

&8=3

E = 15.661 (8 Mev)

E' = 1.7735 (.90596 Mev)
E, =T 09hou Mev

8/ = 14.854

cos W, = .9946k

¥, =5 056

4., The Klein-Nishina differential cross section.(le) This is

the differential cross section gE(Q) in cm?/steradian which governs
the distribution of a = cos vy for the scattered photon in the Compton
effect; and is the photon analogue of the neutron cross section of
Chapter V, §§% and 6. It is defined by the formula

o) 2 2
o (-Q)dg = ;—ll 2 ’ - {L'I" B (l ~a) aQ (7)
E (2 O) [1 + E(L - a)]? (1+2%)[1 + E(1 - )]

(13) 12

where r = eg/moc2 = .28183 x 10~

o)
Now we might proceed just as in the case of elastic collision
to determine a by (say) von Neumann's device (Chapter I,§5) and then

E' from E and a using the relation

(la)For‘an account of this and related functions see R. latter and

H. Kaln, Gamma-Ray Absorption Coefficients, Project RAND, R-170 (1949)
and the National Bureau of Standards Circular 542, Graphs of the Compton
Energy—Angle Relationship and the Klein-Nishina Formula from 10 Kev 1o
500 Mev.

(13)This is the classical Thomson radius of theaelectron whlchgﬁnters
into the electron cross-section formula 8/3)nr 6654 x 10
(= .6654 barns).
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E' = B/[1 + B(1 - a)] (8)

of the preceding section. In view of the complexity of (7) it is

fortunate that a simpler alternative exists. We describe this in the

following section.

5. The photon energy distribution and Compton cross section.

In order to prepare for the alternative method, we first determine the

differential cross section‘gﬁ(E') from the relation
o 1 t = = o °
E(E )dE aE( Q)de aE(Q) 2 n(da)
Using the preceding equation (8) in the form
_ 1 1
a=1+ E L (9)
we obtain the result

nr © . 2
E E

We mey obtain easily from this the total cross section for

Compton scattering as follows:

E
1+ o8
o 1+E 2 EP-oE -2
= 2Ty 5+t =5+ 3 ,en(l+2E)
(1 + 2E) E oF




which is graphed in the National Bureau of Standards Circular 542

g
for a suitable set of energy groups (assuming Ne is the numerical

( lc ) and may be used to compute free paths A _ = l/Neog (Compton)

density of free electrons and no other processes exist).
We will actually use the Monte Carlo procedure

E
r = PE(E') E]}; GE(E')dE'/UE(Compton)

'

to determine E' from E and random number r, since a sufficiently

accurdte fit for the inverse function is gilven by(lu)

B
1l +4r + (2E - 4)r

E' =

3
where 4 = E/(1 + .5625 E), and E Sy (~2 Mev). Addition of a term

SE-8° Q-7

yields a reasonably good fit on the range U< E < 10.
The equation (5) above then permits determination of a from
E ande'.
; Thus a Compton collision with incident energy E not exceeding

5 Mev may be satisfactorily handled by the flow dlagram of Fig. 45.

(lh)Bengt Cerlson, The Monte Carlo Method Applied to a Problem in
» -ray Diffusion, Los Alamos Scientific Laboratory, AECU-2857, 1953.

Cf. H. Mayer, C. A. Burton, Tables of the Compton Effect Cross Sections

and Energies, LAMS-1199, Los Alamos Scientific Iaboratory, 1953, for
goodness of fit.
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s=E/(1+ 5625 E)—| r — E'=E/[1 +sr+(2E—s)r3}
@4-—-E
1@
E'+%(E—4)(r—r) —~ E!
.
E, - E'
. © ©

t Y '
gtl—g E - E'

W+LE—'LE

E* - E

Fig, 45
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6. Photoelectric effect and pair production. We have discussed
the Compton collision for photons with electrons and noted that it
corresponds to the elastic collision in neutronics. If a medium con-
sists of elemen;cs A, B,..., the contribution of the Compton effect
to the "total cross section" &£ (¢cf. Chapter III,§2) is NoE(Compton),

where N = NAZA + NBZB + ... 1is the total numerical electron density.
3

denotes the number of atoms of element A per cm” and Z

Here N A

A
is the atomic number (= number of electrons per atom) of element A.

In determining the '"total cross section" all collision processes

must be taken into account, and one must consider in this connection the

further contributions N oA

e (pe) + ...
effect and NAO% (pp) + +oo =X (pp) of pair production. Cross sections
E

for these processes for elements with 4 £ 2 £ 92 and .10 £ E £ 20 (moca)

1]

Y (pe) of the photoelectric
E

may be found in the RAND report R-170 referred to before. Thus the

free path determining collision positions is given by

A= 1%

where

L = Nog(Compton) + £ (pe) + £ (pp)
E E

In the present report we regerd palr production and photoelectric
effect as absorptions, and have therefore, upon any collision, an

absorption probability [ Z - Ne_(Compton)]/Z , which may be dealt

B
with by the alternative methods discussed in Chapter II, §2.
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It must be remembered that secondary photons (X-rays) may result
from the photoelectric effect in heavy elements, and that the electron
and posifron born in pair production produce bremsstrahlung while being
slowed down by ionization of the medium. Moreover, the inverse photo-
electric effect may come into play, and the'positron is finally annihi-
lated with an electron to produce still further y-rays., If the energy
cutoff of the problem is not sufficiently high to exclude consideration
of these secondary photons, one must include in the output of the orig-
inal problem sufficient information to determine source distributions

for such secondary radiation. We do not deal with this case in the

present manual.
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CHAPTER VII

DIRECTION PARAMETERS AFTER COLLISION

1. Introduction. The purpose of the present chapter is to
develop formulas for the final direction parameters of a particle after
scattering through an angle wi of cosine a, in the laboratory system,
from an incident direction w, v, v (or w alone). While these formu-
las are somewhat long, they may be derived from the simple principle of
elementary complex variables which states that (x + iy)(cos © + i sin 0)

is a complex number whose vector is rotated through an angle © from that

of x + 1iy.

2. Formulas for the final direction cosines. Let u = cos &, Vv =

cos B, W = cos y be the direction cosines of the incident line of flight.
Consider (u, v, W) as a point on the unit sphere w2 + v+ w2 =1 in
direction space U, V, W (éf. Fig. 46). Ietting P, § be the polar

coordinates in the U, V plane of the point (u, v, o) we see that
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p = sin Y = yl - 52
cos 5

]
=1
S~
g

#

sin a

Our first objective is to derive formulas for a particle rotation

v/ e

of U,V,W space into itself which takes the point (0,0,1) into (u,v,w);
namely, that resulting from iteration of two simple rotations: the
first sbout the V-axisg through the angle 7, followed by a second

rotation through the angle @ about the W-axis.

Fig. 46
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We have for the first rotation

w' + iu' =
v o= v
and for the second
u' o+ iv" = (u’
wn = w'

(w + iu)(cos 7 + i sin ») }

+ iv'){cos @ + 1 sin @)

Separating real and imaginary parts, we read

ul

v!

W!

u cos 7

i

i

[}

H

+ w 8in ¥

-u sin ¥ + W cos ¥

u' cos @ - v' sin @

u' sin @ + v' cos [}

wl

of (3) into (4) yields

u cos ?

u cos ?

L

-u sin ¥

cos B -vsein @ + wsin
sin @+ vecos § + wsin
+ W cos

(1)

} (2)

(3)
(&)
7 cos @
7 sin @ (5)
¥

'Replacing the functions of 7, # by their values in terms of

?= V(1 -%), u, v, and w, we obtain from (5)
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= WRT-vI) P ewE
v = (uwv+vu)/s +wv L (6)
W o= ~up W

o

Under this rotation (6) it is evident that (u,v,w) = (0, 0, 1) goes over
into (u", v*, ") = (u, v, w).
Now we know that the direction (u, Vv, w) of the deflected line of

flight makes an angle W of coeine a with the direction (E, '\-r', ;)

1
of the incident line of flight., It is clear that this restricts the
former to a.cone of directions of opening ¥ about the latter direction,
and the directions on this cone aré all equally likely. We adopt the
following arbitrary convention for fixing the deflected direction;

namely, we always conslder first a cone of opening vy about the

W-axis OW, and & point P = (sin ¥, cos 4, sin v, sin 4, cos qrrl)

located on this cone and the unit sphere, determined by an azimuthal

angle of ¢ uniformly distributed on -x <& 6 S 7 (Fig. b47).
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Fig. 47

We then agree that the final direction (u, v, W) is the image

under rotation (6) of the point P 8o constructed. It should be

clear that this is an appropriate convention for our purpose.

For simplicity we adopt the further notation
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8 = COS \ltl

- 51 N‘/ - 8° <w <
b = sin¥; = (1L - a%) OLtw $n
¢ =cosd _ _
d = sind = (sgnd )Y (1 - c2) ~-m<ésn

In this notation, the point P = (be, bd, &) = (u, v, w) goes over into

U = (bewu bd¥)/ s + au
v = (bewv + bdu)/ p + av
W = -bep + aw

Summarizing the results of the present section, we have

u! = (bewu - bdv)/”/(l - w2) + au'
v! = (bewv + bdu)/ l/(l - w2) + av (7)
wt = -be V(1 - w2) + aw

where

u, v, w are direction cosines of the incident line of flight
u', v', w' are direction cosines of the deflected line of flight (lab.)
a = cos ¥,,vwhere ¥, is ‘the angle between the two
b =‘/ 1l - a2
c = cos 8, where -7 $4 < uniformly
d = (sgn 6 ) 1-c?
Note that these formulas should not be used if |w| is too close to
unity. They are then poor computationally and indeterminate at |w|= 1.

In such a case it is better to by-pass the rotation (6) and use for
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u', v', w' the coordinates

u' = be
v! = bd
w! = aw

where &, b, ¢, d have the definitions above,

3. Subroutine for the final direction cosines. We incorporate

these results into the ( 8 ) routine of Fig. 48. The power 2™" used to
determine whether the incident direction should be considered vertical
may well depend on the accuracy required and on the number of "bits"

afforded by the particular machine being used.
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2
6 =n@r ~1) —w| c=co8 § |—»|D = /(1—0)

® l@
w = ut = be
v = Eqgs (V) vt = bd
w' = w! = aw
ut —u
vt —~ v
wt - w
Fig. 48
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Y. Final direction w 1in slab or spherically symmetric case.

The present section is concerned with determination of the final direction
cosine w' = cos ¥' of the scattered line of flight as it exists at the
peint of collision, in terms of the cosine a of the laboratory angle wi
determined in (¥ ), as required in both slab geometry and spherically

symmetric geometry. (Cf. Chapter II, §2, and Chapter IV, §8.) We recall

that, in the spherical case, the cosine w = cos ¥ of the angle y which the

incident line of flight makes with the radius vector as it exists at the

point of collision has already been prepared (Chapter IV, §3) and stored as

w before entry at (4 ),
Tt is immediately evident that the w' formula of equations (7), in

§2 of the present chapter;

w! = <be VI - w2 + aw

applies to the slab case, where a, b, and c have the definitions given there.
Note that the formula is independent of the u, v used in the derivation, as
it should be.

But it will also be clear that the identical formula applies to the
spherical case, if we imagine for the moment that OW represents the outwardly
directed radius vector direction and u, v, w the direction of the incident
line of flight relative to tﬁe radius vector, the u,v being immaterial.

In both applications, it will be observed that the angle 4 involved
in ¢ = cos § may be limited to the range O < ¢ S 7, since cos -d=cos g=rc

is the only function of 4 appearing in the w' formula,

~163=



@"’ b=*\/(1—a2) > » ™| 6=7r ™| ¢ =cos é

w' ==bcA/(1 — wz) + aw

wt — w

1
Fig. 49 @

In both cases, therefore, we have the simple routine of Fig. k9.

5. Scattering isotropic in the laboratory system. In any case

where particles emerge from a collisionvin a distribution isotropic in

the laboratory system, it is patently foolish to determine a =2r -1

for the deflection cosine relative to the line of flight and then determine
the final direction cosines by means of the preceding two sections. It

is simpler to assign the direction of the deflected line of flight by the
same method we used to set up an isotropic source in Chapter II, §5a, c,
ignoring the incident direction completely. Thus the ( ) routine referred
to is simply that of Fig. 10, with exit to (B} for the u, v, w case,and,

still more simply, boxes r and w = 2r - 1 for the slab and spherical case.
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CHAPTER VIII

TERMINAL CLASSIFICATION

1. Introduction. We have already indicated various terminal

events in the history of a particle, e.g., transmission, capture, loss

to energy cutoff, and so on. We must still consider some of the many
ways in which it may be desired to classgify a particle which escapes

the system. This is the general function of the (€) routines pre-
viously referred to. Such routines invariably exit to (a) for the
introduction of a new source particle. Of these many kinds of classi=-
fication, we can hope to give only a brief indication, since the demands
of physicists on this score are frequently involved and exacting, Indeed,
it is the ability of Monte Carlo methods to provide answers to the most
intricate questions of this kind which makes them an Indispenseble tool

in design.,

2. Classification of escapes on number of collisions. As the

simplest example, we may refer to a problem whose purpose it is to
determine the distribution of escaping neutrons with respect to the
number of collisions suffered within the system. BSuppose we agree to

keep storage registers Nv’ v=1,2, «s., 10 for the total weight of
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neutrons escaping with v £ 10 collisions, and Nll for those escaping
with v 2 11. We suppose that the forced first collision device has been
used so that the transmission counter T records the weight escaping

with v= 0 automatically (cf. Ch. III, Bk). We may, therefore, follow

the routine of Fig. 50.

W+ N — N
v v

(:)——» v — 11 o
®

-+ —
w Nll N11

Fig. 50

3. Energy and angle distributions of escape. Consider a problem

with a source direction u =0, v =0, w=1 in which one desires the
correlated distribution of escapes in energy and angle with the source
direction., There must be provided in permanent storage a suitable set

of cosines Cl > 02 >eee>C_ =<1 and energy bounds él > 62 SeseD>€

J H

= EG’ which need not be the same as those used for other purposes, while

in dynamic storage, we reserve JH positions for the total weights

N
J,h

escaping in the corresponding categories. In such a problem, an escaping

neutron enters (€) with a known weight W, direction cosine w, and

energy E, and is classified as indicated in Fig. 51.
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WHN ™ N

Fig. 51

Such a classification in angle is appropriate in a case like that
of Fig. 52, where a detector band is at essentially infinite distance
from a scattering medium symmetric about the Z-axis. Here infinite
distance means that all particles escaping from any point of the
medium surface in the same direction hit the band in the same angular
zone. Then the number Nj,h referred to is the number of h-group
escapes in the solid angle 27r(Cj - Cj-l)’ so that NJ.,h/27T(CJ - Cj-l)
is the number in this category escaping per steradian, and the number
hitting a detector of given area on the circle indicated in the figure
can be predicted.

If the source direction is again u =0, v =0, w = 1, and the
scattering medium is symmetric about the Z-axis, ensuring symmetry of

escape about this axis, but the detector is not at infinity in the
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Fig. 52
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sense referred to, it is necessary to take into account the distance
dB from center O to the detector band as indicated in Fig. 53 and
Fig. 54. 1In the latter, the exit leads to the previous classification
routine of Fig. 51 and thence to (a). At entry to the routine of
Fig. 54, the x,y,z parameters are those of the last point of de-
parture before escape. Again the results may be normed to number per

steradian and interpreted with reference to the detector band indicated.

detector band

Fig, 53



@—- 0 =ux + vy + wz |— A=62—(x2+y2+z2—d§)

t=—0+VA
zt=.z+wt

zt/dB - W

To Fig. 51

Fig. 54

The preceding discussion 1s limited to systems symmetrically
distributed about the source (+Z) direction., Problems of this kind
have the great advantage, from the Monte Carlo standpoint, that no
escaping particles are lost to classification.

Unfortunately, there are experimental considerations which, in
many caseé, dictate a geometry in which such symmetry is lacking.
Consider, for example, the situation in Fig. 55, in which a source
with direction uw =0, v = 0, w = 1 impinges on the lateral surface
of a cylinder with axis on the X-axis. It is desired to count the
numbers NJ hitting a coaxial band zone j upon escape, the de-

tector band having radius dB and height h. Since the cylinder
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Fig. 55
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lacks symmetry about the Z-axis, it is no longer possible to classify
escaping particles according to the cosine w of the angle ¥ of the
line from origin to the point of intersection of the line of flight
with the sphere of radius dB, since the escapes with this direction
are non-uniform about the Z~axis. Without rather complicated devices
for prejudicing scattering in the band direction, which we shall not
discuss, all one can do is to submit to running very much larger
samples in order that the rather small solid angle actually subtended
by the band shall receive a sufficient number of escapes to render the
Nj statistics reliable., This is a real difficulty, and it would be

of great value for experimentalists contemplating the use of Monte Carlo
methods for thick target corrections to consider the feasibility of the
symmetric geometry in the experimental setup.

A suitable routine for the case cited, without any special
importance sampling devices, is given in Fig. 56, the exit again re-
ferring to the routine of Fig. 51. The category LB refers to all
escépes failing to hit the band. In computing the distance t to the

2 = dg, one avoids the 1 = u2 =0

(infinite) cylindrical surface y'2 +z
catastrophe, as indicated in Ch. IV, 86 (end of section).

Consider finally a case where it is desired to classify a
particle escaping with direction u,v,w from the lateral surface of
a cylinder x2 + y2 = R2 according to fhe angle méasured from the
normal to the surface. If (Xt’yt’zt) is the point of escape, deter-

mined in the usual manner from u,v,w,R, and the position x,y,z of
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6 = vy + wz

zt/dB - w

l

To Fig. 51

Fig. 56
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last departure, then the direction of the normal at this point is given

by

and the cosine w of the angle of escape with the normal is

X u + ytv + zy o 0

w o= R = (xtu + ytv)/R
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CHAPTER IX
REMARKS ON COMPUTATICON

1. Scaliné. If the machine employed lacks the "floating decimal"
feature or if considerations of machine speed exclude its use, all
computaﬁions indicated in the flow diagram at each step must be planned
in advance to remain on the interval -1< x <1l. The formulas and flow
diagrams of the present text are unscaled and are expressed in the usual
physical units, The scaling proceduré in Monte Carlo problems usually
causes no difficulties, and may be left to the imagination, with the
remindef that one must be careful to avoid the loss of accuracy which
attends over-scaling. Remarks are made about scaling at various points
in the present chapter as it enters into special subroutines, such as
exp( -x/y) where x may exceed y, in the ﬂn X routine where x

p=e3

may be as small as , and in the cosine routine for -7 < x £ .

2. Debugging. When a problem is ready for actual running by

the machine, some method of detecting the inevitable human errors which

may enter at all phases of the coding must be employed to assure all
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concerned that the machine will perform exactly the routine intended.
It goes without saying that all permanent storage constants should be
printed out at various intervals and checked against the original list,
certainly at the beginning and end of the problem. Moreover, it is
sometimes possible to build in a sum check of all code orders and
permenent constants which will automatically detect any changes due to
electronic misbehavior once the machine is running. We refer here
rather to the question of ensuring that the code itself is correct.
This question presents rather greater difficulties in Monte Carlo
problems than in other types of computation because of the complexity
of- decisions involved.

We have found that the most convincing guarantee of faithfulness
of code to flow diagram consists in the preparation by hand of a
deterministic sequence of numbers Tys Toy r3, +es designed to process
automatically a hand-picked set of particles which are so chosen that
every logically possible path through the flow diagram is traversed at
least once with non-triviael parameters. A speclal debug routine may be
used for this purpose which instructs the machine to follow the code
precisely except that, upon call for the next random nunber, the
random number routine is by-passed, and the prepared list is consulted
for the next number rn of the hand-picked sequence. At every list
consultation the machine prints out all significant variables of the
problem, the printout then being compared with the hand-computed

particle histories.
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This is a laborious process in the handw=computing phase, but is
well worth doing, even though, in complicated problems, the processing
of 50 particles or so may be necessary.

3. Special subroutines. We include a number of special sub-

routines for some of the functions commonly oceurring in Monte Carlo
calculations. No claim is made that these are the best available; they
are only;given for completeness in case the reader knows of no better
one.

a. A random number routine. We have used in all problems the

sequence Ty, Iy, T of 38 bit diadic numbers, generated by the

3’000

algorithm defining r to be that 38 bit number corresponding to the

+1

middle 38 bits of the square of r , where r, 1is the 38 bit number

1
defined by 10 BBB FALDE in the system with base 16, with the decimal

after the first bit. Thus r, = 0.001, 0000, 1011, 1011, 1011, 1111,

1
1010, 0100, 1101, 111, the final zero being ignored. The sequence
automatically terminates in zero at about n = 750,000 and has been
thoroughly tested, not only for the uéual statistical features but by

its actual use in many problems. The Monte Carlo use of the sequence is
of a very peculiar and unpredictable kind. If one fixes attention on
any particular random number box of the flow diagram, it appears that the
numbersjpctually selected from the sequence for use in this box are a
subsequence selected from the main sequence by completely inscrutable

rules depending on the sequence itself. Whenever a probability of some

terminal event (e.g., transmission) was known, the corresponding Ni/N
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for that category agreed even better than one might expect it to on the
basis of a truly random sequence.

b. Shifted random numbers., An average problem may involve

20,000 source particles, each with perhaps five collisions, and each

collision may involve three or four random numﬁers. It is clear that
one may expect to exhaust the random number sequence in many problems
if it is used in this simple way. It is true that the same sequence
may safely be used over again without repetition of results provided

the initial r is not used at the identical place it was first called

1
in the flow diagram, and indeed, such re-use of the sequence may be
resorted to.

We may mention however that the usual problems do not require
anything like 38 bit resolution, and the number of random numbers
available may be increased by a factor 2 or even 4 by a shifting'
routine, which is incidentally faster than squaring and so helps to
reduce machine time, This éonsists in using in sequence not only T

%1 ap, 0
but also the fractional parts of 2 'r , 2 (2 rn), etc.,as random

numbers, before squaring r to obtain the next r For exsmple,

n+l°®
if three random numbers are to be obtained from r,s one might use the
fractional parts of r , 212rn, and 212(212rn). The sequences Ob=-

tained by such extensions of the basic routine have also been tested

and proved satisfactory.

-178-



c. A logarithm routine. From the usual series

Lo + %) = x - /2 + x3/3 = /b 4 ous |x] <2
one obtains

ol -x)=-x-5/2-x3/3 -5 s x| <1
and hence

fn(%’ﬁ) = -2{x+x3/3+x5/5+...} |x| <1

which, under the transformation y = %i% becomes

3 >
=1} 1l [y-1 1 (y-1
/ny = 2{(%1)4"3'(%) +'5:(%_—l') +ooo} Yy >0

Convergence of the latter series is rapid enocugh for the range
% <y <1l to permit use of a moderate number of terms; five should
suffice for most purposes.

Now suppose ¢ is & number on the range 2723 < ¢t < 1 for

which ﬂn t is to be computed. We determine that integer n for

which

0723 ¢ p~(01) ¢ ¢ , o

[17AN
|
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Then 2-:L < 2%

n <1 and fné = -n1n2+,?nn,where
f% n can be cbtained from the series.

Now = 1% 223 23,1% 2 < 23(.694) < 16, so that |2-u £n ¢ I <1
for ¢ on the range 2-23§ § < 1. Hence a routine suitable for a
scaled problem is given by Fig. 57.

Our only use for the ﬂ& function has been in collision-

distance formulas such as
[= crhar = -Ehk(2'hjnr)

Limitation of random numbers entering this formula to the range r'g;2'23
means that we force a collision within 16 free paths. This is inaccurate
to the extent that e-l6 is the chance of collision at a still further
distance, which is an acceptable error in most cases. In problems in-
?olving systems so large that such errors are significant, probably some
type of importance sampling will be used in place of the simple formula
sbove. In any case it is clear how to modify the routine for higher
powers, =23 being quite arbitrary.

For the routine as given, it is clear that if all distances (ém)
are scaled down by a factor exceeding 16 times the greatest free path

A occurring in the problem, one is safe so far as this particular

formula is concerned.
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d. The exponential exp(- x/y). It is frequently necessary to

compute the value of exp(- x/y), where 0< x<1l, O« y< ls Even
though x and y are scaled, the quotient x/y may exceed unity and
cannot be dealt with directly by fixed decimal point machines. There
are excellent polynomial approximations(ls) to exp(-p) for 0<p <fn 2,

so that we may define the integer n Dy
ntn2< xfy £(n+l) tn 2

and p on the prescribed range by p = (x/Y) - n[n 2. We shall

therefore have

exp(~ x/y) =20 ™’

p

- o .
where e a, +p( ot pa2) with

a = 1

»
li

1 - 9664279798

[y
H

5 = 353576363k

is usually sufficiently accurate for our purposes.

(15)]3. Carlson and M. Goldstein,"Rational Approximation of Functions,"

Los Alamos Scientific Laboratory, LA-1943, 1955. Gives polynomials
of various degrees with bounds on the errors involved.
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We may therefore proceed as in Fig. 58.

e., A cosine routine. We indicate a scaled routine for computing

% cos 8, waere 3 is to be chosen uniformly on -7 £ b £ 7, as

required by Ch. VII, § 3. It is based on the following series of

formulas
Input 0 = x <1, 0 <y<1
Stored constants a ,a ,a,inz
o 1 2
x> £ 'y«fn2——n —™]| 0 —n E—m— 290 é 6—~n— & n+1l—n
©
p =8+ n/y
- _
e ao+p(a1 +pa2)
exp-x/y) = 2 e

Fig. 68
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i
n
e
=
~~
e
]
avl f
N’
[ I

s = sin §' = §' EP I S 6'2[;"' A '2)]}
- 6 - 6 é 3| 51 6 7: 9! 6
-32-' cos b = 22{2'3- s2 + s }

‘the final formule arising from

cos L &' =2005226' -1

cos §

y 12
2142 [1-2sin aJ]

1-882+88)+

It may perhaps be mentioned here that for scaled machines the
following procedure is somewhat shorter than that obtained by applying
the preceding method to Fig. 49, the routine for slab and spherical
final direction w'. In place of choosing & uniformly on 0% & £ m,

we may introduce the angle 6 = 4 - 7/2, choosing the latter uniformly

~
on -m/2 £ § £ wf2. Thus we may proceed as follows:
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= 8in §' as above

"
= ¢coséd = s8in ¢

''= aw - be

= sin 26' = 2 sin &' cos §'

l-w

= aw - 2 s V(l - ag)(l - 32)(1 - We)

We should therefore have in place of Fig. 49 the routine of

Fig. 59. In this way we avoid the square root for b = 'l - a2 and

make use of only one double angle formula instead of two.

k- L

&)—

sin &1

Fig. 69
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4, A Monte Carlo device for Yr . There are many ingenious

devices for avolding the computation of the value of various functions

(16)

with arguments involving a random number. As a simple example, the

process

———é{ Y |t R = Rl.yqr' e

involved in throwing for the radius of a neutron in a source distributed

uniformly in area on a disk of radius Rl may be replaced by the fol-

lowing:

—*'r r—»¢t r ;r—’nﬂR:leax(g,n).—,

That is to say, one may use in place of the square root of one
random nunber the larger of any two successive ones, for +the equation

¢ = Yr results from the standard Monte Carlo relation

X
r=f 2¢ de
o

and is thus equivalent to choosing ¢ on the interval (x, x + dx) with
frequency 2x dx. But the alternative of throwing points (¢,n) into
the unit square 0 £ §<1, 0 £n<1 uniformly in area and choosing

the larger of the coordinates automatically determines an x = max(¢,n)

(16)

Cf. J. W, Butler's paper in Symposium on Monte Carlo Methods,
John Wiley & Sons, Inc., New York, 1956.
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on (&, ¢+ dt) with this frequency, as is apparent from Fig. 5%a.

Se A Monte Carlo device for the cosine of an equidistributed

angle( 17) In various places we have needed the cosine and sine of an

angle ¢ equidistributed on the interval -z £ ¢ £, and have hereto-
fore given a rather cumbersome but straightforward method involving
series, square root, and, in case of fixed decimal requirements, a
multiple angle formula. We give in Fig 59%b an alternative method,
easlly scaled if necessary and avoiding series and square root routines.
One observes that the desired determinafion of ¢ =-cosé¢ and
d = sin¢ 1is equivalent to choosing a point (c,d) uniformly on the unit
circle. This in turn is tantamount to throwing points (&,n) uniformly
in the square -15 x, y £ 1, rejecting those lying outside the unit
circle x2 + y2 = 1, and teking for c¢ and d the values § y€2+ n2
and n/@¢2+ ﬂg, for the retained points (é,7) are uniformly distri-
buted in area in the unit circle and hence their projections (c,d) on the
unit circle are uniformly distributed also. But these square roots nmay
be avoided by limiting the selection procedure to the first gquadrant and
using double angle formulas to obtain (c,d) uniformly on the upper half-
circle. Finally an additional random number can be used to change the
sign of d with probability 1/2. The efficiency of the retention of

random number pairs is  w/L.

( 17)The method is described by von Neumann in U, 8. Department of
Commerce, National Bureau of Standards, Applied Mathematics Series #12,
Monte Carlo Method, Washington, D. C., 1951. Cf. footnote (1),
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(3}

Shaded area = 2x dx

¢, m
0 X X + dx £
Fig. 59a
S
=£2—n2
r— ¢ — ™ r ™| r-—n 52+n2—1 gz+n
®
d = 261
N
£+
r
el
2
E &)
—-d -~ d
Fig. 59b
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CHAPTER X

STATISTICAL CONSIDERATIONS

1. The limit theorem in the Bernoulli case., Suppose that a

certain experiment can result in ¢ ways of which a are favorable

to an event El while b =c¢ - a result in the event EO (not El).

Considér the set of all sequences of N trials of this experiment.
In this set of cN sequences, the number of sequences resulting in

exactly M occurrences of El is clearly

N M, N-M
CM a b

where Cg is the number of combinations of N things taken M at a

time. Hence, the probability of exactly M occurrences of El in a

sequence of N trials is

N N M. N-M/;,N N M N-M
PM = CM a b /C = CM P q

where p = a/c and q = b/c are the probabilities of El and Eo’

respectively.
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It is meaningful, therefore, to speak of the probability that,
in a sequence of N trials of this experiment, the number M of

"successes" E, shall lie between two given bounds; indeed,

1
Pla< M< 8) = Z N

a<M< 8 PM

There is a fundamental probability theorem(la) which states

that

P(l% - p‘ Se) = VE;.[t e-u2/2 du + R

where t = € Y— and
Pa

2
-t%/2 -(3/2) yNpq
|rl< & L e2 .25 lp - 4l ‘o

Vorina Npq

2. Application to the terminal ratios. The output of a non-

(29) ,,

multiplicative onte Carlo calculation without weights gives the

(lB\J‘ V. Uspensky, Introduction to Mathematical Probability, McGraw-

Hill Book Compeny, Inc., New York, 1937, p. 130.

(19)I.e., not involving fission,(n-2n) reactions, etc., in which a
particle gives rise to more than one particle.
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number M out of N source particles which terminate in each of a set
of all-inclusive, mutually disjoint categories C. If we fix attention
upon some particular category C, we may regard the processing of a
source particle as an experiment which has as its outcome either the
event El of termination in this category or Eo of non~termination
therein,

Now in any actual problem, there is a definite upper bound % on
the number of random numbers needed to process a particle due to the
existence of cutoffs based on energy, time, weight, number of collisions,
etc., We may then consider the class of all 7 sequences of % random
numbers, All these sequences are equally likely, and a certain o of
them determine a history terminating in category C. We may, therefore,
say that the probability of termination in C is p=a/7.

To be sure, this probability p of El is unknown; indeed, its
determination is precisely the object of the problem. We may, however,
gain soﬁe idea of the statistical reliability of the Monte Carlo result
by tentatively taking for p the value of M/N at some late stage of
the problem, when the latter ratio appears to have settled down, and
define q = 1 - (M/N)., Then the preceding theory states that the ratio
M

of the number of sequences of N +trials resulting in a ratio of T

satisfying the inequality
‘ |

-l
: IN'p<€
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to the totality of all possible sequences of N trials is approximately
f(t) = erf(t/}/?)

where t =€ Vi-(-l- and erf(x) is the well-tabulated "error function"

erf(x) E‘% fx e ™ dx

for which we include a brief table.

x erf x
0 0
.2 2227
oA 4284
.6 .6039
.8 JTh21
1.0 Bhet
1.2 .9103
1.4 .9523
1.6 .9763
1.8 .9891
2.0 <9953
2.2 .9981
2.4 «9993
2.6 +9998
2.8 «9999
Fig, 60
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By assigning to € ¢the maximum error to be tolerated and to N
the number of source particles processed, one finds from the value of the
integral the approximate chance of an error not exceeding €, which should
be close enough to unity for comfort and which approaches unity with in-
creasing N.

As an example, suppose a Monte Carlo run of 50,000 neutrons shows a
capture of 5000 neutrons in a certain zone, and the probability p of cap-
ture in this zone is desired with 5% accuracy. Let p = .1, e= ,05p = .005.
Then t = 3.72678 and f(t) = erf(t/y2) = erf(2.635) > .9998. The
error |R| in using £(t) for P(|M/N - p| < ¢) does not exceed .000L.

This is, of course, far higher probability of safety than one can
usually hope for. Consider for contrast the extreme case of a capture p
of about .0l with a maximum error of 1%. Then € = 10'“, and for N = 50,000,
t = 225 and £(t) = erf(t/V2) = erf(.175) ¥ .18, with [R| < .018. Here
it appears that a simple-minded Monte Carlo is quite ineffective., To be
sure, these requirements are far more stringent than are usually encoun-
tered, but such problems do arise, notably in counter design, and one sees
clearly the necessity for very large samples combined with ingenious de-

vices for improving statistics by use of weights in such cases.

3. The central limit theorem. The preceding remarks apply
strictly only to Monte Carlo procedures of the most straightforward
kind where no weights are employed, and a single, non-multiplying source

particle is followed until it ends its history in some terminal category.
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It may then be considered as a physical particle undergoing an experiment
insofar as the random numbers employed may be regarded as truly random.
However, we have mentioned many devices employing weighted par-
ticles. In such cases, it is clear that the total weight M terminating
in a given category C after such procedures no longer represents the
number of successes out of N +trials, that is, out of the processing of
N source particles, each initially of weight 1, and we can no longer
apply the theorem of 8l., There is, however, a well-known generalization
called the central limit theorem, of which we shall give here a very

(20)

special case, which does apply to the weight method.

Instead of the simple experiment which results in 1 with prob-
ability »p 'and in O with probability q, let us consider an experiment
which can result in K different ways, to which we assign definite real
numbers Wl, ceny WK, with probabilities Py sevs Py respectively,
pl+ ces F Py being unity. In a single trial of the experiment, therefore,
we may say that wk has probability Py k=1, «.., K. In such a case,

we define the mean a = Zp,_ W, and the dispersion b = Zp (W, - a)2
k 'k k' 'k

= Ejpk Wi - ag. Suppose now that N +trials are made of this experiment,
and M is the sum of N weights so determined. Then our theorem states

that the probability

P(I% -al < €) = erf(t/pﬁ?)-k Py

J. V. Uspensky ( 1c), page 294; cf. footnote (18).
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where t = ¢ V% and py> 0 as N>, The estimation of py is

given in terms of the third moment of the W-distribution.
Notice that the Bernoulli case is contained in this, since for
that case, we have Py = P, Wl = 1; Py, = w2 =0,a=pel+qg.0=np,

2 2 2 2
+q+07) -a"=p-p" =p(1l-0p)

i

b=(p-1 Pg, and the sum M of
the weights 1 and O recorded in the N trials is simply the number

of 1's (successes) in this sequence,

4, Application to problems using weights. Consider now a per-
(21)

fectly general Monte Carlo problem in which weighted particles may
be used, each particie leaving the source with weight 1. For simplicity,
we consider the weights limited to a finite set of numbers, which is, in
fact, the case in machine computation, FEach possible history assigns a
definite weight Wk to the particular terminal category C. Moreover,
‘it is clear that each such weight Wk has a definite probsbility Py
of realization upon the trial of a random source particle, namely, the
probability of a history which assigns Wk to C. Thus the mean
a=2=x P wk is the expected weight terminating in C per source par-
ticle., If we process N particles in a Monte Carlo problem, tallying
the weight W(T) contributed to category C by each trial particle
T=1, 2, +u., N, the final sum 2™ is the M of the theorem, and

M/N may be used as an approximation to a. The difficulty in applying

(21)

Multiplicative processes are not excluded. When they are involved,
we speak of the "expectation" a of termination in category C
rather than the probability whether weights different from unity
are used or not.
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the theorem lies in the fact that we do not ordinarily have at hand an
estimate for the dispersion b, In the simple Bernoulli case, we saw
that b was expressible in terms of p, but, in general, a does not
determine b. Since b = Ip wi - 82, we could use T?:l(w")e/n - (M/m)°
as a guess for b' if we had provided in the problem fo; tallying the
(WT)2 as well as the (W') for each trial particle T=1, ..., N,

Note that in case of capture, one squares the total of capture
contributions from all collisions of the particle; it is not correct to
simply cumulate the squares of each weight captured.

In a problem which does not involve multiplication (fission, (n-2n)
reactions, etc.), the weight procedure is better than that not employing
weights, at a given stage N, and for a given error €, to the extent that
the upper limit of integration GV?? exceeds G\Eﬁﬁ the probability in
the left member being identical, that is, the gain is based on the degree
.to which b is less than pgq. Now b = Z:pk Wi - a2, g =p - p2, and
the expectation of category C in such a problem is its probability,

i.e., a = p, Hence, finally the improvement rests on the fact that

which is clear since Wk <1 for all k. However, the degree of
improvement can be calculated only in the most trivial examples, It
is at least clear why the improvement is so great in cases of small

quantities, since, then, the Wk are quite small and Wi<:< Wk.
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It may also be remsrked that the theorem of section (3) applies
perfectly well in finding the expected number a (per source particle)
of particles terminating in a particular category C, while the theorem
of §<l does not. The unfortunate feature involved in the application
of the former theorem is that one has no simple way of knowing the
dispersion b. Problems of the complexity in practice usually forbid
complete tabulations of W2's for purely statistical studies, Actually
one provides the best weight tricks one can think of and tries to judge
the reliability of an output ratio by its convergence and stability as

N increases.

5. Illustrative examples. We include some extremely trivial

examples which nevertheless may help to fix the ideas involved in the
preceding sections.
(1) Consider the non-multiplicative problem defined by the

following flow diagram:

Q)
W+A—-A ——*{:)
(:}—- 1—-W > r > r —-%

® | w+B—B

C) W+C~—C

®
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We may limit random numbers to be either 0 or 1. The upper
bound ) on lengths of sequences of random numbers required is 2, and
the total number 7Y of such sequences is 22 = 4, In fact, we have the

following results:

00 implies termination in A
0l implies termination in A
10 implies termination in B

11 implies termination in C

If we fix attention on C, we find that the number @ of sequences
favorable to C is 1, and the probability of termination in C is
a/7 = 1/h. Hence, relative to this category, we have p = 1/4 for
W=1 and g = 3/4 for W = 0, with dispersion pq = 3/16.

Suppose for comparison that we decide to use a weight method for

this problem as indicated below.

—W+B—B

1w twea—a | -2 O,

® 1

——— -+ —
2 W +C C

—@

Now sequences of random numbers are limited to length ¥ = 1, and

we have the results
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0 implies A =1/2 B=1/2
1 implies A =1/2 C =1/2
Again fiking attention on C,
p, = 1/2 for W, =0
P, = 1/2 for W, = 1/2
and
a=p W +p, W, = /b
b = p, wi + D, wg - 8% = 1/16 < pq = 3/16

which illustrates in this very trivial example the type of improvement

discussed in the preceding section.

(2) Now suppose we have the simple multiplicative system in-

dicated by the following scheme:

Q
. r | r—l-
2
0 ®
1—-Ww _a r
© o
1l
Liary
®
10 _—-@
r
WtA-—-A ]
Q) ® N l_»CD
1 1-9
r-3

W+B~—~B
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Thus a source particle may terminate in A with probability 1/2

or,in the contrary case, it may either terminate in B with probability

1/2 or produce two particles with probability 1/2. The two progeny

thereupon have equal chances of terminating in A or B.

Here the maximum length { of random number sequences of O's and

1 15 b, ¥ =2"

= 16, and we have the following correspondence between

random number sequences and terminal weights:

0000
0001
0010
0011
0100
0101
0110
oL
1000
1001
1010
1011
1100
1101
1110

1111

L - -

il
O H HNMOOOOUHMRFHH R K

Let us consider only category B.

and corresponding probabilities

=200~

o W W W YW w W W W W W W W W W W
1

We

N R O PP H OO OO O O O O

have by inspection the weights




p0=9/l6 W, =0
pl=6/l6 Wpo=1
p, = 1/16 W, = 2.
The expectation and dispersion are
a=Epka=l/2
2 2
b=Lp W -a = 3/8

Let us compare this procedure with one which, in the event of
multiplication, processes one particle of weight 2 rather than two

particles each of unit weight, as indicated below.

Wemie

1 1—-Ww -0 r
0~ 0 W+B~—~B ~w—+€Ii’

2W - W

1—+ 9 ____,CD

@ W+A—~A

© [ W+B—B
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We now obtain the results

000 A=1 B=0
00l A=1 B=0
010 A=1 B=0
011 A=1 B=0
100 A=0 B=1
101 A=0 B=1
110 A=2 B=0
111 A=0 B=2

and for category B,
p,=5/8 W =0
pl=2/8 Wo=1
p2=l/8 W, =2
a=2piwi=l/2
b=Zp W -a®=1/2

k 'k

It will be noted that the revision has resulted in increasing the
dispersion. That this is not an inevitable‘consequence of employing
weighted multiplication, the reader may verify by observing that the
dispersion for category B becomes O in the following treatment of

the same problem:
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APPENDIX

SUMMARY OF CERTAIN PROBLEMS RUN ON MANIAC I

Introduction. We conclude this report with a very brief summary

of some of the Monte Carlo type problems which we have set up and run
on the MANIAC I at Los Alamos during the past three years. The coding
for these problems has been done by some extremely rapid and resourceful
coders at Group T-T7 of this laboratory, whom we wish to thank collec-
tively, and to whom we refer individually in this eppendix and LA-2121.

It is hoped that the reader unfamiliar with the method will find
in this brief list of problems some indication of the actual situations
in which the methods of the text find application. It may also perhaps
help those contemplating use of the method in problems of their own to
form some judgment of its possibilities,

The collection included here naturally omits the many classified

problems which have been completed.
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Problem 1

COMPTON COLLISIONS IN A SPHERICAL SHELL

Coder: R. G. Schrandt

Requester: G. H., Best and H. C. Hoyt

Medium: Free-electron "gas" in spherical shell qf radii RO < Rl'
Source: Monoenergetic photons directed radially outward from Ro'

Various initial energies were studied.

Photon parameters: x, ¥, 2z, u, v, W, B, g.

Physical processes: Compton collisions of photons with free electrons,

Output: Correlated energy and angle distribution of photons escaping Rl’
togethér with totals lost to core and lost to energy cutoff. Any photon

, impinging on the inner boundary Ro was considered absorbed.,

Remarks: '"Forced first collision" device was used. The angular distri-

bution desired was that of Ch., VIII, Fig. 53.

Problem 2-

| COMPTON COLLISTONS IN A SOLID SFHERE

Coder: R. G. Schrandt

Beguester: G. H. Best and H. C. Hoyt
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Medium: Free electron gas in solid sphere of radius Rl'

Source, photon parameters, and physical processes: As in Problem 1.

Output: As in Problem 1 with exception of core losses,

Remarks: It was desired to study the effect of the core on the escape
distribution by comparison of the results of Problems 1 and 2. Actually,
by sultable devices in tﬁe flow diagram, it was possible to combine the
two problems into a single code, keeping two sets of terminal category
registers and following a photon path further for purposes of Problem 2,
after it had hit the core and been lost for Problem 1. This is a device

which cuts machine time almost in half,

Problem 3

NEUTRONS IN A SPHERICAL SHELL

Coder: J. M, Kister

Requester: J. R. Beyster

Medium: Hollow spherical shell of heavy nuclei,

Source: Monoenergetic isotropic point source at center of sphere.

Neutron parameters: R, w, v.

Physical processes: Inelastic scattering, regarded as terminal, elastic

scattering according to given lab. system differential cross section,

attended by no energy loss.
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Output: Number of neutrons lost to inelastic collision, number of
neutrons escaping after » collisions,v=10, 1, ..., 10, and v Z 11,
Remarks: The distribution function Pj was tabulated for scattering at
a cosine a 2 aj for 32 strategically chosen intervals of the cosine
range. The problem was run as a check on an analytic method of

H. A, Bethe based on transport cross sections, the results of the
latter being computed by J. R. Beyster. The Monte Carlo procedure

was coded in two different ways, one using the weight method for in-
elastic termination, the other not. The results were in excellent
agreemenﬁ and checked Bethe's result. Transmission was obtained

without forced first collision and agreed closely with the analytic

value. The problem is written up in LA-1583, A Monte Carlo Deter-

mination of the Escape Fraction for a Scattering Spherical Shell with

Central Point Source.

Problem 4

ENERGY INDEPENDENT SCATTERING IN A CYLINDER

Coder: R. L. Bivins

Reguester: M, Walt

Medium: Solid cylinder of homogeneous material. Problem run for many

heavy elements,
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Source: Monoenergetic neutrons in parallel beam incident on lateral

surface of cylinder in direction normal to axis.

Neutron parameters: x, ¥y, 2, u, vV, W, W, v,

Physical processes: Inelastic collision, treated as terminal, elastic

scattering at source energy governed by differential cross section., No

energy loss assumed on elastic scattering,

Output: Transmission, loss to inelastic collision, number of emergent
scattered neutrons not hitting detector band, classification of neutrons
hitting band zone i with v=1, 2, 3, and y 2 4 collisions. Detector

band was coaxial with cylinder and calibrated in 50 zones, Geometry

was that of Fig. 55.

Remarks: Weights were used for transmission and inelastic losses,
Elastic scattering probabilities Pj were used as indicated in Problem 3.
It will be noted that many of the problems included are of this general
nature, the Monte Carlo results being used in correcting experimentally
determined differential cross sections and cross sections of other

processes for multiple collision effects in thick targets.

Problem 5

ENERGY DEPENDENT SCATTERING IN A CYLINDER

Coder: R. L. Bivins

Requester: M. Walt
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Medium: Solid cylinder of homogeneous material. Many light elements

were run.
Source: Same as Problem 4,

Neutron parameters: x, y, 2z, u, v, w, E, g, W, v,

Physical processes: Inelastic collision regarded as terminal, elastic

scattering governed by differential cross sections ag(u) in C.M. system.

Qutput: Transmission, loss to inelastic collision, loss to energy cutoff,
emergent neutrons failing to hit detector band (same geometry as in
Problem 4 and Fig. 55), and those hitting band in zone i with V 4 1, 2,

and v & 3 collisions.

Remarksﬁ Weights used for transmission (forced first collision device)
and for inelastic losses. Differential -elastic scattering handled by
the von Neumann device using a*(g,u) = Ag + Bg ¢+ Cgﬂ2 as indicated
in Ch. V, 85, Tables stored for free path Ag and for coefficients

Ag, Bg,‘Cg for suitable energy groups g.

Problem 6

CYLINDRICAL SHELL WITH PARALLEL SOURCE

Coder: R. G. Schrandt
Requester: J. D. Seagrave

Medium: Cylindrical shell of homogeneous material. Problems run for

CD,, C, and CH, shells.

2 2
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Source: Monoenergetic parallel beam of neutrons incident on lateral
surface of cylinder in direction normal to axis. Various source energies

were studied.

Neutron parameters: x, ¥y, 2, u, v, v, E, g, W, v,

Physical processes: Elastic scattering on C, D, H according to C.M.

differential cross sections «72(#). Such scattering on H was assumed
*

isotropic; C scattering was treated by a fit o (gsm) = Ag + Cglla;

while for D, the double interpolation method of Ch. V, 85 (Fig. 37) was

*
used on the basis of a stored table ¢ 0
3

Qutput: Transmission, loss of "degraded" neutrons to energy cutoff,
emergent undegraded scattered neutrons failing to hit band, and clas-
sification of scattered undegraded neutrons hitting the band (geometry

of Fig, 55) into the following categories:

(a) hits on band zone i with energy above given upper bound :i
(v) hits on band zone i with energy below given lower bound Ei
(c) hits on band zone i with energy between ei and ?i with v= 1

(d) hits on band zone i with energy between fi and Ei with v > 1,

Problem 7

14 MEV NEUTRONS IN A CYLINDRICAL SHELL

Coder: R. G. Schrandt

Requester: L. Rosen and L. Stewart
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Medium: Solid cylinder of homogeneous scattering material., Problems run

for two heavy elements (Bi, Ta).

Source: Parallel beam of monoenergetic (14 Mev) neutrons incident on

base of cylinder. Geometry of Fig. 52.

Neutron parameters: X, ¥, Z, U, V, W, v, &, T (group index for elastic

scattering differential cross section purposes), g (group index for free
path and probability of elastic scattering constants), h (group index

for escape classification).

Physical processes: At most, two collisions were permitted, escape being

forced after s second collision, with the direction obtaining as a result
of that collision. The branching process of Fig. 61 was involved, The
assumptions made for the types of collislons were as follows:

(a) Elastic collision: no energy loss, lab, differential cross

sections of(a) for five energy ranges f.

(b) d-process. Energy of emergent neutron equidistributed between
S and 12 Mev. Process occurs only at 14 Mev. One differential

cross section given for lab. angle a,

(c) (n-2n) process. Two neutrons emerge with energy distributions
hl = B' exp(- E'/Tl) and n, = E' exp(- E'/Tg) on 0< E'< 5.
‘Isotropic emergence in lab, system. Process occurs only at

14 Mev. (Cf. Ch. V, 815, for method.)
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(d) Inelastic collision. One neutron emerges, isotropically in
1ab. system, with energy distribution n = E' exp(- E/T) where

T = k V(E/14). Process occurs only below 12 Mev. (cf. Ch. V,

§11, for method.)

E = 14 Mev

=< 12 (d-process)

Fig. 61

Qutput: Energy and angle distribution of escape.
Remarks: Symmetry of system about source distribution obtains, and
counter was at infinite distance so that the optimum conditions of

Fig. 52 obtained. (Cf. discussion of Ch. VIIT, 83.)
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Problem 8

CYLINDRICAL SHELL WITH POINT SOURCE

Coder: R. L. Bivins
Requester: L. Cranberg
Medium:  Cylindrical shell of homogeneous material., Various heavy

elements run.,

Source: Monoenergetic point source incident on lateral surface of cyl-
inder from an external point midway between base planes. (Cf. Ch. II,

§54, and Fig, 11.)

Neutron parameters: x, y, 2z, u, v, w, E (three discrete values El’ E2,

E3).

Physical processes: A typical element (Bi) had two excited state energy

levels at AIL = ,9 and A2 = 1.65 Mev above the normal state. A neutron
with energy E colliding with the nucleus can thus scatter elastically,
with no energy ldss, or inelastically, emerging with energy E - Al if

E 3' 4. or with energy E - '62 ifE2 4 Since the source energy was

1 2°
2,5 Mev,?the histories of Fig. 62 were possible. Inelastic scattering
was assﬁmed isotropic in the 1lab. system, while elastic scattering was

assumed to obey a given differential cross section o¢(a) applicable at

all energies involved.
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Fig. 62

OQutput: At most, two collisions were allowed. Neutrons having a third

collision were classified in a terminal category L At most, one in-

30
elastic collision was permitted. Neutrons suffering a second inelastic
collision were classified in a terminal category I2. Thus all escaping
neutrons emerge with one of three possible energies E

E,, E,. Of

1’ 3°
these, the neutrons hitting the detector band (geometry of Fig. 55) in
angular zZone i and energy E were tabulated as Ni(E) for each E,

Also recorded were the transmission, escapes not hitting the band,

total hitting band after one elastic collision, and the total hitting

the band after one collision of any kind,
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Problem 9

A SCINTILLATION COUNTER

Coder: R, L. Bivins

Reguestér: R, F., Taschek and N. J. Terrell

Mediuvm: Cylindrical shell containing various compounds of H, C, O, and Cd.
Source: Monoenergetic point source at center of cylindrical hole (vacuum)

with various deterministic directions,

Neutron parameters: x, y, z, u, v, v, E, g.

Physical processes: H-capture, Cd-capture, elastic scattering isotropic

in C.M. system for H, 0, Cd, and according to a differential cross section
‘ 2
o =A 4+ C_H for C.
" Ay * Cg
Outputiﬁ Loss from shell surface, H-capture, Cd-capture, and losses to

energy cutoff classified according to 6 radial and 12 height zones.

Remarks: The purpose of the problem was the determination of the space
distribution of degraded neutrons referred to, for use as input in a
subsequent age theory calculation (not performed by us) connected with

gensitivity of a scintillation counter design.
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Problem 10

A "LONG COUNTER"

Coder: R. L. Bivins

Requester: A. W, Schardt

Medium: Cd cylinder (medium m = 1, parts p = 1, 2, 4 of Fig, 63) con-

taining B (gaseous boron compound under pressure) and vacuum
surrounded by a hydrocarbon (medium m = 2, parts p = 3,5) in

outer container as shown.

L
| |
m = 2 p=3
|
'a
4
m=1jp=2
Hy
m =2
]
p=5 H,
3
]
2,
-
it
g
l’l
m=1|p=1
X
°© R R, TTI R,
8
P o'
Fig. 63

space, and

cylindrical



Source: Monoenergetic neutrons in parallel beam impinging on various
redial zones (p,p') of base of outer container. Various source energies

studied,

Neutron parameters: x, y, 2, u, v, w, E, g, W, m, p.

Physical processes: H-capture, Cd-capture, B-capture, elastic scattering

on H, Cd isotropic in C.M. system, C as in Problem 9.

Output: Escape from Cd-base (p = 1, p = 4), escape from hydrocarbon
surface (p = 3, 5), H-capture, Cd-capture, B-capture, losses to energy

and weight cutoff.

Remarks: The purpose was to estimate the efficiency of B-capture as a
functioh of source energy and distance from axis in connection with
design of a long counter. Weights were used throughout, neutrons
passing through B cylinder were attenuated exponentially, and the
multiplication device of Ch. V, §l6,was used, This problem probably
represeﬁts the most demanding one statistically that we have set up.
Enormoug samples were involved, and the actual running of the machine

was done by Schardt and co-workers.

Problem 11

A PROBLEM CONNECTED WITH NEUTRINO DETECTION

Coder: R. L. Bivins

Reguester: F. Reines and C., L, Cowan
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Medium: Plane slab of homogeneous CH on the z-interval - H < z € H,

1.5
with Cd-layer at z = 0, Two different thicknesses of Cd were studied.

The slab thickness 2H was essentially infinite.

Source: Monoenergetic neutrons at various heights z and with various

directions from 0Z. A series of source energies was studied.

Neutron parameters: 2z, w, E, 7, W, and a parameter indicating the status

of the neutron relative to two problems run simultaneously. (See Remarks.,)

Physical processes: H-capture at thermal energy (only), Cd-capture,

elastic scattering on H isotropic in C.M. system at energies above
thermal, and isotropic in lab, system at thermal with no further energy
loss. Elastic scattering on C was assumed isotropic in the lab. system

with no energy loss at all energies.

Output: Classification of Cd~captures in .2 psec intervals from time
(t = 0) of leaving source to time cutoff of 30 usec, 150 intervals in

all, hydrogen capture, loss to time cutoff,

Remarks: The following conventions on Cd wall capture were adopted.
The thicker wall captures all neutrons impinging on it at energies
<.b ev, while the thinner wall captures all neutrons impinging at
energies < .34, The thick and thin Cd-wall problems were run simulta-
neously by keeping separate counters Nl’ vers NlSO and Ni, ceus NiSO
for the two time distributions and following the path of a neutron
further for purposes of the thin wall problem after it had been clas~

sified terminally as captured in the thick wall problem.
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Problem 12

AN o DETERMINATION

Coder: J. M. Kister

Requester: R. B. Lazarus

Medium: Bare homogeneous Oy sphere,

Source: Initially an arbitrary distribution of neutrons in energy
groups g = 1, 2, 3, radial zones z = 1, ..,, 10, and cosine intervals

jJ=1, «.., 10, 300 categories in all.

Neutron parameters: R, w, V = \/E, g.

Physical processes: The usual processes for & fissionable element were

treated by the transfer matrix method of Ch, V, 812,

Output: The problem was run in cycles of fixed time length 4T, the

output N of one cycle serving as the number of neutrons to be

g,2,J
processed in category (g,z,j) during the next. The problem run was
close to critical, so that no re-normalization was involved. (Cf. Ch. II,

§8,and Ch. IV, 89.)
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Problem 13

NEUTRON FLUX IN AIR

Coder: R, G. Schrandt

Requester: J. Hall, R. G. Wagner, and G. M, Wing

Medium: Sphere of homogeneous air zoned for computational purposes by
radii Rl< R2 < R3.
Source: Monoenergetic isotropic point source at center R = O, Various

initial energies were studied.

Neutron parameters: R, w, E, g, W, z.

Physical processes: Elastic scattering on O and N assumed isotropic in

C.M. system,

Output: Loss to energy cutoff in each zone, loss from system (at R3),
loss to weight cutoff. These were the only terminal categories. How-
ever, the purpose of the problem was to determine total flux at Rl’ R2,
R3. Counters were, therefore, provided to tally all neutrons crossing

each boundarylhyin each energy group g in outward direction and in

inward direction. (Cf. Ch. IV, 8k,)

Remarks: Weights were used in connection with the device discussed in
Ch. V, 87,for avoiding loss of trajectories to energy cutoff. Thus no

trajectory terminated until loss to weight cutoff or loss from R3.
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Problem 14

ESCAPE DISTRIBUTION FROM A CARBON SLAB

Coders: M., B, Wells and R, G, Schrandt

Requester: T. B, Taylor

Medium: Plane slab of C on 0 < z < Z,
Source: Monoenergetic neutrons upwardly directed at 2z = O in cosine

distribution.

Neutron parameters: =z, w, E, g'.

Physical processes: Elastic scattering on C governed by a differential

*
cross section of form ¢ (g,u) = Ag + Cgllz.

Output: 13 energy group classification escapes at z = O and 2 = Z,
Energy cutoff losses classified according to position in five sub-

intervals.

Problem 15

ESCAPE DISTRIBUTION FROM A SPHERICAL SHELL

Coders: M, B, Wells and R. G. Schrandt

Requester: C. L. Longmire

HA
2e}

Medium: 'Spherical shell of hydrocarbon on Rl <R
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Source: Monoenergetic neutrons directed into shell at Rl in cosine

distribution.

Neutron parameters: R, w, E, g".

Physical processes: Elastic scattering on H isotropic in C.M.’éystem,

on carbon as in Problem 1k,

Output: 13 energy group classification of escapes at Rl’ escapes at

RE’ loss to energy cutoff,

Problem 16

A ROCKET MOTOR

Coder: R, L. Bivins

Reguesters: G. I. Bell and C. L. Longmire

Medium: Cylindrical container of C, U, H, with C of uniform density,
H and U of prescribed densities in each of a set of shell zones, de-
fined by 7 radial and 15 height intervals, This cylinder was sur-
mounted by a coaxial cyclinder of H and Be at specified densities,
and these two cylinders were surrounded by a cylindrical shell of Be.
The U-density distribution was subject to change from problem to

problem, of which a whole series was run, (Cf. Fig. 6k.)
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Source: Isotropiec source in fission energy spectrum, spatially distrib-
uted as prescribed among the 105 zones. The spatial distribution also
varied with the problem and was so normalized that integral numbers N;/

of neutrons were involved in each source.
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Neutron parameters: x, y, %2, u, v, w, E, g,qf, W, and a sector parameter
p=1, 2, 3. (See Fig. 64.) The zone parameter ?/is really a pair i,]

which define the assoclated radial and height ZzZones.

Physical processes: Be-capture at "thermal" energy; U-capture, fission
2

elastic and inelastic scattering; elastic scattering on C and Be assumed
isotropic in lab. system, using transport cross sections for free path
contributions but with correct energy losses., Elastic scattering on H

isotropic in C.M. system,

Output: Losses from system classified according to surface of escape;
Be-capture; U-capture; number N! of fissions in each of the 105 spatial

zones, I'ission was regarded as a terminal event.

Remarks: There was no 1loss to energy cutoff; neutrons degrading to
"thermal" energy were allowed to scatter isotropically in the lab.

system without further loss of energy. A neutron was followed until
capture, fission, or escape occurred, The purpose of the problem was
to determine a U-density distribution together with a fission source
distribution in space which would produce a steady state in the sense

that the output N' and input N  should satisfy the equations

7

N' = vy

T °7

where vy is the fission multiplication constant. Such problems arise
in the design of nuclear rocket motors, the hydrogen of the problem

being present in the form of a propellant gas.
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Problem 17

PHOTON DIFFUSION IN A REACTOR

Coder: R. G. Schrandt
Requesters: M. E. Battat and B, M, Carmichael
Medium: Cylindrical assembly consisting of inner fuel region, tamper,

and top and bottom reflectors of given electron densities.

Source: Prompt ¥ -rays in exponential energy distribution n(E)dE

= k exp(- 1.0l E)4E, .2 < E< 5 Mev, isotropic in direction, and with
given radial and heightwise photon density distributions throughout
the fuel.

Photon parameters: x, ¥, Z, u, v, w, E, g, m (medium index indicating

2’ R"2, H" Hll

region of occupancy: fuel, tamper, or reflectors), R'

defining radial and height boundaries of region m.

Physical processes: Compton scattering of photons on electrons with

energy losses due to such scattering and to cutoffs (varying with m)
chosen at the point where the photoelectric effect becomes an

effective absorption.

Output: Distribution in energy and angle of photons escaping each of
outer surfaces, energy deposition within the system in 82 spatial

regions.
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Problem 18

A THICK Zr TARGET PROBLEM

Coder: R. G. Schrandt

Requesters: L. P. Stewart and L. P. Rosen

Medium: Solid Zr cylinder.

Source: Parallel beam of monoenergetic (14 Mev) neutrons incident on

base of cylinder.

Neutron parameters: X, y, %, U, v, w, v, E, £, g, h (cf., Problem 7).

Physical processes: Those of Problem 7 except that the (-2h) process

was replaced by & more general process involving production cross
sections for neutrons in each of two energy distributions with a

total expectation of 2.32 neutrons,
Output: As in Problem 7.

Remarks: The problem was handled by a revision of the code of the

problem cited.

Problem 19

A THICK C TARGET PROBLEM

Coder: R. G. Schrandt

Requesters: L. P, Stewart and L. P. Rosen
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Medium: Solid carbon cylinder.

Source: Monoenergetic (14%.1 Mev) neutrons in parallel beam incident on

base of cylinder.

Neutron parameters: u, v, w, X, ¥y, 2, E, g, v.

Physical processes: Elastic scattering according to given differential

cross sections curves on four ranges between 14 and 0 Mev; capture;
inelastic scattering for levels 4.4, 7.6, 9.6, and 11.2 Mev (the latter
an average for levels >9.6), inelastic scattering at 4.4 level for
incident energy >10 Mev governed by given ¢ (E,®), all other inelastic

scattering assumed isotropic in C.M. system.

Output: Distribution in 28 energy groups and 10° angular intervals
(with vertical) of neutrons escaping after one or two collisions,

total number of second collisions,

Remarks: First collision forced, neutrons forced out after a second
collision., Method of Ch, V, 89, used to determine parameters after

inelastic collision.

Problem 20

HEAVY WATER EXPERIMENT

Coder: R. G. Schrandt

Requester: J. N. Grundl
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Medium: Heavy water in (A) spherical shell, (B) hemispherical shell.
Both problems run simultaneously. A series of runs involved various

inner and outer radii.

Source: Isotropic point source at center of system in fission-neutron

energy distribution, .1 £ E £ 10 Mev. ,

Neutron parameters: u, v, w, X, ¥, 2, E, g, # (parameter indicating

trajectory lost relative to problem (B) or not).

Physical processes: Elastic scattering on D and O assumed isotropic in

C.M. system; transport cross section based on this assumption used for

free path.

Output: For problems (A) and (B), loss to outer surfaces, loss to energy
cutoff, classification in 25 energy groups of neutrons re-entering central

cavity with normal angles in each of four angular ranges.
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