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ABSTRACT 

This repor t  is w r i t t e n  t o  serve as a guide t o  those persons 

who, having no previous experience with Monte Carlo methods, wish t o  

apply these methods t o  t h e i r  own problems. Par t icu lar  emphasis i s  

given t o  techniques which a r e  useful  i n  dealing with problems concerned 

with the diffusion of p a r t i c l e s  (and gamma rays)  i n  mater ia l  media of 

some complexity, both from a geometrical and a nuclear standpoint. 

Included as a n  appendix a re  b r i e f  summaries of a va r i e ty  of problems 

of the above-mentioned type t o  which the methods described herein have 

been applied successfully.  
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FOREWORD 

The present repor t  is  a summary of the Monte Carlo method as it 

appl ies  t o  problems involving the in te rp lay  of neutrons and photons w i t h  

bulk w t t e r  i n  geomt r i c  systems of varying complexity, 

t o  serve as an  introduction and p r a c t i c a l  guide for  the fast-growing 

group of people who are concerned with such systems, 

It is intended 

A br i e f  res& of some of the unclassif ied problems successful ly  

treated by the methods here out l ined is  included as a n  appendix and may 

serve t o  emphasize the p r a c t i c a l i t y  and f l e x i b i l i t y  of these sampling 

procedures. 

have been handled is  issued separately as LAMS-2123, 

A similar res=’ of some of the classified problems which 

The general method was o r ig ina l ly  developed by Fermi, U l a m  and 

von Neumann; many others  have contributed spec ia l  techniques and devices. 

No attempt has been made t o  give all sources i n  the t e x t ,  and na tura l ly  

no claims t o  o r i g i n a l i t y  a r e  made f o r  the procedures included. 

- 5- 





CONTENTS 
Page 

ABSTRACT . * e e 3 
FOREWORD . . . . . . . . . . . . . . . . . . .  5 
CHAPTER I . BASIC PRINCIPLES . . . . . . . . . . . . .  11 

1 . General nature of the problem . . . . . . . . .  11 
2 . Outline of procedure . . . . . . . . . . . .  12 
3 . Production of random numbers . . . . . . . . . .  15 
4 . The fundamental p r inc ip le  of Monte Carlo . . . . . .  16 
5 . Application of t he  pr inc ip le  . . . . . . . . . .  21 

CHAPTER I1 . TKE SOURCE ROUTIME . . . . . . . . . . . .  25 

1 . Introduction . . . . . . . . . . . . . . .  25 
2 . Par t i c l e  parameters . . . . . . . . . . . . .  27 
3 . Remarks on un i t s  . . . . . . . . . . . . . .  32 
4 . Space coordinates f o r  source particles . . . . . .  33 

Uniform source on an  annulus of radii Ro< R1 . . .  34 
b . Uniform source i n  a spher ica l  she l l  . . . . . .  34 

surface. o r  on a sphere . . . . . . . . . .  34 

a . 
e.  

d . I so t ropic  point  source ex te rna l  t o  cylinder . 36 

Parallel-beam source incident on lateral cy l ind r i ca l  

5 . Direction coordinates for  source p a r t i c l e s  . . . . .  36 

a . I so t ropic  source; U.V. w di rec t ion  cosines . . . .  36 
b . The cosine d i s t r ibu t ion  . . . . . . . . . .  38 

systems . . . . . . . . . . . . . . .  40 
d . I so t ropic  point source ex terna l  t o  cylinder . . .  40 

6. Energy of source p a r t i c l e s  . . . . . . . . . .  45 
7 . Other source pameters . . . . . . . . . . .  46 
8. Source for  u-type ca lcu la t ions  . . . . . . . .  46 

C. I so t ropic  and cosine sources i n  spher ica l ly  symmetric 

e . General d i s t r ibu t ion  i n  half  of direction-space . 42 
f . A prejudiced source . . . . . . . . . . .  43 

-7- 



CHAPTER I11 . THE MEAN FREE PATH AND TRANSMISSION v 

1. 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . a . 

The cross  sec t ion  concept . . 
The =an free path . . . . . . . . .  
An example . . . . . . . . . . .  
rtSmU" systems and transmission . . 
The "forced first co l l i s ion"  rout ine  . . 
Remark on the device i n  spher ica l  problems . 
The transmission i n  subsequent h i s to ry  . + 

Prejudiced f irst  c o l l i s i o n  i n  "large" systems 

. . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  
CHAFTER N . THE COLLISION OR ESCAPE ROUTINE . . . . . . .  

1 . 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . 
8 . 
9 . 

Introduction . . . . . . . . . . . . . . .  
A rout ine  fo r  the spher ica l  shell . . . . 
Reorientation formulas f o r  t h e  spher ica l  shel l  . 
Flux problems i n  spher ica l  geometry . . . . 
A rout ine  f o r  the f i n i t e  cyl inder  . . . . 
The f i n i t e  cy l ind r i ca l  shel l  w i t h  c e n t r a l  hole . . 
The spher ica l  she l l  i n  absolute  space . . . . 
Slab geometry . . . . . . . . . . . . . .  
Problems run i n  cycles of t i m e  AT . . . . . . .  

CHAPTER V. THE COLLISION ROUTINE FOR "I'RONS e 0 e 

1 . 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . 
8 . 
9 
10 . 
11 . 
12 . 
1 3  
14 . 
1 5  
16 . 
Si' 
18 . 
19 

Introduction . . . . . . . . . . . . . . .  
Capture and se lec t ion  of t he  type of co l l i s ion  
E l a s t i c  c o l l i s i o n s  i n  general  . 8 - 9 

The d i f f e r e n t i a l  e l a s t i c  s ca t t e r ing  cross  sec t ion  
A rout ine  f o r  e l a s t i c  s ca t t e r ing  . 
D i f f e r e n t i a l  e l a s t i c  cross  sec t ion  f o r  the lab . system . 
A weight device f o r  e l a s t i c  s ca t t e r ing  . . . . . .  
Fission . . . . . . . . . . . . . . . .  
Inelastic (n-n) co l l i s ions  i n  general  . . . . . .  
I n e l a s t i c  (n-n) co l l i s ions  on heavy n u c l e i  
I n e l a s t i c  (n-n) c o l l i s i o n  with Maxwell d i s t r i b u t i o n  . . 
A combined t r ans fe r  matrix for  f i ss ionable  nuclei  . 
Coll is ions sha t t e r ing  a nucleus . . . . . . . .  
The (n-2n) reac t ion  i n  deuterium . . . . . . . .  
An (n-2n) reac t ion  on heavy nuclei  . . . . . . .  
Capture i n  a small zone . . . . . . . . . . . .  
Capture by a "point" detector  . . . . . . . . .  
Remarks on thermal neutrons . . . . . . . . . .  
Remark on determination of photon sources 

. . . . .  

. . . . .  

Page 
49 

49 
50 
53 
54 
56 
58 
61 
61 

63 

63 
65 
60 
72 
72 
74 
78 
80 
81 

83 . 
83 
84 
89 
99 
102 
108 
109 
112 
114 
118 
119 
121 
124 
129 
132 
133 
136 
140 
141 

-8- 



Page 
CHAPTER V I .  PHOTON COLLISIONS . . . . . . . . . 143 

1. Introduction . . . , . I . . . . 143 
2 ,  Basic concepts and constants . . . . . . . . . 143 
3. Compton co l l i s ions  . . . . . . . . . . . 144 
4, The Klein-Nishina d i f f e r e n t i a l  cross sect ion . . . . 149 
5. The photon energy d i s t r ibu t ion  and Compton cross sect ion 150 
6. Photoelectric e f f e c t  and pa i r  production . . . . 153 

CHAPTER V I I .  DIRECTION PARAMETERS AFTER COLLISION . 155 

1. Introduction . . . . . . . . . . . . . 155 
2. Formulas f o r  the f i n a l  d i rec t ion  cosines . e . . 155 
3. Subroutine for t he  f i n a l  d i rec t ion  cosines . 161 
4. Fina l  d i rec t ion  w i n  slab or  spherical ly  symmtric case 163 
5. Scat ter ing i so t ropic  i n  the laboratory system . . 164 

CHAPTER VIII. T-NAL CLASSIFICATION . . . . . . . . . 165 

1. Introduction . . . . . , . . . . . 165 
2. Class i f ica t ion  of escapes on nurnber of co l l i s ions  . . 165 
3. Energy and angle d is t r ibu t ions  of eacape . . e . 166 

CHAPTER IX. REMARKS ON COMPUTATION . , . , . . . . . 175 

1, Scaling . . . . , . . . . , , . . . . * 1 7 5  
2. Debugging . . , . . , , , . 175 
3. Special  subroutines . '. . . , ... . . . . . . 177 

a. A random nuniber rout ine . . . . . . . . . . 177 
b. Shifted random numbers . . . . . . . . 178 
C. A logarithm r o u t i n e  . . . . . . . . . .. 179 
d. The exponential exp(- x/y) . . . . '  . . . . . 182 
e. A cosine rout ine . . . . . . b . .  * I 8 3  

4. A Monte Carlo device f o r  r. . . . . . . . 186 
5. A Monte Carlo device f o r  the cosine of a n  equidis t r ibuted 

a n g l e . . b , ? * * . . .  . . . . a87  
CHAPTER X. STATISTICAL CONSIDERATIONS * 189 

1. The limit theorem i n  the Bernoulli case . * 189 
2. Application t o  the terminal r a t i o s  . . . . 190 
3. The cent ra l  l i m i t  theorem . . . . . . . . + 193 
4. Application t o  problems using weights . 195 
5.  I U u s t r a t i v e  examples . . . . . 197 

-9- 



Page 
SUMMARY OF CERTAIN PROBUNS RUN ON MANIAC I . . . . .  204 APPENDIX . 

Problem1 . Compton col l is ions i n  a spherical s h e l l  

Problem 2 . Compton col l is ions i n  a so l id  sphere 

Problem 3 . Neutrons i n  a spherical  shell  0 

Problem 4 . 
Psoblem 5 . Energy dependent scat ter ing i n  a cylinder . 
Problem 6 . Cylindrical shell w i t h  pa ra l l e l  source . . 
Problem 7 . 1 4  Mev neutrons i n  a cyl indrical  she l l  . 
Problem 8 . Cylindrical she U. with point source . . .  
Problem 9 . A sc in t i l l a t i on  counter . . . . . . .  
Problem 10 . A "'long counterll . . . . . . . . .  
Problem 11 . A problem connected with neutrino detection 

Problem12 . An u determination . . . . . . . .  
Problem 13 . Neutron flux i n  air . . . . . . . .  
Problem 14 . Escape dis t r ibut ion from a carbon slab . . .  
Problem 1 5  . 

Energy independent scat ter ing i n  a cylinder 

Escape dis t r ibut ion from a spherical s h e l l  

Problem 16 . A rocket motor . . . . . . . . . .  
Problem17 . Photon diffusion i n  a reactor . . . . .  
Problem 18 . A thick Z r  t a rge t  problem . . . . . .  
Problem19 . A thick C target  problem . . . . . .  
Problem 20 . Heavy water experiment . . . . . . .  

. . 205 

. . 205 

. . 206 

. . 207 

. . 208 

. . 209 

. . 210 
213 

. . 215 

. . 216 

. . 217 

. . 219 

. . 220 

. . 221 

. 221 

. . 222 

. . 225 

. . 226 

. . 226 

. . 227 

-10- 



CHAPTER I 

BASIC PRINCIPLES 

1. General nature of the problem. A l l  problems treated in the 

present manual involve estimation of what percentage of Wrticles emanate 

ing 

material medium of known geometry, can be expected to terminate in certain 

from a given source, after undergoing specified processes in a 

stipulated categories. 

If all relevant probabilities are known for  the elementary events 

in the "life history" of such a particle, the Monte Carlo method is 

applicable, and indeed is usually the only method available. 

Moreover, its technique is pre-eminenkly realistic, consisting in 

actually following each of a large number of particles from the source 

throughout its life history to its ''death" in some one of the terminal 

categories, using the elementary probabilities at each stage of its 

career in determining its fate. 

The present state of development of high-speed digital, computers 

permits the use of sasflples of a size sufficiently large to ensure satis- 

factory accuracy in most practical problew. 

-3.1- 



2. O u t l i n e  of procedure. I n  any pa r t i cu la r  problem, a p a r t i c l e  

is  completely characterized by a s e t  of parameters which a re  s u f f i c i e n t  

t o  determine i ts  (probabi l i ty )  behavior i n  a l l  s i t ua t ions  it may encounter 

during i t s  h is tory .  These always include i ts  posi t ion and d i rec t ion  

coordinates, and i n  most cases i t s  energy. 
I 

Much more w i l l  be sa id  about 

these and other p a r t i c l e  parameters i n  the sequel ( the  appendix t o  t h i s  

repor t  and LAMS-2121) 

The Monte Carlo method of dealing w i t h  problems of the kind we have 

indicated breaks up natural ly  i n t o  a well-defined s e t  of subroutines, 

which we shall b r i e f l y  describe here, postponing t h e i r  de t a i l ed  treatment 

t o  subsequent chapters. They are schematized i n  the following generalized 

flow diagram (Fig. 1). This is  only intended as a general  guide t o  the 

chapters of the t e x t ,  and i s  subject  t o  many revis ions,  depending on the 

spec ia l  circumstances of the problem. 

( 0 ) .  The proper assignment of a l l  p a r t i c l e  parameters t o  a source 

p a r t i c l e  involves the spatial and angular d i s t r ibu t ion  of the source, and 

i ts  energy d i s t r ibu t ion ,  i n  case of a non-monoenergetic source. 

( P o ) .  A spec ia l  rout ine may be provided t o  determine the  posi t ion 

of f irst  co l l i s ion  i n  cases of high transmission, where it is desirable  

t o  d is t inguish  between t h i s  and subsequent co l l i s ions .  ' 

( B ) .  A general  rout ine is designed t o  decide whether a p a r t i c l e ,  

s t a r t i n g  w i t h  known parameters from a n  a r b i t r a r y  point of departure, i n  

a pa r t i cu la r  zone of the system e i t h e r  su f fe r s  a co l l i s ion  within t h i s  

zone or  reaches the boundary of t h i s  zone on i t s  l i n e  of f l i g h t  without 

incident.  The e s s e n t i a l  physical  concept involved i n  t h i s  decision is 

-12- 



Source parameters c+i-..)@ 
I I 

Parameters at forced 1st @I collision (Ch. III) I 
Collision. Parameters at 

point of colIision 
I I 

Passage to next I , zone 

Angle of sgattering 
New energy 

Lost to energy 

Direction after *I scattering (ch. VII) t + ~  
Classification of 0-1 escapes (Ch. VIII) 

Fig. 1 

-13- 



the mean free path. 

this decision, as indicated i n  Fig. 1. 

point of collision ox escape are computed 

of escape, one proceeds to ( 8 )  or to ( 6 )  

the escape is to an adjacent zone, or from the system. 

The subsequent procedure depends on the nature of 

The particle parameters at the 

In case before proceeding. 

according as to whether 

( r )  . 
the medium and is subject to the widest variation. Its objective is to 

decide the exact nature of the collision and the immediate fate of the 

particle after collision. 

may terminate its career under the conditions of the problem; if this 

occurs, a tally is made in the appropriate terminal category counter, 

and one returns, as in all cases of termination, to an entry 

leads to the source routine ( 0 )  for introducing a fresh particle. In 

the event that the particle is to be followed further, the essential 

The collision routine naturally depends upon the physics of 

This includes the eventuality that the particle 

(u) which 

. information required before proceeding to ( 6 )  is a knowledge of the 

laboratory angle of deflection from the line of flight 

and "weight" of the particle after deflection. 

and the energy 

( 6  1. A purely geometric routine determines the direction param- 

At this point, all eters of the deflected particle, and leads to 

particle parameters should be evaluated as they obtain at the point of 

collision, after deflection. 

(g). 

( e ) .  In the event that escape *om the system occurs in the ( p )  
routine, terminal classification is made and one returns to (a). 



This is the general scheme of the method as it operates in all 

problems we propose to discuss. 

to elaborate on each of these subroutines in detail, the necessary 

physical concepts and their preparation for computation being developed 

as they are needed. 

The chapters that follow are designed 

Before this, however, must come a brief discussion of random 

numbers and the "fundamental principle of Monte Carlo," upon which all 

else rests. 

3.  Production of random numbers. It is necessary to have upon 

call some source of random numbers equidistributed on the interval 

Osr<l. Ideally, one might spin a wheel of uniform scale, and indeed 

there exist of such numbers generated in truly random fashion. 

There are computational algorithms adapted to digital computers which 

appear to serve our purpose just as well. One can find descriptions of 

such methods in the literature, ('j2) together with discussions of the 

(l)Cf. articles in U. S, Department of Commerce, National Bureau o f  
Standards, Applied Mathematics Series #12, Monte Carlo Method, 
Washington, D. C., 1951. 

t 

(2)The Rand Corporation, A Million Random Digits with 100,000 Normal ._ - 
Deviates, Free Press PGblishers, Glencoe , Illinois, 1955 
D; H, Lehmer, Mathematical Methods 
Proceedings of a Second Symposium on Large-Scale DiKital Calculatin 
Machinery, Harvard University Pres< Cambridge, Massachusetts, 1951: 

Large-Scale Computinq Units, 
- -  

Herbert A. Meyer, ed., Syysium on Monte Carlo Methods, John Wiley & 
Sons, Inc., New York, 195 



"tests of randomness" which have been appl ied t o  them. 

here upon such questions s ince the method adopted w i l l  probably be 

dictated by the  type of machine used and o ther  p r a c t i c a l  considerations.  

A descr ipt ion of t he  method w e  have employed w i l l  be found i n  Ch. I X ,  

9 3a, b.  

by von Neumann, c i t e d  i n  footnote (l), which contains some words of 

wisdom f o r  those who may be troubled by the  "s ta te  of s in"  accompanying 

the  use of determinis t ic  "random numbers ." . 

We do not en te r  

We should l i k e  t o  c a l l  a t t en t ion  espec ia l ly  t o  the shor t  paper 

4. The fundamental pr inciple  of Monte Carlo. Suppose t h a t  a 

homogeneous medium cons is t s  of nuclei  of three d i f f e ren t  types A,  B, and 

C ,  and one knows t h a t ,  i n  the  event of a co l l i s ion  of a neutron i n  the  

medium, the  probabi l i ty  of co l l i s ion  with type A is  .2, with B is  

.3, and with C i s  the remaining .5. It i s  i n t u i t i v e l y  c l e a r  t h a t ,  

i f  a large number N of random numbers are produced, approximately 

.2 N w i l l  f a l l  on the i n t e r v a l  0s r < . 2  

.3 N w i l l  fall. on the i n t e r v a l  . 2 1  r < .5 

.5 N w i l l  f a l l  on the i n t e r v a l  .56  r <  1 

and t h a t  t h i s  approximation w i l l  improve with increasing N ;  indeed, 

t h i s  is  the  s a l i e n t  fea ture  we demand of any scheme of random number 

production. It is  c l e a r  therefore  how reference t o  a random number can 

be used t o  decide which of the three  types of nuclei  i s  h i t  i n  the  event 

of a colli 'sion. 

-16- 



One of the decisive features of digital computers now existing; 

is their ability to make decisions at high speed, with no limitation on 

the number of logical possibilities involved. The typicalMon$e Carlo 

flow diagram is largely occupied with intricate decision features. 

As a first example of how a flov diagram(3) schematizes the pro- 

cedure in the above example we may note Fig. 2. 

E r e  generally, i f  El, . . . , En are n independent, mutually 

exclusive events with probabilities pl, ..., pn, respectively, and 
p1 + + pn = 1, we will agree that 

P1 + ... + pi-ls r (p l  + ... 
+ *i 

detemnines Ei. 

to the discrete case of a finike number of eventualities. 

This Is the "fundamental principle'' bsofw as it applies 

1, 
We may use it to furnish a heuristic approach t o  the continuous 

case, in which it is desired to determine from a random number one of a 

continuum of values of  a variable x. In this connection it is conven- 

ient to bear in mind the fact that the latter case may always be regarded 

as approximable by a large finite number of distinct Cases; indeed, in 

computation with a fixed number of digits, we are always actually 

concerned with the discrete approximation. 

'3)1n all flow diagrams of this report we adopt the convention: x 4- 

means x30, x- means X C O .  A box covtaining r always denotes 
reference to the special subroutine generating the next random number 
of the sequence. 



Fig. 2 
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Suppose that we arbitrarily assign a variable x on t h e m 1  

O S x c n  toth 

i - 1 x < i represents the event -Ei. Let us construct a grobability 

density function p( x) by the definition 

i = 1, ,.., n 

Thus p(x) Will be a step f'un~tion'~) like that of Fig. 3. Now 

suppose that we define the probability distribution f'unction 

X n 

0 

whose graph is a, broken line as indicated in Fig .  4. 

P(n) = 1. 

the probability of the inequality 4 sx, for  x = 1, i = lc.* n. 

Note that P(0) = 0, 

Since P(i) = p1 + ... t pi, we may interpret P(X) to mean 

* t -  

Moreover, it is clear that the equation 

determines x uniquely as a function of r, m sue,* a way that if , ,  r 

is uniformly distributed on the interval 0 d r e 1, 

frequency p. in the interval i - 1 %  x ri, thereby determining the 
event Ei under our agreement. 

F)The figures are drawn for the simple A, B, C example. 

-- 

x ,  falls, WlLh 
.u--..----..""-.--A- 

_yl -~ ~ " - F - L I - X - A  ..- 



.5 

.4 

.3 

.2 

.1 

1 
X 

2 3 

Fig. 3 

Fig. 4 
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We may state at once the fundamental principle as it applies to 

the continuous case: If p(x) dx is the probability of x lying 

between x and x -I- dx, with a f x < b, and 

p(S) d0 = 1 P a 

then 

determines x uniquely as a function of r; moreover, if r is 

uniformly distributed on 0 r < 1, then x falls with frequency 

p(x) dx in the interval (x, x I- d x ) .  

p s  a completely trivial first example, consider the case of 

neutrons that are to be located uniformly on an interval 

We have p(x) dx = dx/(b-a), [ p(k) dS = 1, and r = P(x) = 

a 8 x <b. 

[ p( 6) dS = (x-a)/(b-a), whence x = a m  (b-a) determines x as a 

function of the random number r 

5. Application of the principle, It may be noted that the 

equation 

-21- 



can be expected to give rise to difficult implicit problems, since x 

must be determined from r. At worst, some successive approximation 

routine can be provided for the solution of the implicit equation 

r = P(x) when P(x) is obtainable in closed analytic form. Such time- 

consuming processes can be obviated in various ways, a few of which we 

indicate here. 

The simplest method, applicable in a l l  cases, even when P(x) 

is known only in experimental tabular form, consists in subdividing the 

(a,b) interval, storing accurate values of P(xi) =, Pi for the end 

points 

discrete method for determining the subinterval (xi - xi) on which 

x falls, together with an interpolation for the actual value of x. 

= b of the subintervals, and using the < xn xo = a < xl < ... 

If i is the first value of the index for which r - Pi is negative, 

r being the current random number, we may determine x from one of the 

formulas 

Pi - r 
i Pi - Pi,l x = x  - (Xi - x i -1 1 

-22- 



The linear interpolation in (1) distributes x uniformly on the 

interval (xi I, xi) and is strictly valid only when p(x) is a step 

function. For sufficiently small subdivisions, (2) or ( 3 )  may give 

better results at the cost of an additional square root and are appro- 

priate when P(x) is concave up or concave doqrespectively, 

One may contrast the latter formulas (2) and (3 )  with that 

resulting from a linear assumption for p( x) on ( xiel, x~): 

which is more complicated when solved for x, requires additional 

storage of the pi, and uses a trapezoid rule for the Pi. 

Very usefuL also is a device employed by von Neumann, especially 

when p(x) is readily computable and storage space is at a premium. 

This consists of "throwing" points 

bounded by the lines x = a, x = b, y = 0, y = 1 and rejecting the 

points lying above the curve 

( 0  , V )  unifomily into the rectangle 

x being assigned the value 6 whenever (6, TI) fa l l  below the curve. In 

many trials, the ratio of the number of points retained with 6 between 

x and x I- dx to the number of points retained altogether will be 

approximately the ratio of the areas 
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The method is illustrated by the flow diagram of Fig. 5. 

Obviously the device in this form is impractical if the area under the 

curve y = p (x) is a small fraction of the enclosing rectangle. How- 
* 

ever, modifications involving other enclosing areas can obviously be 

devised. 
* 

One may also retain only points ( S , . r l )  above the curve y = p (x ) ,  

assigning the value 0 to x and adjusting the “weight“ of the particle 
b 

by a factor P(X> 1 (1 - p*(5))rl5/(1 - P”(x)). 
a 

Finally, a combination of the two methods may be used, a first 

random number determining the interval 

Pi, 

The method is then accurate, and the efficiency high. 

(xi 1, xi) 

p( x) 

by reference to the 

on this interval. and the von Neumann device then used on 

Fig. 5 



cHAFTm I1 

THE SOURCE ROUTINE 

1. Introduction. It is the purpose of the present chapter t o  

describe how a problem is in i t i a t ed  by the  machine, how "print-outs" 

are automatically effected,  and how the p a r t i c l e s  are drawn from the  

source. 

Suppose tha t  we l e t  N denote the  number of p a r t i c l e s  already 

processed, so tha t  N = 0 a t  the  start of the  problem. A f t e r  the  

machine has processed any given number N of p a r t i c l e s  it w i l l  contain 

i n  various counters the numbers Ni of these N whose careers  have 

terminated i n  a set of d i s j o i n t ,  a l l - inc lus ive  categories  Ci. Thus 

the  r a t i o s  Ni/N cons t i tu te  the  output of the  problem and serve as 

estimates of the p robab i l i t i e s  of a source particle terminating i n  the 

various categories  Ci. 

t i v e  t o t a l s  

every N* particles,  so t h a t  convergence and "reasonableness" can be 

observed 

It is ord ina r i ly  desirable  t o  p r i n t  the cumula- 
, 

Ni per iodica l ly  during the course of the problem, say 
~ 

Thus the  beginning of a flow diagram usually resembles t h a t  i n  
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Fig. 6. It w i l l  be noted t h a t  N' denotes the number of p a r t i c l e s  

processed s ince the last pr int-out ,  being reset t o  zero after each p r i n t ,  

whereas N cumulates during the ent i re  problem. The computation may be 

stopped at any t im at which the  s t a b i l i t y  of the 

s t a t i s t i c a l  considerations ind ica te  tha t  s u f f i c i e n t  accuracy has been 

Ni/N or other 

a t t a i n e d .  The (a) ent ry ,  as has been mentioned, is  t h a t  point  t o  

which the  machine re turns  after the  p a r t i c l e  it was following has 

terminated its career  i n  some one of the categories  Ci. 

pGV-1- 

Fig. 6 
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The ( u )  e x i t  leads t o  that pa r t  of the flow diagram devoted t o  

assigning p a r t i c l e  parameters t o  a source pa r t i c l e .  

There are two types of storage involved i n  a l l  machine problems. 
* 

"Permanent storage" places a re  reserved fo r  constants l i k e  0, 1, N, 

which do not change t h e i r  values during the course of the problem, 

while "dynamic 

contain values 

storage" refers t o  storage posi t ions i n  the machine which 

of parameters l i k e  N,  N', Ni, which are subject  t o  

change as the problem progresses. 

It is desirable  t o  keep a record of a l l  storage of both kinds 

introduced i n t o  the flow diagram as it i s  constructed so t h a t  none be 

overlooked, and so t h a t  some estimate of the "size" of the problem can 

be gained as one proceeds. Occasionally it becomes c l ea r  that tlp 

memory of the machine is being exceeded, and various devices must be 

introduced fo r  reducing the permanent storage (e.g., by multiple 

s torage)  or the length of the code i t s e l f  

2, Pa r t i c l e  parameters, F'rom a consideration of the  physical 

and geometric fea tures  of the problem, one fixes upon a s e t  of p a r t i c l e  

parameters whose values a t  any time su f f i ce  t o  completely character ize  

the par , t ic le .  We proceed t o  discuss these i n  detail. 

We s h a l l  limit our examples t o  two types of coordinate systems 

f Q r  space and d i rec t ion ;  namely, we s h a l l  either employ space 

coordinates x, y,  z, together with d i rec t ion  cosines u 5: cos u ,  

v = cos p , w = cos y fo r  d i rec t ion  of f l i g h t ,  where u, p ,  Y are 
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the angles made by the l i n e  of f l i g h t  w i t h  the x, y, z axes, respect ive-  

l y ,  or  ( i n  cases of spher ica l  symmetry only) we s h a l l  use the r a d i a l  

dis tance R of the p a r t i c l e  from the center 0, together with the  

cosine w = cos y of the angle y which the directed l i n e  of f l i g h t  

makes with the pos i t ive ly  d i rec ted  rad ius  vector .  

are indicated i n  Fig. 7. We may note t ha t  0 0 1 ,  p , y 6 IF and 

These coordinates 

on t h i s  range the cosines assume a l l  values on the range -16 u, v, 

w 6 + 1 once and only once. It is  a l s o  he lpfu l  t o  remember tha t  the  

d i rec t ion  coordinates (u, v, w) may be regarded as defining a point on 
_I _ _  ~- -_--- --- 

the  uni t  sphere u2 + v2 + w2 = 1 i n  d i rec t ion  space U, V, W. 
L 

Considerable advantages a t t e n d  the  use of parameters R, w i n  

cases where spher ica l  symmetry warran ts  it. However, we have found 

t h a t  i n  more complicated geometries, f o r  example i n  cyl inders ,  even 

when symmetry obtains ,  the use of coordinates indicated by the symmetry 

i s  hardly worth while. 

which proceeds from some point of departure t o  a new place changes i t s  

The main reason f o r  t h i s  i s  t h a t  a p a r t i c l e  

d i r ec t iona l  coordinates i n  the la t ter  case. 

has the  g rea t  advantage t h a t  u, v ,  w remains unchanged under linear 

The x,  y, z; u,v, w system 

displacements. 

A l l  problems require  the use of s p a t i a l  and d i r ec t iona l  coordinates. 

Other parameters are d ic ta ted  by the nature of the problem. 

Most problems are energy dependent; tha t  i s  t o  say, the physical 

processes involved have elementary probabi l i t i es  which are functions of 

the p a r t i c l e  energy. I n  such cases we carry a n  energy parameter E 
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and usually an energy group index g. Cross sect ions are usually too 

complicated as functions of energy t o  be accurately f i t t e d  by simple 

formulas, so that i n  pract ice  the  whole range of energy involved i n  

the problem is  subdivided i n t o  su i t ab le  groups g = 1, ..., G by lower 

bounds 

tabulated f o r  these in t e rva l s .  

E l >  E2 > ... > EG, and a l l  necessary functions of energy are 

Moreover, systems encountered i n  p rac t ice  are frequently non- 

of varying dens i t i e s  homogeneous, being composed of zones 3 = 1, . . ., 
o r  of d i f f e r e n t  materials. This usually involves s tor ing  physic,al 

a- 
quan t i t i e s  as functions of 2 as w e l l  as of g. Permanent storage 

then contains numbers K with two independent indices ,  which 

necess i ta tes  a n  addi t iona l  p a r t i c l e  parameter 

present ly  occupied by the pa r t i c l e .  

3 t o  ind ica te  the zone 
,3+ 

I n  problems involving high transmission, capture, f i s s ion ,  (n-2x1) 

react ions o r  o ther  such features, it is  desirable ,  although not 

necessary, t o  introduce a p a r t i c l e  parameter W, ca l led  i t s  weight, 

which i s  i n i t i a l l y  unity a t  the source. To i l l u s t r a t e  i t s  use, consider 

a problem i n  which, upon co l l i s ion  of a neutron with a nucleus, there  

is a probabi l i ty  p of capture. W e  have the a l t e rna t ives  of (a)  not 

employing weights, using a random nuniber r i n  case of co l l i s ion  t o  

determine whether capture occurs o r  not, by reference t o  the  capture 

probabi l i ty  p, and i f  r 4 p, los ing  the neutron t o  a capture cate- 

gory, re turning t o  ( 0 1 ) ;  o r  ( b )  using a weight parameter W ,  t a l l y i n g  a 

weight pW i n  the  capture category de te rminis t ica l ly ,  and continuing 
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with a neutron of weight (1-p)W, which now s c a t t e r s  on the  proper 

nucleus. I n  the lat ter case we lose  no t r a j e c t o r i e s  t o  capture and 

ge t  a b e t t e r  picture  of the  capture d i s t r ibu t ion  i tself .  

Certain problems are concerned with the time a p a r t i c l e  takes  t o  - 
t r a v e l  from the source t o  its death, which c a l l s  fo r  a parameter T 

giving the "age" of the p a r t i c l e  at  a l l  phases of i t s  l i fe .  A parameter 

Y 

some problems, e.g., i n  those dealing with th ick  t a rge t  corrections.  

is employed fo r  the number of co l l i s ions  suffered by a p a r t i c l e  i n  

We include fo r  easy reference a l i s t  of these most f requent ly  

used p a r t i c l e  parameters, and w i l l  adhere throughout t o  the notation 

indicated here. 

_I 

Par t i c l e  Parameters 

Space coordinates x,y,z or R 

Direction coordinates u,v,w or  w 

E 

Energy group index €3 

Zone number 

7 

Number of co l l i s ions  Y 



3. Remarks on uni t s .  It i s  perhaps desirable  t o  mention b r i e f l y  

t h e  matter of u n i t s  a t  t h i s  point.  We use the centimeter-gram-second 

systems of u n i t s ,  with the following qua l i f ica t ions .  (a )  Neutron ener- 

g i e s  are expressed i n  e lectron vo l t s  (ev), Kev (10 ev) ,  or Mev(10 ev). 3 6 

For the  unin i t ia ted ,  voltage has dimensions of energy per  un i t  charge; 

one ev is  by de f in i t i on  the  energy acquired by an electron which has 

dropped through a po ten t i a l  difference of one (p rac t i ca l  u n i t )  vo l t .  

Since the  l a t t e r  i s  

and the charge on the electron i s  

t h a t  one ev is  eV = 4.8025 x lom1' x lo8/, = 1.60203 x erg.  

(b )  The energy of a photon i s  measured i n  (dimensionless) u n i t s  of 

moc2, where mo 

more f u l l y  i n  Ch. V I .  

lo8/, of t h e  e l e c t r o s t a t i c  un i t  of voltage, ( 5 )  

e = 4.8025 x 10-l' esu, it follows 

i s  the rest-mass of t h e  e lectron.  This is explained 

We include here the formula for computation of the time A T i n  

seconds f o r  a neutron of energy E MeV t o  t raverse  a distance of d cm. 

Let t ing  k -  1.60203 x ergs  per Mev, we have i n  the non-re la t iv i s t ic  

range of neutron energies ( 6 )  

1 2  E k -  - m  v 2 1  

(5) c =  2.99776 x lo lo  cm sec-l ,  the ve loc i ty  of l i g h t  i n  vacuo. 

(')The r e l a t i v i s t i c  k ine t i c  energy is  (m-ml)c2, where m = m l / { z  
A s  an exercise  one may determine the r e l a t i v e  error and B = v/c. 

(1.1%) i n  computing v from the t w o  formulas when E = 14 Mev, the 
highest neutron energy involved i n  the present report ,  which is thus 
confined t o  the non-re la t iv i s t ic  range of neutron energies. 
give the r e l a t i v i s t i c  treatment of the Compton e f f e c t  i n  Ch.  V I ,  
however. 

We do 
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where m l ( g m )  i s  the mass of the neutron and v i t s  speed i n  cm sec-'. 

Thus 

Now one ''gram atomic mass" of any physical p a r t i c l e  contains 

Avogadro's. number 

atomic mass of the  neutron, we have 

A = 6.0228 x 1023 par t i c l e s .  Taking 1.00893 f o r  t he  

-1 v = k'  v m  cm sec 

8 where k' = 13.83 x 10 

14 meters per microsecond ( p s e c ) .  We have then 

numerically. Thus a 1 Mev neutron t r ave l s  about 

A 7 = k"d/ sec 

f o r  the t r a n s i t  t i m e  A T ,  where k" = 7.231 x 10-l'. 

4. Space coordinates f o r  source pa r t i c l e s .  We have indicated i n  

8 1 of the present chapter how the  machine is  l ed  from the  "start" of 

the problem t o  the point a t  which it s e t s  up a source pa r t i c l e ,  

o r  having f in i shed  processing a pa r t i c l e ,  it i s  returned t o  ( u )  via 

( u ) 

( c y  ), while i n  9 2  we have discussed the various kinds of parameters 

as they are car r ied  throughout the career  of a pa r t i c l e .  We are now 
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ready t o  consider how i n i t i a l  values are assigned t o  these parameters 

as a p a r t i c l e  issues from the source. We hope t o  give enough examples 

t o  indicate  the nature of the procedure. 

(a). Uniform source on an annulus o f  r a d i i  R o <  R1. Determina- 

t ion  of coordinates x,y (c f .  Fig. 8). The probabi l i ty  density function 
2 p(R) is  27r R/ 7r (R: - R o ) ,  so that the fundamental pr inciple  sets 

Having thus located the radius  R ,  we  note t h a t  p(4)  d4 = dq5 /2n 

so t h a t  the next random number determines 4 by 

W e  have therefore the rout ine indicated i n  Fig. 8. 

(b) .  Uniform source i n  a spherical  shell. The f i n a l  result is  

R = v m  i f  spherical  symmetry admits use of the  s ing le  

space coordinate R.  If x,y,z must be specif ied,  we s h a l l  have 

x = Ru, y = Rv, z = Rw, where (u,v,w) is  a point uniformly d is t r ibu ted  
2 on the  uni t  sphere u2 + v2 + w = 1. How such points may be obtained 

w i l l  be discussed i n  the next sect ion (5a) on d i rec t ion  parameters 

u, v ,  w, where the  same problem arises, 

( c ) .  Parallel-beam source incident on lateral surface of r i g h t  

1" 
c i r cu la r  cylinder of radius  R1, height H, o r  on a sphere of radius  R 
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If the beam i s  taken  i n  the posi t ive y-direction (u = 0,  v = 1, w = O ) ,  

and the cylinder i n  the posit ion shown i n  Fig,  9, one may use the 

rout ine there indicated.  

For a similar beam incident  on a sphere of radius  R we have 1’ 

x=RII/F; 

about the y ax is .  

y = -  4-1 = - R~ i-), z = 0, issuming symmetry 

( d ) ,  I so t ropic  point source a t  distance d from r i g h t  c i r cu la r  

cylinder.  Here the determination of the x, y, z coordinates of the 

point of en t ry  t o  the cylinder i s  correlated with the d i rec t ion  param- 

eters u, v ,  W. We therefore  postpone t h i s  problem t o  the next section. 

5 .  Direction coordinates f o r  source pa r t i c l e s .  We next consider 

the problem of assigning d i rec t ion  cosines u, v ,  w, o r  simply w i n  

the spherical ly  symmetric case, t o  source pa r t i c l e s .  If the lat ter are 

l ibe ra t ed  i n  a material medium, the d i rec t ions  may be expected t o  be 

drawn from a n  i so t ropic  d i s t r ibu t ion ,  whereas pa r t i c l e s  emanating from 

a surface are na tura l ly  l i m i t e d  t o  ha l f  of d i rec t ion  space and usually 

are dis t r ibuted i n  some non-isotropic d is t r ibu t ion  about the normal t o  

the surface.  

(a ) ,  I so t ropic  source; u,v,w d i rec t ion  cosines. The problem 

involved i s  tantamount t o  tha t  of choosing a point (u,v,w) uniformly 

d is t r ibu ted  on the u n i t  sphere 

f o r  t h i s  sphere i n  spher ica l  coordinates Y ,  q5 i s  s i n  y d r  dq5 = 

2 u2 + v2 + w = 1. The element of area 
- 

- dw a+ , where 4 i s  the longitude, and we have used y instead of 
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the  t r a d i t i o n a l  0 f o r  the remaining angle s ince Y has already been 

introduced for  t h i s  angle by way of w = cos y ( c f .  Fig. 7) .  The 

probabi l i ty  densi ty  function p(w) is  therefore  given by p(w) dw = 

dw. We may therefore  first determine w by I - 2 3 ~  s i n y  d y / k f l  = 

w -  
w: -1 

and 4 subsequently by 

Reference t o  Fig. 10 then  completes the argumeat f o r  the  i so t ropic  

source; we need only remember t h a t  P E i-1 =i-. 
( b ) .  The cosine d i s t r i b u t i o n . ( 7 )  %is r e f e r s  t o  a point source 

emanating from a surface.  If we agree that the outer normal t o  the 

surface a t  the point has the d i rec t ion  u = 0, v = 0, w = 1, then the  

cosine d i s t r ibu t ion  has by def in i t ion  the probabi l i ty  density function 

P ( W )  = 2w, with w 3 0. Thus 

W 

r = 1 2w dw 
0 

‘7’For a discussion of the way i n  which the cosine d i s t r ibu t ion  governs 
p a r t i c l e s  emanating from a surface one may r e f e r  t o  F. W. Sears, An 
Introduction t o  Thermodynamics, the Kinetic Theory of Gases, and 
S t a t i s t i c a l  Mechanics, Addison-Wesley Publishing Co. , Inc , Cambridge, 
Massachusetts, 1955. Cf. the  chapter on k ine t i c  theory. 
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and w = 1/F 

with the replacement of w = 2r - 1 by w = r/iF. 
i n  t h i s  case. The flow diagram of Fig. 10 may be used 

( c ) .  Isotropic  and cosine sources i n  spherical ly  symmetric - 
systems. I n  case spherical  symmr?try indicates  the use of coordinates 

R ,  w defined i n  Fig. 7, we may have t o  assign the direct ion parameter 

w for  point sources of the above k inds .  Such sources w i l l  be located 

on spherical  surfaces,  and i n  case of a cosine source, the latter w i l l  

be r e l a t i v e  t o  the normal t o  such a surface,  i .e.,  t o  the radius  vector.  

It is  therefore c l ea r  tha t  the formula w = 2r  - 1 is v a l i d  f o r  the  

isotropic  case, w h i l e  w = appl ies  t o  outwardly directed,  and 

w = -F t o  inwardly directed cosine sources. 

(d). Isotropic  p o i n t  source a t  d i s t ance  ds f r o m  cylinder of 

radius R2, height H (c f .  Fig. 11). T h i s  problem presents some 

features  of interest. Clearly,if  we proceed naively t o  assign direct ion 

parameters u, v ,  w t o  pa r t i c l e s  as they leave the source s, using the  

method of ( a )  above, most pa r t i c l e s  w i l l  f a i l  t o  h i t  the cylinder,  the 

s i z e  of which may be greatly exaggerated i n  the f igure.  The physical 

problem is natural ly  concerned w i t h  questions r e l a t i v e  t o  the nuaiber of 

incident pa r t i c l e s ,  not w i t h  the problem (an in t e re s t ing  one , inc identa l ly)  

of what s o l i d  angle i s  subtended a t  the  source by the cylinder. How the 

la t ter  question may be attacked by Monte Carlo we leave as an exercise,  

In  t h i s  connection it is  worth mentioning t h a t  many purely geometrical 

problems which present forbidding ana ly t i ca l  d i f f i cu l t i e s  are ap t  t o  

arise i n  photon problems, and may be (many have been) successfully 



Fig. 11 



t r ea t ed  by the simple sampling methods which we are discussing. 

To re turn  t o  our point source, we observe first t h a t  the only 

p a r t i c l e s  which can h i t  the cylinder are l imited t o  the wedge defined 

by the two tangent planes t o  the cylinder through the source S. This 

means t h a t  d i rec t ions  a r e  l imited,  i n  u, v,  w space a t  the source t o  

those with longitude #J on the range - 4 2 &  d, & 42 where 4 2  - - 
a r c  s i n  R2/d,, and + 
a11 those p a r t i c l e s  issuing from the source between 9 and 4 + d$ 

i s  equid is t r ibu ted  on t h i s  range, Moreover, for 

the direct ion cosine w = cos y 

element of the cylinder determined by 6 ,  and on t h i s  range w has a 

is  l imi ted  by the end points of the 

constant probabi l i ty  densi ty  function, since the element of surface area 

on the unit sphere is -dw d d  . 
Now from the f igure,  the half-chord c2 - 

so  t h a t  the distance d = d cos 9 - c2* Thus fo r  t h i s  4 ,  the range 

of w i s  - w 2 %  < w 4 w2, where w2 = (H/2 ) /  f-1. (H/2 )  

rout ine for s e t t i n g  up x, y, z, u, v ,  w a t  the point of en t ry  there- 

2 s  

The 

fore  appears a s  i n  Fig. 12, where 

above formulas. The last box follows from the f a c t  t h a t  

,#2, c2>d2, w2 a re  given by the 

z/d2 = tan(n/2 - Y )  = cot  y = cos y / s in  y = w/pe 

(e ). General d i s t r ibu t ion  i n  half  of direction-space. Occasion- 

a l l y  it i s  necessary t o  consider a point source w i t h  

some experimentally determined d i s t r ibu t ion  i n  

w & 0 having 

w, which may be given 

i n  the form of  a tab le .  

w 

We may then tabulate  Po = 0 < P < PI = 1, 1 

is  the probabi l i ty  of a cosine 'i = 1 > w1 > ... > wI = 0, where 
0 

-42 - 



w = w (2r - 1) 

u = p cos 9 

t 

Fig. 12 

w & wi, and proceed as i n  Fig. l 3 a  (cf.  a lso formulas (2 )  and (3 ) ,  

~ 

Ch. I, 85). When various d i s t r ibu t ions  are t o  be tried, it i s  preferable 

t o  run a number of d i f f e ren t  problems, each f o r  a spec i f i c  w; the  re- 

I s u l t s  may then be weighted t o  give terminal percentages for any desired 

source. 

( f ) .  A prejudiced source. It is sometimes desirable t o  sample 

cer ta in  ranges of source d i rec t ions  more thoroughly than  others .  To 

i l l u s t r a t e ,  suppose tha t  we have a n  i so t ropic  source, with w uniformly 

dis t r ibuted on -14 w 4 1, b u t  t h a t  the posit ion of a counter makes 
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more important those par t ic les  which leave the source on the range 

-16 w 4  ? < 0. & m y  then give source par t ic les  equal likelihood 

of s t a r t i ng  on t h i s  range or i t s  complement, provided we assign weights 
(? + 1) and (1 - hl w ) ,  respectivelJ I n  th is  way about half of a l l  

source par t ic les ,  of re la t ive ly  smaller weight, originate i n  the 

important cone, the t o t a l  weight processed for N par t ic les  having 

expectation 

i n  Fig. l3b. 

r r )  N(? + 1) -t 2 N(1 - w )  = N. The procedure is  schematized 

6. Energy of source par t ic les ,  I n  the case of energy dependent 
I 

problems, one usually decides upon a set of energy ranges with lower 

bounds E l >  E2 > ... > EG, with storage of physical q u a n t i t i e s  for  

each of these ranges, 

i n  the problem. 

relegated t o  a terminal category reserved for such losses. 

g = 1, ..., G designates the group number. If the source is mono- 

energetic, one simply se t s  Eo -+ E, go 4 Q ,  tha t  is, E and g are 

assigned thevalues of the i n i t i a l  energy E, and the index go of the 

group i n  which t h i s  energy falls; go 

may wish t o  study the behavior of a ser ies  of sources of various i n i t i a l  

energies. 

EG being the lowest energy permitted t o  par t ic les  

Par t ic les  which by chance reach lower energies a re  

An index 

may or may not be unity; one 

If the source par t ic les  are  not monoenergetic but are chosen 

from some given energy dis t r ibut ion,  one tabulates 

= 1 together w i t h  El > ... >EG and proceeds exactly as indicated 

Po = 0 < .. b < PG 
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i n  5 5e above, reading g f o r  i, E for  w and E f o r  W. g i' 

7. Other source parameters. "he other  parameters mentioned 

i n  Ch. 11, 

(4 3 is  set equal t o  the  number of the zone in to  which source 

p a r t i c l e s  enter (which may depend on the values assigned t o  s p a t i a l  and 

d i r ec t iona l  coordinates, and t h u s  involve a decision routine ); (b ) the 

weight W is usually unity a t  the source; ( c )  age t = 0 i n i t i a l l y ;  

and ( d )  Y = 0 f o r  the number of co l l i s ions  undergone. 

52, i f  ca l led  f o r ,  have the following values a t  the source: 

8. I n  a n  important c l a s s  of 

problems, including those which a re  designed t o  determine the rate of 

growth of a neutron population i n  a f i ss ionable  mater ia l ,  the  source 

consis ts  of a spec i f ied  nuniber of neutrons N i n  group g, 

Source for  a -type calculat ions.  

@;,pi 
and d i rec t ion  range 

homogeneous sphere of radius  

bounds 

i. We w i l l  i l l u s t r a t e  f o r  the case of a 

RZ, where these ranges are determined by 
zone P 

> EG E o > E 1 >  . . e  

0 = R o <  R1< ... < R Z  

1 = wo > w 1 7  ... > WI = -1 
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The object  of such a problem is the determination of the d i s t r i -  

bution N' i n  which t h i s  i n i t i a l  d i s t r ibu t ion  r e s u l t s  at time 
g ,3, i 

A 7 ,  and then to  use the output N' as the input source d i s t r i -  
63 $3, i 

bution for the next cycle. A su i tab le  modification of the,  (a) and 

( 0 )  rout ines  is indicated i n  Fig, 14. The determination of E, R, 

and w on t h e i r  ranges may be achieved by appropriate in te rpola t ion ,  

or ,  i f  preferred,  by determinis t ic  assignment of su i t ab le  mean values 

The i n i t i a l  values of N 

are guessed as well as possible t o  hasten convergence t o  the limit 

are a r b i t r a r y  i n  a -calculat ions,  but 
Q ,a, i 

- -  
d i s t r ibu t ion ,  

mu@t be distinguished from the neutron parameters 

subject  t o  change while the  category from which the neutrons arose i s  

being processed. The feedback of N' f o r  N i s  subject  t o  su i t ab le  

The g , p  3 refer t o  the  category being processed, and 

g i, which are 
9 3 ,  

renormalization t o  preserve a reasonable source s i z e  
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C W T E R  I11 

THE MEAN FREE PATH AND !TRANSMISSION 

1. The cross sec t ion  concept. The cross sect ion u of a 

s t a t iona ry  " ta rge t"  p a r t i c l e  f o r  p a r t i c l e s  of energy E, r e l a t i v e  t o  

a given s ingle  process may be thought of as the  area presented by the 

t a rge t ,  assumed s t a t iona ry  i n  the laboratory system, t o  a beam of ' 

(poin t )  p a r t i c l e s  of t h i s  energy, r e l a t i v e  t o  the laboratory system. 

If we regard a t h i n  slab of material of area a , thickness d l  , numer- 

i c a l  dens i ty  N ( t a r g e t  p a r t i c l e s  per  cm 3 ), t raversed by a p a r a l l e l  

beam of p a r t i c l e s  (of energy E) normal t o  a 

t o  the beam by t a rge t  p a r t i c l e s  is  u N a ( d j  ) , assuming a i  so s m a l l  

t h a t  no "shadowing" exists. 

t he  process i n  t h i s  volume should be 0 N a (d k ) / a . 
have the at tenuat ion l a w  

the t o t a l  area presented 

The f r a c t i o n  of beam-particles undergoing 

We, therefore ,  

dn = -n N o ( d b )  

f o r  the  number n of p a r t i c l e s  i n  the  beam, and 

n = no exp ( - N u R )  
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represents the number of particles remaining in the beam after traversing 

a distance k in such a uniform infinite medium, no being the number of 
particles in the beam at 1 = 0. 

competing processes exist. 

Note that we are assuming no other 

It is, therefore, suppoeed that 

is the probability for a first collision between 1 and k +  d k , and 

P(a) = /'e- (-Nos) Nu(d1) = 1 - exp ( - N o t )  

0 

is the corresponding probability distribution function for a first 

collision at distance 51. 

2. The mean free path. The average distance to first collision 

is defined as the first moment of the function p(I), i.e., 

and is called the mean free path for the process at this energy. 

It follows that the Monte Carlo determination of distance 1 from 
--- 

an arbitrary point of departure to first collision, assuming the medium 
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homogeneous and infinite must be 

r = ~(9.) = 1 - exp (-RIA) 

on , 
A A The 6um of the cross sections 4 (el.) + u (in.) + ... of all 

types Tor a particular nucleus A is called its total cross section 

Q (tot,). If the medium contains nuclei of types A, B, C, . .. in 
numerical densities NA, NB, Nc9 ..., respectively, the "total cross 
section" for the medium is defined to be 

- 
A 
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or 

A =  - A R ~  (1 - r> 

Since 1 - r is equidistributed on 0 5 r &l if r is, we may use - 
simply 



A B Z =  NAu ( t o t . )  + NB u ( t o t . )  + ... 

Reference t o  the  preceding discussion makes i t  c l ea r  t h a t  the 

the  simple N u  of that  argument should be replaced by C i n  the general  

case, and the mean free path f o r  the medium is ,  therefore ,  

The Monte Carlo method i s  always concerned with the dis tance 1 
from point of departure t o  co l l i s ion ,  and only i n  case of co l l i s ion ,  

tu rns  t o  a consideration of the  nature of t a r g e t  h i t ,  and the  type of 

process involved. 

i s  used and never the  free path f o r  any of the individual processes. 

Thus it i s  always the mean free path A = 1/ I; that  

It must be remembered that  cross sect ions are, i n  general, de- 

pendent upon the energy of the p a r t i c l e  (picturesquely,  the s i ze .  of the 

t a rge t  depends on the speed of the arrow) ; thus we write 0 E ( e l . ) ,  . . . 
0 ( t o t . ) ,  

free path i s  usual ly  tabulated as 

energy group index. 

A 

A 
E TE, and h E  as functions of energy E, and, i n  prac t ice ,  the 

h g ,  g = 1, ..., G, where g is the 

Moreover, i n  systems consis t ing of zones of d i f f e r i n g  composition, 

3 
@;* 

we w i l l  have an addi t iona l  zone index on the free path, thus A 
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3. An example. Consider the problem of determining A for neu- 

trons of energy E = 3 MeV in a medium of CH2 of density d = ,92 gm cm -3 . 
C 

At this energy, C has an elastic scattering cross section Q (el.) = 1.14 

barns (1 barn = lom2‘ ern ) while H has a similar cross section Q (el.) 

= 2,23 barns. No other processes are involved. 

2 H 

The atomic weight of C is 12 and of H is 1, so that the molecular 

weight of CH2 is 12 + 2(1) = 14. 

compound are A = .6 x LO 

In one gram molecular weight G of any 

The mass of one CH2 molecule is, 24 molecules. 

therefore, G/A gm. Since 1 cm 3 of CH2 has mass d gm, the number of 

3 24 -3 molecules of CH2 in 1 cm 

Hence, the numerical densities of C and H are N 

c = N~ u (tot.) + N~ 0 (tot.) = N(C (el.) + 20 (el.)) = 221 cm . 
Thus finally A = 1/ 2. = 4.52 cm. 

is N = d / ( G / A )  = d A / G  = .0394 x 10 cm 

= N, NB = 24 and C 
C H C H -1 

In problems involving many zones of the same material at different 

densities, it may be necessary t o  store only the basic nuclear constants, 

together with zone densities, and provide for the machine to compute its 

own h’when needed, by reference to the stored quantities. For instance, 

in the preceding example, taking energy dependence into account, we should 
g 

have 

where 
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and d are stored quantities. Such a procedure is time-consuming, 

especially when it necessitates computation of the probabilities for 

type of collision upon each collision. 

2 

The concept of free path as we have formulated it applies to 

photons in their interaction with electrons and nuclei as well as to 

neutrons interacting with nuclei. A discussion of photons will be 

found in Chapter VI. Throughout the report, except in Chapters V and 

VI, we speak in a general way of "particles" which may be photons or 

neutrons. 

4. "Small" systems and transmission. Consider a homogeneous 

medium having mean free path h for particles of a monoenergetic 

source. If the distance from source S to the boundary of the system 

along a given direction is L, then, of a beam of N source particles 

leaving the source in this direction, N exp ( -  L / h )  will escape un- 

deterred. It is clear that if the dimensions of such a system are 

small compared to the free path A ,  most source particles will escape. 

This is' especially undesirable if the assignment of source parameters 

is complicated, and,in any case,requires needlessly large sources t o  

produce an effective sample. 

Now there is nothing to prevent us from regarding a single 

mathematical particle leaving the source in a given direction as 

representing a large set of W actual particles. 

of a l l  problems is a set of ratios Ni/N, where N is the total number 

Since the output 
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of source p a r t i c l e s ,  the i n i t i a l  va,lue assigned t o  W may be taken as 

unity. 

We may then argue t h a t ,  f o r  a p a r t i c l e  of weight W (=1) leaving 

the source i n  the  s i t u a t i o n  described above, a p a r t i a l  weight W exp (-L/A) 

i s  transmitted, the  lat ter weight being tallied i n  a category T reserved 

f o r  t o t a l  transmission (without c o l l i s i o n ) .  

of f i r s t  c o l l i s i o n  on the  i n t e r v a l  0 

remaining p a r t i c l e  of weight W (1 - exp ( - L / h ) )  according t o  the formula 

r = P((L)/P(L), where P(1)  = 1 - exp (-!/A), as derived i n  a preceding 

sect ion.  Solving f o r  1,  one obtains  1 = - A  an(1 - r [l - exp (-L/A)]}. 

If the  medium is non-homogeneous, bu t  may be regarded as cons is t ing  

Then we determine a pos i t ion  

d L L  within the  medium f o r  t he  - -  

of a number of zones, each homogeneous i n  i tsel f ,  the portion of the  l i n e  

of f l i g h t  l y ing  within the medium may be decomposed i n t o  successive in-  

t e r v a l s  of lengths LI, .*,, Lm, where L 

w i t h  free path A 

exp ( -L2/h2) . exp ( -Lm/Am) = exp - {Ll/AL + . . . + L,/hm . The 

p robab i l i t y  of a first c o l l i s i o n  at a d is tance  2 k 
or ig in  is, therefore ,  1 - exp ( - P ) ,  where 

i s  the segment ly ing  i n  zone 7 3 
The transmission i s  then c l e a r 1 y . t  = exp (-Ll/Al) 

} 
7.  

L from the  poin t  of 

P is  defined by 

L1 + ..* e L .c L L l  + .*. + L + L 
3-1 7 - 5 

and 
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Thus p is the number of free paths represented by 1. We 

therefore may record the weight Wt as transmitted, and force a first 

collision of the weight W ( l  - t) on the line of flight at a distance 
1 < L by means of the formula 

& - 
- P  r = (1 - e )/(1 - t) 

Thus P = - ,!n [1 - r(1 - t)] determines 7 by means of the inequalities 

L 
+ = <  p = -  L1 + ... 1 + . . a  

- L1 

5 r-1 

and 1 by the equation 

5 .  The "forced first collision" routine. We illustrate the use 

of the device in t w o  typical  problems in this and the following section. 

Consider a parallel-beam monoenergetic source incident on the lateral 

surface of a cylindrical shell of radii 

of homogeneous material having free path h at this energy. We suppose 

that the source routine has already assigned to a source particle its 

parameters at entry, say, u = 1, v = 0, w = 0, and x, y, z (in the manner 

indicated in Chapter 11, 64c), together with E = Eo, g = go, II = 0, and 

R o <  R1, and height H, composed 
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W = 1. 

forced first co l l i s ion  as indicated i n  Fig.  16, based on the  geometric 

The e x i t  from ( 0 )  should then lead t o  the (Bo)  rout ine for 

propert ies  of Fig. 1.5. 

J 

S 
___c 

I 

c--)-ecL 

I 

1 
I 
I 
I 

‘S-CI-l 
c--$----c 

I 

I 

lo -x  

- x  

Fig. 16 
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The procedure naturally depends on whether or not the line of 

flight crosses the hole. 

The distance L is the total path length of the line of flight lying 

within the medium. The transmission T~ is based on the free path for 

initial energy group g . The distance traversed within the medium from 

point of entry to point of collision is denoted by 4.  
exit leads to the collision routine ( Y )  with all parameters as they 

exist at the point of collision, momentarily before impact. 

This is the reason for the I y I - R decision. 
0 

0 

Note that the 

6. Remark on the device in spherical problems. Although we 

shall not include an example of the forced first collision device in 

a system treated with spherical coordinates, we should mention that, 

if it is used to determine 

point of first collision,(8) one should exit to an entry such as ( 7 ' )  

discussed in Chapter IV, 83, which sets up the direction w and 

radius R 

( Y )  itself. 

a weight W and a radial distance R at the a 

as they exist - - - A  at the point of collision, before entering 

A s  an example of the forced first collision method in a non- 

homogeneous medium, consider a parallel beam of particles directed 

vertically upward (u = 0, v = 0, w = 1) and incident on a sphere 

x2 + y2 + z = Ro subdivided into spherical homogeneous shells by 

the radii Ro > R1 > . . . > Rk = 0, zone 7 having total mean free path 

2 2  

I8)If R,w are the source parameters, and k the distance from source 
to forced first collision, R2 = R2 + k2 + 2Rkw in the solid homo- 
geneous case. B 
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Fig, 16 

A f o r  the incident  energy, A set of s torage places PI, ..., pk are 

reserved i n  the machine f o r  the  numbers of free paths represented by 
5 

segments ( z ' , ~ " )  of the l i n e  of f l i g h t  i n  the zones through which it 

passes. 

x = R o 6 ,  y = 0 have already been set for  the poin t  of en t ry  i n  the 

source rout ine,  symmetry obtaining about the z-axis. 

The method i s  i l l u s t r a t e d  i n  Fig. 16a. It i s  assumed that 
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0 

t = exp (-2P) W t + T - T  T- P + A p - P  

AP - pa- 

w - w t - w  w 
1 

d Ap = z"/A 

fi 9 

1 

Fig. 16a 
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7. The transmission in subsequent history. The device of 

forcing collisions of the non-transmitted weight may, of couxse, be 

applied to collisions after the first. 

- all collisions, then no trajectory ever terminates in escape, and one 

would ordinarily rely on a weight cutoff for termination. Usually the 

geometric complexity of paths after first collision renders use of the 

device for further collisions impractical. We do not consider forced 

collisions other than the first in the present manual. 

If applied consistently to 

8. Prejudiced first collision in "large" systems, In problems 

concerned with "large" systems, such as those arising in shielding, 

the transmission must be very small and yet one may have to obtain 

energy-angle distribution of escape and space distribution of various 

types of collision (e,g,, inelastic collision and radiative capture of 

neutrons in determining Y -sources) throughout the system. Moreover, 

the existence of energy cutoffs makes very unlikely the.arriva1 of 

particles in the farther reaches of the system after many collisions. 

In such cases, one may overcome the dwindling of first collisions due 

to the exponential by prejudicing the distribution of first collisions 

and weighting accordingly. 

We illustrate with a simplified example. Consider a thick plane 

slab of two layers (free paths Al, 

the planes z = 0, z = $ z = L2, with a source directed vertically 

upward and incident on the surface z = 0. 

A 2  at incident energy) bounded by 

One may then determine the 
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position z of first collision, together with the weight at this point 

by the scheme of Fig. 16b. 

first collisions uniformly throughout the slab, while the weighting 

Note that the formula z = rL2 distributes 

gives the correct expectation for first collision between z and z + dz, 
namely, 

dz L2 - P  -Pdz - . -  e = e  - 
L2 Am 4n 

If N source particles are processed, the expected total weight 

assigned to these at first collision is then N(l - T ~ ) ,  where 

=.,-{>+ L2 - L1} is the transmission. 

To 

1 h 2  

. 

t 
I I 

b 
Fig. 16b 
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CHAPTER IV 

THE COLLISION OR ESCAPE ROUTINE 

1. Introduction. I n  the last chapter, we discussed a spec ia l  

rou t ine  f o r  "forced first col l is ion."  

ducts  a particle from a special point  of departure, namely, the source, 

t o  a point  of c o l l i s i o n  within the system, with no escape a l t e r n a t i v e  

f o r  the t r a j e c t o r y  i tself .  

entered only once, namely, d i r e c t l y  from the source, and has only one 

e x i t ,  the  co l l i s ion  rout ine ( 7 ) .  

Conceptually, t h i s  rout ine con- 

When t h i s  ( B o )  rout ine i s  used, it is  

I n  a l l  problems, whether t h i s  device is used o r  not, a rout ine  

( e )  i s  required which is designed t o  conduct a particle from a p e r f e c t l y  

a r b i t r a r y  point  of departure i n  an arbitrary zone, a t  which the p a r t i c l e  

parameters are known, t o  i t s  next point  of co l l i s ion  within the  zone, 

o r  t o  i t s  point  of departure from the zone, i n  the event the boundary 

i s  reached without co l l i s ion .  (Cf,, however, Bg of t h i s  chapter.) 

This  (p) rout ine  is entered d i r e c t l y  from the source, i n  prob- 

lems not using the (So) device, and i n  various other  s i tua t ions ,  namely, 

as a p q r t i c l e  departs from a co l l i s ion ,  as i t  en te r s  a new zone, o r  
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upon re-entry into the same (central) zone, after crossing a central 

hole, etc. 

Aside from the initial determination of the distance k to 

collision (calculated for an infinite homogeneous medium), this routine 

is purely geometric, and consists essentially in comparing the distance 

1 with the distance d 

flight. 

of collision, and one proceeds to ( ?’ ). 

sidered to reach the zone boundary. 

set at the boundary point, and one returns to ( B  ). 

to the boundary of the zone along the line of 

If 1\ <d, space and direction coordinates are set at the point 
If k - the particle is con- 

I n  this case its parameters are 

It is clear that when a problem involves zones of different 

may be geometric shapes, several such routines ( B A ) ,  

required, each designed for the geometric problem of its own type of 

sector. In such cases the particle carries an additional parameter 

which indicates the type of geometric zone it occupies at any given 

time. Transfer is made from source points, points of collision, and 

so on to the appropriate ( f ib) .  

One m y  also note that, under our procedure, a particle reaching 

the boundary of a zone is referred back to ( B  ), unless escape from the 

system is involved, and is then treated anew relative to the zone 

entered. 

determine the eventual position of collision, or escape from the sptem, 

by reference to all path segments defined on the line of flight by a l l  

zone boundaries may be used but seem clumsier t o  handle, and we do not 

,&= 1,2,. . . 

An alternative procedure using a single random number to 
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discuss  it, The method involved should be c l e a r  from the discussion 

a t  the end of $4, Chapter 111. 

2. A rout ine  f o r  t he  spher ica l  she l l .  Consider t he  problem 

o f  a p a r t i c l e  with parameters R,  w, E, g,$ a t  a poSnt of departure i n  

a shell  of radi i  R 

t o  keep computation a t  a minimum. 

the  point  of col l isSan i n  an  i n f i n i t e  medium of free path A' t is  the 

'tangential dis tance t o  the  inner boundary from the point of departure 

a t  R ,  and wt = - t /R  is the cosine 00 t he  angle Yt from OR t o  th i s  

tangent (cf. Fig .  18) 

that, w being negative, wt2 - w2< 0 implies tha% the l i n e  of f l i g h t  

cu ts  the inner bowdary. Moreover, if Fti2 - R2 

s ign o f  t2 - t 
the  other  side of the inner  boundary. 

< R The flow diagram of Fig. 17 w i l l  be seen 3-1 8' 
Here, Ra is the  r a d i a l  dis tance t o  

g' 

Reference t o  the cos Y curve of Fig. 19 shows 

is non-negative, %he 
%-I 

2 dist inguishes  between a point  of c o l l i s i o n  on one o r  

It w i l l  be seen that f o r  "so l id  spheres" with eo c e n t r a l  hole 

this  flow diagram w i l l  work automatically if  a =  1 is the index of the 

innermost zone, provided Ro = 0 be s tored  together with the  o ther  zone 

r a d i i  R1 < . . < Rzo 
cen t r a l  spherical  zone. The exlts ( r ' )  ind ica te  c o l l i s i o n  within zone z 

(cf. the next sect ion) .  

Thus no spec ia l  ( B ) rout ine i s  required f o r  the  
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Fig. 17 
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0 R R a -l 
Fig. 18 

w = cos y 

1 .  

0 

-1 - -  

Fig, 19 
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3.  Reorientation formulas for the spherical shell. ( 9 )  In case 

of collision ( Y ' ) ,  one provides a routine for computing the parameters 

R,w as they exist at the point of collision, before proceeding to ( Y )  

itself. This is indicated in Fig, 20. Moreover, in the event of escape 

at R 

most zone, the particle leaves the system, and one proceeds to ( e ) ,  

while if 7 ~ 3 ,  the particle enters a new zone 3-k 1. 
of an escaping particle may or may not involve its direction of escape. 

In the latter case, one may by-pass the reorientation part of the escape 

routine of Fig, 20 by putting the ?+ l++#and 2-7  boxes first. 
obtains the w '  formula of the latter routine from the relation w' 

we have two alternatives. If 3 = 2 , the number of the outer- 
5' 

Classification 

One 

?'I] and the law of sines: sin Y / R  = sin yl/R. 7 = cos 7 1  =i[l - sin 
Note that cos Y '  takes the positive square root since an entry to a 

zone from the inner boundary has acute angle of entry. 

Similarly, one obtains w '  = -f[ 1 - (R/R )2(1 - w2)] for the t-1 
For solid sphere problems, the escape contingency %-le entry cosine at 

at R 

using the latter formula f o r  w', R 

occurs - only if ~ > 1 ,  and involves the substitutions w'+w, 
7-1 + R, 7 -  l + ~ ,  and thence passage 

8 
to ($1. 

If the central zone y =  1 is vacuum, escape at R from zone y =  2 1 

2 after crossing the hole. Thus for a= necessitates re-entry of zone 

the hollow sphere problem, we have the routine of Fig. 21. 

'"All the geometric relations involved in the present section are 
indicated in Fig. 22 and Fig ,  23. 
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Fig. 20 



t 

Fig. 21 
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Fig. 22 

Fig. 23 
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4. Flux problems i n  spher ica l  geometry. Certain problems, one 

of which i s  t h a t  of a cen t r a l  neutron source i n  homogeneous air, requi re  

study of the number of neutrons of energy E which t raverse  (imaginary) 

spher ica l  surfaces  a t  varying dis tances  from the source. Such s i tua t ions  

may be handled by subdivision of the medium i n t o  spherical zones, and 

incorporating i n t o  the  "Escape a t  R ?and R7-1 I' rout ines  a cumulative 

t a l l y  i n  counters N r,g. These are - not terminal categories ,  except f o r  

?=?and do not e n t e r  i n t o  a "sum check," bu t  count all neutrons of 

a l l  energy groups whenever they cross a spherical boundary . B 
5. A rout ine f o r  the f i n i t e  cylinder.  We consider now the case 

af a p a r t i c l e  wi th  parameters x, y, 2, u, v, w, E, g a t  some point  of 

departure within a f i n i t e  homogeneous cyiinder of radius  R1, height H 

( c f .  F i g .  24). The procedure i s  indicated i n  Fig. 25. Note tha t  before 

en ter ing  ( Y )  i n  the event of co l l i s ion ,  a l l  parameters are stored i n  the  

machine as they obtain at the point  of co l l i s ion .  

d ina tes  u, v, w are the same a t  the e n t r y  t o  ( Y )  as they were at the (0 )  

entry,  and do not require new evaluation, as w a s  the case f o r  w i n  

The d i r ec t ion  coor- 

. ,  

spher ica l  geometry. The e x i t  ( e )  denotes, as usual, escape from the 

system and leads t o  a c l a s s i f i c a t i o n  rout ine  f o r  escaping particles. 

Such rout ines  are discussed i n  a later chapter. 
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Fig. 24 

Fig. 25 
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6. The f i n i t e  cy l ind r i ca l  s h e l l  with cen t r a l  hole. Let 

x, y, z, u, v, w, E, g be the  p a r t i c l e  parameters as they obtain a t  

an  a r b i t r a r y  point of departure within a f i n i t e  cy l ind r i ca l  s h e l l  of 

r a d i i  Ro< Rl and height H. 

the  l i n e  of f l i g h t  x' = x + u t ,  y t  = y + v t ,  z '  = z + w t ,  

cu ts  the ( i n f i n i t e )  inner cy l ind r i ca l  surface x2 +'y = Ro2 a t  two 

rea1 ,d i s t inc t  dis tances  

The procedure of 85 may be used unless 

t 2 0  
2 

- I *  V A O  
2 t =  

1 - w  

2 2 2  2 2 where 6 = ux + vy and A = I - (1 - w )(x + y - Ro ). I n  the  
0 

lat ter case one provides an  addi t iona l  rout ine as indicated i n  Fig. 26. 
Study of the flow diagram together with Fig. 27 should make 

the  method c l ea r .  Note that the case w = 1 and the  case of a l i n e  

of flight tangent t o  the  inner  cyl inder  are handled automatically. 

Nevertheless, some caution may be required a t  en t ry  t o  the  "t" boxes 

if  1 - w is  very small. Such a case may be handled e a s i l y  by a pre- 

liminary comparison of [ - I  -f: &] - K(l - w ) with 0, where K is 

a constant l a rge r  than the Largest dis tance within the  s h e l l .  I n  case 

the latter difference i s  posi t ive,  one may consider 1 zt(  as e s s e n t i a l l y  
i n f i n i t e  and may route  the  flow t o  the  proper box d i r ec t ly ,  by-passing 

2 

2 

the  e x p l i c i t  computation of t and zt. 

An alternative method which i s  very convenient when several  

cy l ind r i ca l  zones are involved i s  that of Fig. 27a. This has the  
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. 
(line of flight does not cut inner cylinder) 

5 = z + w a  

-6  - mo 
1 - w  

2 = z + w t  + 
XA = x + u l  T 
y = y + v J  - 

1 
-6  + m0 

1 - w  

I I x i. ul- x 
y i. v l -  y 

ZR - z 

(Escape through -0 
hole bases) 

1 ""zi --I 
@ (Re-entry across hole) 

Fig. 26 
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Z 
I 

Fig. 27 I 
advantage of effecting the decision between escape or collieion with a 

minimum of square roots, sets up the space parameters at escape position 

with little repetition of code, and avoids the "infinity decision" re- 

ferred to above, It i s  understood,that the inner and outer radii 

0 2 R o <  R1 and base plane z-coordinates H' and H" are properly set as 

a particle enters one of the system of zones. 

R2 5 x + y2 is carried throughout with x, y, z, and an additional 

Pi! f 1 - w2 together with u, v, W. An index X is also used, being 

set equal to zero at the source. 

Moreover, a parameter 
2 

The latter is of a purely computa- 

tional character. 
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@ 
t 

t = 1-6 + q r n l P  r--i I A = 62 - p2W2 - q) 

I I x t = x t u t  

Y t = Y + d  
2 = z + w t  t 
2 2 2  R t = x  + y  t t  

Fig. 27a 
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It  may be helpful  t o  note that  q = -1 or q = +1 according t o  

whether the d i rec ted  l i n e  of f l i g h t  does o r  does not cut  the inner  ( in -  

f i n i t e )  surface,  while d i s  t tplust t  o r  "minus" according t o  whether the 

point  of c o l l i s i o n  i s  outside o r  inside the  ( i n f i n i t e )  base planes. 

After first t r a n s i t  through the box i n  which xt, yt, zt, R 

puted, these quan t i t i e s  refer t o  the  point  of in t e r sec t ion  of the  l i n e  

of f l i g h t  with the  base plane z = H, when d 2 0, and t o  the point  of 

c o l l i s i o n  when d < 0. The e x i t s  #? and /3 ind ica te  escape from the  

2 
t are corn- 

R H 
zone through the inner  or  outer  lateral surface,  and 

bases, respect ively.  In  an  ac tua l  problem involving 

such e x i t s  must lead t o  r a the r  involved rout ines  for 

next entered and s e t t i n g  up i t s  geometric parameters 

T o r  c lass i fy ing  escape i f  such i s  the case. 

from one of the  

several  sec tors ,  

deciding the  sec tor  

Rf, HI, H", and 

7.  The spher ica l  s h e l l  i n  absolute space. Even when the medium 

i s  spher ica l ly  symmetric, i t  may be necessary t o  keep t rack  of the direc-  

t i o n  of a p a r t i c l e  i n  absolute space, e.g., i n  case emergent p a r t i c l e s  

are t o  be c l a s s i f i e d  with respect  t o  t h e i r  d i rec t ions  relative t o  a 

given source d i rec t ion .  I n  such cases, i t  is convenient t o  use x, y, 

z, u, v, w parameters. The method is  similar t o  t h a t  of t h e  preceding 

sec t ion  and should r equ i r e  no fur ther  explanation. The procedure fo l -  

lowing a "core h i t "  depends on the problem and may involve an absorption, 

passage t o  an inner zone, or crossing of a cen t r a l  vacuum. 

elaborate  t h i s  case fur ther .  The procedure i s  indicated t o  some extent 

i n  Fig. 28. 

We do not 
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I A. = 62 - (x2 + y2 + f' + Rt I 

Fig. 28 
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8. Slab geometrx. In  problems on plane slabs, the medium can 

i& zT9 be considered t o  occupy the region of x, y, z space defined by Zo <= 
the  coordinate z and the cosine w of the angle Y which the l i n e  of 

f l i g h t  makes w i t h  the pos i t ive  z-axis being the only relevant  coordinates. 

The slab may cons is t  of zones of d i f f e ren t  kinds of media, with upper 

boundaries defined by Z1 < ... < Z-. 

may be l i k e  t h a t  i n  Fig. 29. 

The ( 8 )  rout ine f o r  such a problem 
P 

b 
t 

z - z -  8- 1-2- 2-1 

-4 
0 

Fig. 29 
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9. Problems run i n  cycles of time AT. In  problems involving 

the d i s t r ibu t ion  of p a r t i c l e s  ( i n  energy, posi t ion,  and d i r ec t ion )  a t  a 

given t i m e  A T  from t h e i r  o r ig in  i n  some source d i s t r ibu t ion ,  a p a r t i -  

c l e  is  followed u n t i l  it is  l o s t  t o  some terminal category such as es -  

cape, capture, e tc . ,  ox u n t i l  the  a l l o t t e d  time 4 7  has expired. Such 

problems arise na tura l ly  i n  

computation being performed i n  successive cycles, the output d i s t r ibu -  

t i o n  of each cycle being used as the  input of the  next, 

i n  such cases must be modified so  t h a t  t he  e s s e n t i a l  decision between 

co l l i s ion  within the zone or a r r i v a l  a t  the  zone boundary i s  contingent 

upon the qual i fying condition: "if t i m e  permits." Thus, t he  distance 

d 

a -determinations (c f  . Chapter 11, 5 8) ,  the  

The ( B )  routine 

t o  co l l i s ion  o r  boundary must be computed, and the  t i m e  ( c f ,  Chapter 

11, § 3 )  
T I  = IT f k"d/ f i  

of these events i s  then compared with cycle time AT. If T ' <  AT one 

subs t i t u t e s  T'+T and proceeds as usual, 

runs out  before the event can occur, One 

at = ( A  T - T )k1 

whereas, i f  T' 2 A T ,  time 

then computes the distance 

fi 
t h a t  the  p a r t i c l e  can t r a v e l  i n  the  time remaining, and the posi t ion 

and d i r ec t ion  after t h i s  distance i s  traversed. The p a r t i c l e  i s  then 

c l a s s i f i e d  i n  an energy, posit ion,  and d i rec t ion  category N 

one re turns  t o  (a). 

sphere with radius R-  

Chapter 11, 58, for (a). 

g , p  and 
We include i n  Fig. 30 an example f o r  a homogeneous 

See §@,3 of the present chapter for ( y ' )  and 
3.. 

(Lg r e f e r s  t o  lo s s  from the  boundary.) 
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T'  - A T  

0 

Fig. 30 
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THE COLLISION ROUTINE FOR NEUTRONS 

1, Introduction. We have seen i n  the last chapter how the 

geometry of the system determines the immediate fate of a particle, on 

t h e  basis of the equation g =  - Aln r, as a c o l l i s i o n  o r  an  escape a t  

t h e  boundary of the zone. 

involved i n  deal ing w i t h  the former contingency i n  the case of neutrons 

co l l id ing  w i t h  nuclei .  

rout ines  f o r  photons. 

The present chapter is devoted t o  the methods 

I n  the following chapter, we  consider the c o l l i s i o n  

It may be tha t  the media occupying d i f f e r e n t  zones T =  1, 2, ...,? 
are so diverse  i n  the  types of nuclei  contained, and thus i n  t h e  types of 

neutron processes involved, that  i t  is  not worth while  t o  attempt a gen- 

eral code f o r  ( Y )  covering a l l  contingencies. I n  such cases, d i f f e r e n t  

c o l l i s i o n  rout ines  ( y.$ may be provided, each economically adapted t o  

i t s  own type of medium. 

The basic object  of t h i s  chapter and the next is  t o  show how, 

after c o l l i s i o n  of a neutron o r  photon i n  a given medium, the new E, g, 

u, and W are obtained, as w e l l  as the cosine of t h e  laboratory angle of 
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deflect ion from the incident  l i n e  of f l i g h t .  The e x i t  ( a )  from the 

( 7 )  rout ine refers t o  a purely geometric procedure which determines 

the  new direct ion parameters u, v, w ( o r  simply w) from the  incident 

d i rec t ion  parameters and the  laboratory def lect ion cosine, and thence 

leads back t o  ( B )  , "he ( 6 )  rout ine i s  developed i n  Ch. VI1 

2. Capture and se lec t ion  of the  type of co l l i s ion .  It i s  impos- 

sible t o  give a per fec t ly  general procedure f o r  ihe  ( 7 )  routine,  so 

diverse  are the  various types of processes. 

i n  i t s  own individual i ty .  

Each problem must be studied 

If the  number v of co l l i s ions  i s  among the  neutron parameters, we 

may begin with 

Unless the med ium i n  question consis ts  of only one type of nucleus, 

and t h a t  nucleus has only one type of cross sect ion f o r  neutrons, we 

must next proceed t o  decide on the  type of nucleus h i t ,  and the type of  

co l l i s ion .  Recalling the discussion of cross sect ions (Ch. 111, f, C 1,2,3), 
it i s  c l ea r  t h a t  the  t o t a l  a rea  presented t o  a beam of neutrons of energy 

group g i n  the  t h i n  slab there  defined i s  ( N  u ( t o t .  ) + . . . ) 01 a,. 
Hence, assuming a co l l i s ion  i n  the medium, the  probabi l i ty  that  the 

co l l i s ion  be with a nucleus of type A 

A 
A g  

i s  the  r a t i o  of areas:  
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where the a d k  may be cancelled. 

If one or  more of the nuclei A, '8, C, ... present admits 

capture, or some other process which may be regarded as terminal for 

purposes of the problem (e .g., inelastic collision in monoenergetic 

problems), we may decide to use a weight parameter W, 

previously. 

ministic fractions C of weight captured on collision, where 

as discussed 

(Cf. Ch. 11, §2.) It is then economical to store deter- 
'y 

Q 

- c = [N 0 A (cap.) + ..*]/[N o A (tot.) + ... J 
ET A g  A 6 3  

the summations being over nuclear types A, B, ... . We should then 
include at the outset the routine of Fig. 31. Here Lc is a "terminal" 

category in the sense that capture is a final event in the life of a 

physical neutron. 

geometric path being followed and greatly improves the statistics. 

When weights are used, it is advisable to use a "weight cutoff" Wo, 

below which weights are negligible, and an additional terminal category 

However, the use of weights prevents the loss of the 

to catch weights falling below the cutoff. This category is ter- =w , 
minal in the mathematical sense that one returns to (a) for  a new 

source neutron in case of such a loss, the trajectory terminating at 

this point. If the weight W of the uncaptured beam exceeds Wo, we 

-85- 



proceed to decide, if necessary, upon which type of nucleus A, B, C, ... 
the scattering takes place, probabilities being notr dependent on the 

assumption that a non-capture collision occws. 

Suppose for simplicity only two nuclear types A and B are 

present. For machine purposes, we assign to type A a "type parmeter" 

value e = 1 and to B the value e = 2, We store in addition to the 

above C the probabilities 
ry 

!3 
A 

Fig. 31 

Fig. 32 

-86- 



A = NA (0 A (tot.) - uA (cap.))/[lTA (0: (tot.) 
g Ei; 

for non-capture collision on type 

Fig. 32 for determination of the parameter e. 

A, and enter the decision routine of 

We then proceed to routines designed to decide the type of colli- 

sion on A (e = 1) or on B (e = 2). If the processes involved in the 

two cases are sufficiently similar one m y  join the exits of Fig. 32 as 

shown and go to a comon routine which, by use of the variable can 

handle both cases. 

types. 

hitting one or the other type of nucleus. 

e, 

Otherwise,one provides separate routines for the two 

In any case there is at this point a real disjunction, the neutron 

It remains to decide which type of collision is undergone, assuming 

it to be non-capture on nuclear type 

random number to an additional set of probabilities, the number of which 

w i l l  depend on the number of kinds of processes other than capture which 

nuclear type e admits. 

e, This involves reference of a 

For example, if e = 1 and A is uranium, we might have three 

possibilities: elastic scattering, inelastic scattering, i. e. , (n-n) 
reaction with loss of energy, and fission. 

this case the probabilities 

We should have to store in 
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and proceed from the box I=] of Fig. 32 to the flow dLagram of Fig. 33. 

It m y  be preferred, even if capture is to be treated by weights, 

to first decide on the type of nucleus hit, by reference to the total 

probabilities 

and then to store individual capture fractions 

A A 
Q 0 (cap. ) / u g  (tot. ) 

f o r  each type of nucleus, allowtng the uncaptured weight to undergo one 

of the remaining processes by use of probabilities such as and ag 
above. 

g 

If capture is not treated by weights, but is regarded as an event 

terminating the trajectory, the procedure of this section is modified in 

the obvious way, and we do not include it. 

In any event, at the present stage of the flow diagram, we should 

have effected the decision of the type of nucleus hit, and the type of 

collision undergone by the incident neutron, with assignment, if necessaxy, 

of a nuclear parameter e, and adjustment of the neutron weight. 
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The p o s s i b i l i t i e s  include, of course, re turn  t o  (a) i f  capture o r  weight 

cutoff terminates the career  of the neutron i n  question. 

We proceed t o  discuss rout ines  f o r  various individual processes 

commonly encountered i n  pract ice .  

c c 0 el. coll. 

0 0  
f .) 

in. coll. 

Fig. 33 

3.  Elas t i c  co l l i s ions  i n  general. We discuss  i n  t h i s  sect ion the 

c o l l i s i o n  between two pa r t i c l e s ,  assuming conservation of momentum and 

energy. 

t ions:  

o ra tory  system, V = = (A,$,%), the  ve loc i ty  vector of the point  R.  

If Ri = (xi,yi,zi) are the posi t ion vectors of a set of point  masses 

We reserve cap i t a l s  f o r  vectors,  and make the following conven- 

R = (x,y,z) denotes the posi t ion vector of a point  i n  the  lab- 
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-1 mi, i = 1, ..*, n, and m = ';mi is their total mass, then R = m smiRi 

defines the position of the center of mass of these particles. We also 

recall that if A = (al, a2, a3), 

their inner product is AB = Caibi, A2 = pi, 

defined as IAI = fl and the cosine of the angle 8 between A and B 

is given by cos 0 = AB/ /AI J B ~  . 

B = (bl, b2, b ) are any two vectors, 3 
the norm of A is 2 

Now consider two point masses 1 and %, with laboratory velocity 

vectors V1 and V2, respectively. The total momentum of the system is 

the vector P =Ztm V its total kinetic energy is the scalar i i' 
1 k = Z- m 3 2 i i' and its total mass is m = Zmi. Since the equation 

mV =Emi Vi holds for the velocity V of the center of mass, we have 

always P = mV. 

It is customary to define the velocities, total momenta, and kinetic 

energies, relative to the center of mass, by the equations 

v; = vi - v 

1 2 k' = C- m. V' 2 1 i  

We find from these definitions the following relations between 

absolute and relative quantities: 
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or, since P = mV, 

Note that the first of these equations states that, relative to 

the center of mass, the particles always travel on the same straight line 

with opp'ositely directed velocities. 

We assume now a collision between these two particles, adopting 

the notations indicated below for the relevant quantities before and 

after collision: 
Before After 

'i 'i 

P Q 

V W 

P' Q' 

k '  R'  



and restate the fundamental relations 

Now the defining relations for elastic collision are 

P = Q  

k =  a 

Since 3p = Q and P = mV, Q = mW, we have V = W, which states that 

the center of mass of the system proceeds unperturbed by the collision. 

This equality, together with the equations ( 3 ) ,  and the fact that k = 2, 
implies that k' = jl, that is to say, the relative kinetic energy is 

unchanged. 

Now P t  = 0 in general, and we have therefore the equations 

y v i  = - %v;p Svi = % %I2, 2 

results for the relative velocities Wi, W; after collision. 

and +i* - %%&2 = 0, with identical 

Hence the equations 

-92- 



w e  satisfied by V i  2 , Vi 2 and also (since k' = 1') by 17; 2 and 1.r; 2 . 
Since the determinant of the linear system is - S(ml 1 "2 2 2  t- y n$) # 0,  

2 2 2 '2 the solution is unique and Wi = Vi , Wi = V2 ' 

We have, therefore, the following very simple picture (cf. Fig. 34) , 
in the center of mass system, of elastic collision. 
A- -I_ 

The upper part of Fig. 34 indicates the relations we have derived: 

The center of mass velocity is unchanged, the relative incoming (and out- 

going) velocities are collinear and oppositely directed, and the relative 

speeds are unchanged. 

lines; however, the two planes they determine are not necessarily the 

same. 

"he hshed lines are coplanar, as are the solid 

The conditions for elastic scattering do not determine the angle 

of scattering, as defined (say) by the angle si f'rom W to Wi (nor 

the angle between the two planes referred to above). 

in the form of a distribution law which depends in our case upon the 

- 

This must be given 

neutron energy and the nucleus hit. 

in the next section. O m  immediate object is the derivation of formulas 

for the angles of scattering in the laboratory system, that is, the 

angles between 'W and the Wi, and for the ldnetic energies 

1, = 5 mi WF of the two particles in the laboratory system, as functions 

of an arbitrary angle 11;. 

Such distributions w i l l  be discussed 

J I ,  

1 

We first consider the $ 1: 
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W; 
Fig. 34 
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w* = (w -t W ' ) 2  = (v + w q 2  = v 2 + mi + wi2 = v 2 f v i 2  -I- 2(vI Iwi \  COB 111' 
1 1 1 1 

= v 2 + v i 2  + 2Jvllv;J cos rl' 
1 

W E  = (w  + w$ = (v 4- w$ = v 2 + 2vw' + w;2 = v 2 + Wh2 +' 2\vI Iw; I cos $ 6  
2 

2 = v + v i 2  - elvl Ivg  cos J , '  1 

Next, we  compute the  cos #i: 

= ( Iv l  -. Iv;l COS rli)/lW21 

where the  lWil * are given above, These formulas provide the general  

solut ion t o  our problem. I n  most cases the  energies of neutrons are 

suf 'f iciently g rea t e r  than the (thermal) ve loc i t i e s  of nuclei  t o  admit 

the  assumption that the  latter are ef fec t ive ly  s ta t ionary  i n  the  

laboratory system. 
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We proceed therefore  t o  spec ia l ize  t o  the case of neutrons of mass 

y, laboratory ve loc i ty  V s ca t t e r ing  on nuclei  of  mss m2, ve loc i ty  

V2 = 0. 
1 

I n  t h i s  case we have 

mV = yVl f m2V2 = y V l ,  I v I = m-lml I V , ~  
-1 -1 

y V l  = m m2Vl Vi = V1 - V = V1 - m 

-1 Vi = V 2  - V  = -V = -m m V  1 1  

Subs t i tu t ion  gives us 

1 -2 2 -2 2 -2 w: = v:{m ml + m m2 + 2m y m 2  cos q f  1 

1 2  1 2  
= 2 y W 1  , kl = 2 y V l  and hence, i f  are the  ( laboratory)  energies 

of y after and before co l l i s ion ,  we obtain 

- T m  + m cos  +.i l1/kl = m-2{< + T m 2  + m2 2 1 2  

It is convenient t o  introduce the quant i t ies  A = m /m , 2 1  

-2 1 - -2 s = -  I (1 + 'F) = 1 - 2m y m 2 ,  and T = 2 (1 - r) = 2m m m obtaining 2 1 2' 
f i n a l l y  

= kl ( S  + T COS JIi) 
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Moreover, 

Although we make no use of them i n  the sequel, we include for 

52 completeness the  r e s u l t s  f o r  the sca t te red  nucleus 

and C O S  *2 = f- - s i n g )  , which the reader may ve r i fy  

as an exercise.  

The s a l i e n t  r e s u l t s  of t h i s  sect ion are the  formulas 

E ‘  = E (Se + T,P) 

where w e  agree on the following def ini t ions:  

me = mas of nucleus of type e 

m = mss of  neutron 

Ae = m /m e 

= (Ae - 1 ) 2 / ( A e  + 1)2 - 
re 
se = 2 1 (1 + Fe) 

1 - 
Te = (1 - re) 

laboratory system 
E = neutron energy before scattering 

E ’  = neutron energy after scattering 
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c c =  

II; = 

a =  

q1 = 

The 

cos Iq 
angle of deflection in center of mass system from original 

line of flight (coincident with V = W since V2 = 0 )  

angle of deflection in laboratory system from original line 

of flight 

constants Ae, Se, T e are nuclear (energy independent) constants, 

the subscript e, if required, being set in the routine of the preceding 

section. 

It may be noted that in the case of scattering on hydrogen, we 

may assume A = 1, and the formulas become simply 5 = 0, S = T = 

E' = E (1 + P ) ,  and a = f-. Several remarks are of interest 

here: (a) we have the relation E' = Ea ; (b) scattering on hydrogen is 

always forward in the laboratory system, viz., a = cos II1 2 0; (c) 
a = cos 

formula a = f- should be used for hydrogen, since the general 

formula is indeterminate at c =  -1; (e) if scattering on H is isotropic 

1 
5' 

2 

= v m  = cos ($i/2) implies G1 = *i/2; (d) the 

in the center of mass system (a good assumption, incidentally), we have 

f l  = 2r  - 1, and a = fl, which shows that the laboratory scattering i s  

in the cosine distribution. (Cf. Chapter 11, 85b.) 

Fina l ly  we observe that f o r  "heavy1' elements (Ae large) we have 
- 

the following approximate results: r = 1, Se = 1, Te = 0, E' = E, a = c c .  e 

If these relations are of acceptable accuracy, one may ignore the energy 

change and determine a directly instead of N by the methods of the 
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next  sect ion.  

f o r  the case of s ca t t e r ing  i so t ropic  i n  the  laboratory system. 

I n  t h i s  connection one should r e f e r  t o  Chapter V I I ,  gpj, 

4. The d i f f e r e n t i a l  e l a s t i c  s ca t t e r ing  c ros s  sect ion.  We have 

seen i n  the last sect ion that the  preservation of t o t a l  momentum and 

k ine t ic  energy character iz ing the e l a s t i c  sca t te r ing  process does not 

serve t o  determine the angle of s ca t t e r ing  i n  the center  of mass 1 

' system, but does detemnine the new energy E '  of the sca t te red  neutTon 

and i t s  def lec t ion  cosine a i n  the laboratory system i n  terms of a 

given LI = cos I)' 1 *  

The determination of P is 

function uE (P) ,  whose uni t s  a r e  e 
gcxverned by a physical d i s t r ibu t ion  

barns per s teradian,  and which depends 

upon the sca t t e r ing  nucleus e and the energy E of  the incident  neutron. 

Spec i f ica l ly ,  0; (Q)  dS1 i s  defined as the cross sect ion ( i n  the sense 

of Chapter III,€j1) presented t o  incident  neutrons of energy E 

nucleus of type 

system a t  an angle i n  the  dSa neighborhood of the  d i rec t ion  Ja with the  

incident  l i n e  of f l i g h t .  

by a 

e f o r  the process of sca t te r ing  i n  the center  of  a s s  

Thus by def in i t ion ,  

the in tegra t ion  being over the  e n t i r e  surface of the  un i t  sphere i n  

d i rec t ion  space U, V, W ,  and (J (el.) being the ( t o t a l )  e l a s t i c  s c a t t e r -  

ing cross sect ion f o r  the  element e a t  energy E. I n  terms of  spherical  

coordinates (azimuthal angle y ,  polar angle I):, Fig. 35), we have 

e 
E 
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W 

t 
incident I line of flight 

C. M. system 

Fig. 35 
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In a11 problems of the text u e E is independent of 9 and we 
have 

or, in the form usually given, 

0 e ( P )  dlu = aE e (el.) 

It fol lows that Pz ( B )  = 2n 0; ( P ) / ' z  (el.) is the probability 

density function for elafatic scattering at the direction 

line of flight in the center of mss system. 
@.i, f'rom the 

Hence, the Monte Car lo  procedure sets 

nlu 

r = J  PE dp  
-1 

for the determination of from the random number r. 
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5 .  A rout ine f o r  e l a s t i c  sca t te r ing .  Suppose t h a t  e l a s t i c  

s c a t t e r i n g  on the  ( l i g h t )  element e i s  i so t rop ic  i n  the center  of 

mass system. This means that  the  function oe(cl) is  a constant, and 

the  f i n a l  formula of the  preceding sec t ion  gives simply c l=  2r - 1. 

I n  such a case, w e  should e n t e r  a rout ine  l i k e  tha t  i n  Fig. 36. 

E 

El> E2 > ... > E  

t h i s  necess i ta te  c l a s s i f i c a t i o n  of the corresponding weight i n  a t e rmina l  

Here 

represents  the "energy cu tof f , "  namely, t he  last of the  lower bounds G 
of the energy groups adopted. Energies f a l l i n g  below G 

category reserved f o r  loss t o  energy cutoff .  The loop on E - E e: 
begins by comparing the  new energy E with the  lower bound E of the  

group which the  neutron occupied before sca t t e r ing ,  s ince e l a s t i c  

s c a t t e r i n g  cannot raise the energy. 

t o  t h i s  loop ensures i t s  termination a t  some g 2 G. 

previous E - E decision is mandatory. The formulas f o r  E '  and a 

are f u l l y  discussed i n  the  preceding 83. 

cedure f o r  the  spec ia l  case of hydrogen is  simpler and i s  indicated i n  

the lower ha l f  of F ig ,  36. 

labora tory  system, we again refer t o  Chapter V I I ,  85. 

approximately t o  the case of heavy elements with an i so t rop ic  l a w  i n  

the center  of mass system. 

63 

Note a l so  t h a t  EG - E < 0 a t  e n t r y  

If EG > 0, the 

G 

A s  remarked there, the  pro- 

For t h e  case of sca t t e r ing  i so t rop ic  i n  the 

This appl ies  

The ( a )  of Fig. 36 refers t o  a rout ine f o r  f ix ing  the f inal .  

l abora tory  d i r ec t ion  parameters of the  sca t t e red  neutron ( c f .  Chapter 

V I I )  before returning t o  ( p ) .  
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Fig. 36 
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Most elements have more complicated differential cross section 

functions, usually characterized by preferential forward (and sometimes 

backward) scattering, an effect which tends to increase with higher 

incident energies. The problem of choosing CC from such a distribution 

is essentially that (already discussed in Chapter 11, $5) of selecting 

the direction parameter w from a given source distribution. 

If the problem can be restricted to a single energy, or to 

relatively few energy groups (lo) over each of which the differential 

function bE ( P )  

f o r  the probabilities P 

fl > y-.., >gJ = -1 are suitably chosen bounds of subintervals of the 

cosine range, and the 

may be considered constant, one may well store tables 

of scattering at cosines p 2 Lc , where 3 g,J 

1 

are pre-computed by numerical integration and stored. The routine for 

determining u is then that of Fig. 13, where we read j for i, P 
Q, j 

for Pi, CC for wi, and CC for w. 3 
Aside f'rom its demands on storage space, this is subject to the 

errors of interpolation, which may be difficult to minimize in cases of 

-. -.,.-.IC_-- .- 

(")These need not coincide withmr be as numerous as the energy groups 
reserved for free path and scattering-type probabilities. 
unusual to carry two or even three different sets of energy classifications 
with corresponding indices g,  h,... as neutron parameters. 

It is not 
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very forward scattering. 

If the original curves 

scheme may be the von Neumann 

e 
E 

(9 

device (Cbpter 1 I 8 5) We should then 

( U )  can be simply fitted, the simplest 

have a formula, for the function 

* * 
and use the routine of Fig. 5 with a = -1, b = 1, p = 0 (e, E, NU), 

reading cc for e 
* 

Occasionally, the function 0 (e, E, cc ) m y  be fitted easily for 

each energy E as a function of P , say, 

- 1 I P 6 1  * e e e 2  
(I (e, E, P )  = AE -k BEP + CE CC 

but the coefficients m y  prove intractable as functions of E, In such 

a case we may be able to store the coefficients 

for each of a reasonable number of energy groups, and use the routine 

of Fig, 5 as indicated above, the machine computing o (e, g, P )  = 
* 

Ae + BeP + Ce CC 
@ ; &  g 

from P and the stored coefficients. 

Finally, and in the worst cases, it may be necessary to store 

u(vm, En) is the differential cross section for a particular element 

(we drop the index e 

values p0 = 1 > . . > P  = -1 and Eo. . . . >EN, where Eo is at least 

temporarily) evaluated at I a suitable set of 
c1 N cv N 

M 
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the highest energy encountered in the problem, and 

such energy. 

hand-picked, and need not coincide with those used f o r  other purposes 

elsewhere in the problem. 

= EG the least 

The energies and cosines used f o r  this purpose may be 

We store a table of the form 

0 1 . . .  N t.m 

(r* 
00 

0 

1 

. 
0 

M U* 
M, N 

N N 

En- 1 1  z0 Gl 
EN 

Fig, 36a 

and resort to the double interpolation routine of Fig. 37. 

However we may determine C , the routine should lead to a 
determination of E and g after collision and the deflection cosine 

tt f o r  the laboratory system as indicated in Fig. 36. 
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I i 

gl = o'* + (.* - u* I m-1, n m-1, n-1 m-1, n 

Fig. 37 
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6. Differential elastic cross section for the laboratory system. 

If a differential cross section 

relative to the laboratory cosine a = cos IL 

the following two alternatives. 

(J (a) is given for elastic scattering L 
one may choose between 1' 

(a) One may employ (J,(a) directly to determine> a, just as 

the center of mass differential cross section o(P) was used to determine 

c1 . It is then necessary to use the formula 

-1 P = A  

to determine the corresponding center of m8s cosine P, which is needed 

in computing the new energy E' = E(S + Tp). 
The above formula is obtained by solving the equation 

( 5 )  

for CC in terms of a. 

dictated by the following considerations: 

that the sign of a is always that of 1 + AM . In solving equation (5) 

for P we obtain 

The ( s g n  a) choice of sign on the radical is 

From equation ( 5 )  it is clear 

1 + = a 2 f v[(l - a2)2 - (1 - a2) + .*A2] 

so that the sign of the right side must always be that of 

clear graphically that f o r  the function f(a) = a2 f .rr;t?;lT to have the 

sign of a, it is necessary and sufficient that one use the upper branch 

for a > 0 and the lower for a C. 0. 

a. It is 
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Formula (4) m y  be rewr i t ten  i n  the form 

2 2 where b = 1 - a . 
( b )  Alternat ively,  we may use the defining r e l a t i o n  

a ( P )  dP = uL (a) da 

t o  compute the center  of mass function a ( P )  

the usual procedures of $5 d i r e c t l y ,  

formulas 

i n  advance, and then use 

This m y  be done by means of the 

where 

and 

7. A - weight device - f o r  e l a s t i c  ---" sca t te r ing .  I n  problems involving 

many c o l l i s i o n s  i n  a medium admitting e l a s t i c  s ca t t e r ing  on l i g h t  elements, 

i t  my prove worth while t o  avoid loss of t r a j e c t o r i e s ,  which are usual ly  

followed through mny  co l l i s ions ,  t o  the  energy cutoff Eo. 

m y  be obviated by the following device, which makes further s t r a t e g i c  

u8e of weights. 

These losses 

We have seen that the  r e l a t i o n  between emergent and incident  energies 
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i n  such co l l i s ions  i s  E '  = E(S i- TP) ,  where c1 i s  the  center  of mss 

deflect ion cosine, chosen randomly by the  equation 

Now,for a given incoming energy E E the least emergent energy 

is  E T d n  = E(S - T ) .  If t h i s  exceeds EG, the energy cutoff  f o r  the 

problem, one proceeds as usual, with no poss ib i l i t y  of loss t o  energy. 

However, if E(S - T )  = E 

there  exists a c r i t i c a l  cosine P depending on E, such t h a t  

E(S + Tuc)  = EG, with -14 P C 1, and 

-- G' 

< * 
that i s  t o  say, if  E d EG/(S - T )  E E , G' 

C'  

C 

represents  the  probabi l i ty  of sca t te r ing  with ,u on -1 5 ,u 5 c1 with 

the resu l t ing  energy E ' 4 EG . 
C 

Moreover, assuming P > p c  

i s  the proper Monte Carlo formula for determination of the  cosine 

on the  range Pc 5 r(l 5 1, with a resu l t ing  energy E '  => EG. 
therefore  proceed as i n  Fig. 38. 

We may 

For the simple case of sca t te r ing  i so t ropic  i n  the center of  

1 -1 mass system, w e  have the formulas f = - (1 .t p C ) ,  P =  % (r) = l - r ( l - p c ) ,  

-1 P =  pE (r) = 1 - 2 r .  

Final ly ,  w e  note t h a t  a neutron being followed by t h i s  method 
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automatically has weight W > 0 and energy E ,Ec, if the random 

number r = 1 does not a c t u a l l y  occur i n  our sequence. 

1 

f 

(1 - f ) W  - w 
I 

I I 

E' = 5(S + Tp) - E I 
& 

I I a (Cf. 95) Fig, 38 
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8. Fission. Suppose that a neutron causes f i s s i o n  of some -- 
(heavy) nucleus, r e su l t i ng  i n  the production of an average number u 

of neutrons with energies of re lease  independently d is t r ibu ted  i n  a 
0 

given f i s s i o n  spectrum, and whose emergent d i rec t ion  d is t r ibu t ions  a r e  

i so t ropic  i n  the  laboratory system. 

It i s  possible t o  invent a probabi l i ty  d i s t r ibu t ion  p(n)  with 

V = x n  p (n ) ,  decide on the  number n of  progeny i n  a given f i s s i o n  

by chance, and fo l low these n neutrons individually.  This may be 
0 

done even i n  supe rc r i t i ca l  systems if  recourse is  had t o  time cycles 

and census taking. However, t h i s  i s  unnecessary and undesirable. We 

may instead follow a single neutron, of weight vo times that of the 

incident  neutron, chosen from the  f i s s i o n  spectrum of energies, and 

directed i so t ropica l ly .  This may reduce f luc tua t ions ,  enormously 

s implif ies  the code, and decreases machine running t i m e .  

Suppose that f ( E )  dE is the  probabi l i ty  of f i s s i o n  energy E 

between E and E + dE. We choose a set of energy in te rva ls  with 

bounds Fo > Zl > . . ., %, where z0 i s  the  highest  s ign i f i can t  f i s s i o n  
P 

energy and 2H t he  energy cu to f f  f o r  t he  problem. These Eh need 

not agree with bounds of energy groups used for other purposes. Define 

We m y  then refer t o  Fig. 39. Note t h a t  i f  t he  Xh are d i f f e r -  

e n t  from the  E used f o r  ( say)  s tor ing  free paths A one must de te r -  

mine the index g, beginning the loop with g = 1 since f i s s i o n  can 
63 €3’ 
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raise energy above the incident energy E in group g.  The exit (a) 
refers to the routine of Chapter VII,$5,for scattering isotropic in the 

-.-. 

laboratory system. 

In some problems, designed to find the distribution, say, in 

a number of cylindrical shell zones defined by radii R1 < R2< . . . < Rm 
and heights H1< Hg< ... <Hn, of fissions resulting from a given spatial 
distribution of fissions, fission is a terminal event, and counters 

N 

radial zone i,height zone 3 .  

are reserved for the number of neutrons terminating in fission in 
i, J 

In the event of fission we should then 

fo l low the simple classification routine of Fig. 40, rather than that 

of Fig. 39. 

Fig. 39 

N N 

E=: + ( r - F )  Eh-l - Eh 
Fh-l - Fh . h  



- i  + 1- i 4 

Fig. 40 

- j + 1 4  4- 

9. I n e l a s t i c  (n-n)  co l l i s ions  i n  general. Using the  notat ion 

r 7 '  

@ ,  0 

and procedure of $3  of t h i s  chapter, we 

i n  which an  incident  neutron of kinet ic  

a nucleus of mass m2, imparting t o  the  

t i o n  e ,  and emerging with an energy l1 
the  fundamental r e l a t i o n s  

_t 

now discuss a type of c o l l i s i o n  

energy kl = 

l a t t e r  a known energy of exc i ta -  

= E'. We obfain again 

?VI2 = E s t r i k e s  

R = x  + y  1 - i  - 

P = mV & = M  

R2 - R 2 - - - l - - j -  Z - H  io 

' m V 2 + k '  t = - m W  1 2  + I '  
2 

k = -  
2 

(6) 

(7) 

(8) 

The momentum and energy c o n s e m t i o n  l a w s  now read 



P = Q  

k=,!+@ 

however, and we f i n d  V = W as before, but now 

k'= 4' -+ E 

We f i n d  again that the  equations 

determine W i 2  and W i 2  uniquely, the difference being only that 4 '  
is not simply k' but  k' - E .  Thus the  speeds of departure of ml 

and m2 i n  the center  of mass system are uniquely determined, although 

they are not simply the incident relative speeds as before. The angle 

$ i  
bution l a w ,  and from th i s  the laboratory energy and def lect ion cosine 

must be determined according t o  some physically determined d i s t r i -  

may be computed. 

We w i l l  derive the relevant  formulas, F i r s t ,  solving the above 
2 2  system f o r  Wi , W; , suppose tbt we first rewrite the  system f o r  

i n  the form 



1 where e = 2m2e/mlm, E2 = 2me/m 1 2  m, and 

-$el + m2 c2 = 0. We see a t  once t h a t  

%E1 + $ m2e2 = e , 1 
2 

We deal  only with the neutron %. Computing W2 as before 

i n  terms of cos +i , w e  obtain 

w2 = (w + wi)2 = (v + w;)2 = v 2 + w;2 + 2IVlIWiI cos $i 
1 

and for cos JI,, the laboratory def lect ion cosine, 

cos * 1 = vw,/[vl lWll  = v(w + W i ) / l V l  Iw,( = v(v + w i ) ,  

-1 -1 Again special iz ing t o  the  case V2 = 0, V = m ?VI, V i  = m m2V1, 

we obtain 
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and theref ore  

hence, 

But B = 1 

f ina l ly ,  

( E , / v ~ )  2 I- q m 2 m  -2 cos #i y- 
so  that rn2el/rn$f = mc/m2kl = m c / m 2 ,  and 

!l by E' and kl by E 

Moreover, 

o r  
m - ' y  + m - l m  cos $i 
(.-'." 1 + m-2rng - (me/%E) + 2 m - 2 n i p i , o s # . $ ~ ) } ' 2  

2 
cos @l = _I_.---- 2 

Now the react ion can occur only i f  ,!I = k '  - 0 => 0 ; since k' = 

2; miVi2 = -2}V; = %m-h, the condition is simply 

-117- 



-1 E 1 rn m2 c . If we define t h i s  c r i t i c a l  energy as e c ,  we  may write 

1 + A COS $i\/L - ( E C / E )  
___I__,________ ___ .-- .... ~ _------ cos JI = --- 1 

(1 + A2 [l - ( t c / E ) ]  + 24 COS JIif-)} 1'2 

About these formulas w e  make the  following remarks: ( a )  For 

6 = 0, they reduce, as they should, to those f o r  e l a s t i c  sca t te r ing ,  

( b )  for e c  7 0 and A 

E '  = E - e and cos I) 1 

C 

large (heavy nuc le i ) ,  they become approximately 

= cos @i, as we should expect. 

It must a l s o  be pointed out t h a t  a nucleus m y  have various 

excited states each with i t s  own exc i ta t ion  ene rgye ,  and a correspond- 

i n g  i n e l a s t i c  cross  sect ion 0 ( c  ) f o r  neutrons of energy E 2 (m/m2) e =ec.  

For l i g h t  nuclei  these must be dea l t  with individually,  using the  above 
E 

formulas with the  appropriate e . 
C 

For heavy nuclei , the states may be w e l l  separated i n  some cases, 

and m y  be dea l t  with individually,using the  simple r e l a t ions  of rerrark 

( b )  above. If, however, the  excited states are very close together,  

one r e so r t s  t o  such methods as those of the  following two sect ions,  

10. Ine l a s t i c  (n-n) co l l i s ions  on heavy nuclei .  If the  states 

of the nucleus are closely packed on the energy scale ,  it i s  cus tomry 

'h,h' 
t o  give a t ab le  of experimentally determined probabi l i t i es  

..-- 

f o r  
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an incident neutron of energy group 

neutron of energy E' 2 Eht, where h' 3 h, and Eo> . .. > EH is a suitable 
set of lower bounds for energy. 

h to produce in (n-n) reaction a 
c c1 - 

One may then proceea to determine the 

energy E '  

polation, as in Fig. 41, which is drawn for the case of isotropic 

scattering in the laboratory system, and therefore exits to (5) (Chap- 
ter VII, 85). 

non-zero only for h' 2 h, and P 

in the usual way by uqe of a random number and linear inter- 

Note that the Ph,h, form a triangular matrix, with Ph,h' 

E: 1, h = 1, ..., H. 
h,H 

Some inaccuracy is unavoidable in such a method, since, strictly 

speaking, 

E in this group. 

1 is a function not only of the group h, but of the energy 

11. Inelastic (n-n) collision with Maxwell distribution. Con- 

sider an (n-n) collision of a neutron of energy E < @ with a heavy 
nucleus for which it may be assumed that the emergent energy E'  

probability density function is proportional to 

where T = @fm, a being a given constant. 



h' + 1 - ht 

E' - E 
hf - h 

0- E - E  
g 

Fig. 41 

g + l - g  

P E ( E ' )  dE' = ( l / A ( E ) )  E '  exp(-E'/T) a' 

and the  Monte Carlo principle  involves determination of E' from E 

and r by means of 
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The solut ion f o r  E' is  d i f f i c u l t  and we  use instead the  

device of Chapter 4 5 5 .  The latter requires  the  function 

p*(E') = n(E')/max N ( E ' )  

the  maximum being f o r  t he  range 0 5 E' 6 E. Now the  maximum of n ( E ' )  - 
is  at  E ' = T, and we m y  use t h i s  provided T = a im C E, which 

2 -  mans that the incident energy E shall exceed 01 /E. L e t  us suppose 

f o r  s implici ty  that c1 /Fc: EG, the  energy cutoff (as is  usually the 

case) .  We have then 

2 

* e -E'/" < 
p (E') = (T) E ' e  - - 1  

f o r  a l l  incident energies E 

ceed i n  the  usual way, with E '  = rE, e tc .  

on the range EG 4 E 2 E and we may pro- 

12. A combined t r ans fe r  matrix f o r  f i ss ionable  nuclei .  If the - ---- - I__--- -.- 

nature of  a problem involving a fissionable nucleus does not  demand 

I keeping the  individual  types of co l l i s ion  separate ( f o r  example, f o r  

purposes ,of tabulat ing capture, f i s s i o n ,  etc.) and if the neutrons 

emerging from each type of c o l l i s i o n  are a11 emitted iao t ropica l ly  i n  

the laboratory system, a much simpler method can be used t o  g rea t  

advantage, i n  place of the several individual  procedures indicated i n  

previous sections.  L e t  us adopt t h e  following notations, i n  atidition 
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p(h,h')= probability of scattering from group h - to - - ~ -  group h' 

(inelastic collision) 

V 

f(h') 

dh,h' 

Now, assuming a collision of a neutron of group 

= average number of emergent neutrons per fission 

= probability of fission neutron energy --- in group h' 

= Kronecker b function, with value 1 f o r  h=h', 0 otherwise 

0 

h w i t h  the 
- 

of neutrons emerging h,h' nucleus, it is clear that the expected number v 

from the collision in group h' is 

- 
V h,h' ={oh(cap.) o + oh(el.)dh,hl + oh(in.)p(h,h') + 

ah( fiss ) f( h ' ) v O } / U h (  tot. ) 

Thus, the total. expected number of neutrons per collision is 

Hence, the probability of an emergent neutron from such a colli- 

sion being in group h' is 

h' 

%,h' = c q h , k  We may therefore store a table of 
k=l 

h = l,..., H, h' = l,.. ., H, and Q = 0, h = 1,. .., H, as shown 
below,and proceed according to Fig. 42. 

h,o 
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1 

2 

h 

0 1 2 . . . h ' . . .  H 

0 

0 

0 

1 

1 

1 'h, hf 

1 I o  

Fig. 42 
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13. Coll is ions .- sha t te r ing  a nucleus. We consider i n  t h i s  

section a ty-pe o f  co l l i s ion  i n  which a neutron of rest-mass m and 1 

veloci ty  V en ters  a nucleus of rest-mass m and ve loc i ty  V = 0, 

resu l t ing  i n  a sha t te r ing  of the neutron i- nucleus system in to  a set  
1 2 2 

o f  fragments of  msses n and ve loc i t i e s  W j = 1,2,. .. , t h e  

t o t a l  r e s t  mss n = E n  of  the  fragments being greater than m = 

We treat the  ~ - - .  mechanics of the  co l l i s ion  non-re la t iv i s t ica l ly ,  using the  

formula - mV f o r  k ine t ic  energy of a p a r t i c l e  of rest mss m, and 

3 s' 
?L+"2' 3 

1 2  
2 

ve loc i ty  V, and w e  suppose that m = n a t  various points of t he  argu- 

ment. The ac tua l  mss-d i f fe rence  n - m corresponds t o  an energy 

e = ( n  - m)c2, where c i s  the  ve loc i ty  of light, and i n  order f o r  the  

process t o  occur, part of the k ine t ic  energy of t he  neutron must be 

used t o  supply t h i s  energy e . 
Proceeding as i n  sf3 and 9 of the  present chapter,  we have the  

general  equations 

> P = mV Q = W  

1 2  + - r r l w  
2 

1 2  
2 k = k' + - m V  

(note the  assumption m = n) ,  and the  conservation l a w s  now read 

P = Q  

k = ,(+e 

As usual ,  V = W, and so k '  =I' + e . J u s t  as in Sg, we f i n d  

that i n  order f o r  the react ion t o  take place, we must have k'= m m - h  2 E 2 
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o r  

Assuming such an  incident  energy E, the  conditions on the 

r e l a t i v e  ve loc i t i e s  W' of  the fragments are J 

Cf=n.w(. = 0 J J  

I n  cont ras t  t o  the s i tua t ion  i n  $ 9 ,  these r e l a t ions  do not deter- 

mine the W!2 if  more than two fragments e x i s t  (IncLuding the original 

neutron).  

fragments n 

can emerge. 

J 
We propose instead to s ingle  out an a r b i t r a r y  one of the  

and discover the maximum r e l a t i v e  energy w i t h  which it J 

We adopt the convention that E' refers to summation on a l l  

j # J. Thus we define n '  = x'n t o  be the mass of the remaining s 
fragments, and nfWR = c ' 11 .W defines the ve loc i ty  W of t h e i r  J j  R 
own center  of mss, 

the residual center  

Moreover, we define 

Now WI; = WE - W denotes as usual the  ve loc i ty  of 

of mass R r e l a t i v e  t o  that of the whole system. 

W" = w4 .- WB = ( ~ j  + w) - ( v i  c W) = W; , -  Wr; for  
j 

a l l  j # J. Now the above system becomes 



But observe t h a t  the  fol loving r e l a t ions  hold f o r  t he  res idua l  

system: 

z: 'n.Wt = ztnj ( w i  + W ' )  = ntw; + zCln j J  W" (10) J J  J 

Now we know by de f in i t i on  that 

s o  t h a t  

and hence 

n .W ! = ntWI; 
J J  

Reference t o  (10 ) yie lds  

and t h i s  result with (11).gives us the  familiar 

Now t o  return t o  the  system ( g ) ,  its second r e l a t ion  together 

with ( 1 2 ) t e l l s  us t h a t  

nlW; = -n J J  W' 
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1 1 ? 
2 2 J J  s o  that - n'Wi2 = (nJ/n')(--  n W '  -).  We m y  therefore remite  (13)as  

The latter,  subs t i tu ted  in to  the f irst  member of the  system (g), 

gives us f i n a l l y  

I t  follows that the  mximum r e l a t i v e  energy of nJ must be -..--..- 

Thus, i n  sunwry, if t he  incident  energy E exceeds the  minim1 

energy m m - I  e: required f o r  the  process, the maximal relative speed 2 

I of any fragment J i s  given by 

w -  
m n, J 

J 

Suppose that we now construct the laboratory ve loc i ty  WJ and 

the corresponding laboratory def lect ion angle 3, 

W 

possible end points  of the vectors WJ occupy t h e  sphere of radius  wJ 

about the  end point  of V. Moreover, it i s  apparent that three e s sen t i a l ly  

d i f f e ren t  cases arise, depending on the r e l a t i v e  mgnitudes of qJ and 

IVl, or ,  equivalently 

magnitudes of E and e = nte/(m2 - nJ). 

by the usual addi t ion J 
= W + W' = V + W; . Reference t o  Fig. 43 mkes it c lea r  that the J J __ 

- 
(using the  above formula for w ), the relative J - -  If we are in t e re s t ed  only i n  
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Case 1. wJ( ] V I  or  E (  7. The angle @J i s  l imited t o  the  

range 0 <= rl 5 arc s i n  (wJ/ V I ), and the  possible speeds I W I corres-  

ponding t o  any given @J 
J -  J 

on t h i s  range are bounded from zero. 
- .. ‘c 

Case 2. w = I V l  o r  E = e .  The angle i s  l imited t o  the 

0 5 - @ J =  < 
J 
7r/2 but  f o r  a given such $ range 

from 0 t o  a maximum. 

Case 3.  

0 < rl, < ,T, and IW I for a given - J =  J J 

In  any case, the maximum speed w associated with a given 

t h e  possible lWJl range 

.- c 

wJ 7 I VI o r  E 7 B . 
rl 

The angle @J has i t s  f u l l  range 

ranges from 0 t o  i t s  upper bound. 

J 
possible qJ i s  given by the  greater  root  of the  quadratic equation 

--2 2 2 
WJ = WJ + v - 2 WJI 

Fig. 43 

- I cos qJ. Subst i tut ing f o r  wJ and writ ing J 
f o r  the maxim1 laboratory energy nYJ of  t he  Jth fragment associated 



with the  laboratcry def lect ion angle #J, we obtain 

If we apply t h i s  t o  any neutron nJ, we have n = y and 

n f  = m 2 ,  so t h a t  f i n a l l y  

The discussion of t h i s  sect ion thus serves t o  show why the  i n -  

elastic cross sect ion U,(in. ) for such a process becomes zero f o r  

incident  energies 

neutrons emerging 

and the  cosine of 

u 

E below m m - l e  , and how the  energy range of 

from the  reac t ion  depends on the incident  energy 
2 

the  laboratory angle @J. 

14. 

preceding theory, w e  consider the react ion 

The (n-2n) reac t ion  i n  deuterium. As a n  example of t he  

n + ,H 2 --+ lH 1 + 2n 

i n  which a neutron d is rupts  the  deuterium nucleus in to  i t s  const i tuent  

proton and neutron. 

Adopting the atomic masses of the  following table 

neutron 1.00893 

1.008123 1 

LH2 2.014708 

we f i n d  an excess of  .002345. This gives an actual mass of 



.002345/A gm per  deuterium atom. 

by the number 1.60203 x 10 

Multiplying by c2 and dividing 
-6 of e r g  per Mev (Chapter 11, 53)  gives 

= 2.184 MeV. 

process t o  occur, and the three cases mentioned i n  the  preceding sect ion 

depend on the relative sizes of E and m26 /(% - ml) = 2 e ,  

Hence m m i L €  = 1.5 6 i s  the  minimal energy f o r  the  

We w i l l  suppose that a "cross section" T ~ ( E ' ,  J I )  is  defined i n  

such a way that 

i s  the  expected --- number of neutrons of energies between E '  and E' + dE', 
and d i rec t ions  between @ and $ +  d$  re su l t i ng  from such i n e l a s t i c  

co l l i s ions  of a beam of B neutrons of energy E t ravers ing a medium 

of numerical densi ty  N and thickness A t .  (Contrast Chapter 111, $Lo) 

Now 

i s  the  -- t o t a l  expected number of neutrons i n  t h i s  t raversa l ,  s ince each 

such co l l i s ion  produces two neutrons. 

Hence w e  have 

where the E (E,  $ )  are the upper and lower energy bounds referred t o  2 
i n  the preceding sect ion.  



Moreover, 

-'(i.n.)T ( E ' ,  $') dE' d(cos I)) nu E E 

i s  the  probabi l i ty  of an emergent neutron being i n  the  range (E,  E + dFI) 

and (I),# + a#) ,  assuming such a co l l i s ion  occurs. 

The Monte Carlo procedure is therefore  clear. We decide i n  the 

usual way whether the co l l i s ion  is  of t h i s  kind by rererence of a random 

nwnber t o  QE(in.)/uE(tot.) .  If r i s  less than th i s  r a t i o ,  i n e l a s t i c  

co l l i s ion  occurs. We then double the weight W of the incident  neutron 

and determine i t s  cos$  = a and i t s  energy E '  from the above probabi l i ty  

,d i s t r ibu t ion .  

densi ty  function 

We may do this i n  two steps, using first the probabi l i ty  

t o  determine the a = cos rl, and then finding the energy E '  using the  

densi ty  function f o r  E ' :  

f o r  the a = cos$  determined. 

A more complicated example involving an  energy cutoff and 

cr i t ical  angles i n  the  same way as indicated i n  67 of t h i s  chapter may 

be found i n  LA-1606 (not avai lable) .  
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15. An (n-2n) reaction on heavy nuclei. A s  a further illustra- 

tion of the use of weights, consider a collision of a 14 Mev neutron with 

a heavy nucleus which results in the emission of a pair of neutrons, 

isotropically distributed in the laboratory system, one neutron being in 

the energy distribution 

E' exp(-E'/T1) dE' , 06E'(=e , T1< 

and the other in a similar distribution 

E' exp(-E'/T2) dE' , 0 5 E' 5 e , T2< e 

where e ,  T1, T2 are constants. 

for i = 1,2. We have then 

-pi(E') d E 1  = A I 1  E' exp(-E'/Ti) dE' 

for the probability of the ith neutron emerging be tween E' and 

E' + d E 1 .  Since the expected number of neutrons in the latter range, 

per collision, is 

neutron of weight W 

pl(E1)dE' + p2(E')dF,', we may properly a8sume one 
suffering such a collision gives rise to a neutron 

of weight 2W, chosen in the energy distribution 
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Since the  maximum mx p ( E ' )  on the range 0 <, E' (= e can be 

computed i n  advance, we may use the von Newnrznn device of Chapter I, s!jr 

followed by an induction loop for, determining the  new energy group, and 

the procedure of Chapter VI& @,for  the final d i rec t ion  parameters, 

16. Capture i n  a smll zone. Certain problems involve determina- 

t i o n  of absorption i n  a smll zone of material, surrounded by a r e l a t i v e l y  

l a rge  system of moderator, which slows down neutrons by sca t t e r ing  on l i g h t  

nuclei .  The s l i m  chance of a neutron hit t ing t h i s  amall capture zone 

may be improved by various devices, of. which we indicate  only one. 

Suppose fo r  s implici ty  that a spherical ly  symmetric system con- 

t a i n s  a small cen t r a l  core of capture mterial of radius  R1. L e t  R* 7 R1 

be chosen comparatively close t o  R. If a neutron undergoes co l l i s ion  I' 
a t  a point of radius  R R we my proceed as usual. However, i f  

R 5 R , we may process from this point t o  termination 5 neutrons each 

of weight W/z instead of the customary s ingle  neutron of w e i g h %  W. 

If the mul t ip l i c i ty  m i s  s u f f i c i e n t l y  large and R - R1 s u f f i c i e n t l y  

small, some of the h descendants are very l i k e l y  t o  h i t  the absorbing 

* 
* 

-x. 

core. 

Such a scheme requires  modification of the over-al l  flow diagram. 

We ca l l  a t t en t ion  especial ly  t o  the following chawes: (a)  the source 

reu t ine  ( 0 )  sets a new parameter m = 0 f o r  each fresh neutron l a v i n g  

the  source j ( b )  the ( B  ) o r  ( P o )  rout ine exits, i n  event of co l l i s ion ,  t o  

a new ent ry  (7)  which i s  preliminary t o  the usual capture rout ine (9'); 
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(c) the (7)  routine, in case the multiplication trick is indicated, 
stores - all pmeters R, w, E, g, W,.. . 
the point of collision in new positions designated by €3, w, E, g, W, ... 
f o r  reference in processing each of the progeny from this point to 

termination; (d) the (a) entry, to which one returns on termination of 

any particle, is modified to order complete processing of progeny 

before starting out a new source neutron. The parameter m = l ,2,. . .  m 

indicates the number of the descendant being processed. 

flow diagram (Fig. 44) includes the essential modifications. 

of the "parent" neutron at - - - - -  

- 

The following 

Note that the entry ( Y )  excludes using the multiplication trick 
on a descendant. That is, we do not iterate the process. In practice 

the device is usually of a more elaborate nature, using different 

multiplicities m for different critical radii R . Moreover, the * 

capture cross 

low energies, 

a decision on 

section of the core usually becomes significant only at 

so that the multiplication decision may also rest upon 
3c JC 

E - E where E is some stipulated low energy. 



7 1  

StoreNN N N N  R,w,E,g,W, ... at R,w,E,g,W ,... 

Fig. 44 



17. Capture by a "point" detector .  The method of the  preceding 

sect ion may be inef fec t ive  i f  t he  capture zone i s  extremely small. The 

present sect ion presents a much s implif ied example of such a case. 

Consider a spher ica l  s h e l l  ( r a d i i  R1< R 2 )  of a s ing le  l i g h t  

element which can be considered (perhaps by use of t ransport  cross 

sec t ions)  t o  s c a t t e r  neutrons i so t rop ica l ly  i n  the laboratory system. 

Suppose f u r t h e r  t h a t  a detector  of very small radius R o < <  R1 i s  located 

a t  the  center  of the  hole (vacuum), and it  i s  desired t o  f i n d  the  d i s -  

t r i bu t ion  in to  energy groups of neutrons impinging on the de tec tor ,  con- 

sidered as a perfect  absorber. 

Spec i f ica l ly ,  l e t  Eo > El> . . . > EG denote the bounds of the 

energy groups adopted, EG 

t rons  are l o s t  t o  a category LE. Consider a co l l i s ion  C a t  x, y, z, 

R ,  R1 4 R < Re of a neutron with incident direct ion u ,  v ,  w .  The 

f r ac t ion  f of t o t a l  s o l i d  angle subtended a t  C by the de tec tor  is 

being the "cutoff" energy, below which neu- 

- 1 (1 - c o s u ) ~ - ( l  1 - (1 - L o 2 ) )  =Lo2 z L s i n 2 a  = L R 2 / R 2  , where u 
2 2 2 4 4 4 0  
i s  defined by s i n  u =Ro/R. Observe t h a t  we a r e  only considering a case 

where these approximations a r e  very good. 

Let the d i rec t ion  from C t o  the or ig in  be denoted by u", v", 

w", and l e t  r~ = u u" + v VI '  + w w" be the  cosi,ne of the  angle between 

t h i s  d i rec t ion  and the  incident  d i rec t ion .  F ina l ly ,  l e t  E" be t h a t  

new energy which would result from a sca t t e r ing  from the d i rec t ion  

u,  v, w t o  the d i rec t ion  u", v", w". 
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We proceed in two essentially different ways according as this 

energy E" is below or above EG. If below, we a l l o w  the colliding 

neutron of weight W to scatter isotropically in the laboratory system 

into a new direction ut, v ' ,  wl. 

detector, or if it falls  outside of the solid angle subtended at by 

the detector and corresponds to a scattered energy below cutoff, we de- 

posit the weight W in LE. Otherwise, we follow the scattered neutron 

further to escape or its next collision by the usual (#?) routine. 

will be seen that this is the orthodox way of treating a collision, 

If the new line of flight cuts the 

C 

It 

except that we assume that directions within the very s m a l l  detector 

solid angle have the same behavior as the direction u", v", w" insofar 

as resultant energy is concerned. 

However, in case the energy E" corresponding to u", VI', w" is 

J' above cutoff, we deterministically add a weight Wft to the category D 

which records neutrons impinging on the detector with energies in the 

group containing the energy E". Here f has its assigned meaning and 

t = exp {- (R - Rl)/h (E")} is the transmission for neutrons of energy 

E" in the direction toward the center of the detector. We then allow an 

isotropic scattering into the direction u', VI ,  w'. If this direction 

falls within the counter solid angle, we force a first collision of weight 

W(l - t) at x + u"1, y + v'lk, z + w"k, where I =  - A  (E")kn [l - r(1 - t)] . 
(Cf. Chapter 111, e5.) If the scattered direction u'v'w' is outside 

this solid angle, we determine the corresponding new energy E' and 

deposit weight W in LE if E t  is below the cutoff EG or follow 

the weight W further in the usual ( p )  routine if E' is above E G' 



In a large number N of collisions of the second kind (E" > Ec) 

the expected number hitting the detector w i l l  be NWft (with the proper 

energy distribution), as it should be. Moreover (Nf) neutrons will 

scatter into the detector direction, on the average, resulting in a 

t o t a l  weight of (Nf) W (1 - t) = (NW) f (1 - t) having first collisions 
in this direction, and these are distributed spatially in the correct 

exponential distribution. Finally,an expected number N( 1 - f) of 

neutrons will scatter outside the detector solid angle, with total weight 

U ( l  - f) W 

subsequent history, 

= (NW)(1 - f), and these are correctly processed in their 

The method has the great virtue of deterministically contributing 

a correct positive weight to the detector on every collision of the second 

kind. (Collisions of the first kind (E" < EG) cannot do ao physically.) 

A flow diagram covering the method is given in Fig. k. For the 

cc formula,'one may refer to $6 of the present chapter. 

parameter J )  is set to zero at the source ( 6 ) .  

The computational 



1 \ 
I I \ 

- LE w + LE 
U" - u 
V" - v 
w1'- w 

I 

J 
(3 W(1 - t) - w P 

y + v l -  y 
2 + WJ- 2 L R = x  + y  + &  

Fig. 44a 
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18. Remarks on thermal neutrons. I n  a l l  neutron problems w i t h  

which we are concerned, the  energy range of neutrons ac tua l ly  followed 

i s  bounded from zero by some minimum energy E > 0. This bound may be 

some s t ipu la t ed  energy E 

* 
* 

above the  mean thermal energy of the medium, 

neutrons with energies f a l l i n g  below t h i s  upon any c o l l i s i o n  being of no 

i n t e r e s t  i n  the pa r t i cu la r  problem. The energy E then serves  as the  
* 

lower bound EG 

stored. 

of the lowest energy group f o r  which cross  sec t ions  are 

However, when neutrons are t o  be followed down t o  the  mean thermal 
* 

energy of the medium, t h i s  energy serves as the  minimum E , and severa l  

remarks are i n  order. A l l  cross  sec t ion  considerations and sca t t e r ing  

formulas have been based on the assumption of t a rge t  nuclei  which are at  

rest i n  the laboratory system. I t  is  c l ea r  t h a t  our procedure i s  un- 

j u s t i f i e d  i n  t h a t  part of the energy range approaching the thermal energy 

i n  the  case of l i g h t  elements. Moreover, i f  the mean energy of the medium 

i s  i n  the  range below the molecular binding energies involved, simple 

nuclear cross  sec t ions  may no longer be applicable. (11) 

If neutrons reaching "thermal energy" are dropped, w e  again have 

E* = EG as above, neutrons w i t h  energies below E* being thrown i n t o  

a counter f o r  l o s ses  t o  cutoff .  

When the problem necess i ta tes  ac tua l ly  following neutrons which 

have reached the  thermal energy range, w e  require  a lowermost energy 

~~ __ - _ _  

( l ' ) C f .  S. Glasstone, M. C .  Edlund, - The Elements of Nuclear Reactor 
Theory, D. Van Nostrand Company, Inc., Prince%&, N. J., 1952, 
on thermal neutron cross sect ions.  
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group f o r  such "thermal neutrons," a su i t ab le  "average free path," and 

d i f f e r e n t i a l  sca t te r ing  laws f o r  t h i s  group, as well as probabi l i t i es  f o r  

d i f f e ren t  types of react ions.  It i s  impractical  t o  deal with the  actual 

case of a d i s t r ibu t ion  of neutron energies i n  the thermal range, and a l l  

methods assune neutrons within t h i s  group have a fixed energy and upon 

elastic co l l i s ion  r e t a in  this energy. For heavy elements, isotropy i n  

the  laboratory system seems t o  be a val id  assumption f o r  e l a s t i c  s ca t t e r -  

ing. 

s tan ts  referred t o  depends on the  elements involved and on complicated 

questions of the  ac tua l  energy d is t r ibu t ions  obtaining, which are non- 

Maxwellian i n  media with strong thermal capture. 

However, the  choice of proper averages f o r  t he  other nuclear con- 

19. Remark on determination of photon souTces. Col l is ions of 

neutrons with par t icu lar  types of  nuclei  m y  r e s u l t  i n  the  production of 

y -rays; radiative capture and ce r t a in  (n-n) i n e l a s t i c  processes are 

examples. 

which i s  becoming of increasing importance i s  the determination of 

photon production by neutrons i n  shields.  The latter infomat ion  m y  be 

used i n  turn f o r  t he  input energy and spatial d i s t r ibu t ion  i n  the  Monte 

Carlo treatment of photon diffusion,  discussed i n  the  following chapter. 

Insofar as the neutronfcs of such shielding media is  concerned, one 

need only record as they occur the  number of  radiative captures, and the  

number of  (n-n)radiative co l l i s ions  caused by incident neutrons of energy 

group g, i n  each of a set of spatial zones. 

I - - 

One of t h e  appl icat ions of Monte Carlo t o  neutronics problems 



This, together with a knowledge of the Y energies produced i n  

capture and the production cross sections f o r  Y 's by neutrons of energy 

group g 

source i n  the related photon problem. 

i n  (n-n) reactions,  yield8 the desired d i s t r ibu t ions  f o r  the 
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cmPTER VI 

PHOTON COLLISIONS 

1. Introduction. The procedures discusssd in the present 

manual are adapted to problems involving the scatkering of photons on 

electrons and nuclei insofar as photons may be considered as "particles" 

subject to mean free path and differential scattering laws. 

this reason that we speak of particles in the text, 

collision routine ( Y ) tha.t the physical character of the particles 

need be distinguished. We have discussed many of the collision proc- 

esses 

involving photons. 

are: 

scattering of neutrons on nuclei; (2)  pair-production; (3) photo- 

electric effect. 

of the Monte Carlo technique. 

It is for 

It is only in t h e  

for neutrons with nuclei in Chapter V. We now turn to problems 

The principal types of photon-electron collisions 

(1) Compton scattering, whioh is the strict analogue of elastic 

These we proceed to discuss from the point of view 

2. Basic concepts and constants, We shall use 

c = 2.997'76 x l o lo  em seccl for the velocity of light in vacuo 



h = 6.624 x lo-= erg sec for Planck's constant 

m = 9.10658 x 

e = 4.8025 x lo-'' esu for the electronic charge 

gm for the rest-mass of the electron, and 
0 

A photon is characterized (for the purposes of this chapter) by 

its energy E (ergs). 

by means of the relation 

tion h v  = C. 

2 by m = e . The speed of a l l  photons in vacuum being c, we m y  

assign to a photon a momentum (vector) mV, where V is the velocity 

vector of the photon in the laboratory system. Then 

To such a photon is ascribed a frequency Y (sec'l) 

e = hu and a wave-length 

The "equivalent mss" m (gm) of such a photon is defined 

A (cm) by the equa- 

IVl = c, and ImV( = mc = h v/c 

An electron is characterized for OUT purposes by its charge 

e (esu), rest-mass mo (gm), and its velocity vector V. 

then m = mo/ fi- where B = 

Its mas is 

The momentum vector of I V I /c. 
2 the electron is mV and its total energy mc . 

It is customary to express photon energies by means of a dimen- 

sionlesa parameter E = hv/moc2, which gives the ratio of' photon energy 

to the rest-mass energy of the electron, namely, m c2 = .81837 x 10 -6 erg 
0 

or .51083 MeV, recalling that 1 MeV is 1.60203 x lom6 erg (Chapter 11,§3). 
This parameter E 

of the chapter. 

is the one we adopt for photon energy in the reminder 

3. Compton collisions. A Compton collision is by definition 

a collision of a photon with an electron (the latter assumed free and 



a t  res t  i n  the  laboratory system), with preservation of t o t a l  momentum 

(vector)  and t o t a l  energy. 

way as w e  did i n  the  case of elastic co l l i s ion  between neutron and 

nucleus (Chapter V, § 3 ) ,  except that we do not introduce a center of 

mas. We agree on the notat ions and r e l a t ions  of the  following table: 

We may, therefore,  proceed i n  much the  same 

Before c o l l i s i o n  A f t e r  co l l i s ion  
Fhoton Electron Photon Electron 

Mass "1 = hv/c In2 = mo n 1 = hvl/c 2 n2 = "0 / V l 7  

Speed l V l l  = Iv2\  = O I W l l  = lwzl = w2 

2 

B = w2/c a 

v2 = 0 w1 w2 

mlVl m2v2 nlWl n2W2 

Velocity 

lvbmentum 

!lbtal energy 2 2 
= nlc n2C e '  = hv' 2 2 

m2c e = hv = y c  

We have the  two conservation l a w s :  

m V + m2V2 = n W -t n2W2 1 1  1 1  

m c 2 + m c 2 = n c  2 + n c  2 
1 2 1 2 

o r  equivalently, 

t 2 h v  = h v '  + c (n2 - m2) 

Introducing 

we read 

2 
the energy parameters E = hv/moc2 and E '  = hv'/moc , 



EVl = E'W1 + W2/ 

E - E' = l/fi - P 2  - 1 

remembering that, contrary t o  our usual pract  

(3 )  

(4) 

:e, t he  capitals E, E' ' 

represent  scalars. 

From ( 4 ) it follows that 

[l + (E - E ' ) ]  - 1 = 2 (E - E') + (E - E')2 = P2/(1 - B  2 ) ( 5 )  

while f rom ( 3 )  we obtain 

E%; - 2 EE'  IV1l( W cosUfl + Ef%f = We 2 /(1 - B  2 ) 

where 1L is the  def lect ion angle f rom V1 t o  W1. Hence, 1 

2 (E2 + El2 - 2 EE' cos U f l )  = (E - E') + 2 EE' (1 - cos #1) 

= 8*/(1 - f 1 2 )  (6) 

2 2 Eliminating p /(1 - B ) from the two equations ( 5 ) and ( 6 ), 

2(E - E') + (E - E')2 = (E - + 2 EE'(1 - cos al) o r  

E - E' = EE' (1 - COS 2)  

Thus we have finally t h e  r e l a t i o n  

E' = E/[ 1 + ~ ( i  - a)] 



where we use 

of the  incident  pa r t i c l e .  

t i o n  E! = E(S + T ,u) of Chapter V, $3. 

a = coswY as usual f o r  the laboratory def lect ion cosine 

This i s  the  analogue of the  neutronics rela- 

It i s  noted that, as i n  the case of neutrons sca t te r ing  on 

nuclei  heavier than hydrogen, there is  a pos i t ive  minimal energy 

I=: E / 1  + 2E f o r  the sca t te red  photon, a t t a ined  f o r  a = cos* = -1. E 'min 1 
A s  a s ide  r e m k ,  observe that the r e l a t i o n  

leads a t  once t o  the familiar wave-length r e l a t i o n  

i f  we first  write 

Ei- - E - - 2 sine (2) 
2 and use t h e  r e l a t ions  E = hv/moc and u h  = c f o r  both primed and 

unprimed variables E,Y,h. The "Compton wave length" A. i s  defined 

t o  be h/moc = ,024264 a (1 8 = angstrom un i t  = c m ) ,  and the 

I r e l a t i o n  i s  sometimes wr i t ten  

We have seen how EL = cos% determines E ' ,  the r e su l t i ng  energy 

of the photon. We have s t i l l  t o  show how the k ine t ic  energy and 

defection cosine cos*2 of the sca t te red  electron are found i n  

of E and E'. 

terms 
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To be sure, equation (2 )  answers the first question, s ince 

2 2 c (n2 - m2) = hu - hv' = moc (E  - E ' ) ;  thus the k ine t i c  energy of the 

sca t te red  e lec t ron  i s  

Ee = .51083 (E - E ' )  Mev 

We use equation ( 3 ) t o  determine cos #2 ae  follows: 

= v l  - B  (EV: - E '  lVLl lWl[ cos Gl)/w,c 

= \JL- (E  - E f a ) / B  

where a /  1 - B 2  is  known from e i t h e r  equation ( 5 ) or  ( 6 ). 

SLurmrarizing the  r e s u l t s  of t h i s  sect ion,  we  have 
1/ 

photon def lect ion cosine a = cos I P ~  

sca t te red  photon energy E '  = E/ [ 1 + E(l - a )  1 (units of moc 2 ) 

= .51083 (E - E ' )  Mev Ee r e c o i l  e lectron K.E. 

electron def lec t ion  cos G2 = (E - B ' a , ) / ( i ? / V l  - P 2 )  

A s  an example, suppose an 8 Mev photon s c a t t e r s  a t  an angle of 

1 
I 
I 

@ = 60'. Then 2 

L. 



1 a = v  

E = 15.661 (8 MeV) 

E '  = 1.7735 (40596 MeV) 

= 7.09404 Mev Ee 
8/ V l T  = 14.854 

COS = .99464 2 

'v2 = 5'56' 

4. The Klein-Nishina d i f f e r e n t i a l  cross  sect ion.  (u ) This i s  
2 the  d i f f e r e n t i a l  cross  sect ion uE( Q ) i n  cm /steradian which governs 

the  d i s t r ibu t ion  of a = cos J /  

e f fec t ,  and is  the  photon analogue of t he  neutron cross  sect ion of 

Chapter V, 954 and 6. 

f o r  t he  sca t te red  photon i n  the Compton 1 

It is  defined by the  formula 

2 2 E (1 - a )  
2 (1 + a ) [ L  + ~ ( 1  - 

bE( Q ) d P  = 

where (13) r = e2/moc2 = .28183 x cm. 
0 

Now w e  might proceed j u s t  as i n  the  case of e l a s t i c  co l l i s ion  

t o  determine a by (say) yon Newnann ' s device (Chapter I, 55) and then 

E '  from E and a using the  r e l a t i o n  

('*)For an account of t h i s  and r e l a t e d  functions see R.  Latter and 
H. Kahn, Gam-Ray _I_- Absorption Coefficients,  Project  RAND, R-170 (1949) 
and the  National Bureau of Strrndards Circular 542, Graphs of  the Compton 
Energy-Anale Relationshie and the Klein-Nishina Formula from 10 Kev t o  -- ---- 
500 MeV. 

(13)Thia i s  the  c l a s s i c a l  Thomson radius  of the2electron which n t e r s  

( =  .6654 barns).  
i n t o  the electron cross-section fomula  (8/3)m = ,6654 x 10 -2E cm2 

0 



of the preceding section. 

fortunate that a simpler alternative exists. 

following section. 

In view of the complexity of (7) it is 

We describe this in the 

5 .  The photon energy distribution and Compton cross section. 

In order to prepare for the alternative method, we first determine the 

differential cross section ZE(Et ) from the relation 

UE(E')dE' = uE( Q)dQ = - O E ( Q  ) 2 .(a) 

Using the preceding equation (8) in the form 

1 1  a = 1 + E  - E t  

we o b t a i n  the result 

We m y  obtain easily from this the t o t a l  cross section f o r  

Compton scattering as follows: 

= 2xro 
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which is graphed in the National Bureau of Standards Circular 542 

( IC 

for a suitable set of energy groups (assuming Ne is the numerical 

density of free electrons and no other processes exist). 

and m y  be used to compute free paths A = l/Nebg (Compton) 
t3 

We will actually use the Monte Carlo procedure 

to determine E' from E and random number r, since a sufficiently 

(14) accurate fit for the inverse function is given by 

where A. = E/(1 .I- ,5625 E), and E 5 4 (-2 Mev). Addition of a term 

1 2 2 - (E - 4) r 2 (1 - r) 

yield's a reasonably good fit on the range 4< E 6 10. 
I The equation ( 5 )  above then permits determination of a from 

E and E ' .  

Thus a Compton collision with incident energy E not exceeding 

5 MeV may be satisfactorily handled by the flow dLa@;lram of Fig. 45. 

(14)Bengt Cwlson, The Monte Carlo Method Applied to a Problem in 
Y -ray Diffusion L o X b F S a t i f i c  L a b o r a t o r y , ~ E ? % J ~ J ~ 3 .  
Cf. H. Mayer,T: A .  Burton, Tables - of -." the Compton Effect Cross Sections 
and - Energies, LAMS-1199, Los Alamos Scientific Laboratory, 1953, for 
goodness of fit. 
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s = E/(1 + .E625 E) bl r E' = E/ 1 + sr + (2E - s) r3} I I 

Fig. 45 
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6. Photoelectric effect and pair production. We have discussed 

the Compton collision for photons with electrons 

corresponds to the elastic collision in neutronics. If a medium con- 

sists of elements A, B , . . . ,  

to the "total cross section" (cf. Chapter III ,§2) is NoE(Compton), 

where N = N Z + N Z + ... iB the total numerical electron density. 

Here NA denotes the number of atoms of element A per cm3 and Z 

i8 the atomic number (= number of electrons per atom) of element A ,  

and noted that it 

the contribution of the Cornpton effect 

A A  B B  

A 

In determining the "total cross section'' all collision processes 

must be taken into account, and one must consider in this connection the 

further contributions NAUE (pe) .t ... E (pe) of the photoelectric 

effect and NAoE (pp) + ... z z  (pp) of pair production. Cross sections 

f o r  these processes for elements with 4 

may be found in the RAND report R-170 referred to before. 

free path determining collision positions is given by 

A 
E A 

2 E 
Z 5 92 and .10 $ E 20 (moc ) 

Thus the 

= l/Z 

where 

In the present report we regard pair production and photoelectric 

effect as absorptions, and have therefore, upon any collision, an 

absorption probability [ - NoE(Compton)]/z , which m y  be dealt 

with by the alternative methods discussed in Chapter 11, 52. 
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It must be remembered t h a t  secondary photons (X-rays) may r e su l t  

from the photoelectr ic  e f f e c t  i n  heavy elements, and t h a t  the e lec t ron  

and posi t ron born i n  pair production produce bremsstrahlung while being 

slowed down by ionizat ion of the medium. Moreover, the  inverse photo- 

e l e c t r i c  e f f e c t  may come i n t o  play, and the  posi t ron i s  f i n a l l y  annihi-  

lated with an e lec t ron  t o  produce s t i l l  f u r t h e r  y-rays. 

cutoff of t he  problem i s  not s u f f i c i e n t l y  high t o  exclude consideration 

of these secondary photons, one must include i n  t h e  output of t he  or ig-  

i n a l  problem su f f i c i en t  information t o  determine source d i s t r ibu t ions  

f o r  such secondary radiat ion.  W e  do not dea l  with t h i s  case i n  the  

present manual. 

If the  energy 
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CHAPTER VI1 

DIRECTION PARAMETERS AFTER COLLISION 

1. Introduction. The purpose of the present chapter is to 

develop formulas for the final direction parameters of a particle after 

scattering through an angle *l of cosine a, in the laboratory system, 

from an incident direction M, v, w (or w alone). While these formu- 

las are somewhat long, they my be derived from the simple principle of 

elementary complex variables which states that (x + iy)(cos €I + i sin 0) 

is a complex number whose vector is rotated through an angle 0 from that 

of x + iy. 

- - -  
2. Formulas for the final direction cosines, Let u = cos 01, v = 

cos $, w = cos -? be the direction cosines of the incident line of flight. 

Consider (5, 7, w) as a point on the unit sphere in 

direction space U, V, W (a?. Fig. 46). Letting P 7 be the polar 

coordinates in the 

2 2  u2 + v + w = 1 - 
U, V plane of the point (u, v, 0 )  we see that 
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s i n  = 7,’; 
Our first object ive is t o  derive formulas f o r  a p a r t i c l e  ro ta t ion  

space i n t o  i t s e l f  which takes  the point (0,0,1) i n t o  (u,v,w); 
- - -  

of 

namely, t h a t  r e su l t i ng  from i t e r a t i o n  of two simple ro ta t ions :  the 

first about the V-axis through the angle 

ro ta t ion  through the  angle 7 about the W-axis. 

U,V,W 

- 
Y ,  followed by a second 

W 

1 

U Fig. 46 
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We have for the  first ro ta t ion  

w '  + i u '  = (w e i u ) ( c o s  'i; + i s i n  ?) 

v '  = v 

and f o r  the second 

ufl + ivll = (ul + i v ' ) ( c o s  .c i s i n  7) 
w" = w '  

Separating real and imgina ry  parts, we read 

u '  = u cos 'i; + w s i n  T 

v '  = V 

w' = -u s i n  F + w cos 'G 

utl = u1  cos 

VI' = ut s i n  + V I  cos 

w" = W' 

- Y' s i n  7 

Subst i tut ion of  ( 3 )  i n t o  (4) y ie lds  

(4)  

V I '  = u cos F sin 
ult = u cos 7 cos g - v s i n  

w'' = -u s i n  'i; 

+ w s i n  T COS 

-t w cos r 

Replacing the functions of 7, by t h e i r  values i n  terms of - 
P = {v), u, v, and G ,  we obtain from (5) 
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1 - -  
u" = ( u w u - v v > / ; + w ~  

V" 

Under t h i s  ro t a t ion  (6) it i s  evident t h a t  (u,v,w> = (0, 0, 1) goes over 

Now we know that the d i rec t ion  ( 5 ,  7, G) of the def lected l i n e  of - -  
f l i g h t  makes an  angle Q1 of cosine a w i t h  the d i rec t ion  (u, v, G) 
of the incident  l i n e  of f l i g h t ,  It is  c l ea r  t h a t  t h i s  r e s t r i c t s  the 

former t o  a.cone of direct ions of opening 

and the d i rec t ions  on t h i s  cone are a l l  equally likely. 
?Pl about the lat ter d i rec t ion ,  

We adopt t he  

following m b i t r a r y  convention for  f ix ing  the def lected d i rec t ion ;  

namely, we always consider first a cone of opening w1 about the 

W-axis OW, and a point P = ( s i n  JI cos d ,  s i n  ?Pl s i n  6 ,  cos wl) 1 

located on th i s  cone and the u n i t  sphere, determined by an azimuthal 

angle of d uniformly dis t r ibuted on - A 5 d 5 A (Fig. 47). 
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1 

/ 
Fig. 47 

We then agree t h a t  the final d i rec t ion  (E, f, G )  is t he  image 
-c_- 

under ro t a t ion  ( 6 )  of the point P - so constructed. It should be 

clear t h a t  t h i s  i s  an appropriate convention f o r  OUT purpose. 

--- 

For s implici ty  we adopt the further notation 
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I n  t h i s  not.ation, the point P = (bc, bd, a )  = (u, v, w )  goes over i n to  

Summarizing the r e s u l t s  of the present section, we have 

where 

w t  = -bc v-*- (1 - w ) + aw J 

u, v, w a r e  d i rec t ion  cosines of the incident l i n e  of f l i g h t  

u’, v), w* a re  d i rec t ion  cosines of the  def iected l i n e  of f l i g h t  (lab.) 

a = cos *,,where V, i s  the angle between the two 

C = COS 6 , where - 1~ I; d (= R uniformly 
7 

d = (sgn d )VI - c 2 

Note t h a t  these formulas should not be used if Iw I is  too  close t o  

They are then poor computationally and indeterminate a t  l w l =  1. unity.  

I n  such a case it is  better t o  by-pass the  ro ta t ion  (6)  and use f o r  
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u t ,  v t ,  wt the  coordinates 

U' = bc 

V' = bd 

w'  = aw 

where a, b ,  c, d have the def in i t ions  above. 

3 .  Subroutine f o r  the f i n a l  d i rec t ion  cosines. We incorporate 

The power 2-n used t o  these resul ts  i n t o  the ( 8 ) routine of Fig. 48, 

determine whether the incident d i rec t ion  should be considered v e r t i c a l  

may w e l l  depend on the  accuracy required and on the  number of "bi ts"  

afforded by the  particular machine being used, 
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(1 - Iwl} - 2-" 1-1 
U l  = 

v l  = 1 Eqs (V) 
W l  = 

U' = bc 

v' = bd 

w f  = aw 

d 
Fig. 48 
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4. Fina l  d i rec t ion  w -in s lab or spherical ly  s;mmetri.c case. 

The present section is  concerned with determination of t h e  f i n a l  di.rectlon 

cosine w' = cos Y 1  of the  sca t te red  l i n e  of f l i g h t  as it e x i s t s  a t  the  

point of co l l i s ion ,  i n  terms of the  cosine a cf the  laboratory angle Wl 

determined i n  ( Y ), as required i.n both slab geometry and spherical ly  

symmetric geometry. 

that ,  i n  the spherical  case, the cosine w = cos y of the  angle y which the 

( C f .  Chapter 11, 92, and Chapter I V ,  5 8 . )  We r e c a l l  

incident l h e  o f f l i gh t  makes with the radi.us vector as it e x i s t s  a t  the  

point of collj.sj.on has already been prepared (Chapter ITJ, $3)  and s tored a s  

w before en t ry  a t  ( a ) .  

- -  --  
-- 

It is  immediately evldent t h a t  t h e  w) formula o f  equations (7), in  

42 of the present chapter$ 

w' = - b c v l  - w2 + a w  

I appl ies  t o  the  slab case, where a, b,  and c have the  de f in i t i ons  g-iven there .  

I Note t h a t  the formula i s  independent of the u t  v used i.n the  der ivat ion,  as 

it should be. 

But it w i l l  a l s o  be c l ea r  t h a t  the iden t i ca l  formula appl ies  t o  the 

spherical  case, i f  we imagine f o r  the  moment t h a t  OW represents  the  outward1.y 

d i rec ted  radius vector d i rec t ion  and u, v, w the d j rec t ion  of the  incident 

l i n e  of f l i g h t  r e l a t i v e  t o  the  radius vector,  the  u,v being immaterial, 

I n  both appl icat ions,  it w i l l  be observed t h a t  the angle 6 involved 

i n  

i s  the  only functjon of d appearing i n  the  w' formula. 

c = cos d may be l imited t o  the  range 0 (= a 7r, since cos - 6 = COS 6 = c 
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01 w' = -bc (1 - w ) + aw 

t 
Fig. 49 

I n  both cases,therefore,  we have the  simple rout ine of Fig. 49. 

5 ,  Scat ter ing i so t ropic  i n  the laboratory system. In any case 

where p a r t i c l e s  emerge from a co l l i s ion  in  a d i s t r ibu t ion  i so t ropic  i n  

t he  laboratory system, it i s  patent ly  fool i sh  t o  determine a = 2r - 1 

f o r  the def lect ion cosine r e l a t i v e  t o  the  l i n e  of f l i g h t  and then determine 

t h e . f i n a 1  d i rec t ion  cosines by means of t h e  preceding two sect ions.  It 

i s  simpler t o  assign the  d i rec t ion  of the  def lected l i n e  of f l i g h t  by the  

same method we used t o  set up an i so t ropic  source in  Chapter 11, $5a, c, 

ignoring the  incident d i rec t ion  completely. Thus t he  ( r )  rout ine re fer red  

t o  i s  simply t h a t  of Fig. 10, with e x i t  t o  ( fi 3 for the  u, v, w case,and, 

still more simply, boxes r and w = 2r - 1 f o r  the slab and spherical  case. 



CHAPTER VI11 

TERMINAL CLASSIFICATION 

1. - Introduction. We have already indicated various terminal 

events in the history of a particle, e.g., transmission, capture, loss 

to enerey cutoff, and so on. 

ways in which it may be desired to classify a particle which escapes 

the system. This is the general function of the ( 6 )  routines pre- 

viously referred to. Such routines invariably exit to (a) for the 

introduction of a new source particle. 

fication, we can hope to give only a brief indication, since the demands 

of physicists on this score are frequently inv.olved and exacting, 

it is the ability of Monte Carlo methods to provide answers to the most 

intricate questions of this kind which makes them an indispensable tool 

in design, 

We must still consider some of the many 

Of these many kinds of classi- 

Indeed, 

2. Classification of escapes on number of collisions. A s  the 

simplest example, we may refer to a problem whose purpose it is to 

determine the distribution of escaping neutrons with respect to the 

number of collisions suffered within the system. Suppose we agree to 

keep storage registers N,, v = 1, 2, ..., 10 for the total weight of 



neutrons escaping with v 5 10 co l l i s ions ,  and Nll f o r  those escaping 

w i t h  v 2 11. 

used so t h a t  the transmission counter T 

with v = 0 automatically ( c f ,  Ch. 111, e4). We may, therefore ,  follow 

We suppose tha t  the forced f i rs t  c o l l i s i o n  device has been 

records the  weight escaping 

the rout ine of Fig. 50. 

V 
W + N  - N  

V 

-+ Nll - N1l 

Fig. 50 

3. Energy and angle d i s t r ibu t ions  of escape. Consider a problem 

w i t h  a source d i r ec t ion  i n  which one desires the  

cor re la ted  d i s t r i b u t i o n  of escapes i n  energy and angle with the  source 

d i rec t ion .  There must be provided i n  permanent s torage a su i t ab le  set 

H of cosines 

= EG, which need not be the  same as those used f o r  o ther  purposes, while 

i n  dynamic s torage,  we reserve JH pos i t ions  N f o r  t he  t o t a l  weights 

escaping i n  the corresponding categories. 

neutron en te r s  ( e )  w i t h  a known weight W, d i r e c t i o n  cosine w, and 

energy E, and i s  c l a s s i f i e d  as indicated i n  Fig, 51. 

u = 0, v = 0, w = 1 

C1 > C2 > ... > CJ = -1 and energy bounds > ~ 2 > * . . > ~  

j ,h 
I n  such a problem, an escaping 
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Fig. 5 1  

Such a classification in angle is appropriate in a case like that 

I of Fig. 52,where a detector band is at essentially infinite distance 

from a scattering medium symmetric about the Z-axis. Here infinite 

distance means that all particles escaping from any point of the 

medium surface in the same direction hit the band in the same angular 

zone. Then the number N 

escapes in the solid angle 2 R (C - C 
is the number in this category escaping per steradian, and the number 

hitting a detector of given area on the circle indicated in the figure 

referred t o  is the number of h-group J ,h 
), so that N / 2 f l  (CJ - C j W L )  J J-1 S,h 

can be predicted. 

If the source direction is again u = 0, 

scattering medium is symmetric about the Z-axis 

escape about this axis, but the detector is not 
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sense refer red  to ,  it i s  necessary t o  take i n t o  account the dis tance 

% from center  0 

Fig. 54. 

t o  the detector  band as indicated i n  Fig.  53 and 

I n  the la t ter ,  the e x i t  leads t o  the previous c l a s s i f i c a t i o n  

rout ine of Fig. 51 and thence t o  (a). A t  en t ry  t o  the rout ine of 

Fig. 54, the x,y,z parameters are those of the last point of de- 

par ture  before escape. Again the r e s u l t s  may be normed t o  number per  

s te rad ian  and in te rpre ted  with reference t o  the de tec tor  band indicated.  

Z 

Fig, 53 

I O0 

I 
I 

f 

I 
I 
I 

:s 

180' 
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@-+ 6 = u x + v y + w z -  

To Fig. 51 

2 2 2  A = 6" -(x + y  + z  

Fig. 54 

The preceding discussion is limited to systems symmetrically 

distributed about the source (+Z) direction. Problems of this kind 

have the great advantage, from the Monte Carlo standpoint, that no 

escaping particles are lost to classification. 

Unfortunately, there are experimental considerations which, in 

many cases, dictate a geometry in which such symmetry is lacking. 

Consider, f o r  example, the situation in Fig. 55, in which a source 

with direction u = 0, v = 0, w = 1 

of a cylinder with axis on the X-axis. 

impinges on the lateral surface 

It is desired to count the 

numbers N hitting a coaxial band zone j upon escape, the de- 

tector band having radius dg and height h. Since the cylinder 

J 
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lacks symmetry about the Z-axis, it is no longer possible t o  classify 

escaping particles according to the cosine w of the angle Y of the 

line from origin to the point of intersection of the line of flight 

with the sphere of radius 

are non-uniform about the Z-axis. 

for prejudicing scattering in the band direction, which we shall not 

discuss, all one can do is to submit to running very much larger 

$, since the escapes with this direction 
Without rather complicated devices 

samples in order that the rather small solid angle actually subtended 

by the band shall receive a sufficient number of escapes to render the 

N 

of great value for experimentalists contemplating the use of Monte Carlo 

methods for  thick target corrections to consider the feasibility of the 

statistics reliable. This is a real difficulty, and it would be J 

symmetric geometry in the experimental setup. 

A suitable routine for the case cited, without any special 

importance sampling devices, is given in Fig. 56, the exit again re- 

ferring to the routine of Fig .  51. The category % refers to all 

escapes failing to hit the band. In computing the distance t to the 

(infinite) cylindrical surface y -f z = dg, one avoids the 1 - u2 C 0 

catastrophe,as indicated in Ch. IV, 86 (end of section). 

2 2 2  

Consider finally a case where it is desired to classify a 

particle escaping w€th direction u,v,w from the Lateral surface of 

2 2  a cylinder x + y = R2 according to the angle measured from the 

normal to the surface. If (xt,yt,zt) is the point of escape, deter- 

mined in the usual manner from u,v,w,R, and the position x,y,z of 
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x = x + u t  t - 

t 

zddB - w 
I + 

To Fig. 51 

Fig. 56 
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last  departure, then the  d i rec t ion  of the normal a t  t h i s  point is given 

by 

x t - 0  Yt - 0 Zt - Zt 
R ’  R ’  R 

and the cosine w of the angle of escape w i t h  the  normal i s  

x u + y v + z t . O  
= (XtU -1- YtV)/R t t 

R w =  



REMARKS ON COMPUTATION 

1. Scaling. If the machine employed lacks the "f loat ing decimal" 

feature  or  i f  considerations of machine speed exclude i t s  use, a l l  

computations indicated i n  the flow diagram at  each step must be planned 

i n  advance t o  remain on the i n t e r v a l  -1C x < 1. The formulas and flow 

diagrams of the present t e x t  are unscaled and a r e  expressed i n  the usual 

physical units, 

causes 190 d i f f i c u l t i e s ,  and may be l e f t  t o  the imagination, with the 

reminder that one must be carefu l  t o  avoid the l o s s  of accuracy which 

attends over-scaling, 

i n  the present chapter as it enters in to  spec ia l  subroutines, such as 

exp( -x /y)  where x may exceed y, i n  the J n  x rout ine where x 

may be as small as 

The sca l ing  procedure i n  kbnte Carlo problems usually 

Remarks are made about sca l ing  a t  various points 

2'23, and i n  the cosine rout ine f o r  - f l  5 - x 5 - *. 

2. Debugging. When a problem i s  ready for actual running by 

the machine, some method of detect ing the inevi tab le  human e r r o r s  which 

m y  enter a t  a l l  phases of the coding must be employed t o  assure a l l  



concerned tha t  the machine w i l l  perform exactly the routine intended. 

It goes without saying that a l l  permanent storage constants should be 

printed out a t  various intervals  and checked against the or ig ina l  list, 

cer ta inly a t  the beginning and end of the problem. 

sometimes possible t o  bui ld  i n  a sum check of a l l  code orders and 

permanent constants which will automatically detect any changes due t o  

electronic misbehavior once the machine is running. 

rather t o  the question of ensuring that the code itself is  correct. 

This question presents ra ther  greater d i f f i cu l t i e s  i n  Monte Carlo 

problems than i n  other types of computation because of the complexity 

of. decisions involved. 

b r e o v e r , i t  is 

We refer here 

We have found that the most convincing guarantee of faithfulness 

of code t o  flow diagram consists i n  the preparation by hand of a 

deterministic sequence of nurnbers 

automatically a hand-picked set of par t ic les  which are so chosen tha t  

rl, r2, r3, ... designed t o  process 

every logical ly  possible path through the f l o w  diagram is traversed a t  

least once with non-trivial  parameters. 

used f o r  t h i s  purpose which ins t ruc ts  the machine t o  follow the code 

precisely except that ,  upon c a l l  fo r  the next random number, the 

random number routine i s  by-passed, and the prepared l is t  is  consulted 

fo r  the next number rn of the hand-picked sequence. A t  every list 

consultation the machine pr in ts  out a l l  s ignif icant  variables of the 

problem, the printout then being compared w i t h  the hand-computed 

par t ic le  h i s  t o r  ie s 

A special  debug routine m y  be 



This is  a laborious process i n  the  hand-computing phase, bu t  is  

w e l l  worth doing, even though, i n  complicated problems, the processing 

of 50 par t i c l e s  or so may be necessary. 

3. Special  subroutines. We include a number of spec ia l  sub- 

rout ines  f o r  some of  the functions commonly occurring i n  Monte Carlo 

calculat ions.  No claim is  made that these are the best  avai lable;  they 

are only given fo r  completeness i n  case the reader knows of no b e t t e r  

one. 

a. A random number rout ine.  We have used i n  a l l  problems the 

sequence rlj r2, r3, ... 
algorithm defining rn+l 

middle 38 b i t s  of the square of r where r is the 38 b i t  number 

defined by 10 BBB FA4DE 

after the first b i t .  

1010, 0100, 1101, lllfi, the  f i n a l  zero being ignored. The sequence 

automatically terminates i n  zero a t  about n = 750,000 and has been 

thoroughly tested, not only f o r  the usual s t a t i s t i c a l  features but  by 

its ac tua l  use i n  many problems. The Monte Carlo use of the  sequence i s  

of a very peculiar and unpredictable kind. 

any par t icu lar  random number box of the f l o w  diagram, it appears that the 

nurnbers ac tua l ly  selected from the sequence for  use i n  t h i s  box are a 

subsequence selected from the  main sequence by completely inscrutable  

r u l e s  depending on the sequence i tself .  

terminal event (e.g., transmission) was known, the corresponding 

of 38 b i t  diadic numbers, generated by the 

t o  be t h a t  38 b i t  nuniber corresponding t o  the 

n' 1 
i n  the system with base 16, with the  decimal 

rl = 0.001, 0000, 1011, 1011, 1011, 1111, Thus 

If one fixes a t t en t ion  on 

Whenever a probabi l i ty  of some 

Ni/N 
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f o r  t h a t  category agreed even be t te r  than one might expect it t o  on the 

basis of a t r d y  random sequencer 

b. Shifted random numbeE. An average problem may involve 

20,000 source particle6,each with perhaps f ive  coll isions,  and each 

col l is ion may involvethree or  four random numbers. 

one may expect t o  exhaust the random nmiber sequence i n  many problems 

i f  it is  used i n  t h i s  simple way. It is  t r u e  t ha t  the same sequence 

may safely be used over a g a i n  without repet i t ion of results provided 

the i n i t i a l  rl 

i n  the flow diagram, and indeed, such re-use of the sequence m y  be 

resorted to. 

It is  clear  t h a t  

i s  not used a t  the ident ica l  place it was first called 

We may IIlention however t h a t  the usual problems do not require 

anything l i k e  38 b i t  resolution, and the number of random numbers 

available may be increased by a factor  2 o r  even 4 by a sh i f t ing  

routine, which is  incidentally f a s t e r  than squaring and so helps t o  

i reduce machine t i m e .  

but a l so  the f rac t iona l  parts of 2 rn, 2 (2 r ), etc.,as random 

numbers, before squaring 

if three random numbers are  t o  be obtained from rn, one might use the 

This consists i n  using i n  sequence not only 

n 

rn, 
O L 1  a2 al 

t o  obtain the next rn+l. For example, rn 

f ract ional  par ts  of rn, 2 12 rn, and 2 12 (2 12 rn). The sequences ob- 

tained by such extensions of the basic routine have also been tes ted 

and proved satisfactory.  
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c. A Logarithm routine. From the usua l  series 

1x1 < 1 2 4 &(I + x )  = x - x /2 + x3/3 - x /4 + ... 
one obtains 

1x1 L 1  
2 4 , t n ( l  - x> = - x - x /2 - x3/3 - x /4 - 

and hence 

becomes 1-x which, under the transformation y = - l+x 

~ 

Convergence of the l a t t e r  series i s  rapid enough for  the range 
1 - < y < 1 2 
suff ice  for  most purposes. 

t o  permit use of a moderate number of terms; f ive  should 

Now suppose 6 is a nurnber on the range 2-23 6 c 1 for  

which j n  t, i s  t o  be computed. We determine tha t  integer n fo r  

which 



n 

can be obtained from the ser ies .  

Then 2-1 5 2 6 TI < 1. and I n  C = - n I n  2 + I n  TI , where 

I n  9 

Now - ,& 2'23 = 23 i n  2 < 23(.694) < 16, so t h a t  

f o r  S on the range - 4 < 1. Hence a rout ine suitable f o r  a 

In 5 I < 1 

scaled problem is given by Fig. 57. 

O u r  only use f o r  the &I function has been i n  co l l i s ion-  

dis tance formulas such as 

k' = - a t n  r = - z4 A r )  

Limikation of random numbers enter ing th i s  formula t o  the range r &20z3 

means t ha t  we force a co l l i s ion  w i t h i n  16 free paths. 

t o  the extent  that e-16 

distance,  which is an acceptable e r r o r  i n  most cases. I n  problems in-  

This is inaccurate 

is  the chance of co l l i s ion  at  a s t i l l  fu r the r  

volving systems so la rge  that such e r r o r s  are s igni f icant ,  probably some 

type of importance sampling w i l l  be used i n  place of the  simple formula 

above. 

powers, 2'23 being qui te  a rb i t ra ry .  

I n  any case it is  c l ea r  how t o  modify the routine f o r  higher 

For the rout ine as given, It i s  c l ea r  that i f  a l l  'distances (cm) 

are scaled down by a f ac to r  exceeding 16 times the  greatest free path 

A occurring i n  the  problem, one is  safe  so far as t h i s  pa r t i cu la r  

formula i s  concerned. 
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2 - , P n q = g + g  
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Fig. 57 



d. The exponential exp(- x/y).  It is  frequently necessary t o  

compute the value of exp(- x/y), where 0 6.  x < 1, 0 < y < 1. Even 

though x and y are scaled, the quotient x/y may exceed unity and 

cannot be dea l t  w i t h  d i rec t ly  by fixed decimal point machines. 

are excellent polynomial approximations(lg) t o  exp(- p 

so t ha t  we may define the integer n by 

There 

f o r  o < p 5 c ~ n  2, 

and p on the prescribed range by P = (x/y) - n l n  2. We shall 

therefore have 

where e-' S a. + P  (al f pa2)  w i t h  

a = l  
0 

- 9664279798 al = 

a 2 = 03535763634 

is usually suff ic ient ly  accurate for our purposes. 

( 15)B. Carlson and M. Goldstein,"Rational &proximation of Iknctions , " 
Los Alamos Scient i f ic  Laboratory; LA-1943, 1955 
of various degrees with bounds on the errors involved. 

Gives polynomials 
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We may therefore  proceed a5 in Fig. 58. 

e. A cosine routine.  We indica te  a scaled rout ine f o r  computing 

1 - cos & , where 6 i s  t o  be chosen uniformly on - R 2 b g R , as 2 - 
required by Ch. V I I ,  5 3. 

formulas 

It i s  based on the following s e r i e s  of 

Input 0 sx < 1, 0 < y < 1 

Stored constants ao, al, a2,an 2 

Fig. 58 
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- 1 cos = 22{2-3- s2 + s4} 
2 

the f i n a l  formula a r i s ing  from 

2 cos6 = COS 4af  = 2 COS 2 a '  - 1 

4 = 1 - 0 s2 4.0 s 

It may perhaps be mentioned here that f o r  scaled machines the 

following procedure is  somewhat shor te r  than tha t  obtained by applying 

the preceding method t o  Fig. 49, the rout ine f o r  slab and spher ica l  

f i n a l  d i rec t ion  w ' .  I n  place of choosing 6 uniformly on 0 5 6 6 r, 

we may introduce the angle d = d - "/2, choosing the latter uniformly 

on - r /2  d 5 r /2 .  Thus we may proceed as follows: 

N 

CI) 



d '  

S 

C 

s i n  6 '  as above 

N 
cos d = s i n  ,j = s i n  26'  = 2 s i n  d '  cos 6 '  

a w  - bc {- 

We should therefore  have i n  place of Fig. 49 the rout ine of 

Fig. 59. I n  this  way we avoid the square root for  b = )!= and 

make use of only one double angle formula instead of two. 

t 

Fig. 59 
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4, A Monte Carlo device f o r  6, There are  many ingenious 

devices fo r  avoiding the computation of the value of various functions 

with a r g w n t s  involving a random number. A s  a simple example, (16) the 

process 

involved i n  throwing fo r  the r a d i u s  of a neutron i n  a source d is t r ibu ted  

uniformly i n  area on a d i sk  of radius 

lowing : 
R1 may be replaced by the fo l -  

That is t o  say, one may use i n  place of the square root  of one 

random number the la rger  of any two successive ones, 

4 = results from the standard Monte Carlo r e l a t ion  

for  the equation 

and i s  thus equivalent t o  choosing 5 on t--e in t e rva l  (x, x + d x )  with 

frequency 2x dx. But the a l t e rna t ive  of throwing points (6 , v )  i n t o  

the u n i t  square 0 5 v 5 1 uniformly i n  area and choosing 

the l a rge r  of the coordinates automatically determines a n  x B max(6,v) 

0 5 6 5 1, 

(16 'Cf. J. W. But le r ' s  paper i n  Symposium on Monte Carlo Methods, 
-_I_- 

John Wiley & Sons, Inc. , New York, 1956. 
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on ( 6 ,  6 + d t )  with t h i s  frequency, as i s  apparent from Fig. 59a. 

5.  A Monte Carlo device for the cosine of an equidis t r ibuted 

angle! 17) In various places we have needed the cosine and s i n e  of a n  

angle 0 equidis t r ibuted on the i n t e r v a l  - T 5 0 7r, and have hereto- 

fore given a r a the r  cwnbersom but  straightforward method involving 

se r i e s ,  square root ,  and, i n  case of fixed decimal r e q u i r e F n t s ,  a 

multiple angle formula. We give i n  Fig 5% an a l t e rna t ive  method, 

e a s i l y  scaled i f  necessary and avoiding series and square root  rout ines .  

One observes t h a t  the  desired determination of c = c o s 4  and 

d = s i n  4 

c i r c l e .  

i n  the square 

i s  equivalent t o  choosing a point (c,d) uniformly on the u n i t  

This i n  turn Is tantamount t o  throwing points  (t,'~) uniformly 

-1 6 x, y 2 1, re jec t ing  those lying outside the un i t  
2 c i r c l e  x f y2 = 1, and taking f o r  c and d the values  5 / b q  

and q//m, for the re ta ined  points  ( 6 ,  'I) are uniforrt& distri- 

buted i n  area i n  the uni t  c i r c l e  and hence t h e i r  project ions (c,d) on the 

u n i t  c i r c l e  are uniformly dis t r ibuted also.  But these square roots  may 

be avoided by l imi t ing  the se lec t ion  procedure t o  the first quadrant and 

using double angle formulas t o  obtain (c ,d)  uniformly on the upper ha l f -  

c i r c l e .  F ina l ly  an  addi t iona l  random nuniber can be used t o  change the 

s ign of d with probabi l i ty  1/2. The ef f ic iency  of the re ten t ion  of 

random number pairs is m/4. 

( 17)The method is  described by von Neumann i n  U, S, Department of 
Commerce, National Bureau of Standards, Applied Mathematics Ser ies  #12, 
Monte Carlo Method, Washington, Do C., 1951. Cf, footnote (l), -- 
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CHAPTER X 

STATISTICAL CONSIDERATIONS 

1. The l i m i t  theorem i n  the Bernoulli case. Suppose t h a t  a 

ce r t a in  experiment can result i n  c ways Of which a are favorable 

t o  an event E whi le  b = c - a r e s u l t  i n  the event E (not El). 

Consider the  set of all sequences of 
N In  t h i s  set of c 

1 0 

N trials of t h i s  experiment. 

sequences, the number of sequences r e su l t i ng  i n  

- 

exac t ly  M occurrences of E is  c l e a r l y  1 

N M N-M CM a b 

N where CM is the number of combinations of N things taken M a t  a 

time. Hence, the probabi l i ty  of exac t ly  M occurrences of E i n  a 

sequence of N t r ia ls  is  
1 

N N M N-M N N M N-M P M = C M a  b /C = C M p  q 

where p = a/c and q = b/c are the probabi l i t i es  of El and Eo, 

respectively.  
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It i s  meaningful, therefore ,  t o  speak of the p robab i l i t y  tha t ,  

i n  a sequence of N trials of t h i s  experiment, the number M of 

"successes" El s h a l l  l i e  between two given bounds; indeed, 

There i s  a fundamental p robabi l i ty  theorem ( 18) which states 

t h a t  

where t = CF and 
P9 

2, Application t o  the  terminal. r a t i o s .  The output of a non- 

mul t ip l ica t ive  ( l9 ) Monte Carlo calculat ion without weights gives the  

( "'J. V. Uspensky, Introduction t o  Mathematical Probabi l i ty ,  McGraw- 
Hill Book Company, Inc., New Grk, 1937, p. 130. 

( 19) I .e., not involving f i s s ion ,  (n-2n) react ions,  e t c . ,  i n  which a 
p a r t i c l e  gives rise t o  more than one pa r t i c l e .  
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number M out of N source particles which terminate in each of a set 

of all-inclusive, mutually disjoint categories C. If we fix attention 

upon some particular category C, we may regard the processing of a 

source particle as an experiment which has as its outcome either the 

event El of termination in this category or  Eo of non-termination 

therein. 

Now in any actual problem, there is a definite upper bound 1 on 
the number of random numbers needed to process a particle due to the 

existence of cutoffs based on energy, time, weight, number of collisions, 

etc. We may then consider the class of all Y sequences of 1 random 
numbers. A l l  these sequences are equally likely, and a certain ~1 of 

them determine a history terminating in category C. We may, therefore, 

say that the probability of termination in C is p = a / y  . 
To be sure, this probability p of El is unknown; indeed, its 

determination is precisely the object of the problem. We may, however, 

gain some idea of the statistical reliability of the Monte Carlo result 

by tentatively taking for p the value of M/N at some late stage of 

the problem, when the latter ratio appears to have settled down, and 

define l q  = 1 - (M/N). 

of the number of sequences of N trials resulting in a ratio of 

satisfying the inequality 

Then the preceding theory states that the ratio 

~ 

I 
~ 
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to the totality of all possible sequences of N trials is approximately 

where t = 6 and erf(x) is the well-tabulated "error function" 
Pq 

for which we include a brief table. 

X 

0 

.2 

.4 
-6 
.a 
1.0 

1.2 

1.4 
1.6 
1.8 

2.0 

2.2 

2.4 

2 -6 
2.8 

erf x 

0 

.2227 

,4284 

6039 
.@21 . 8427 
91°3 
9523 
9763 
9891 

09953 
9981 
9993 

0 9998 
9999 

Fig. 60 
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By assigning to B the maximum error to be tolerated and to N 

the number of source particles processed, one finds from the value of the 

Integral the approximate chance of an error not exceeding e ,  which should 

be close enough to unity for comfort and which approaches unity with in- 

creasing N. 

As an example, suppose a Monte Carlo run of 50,000 neutrons shows a 

capture of 5000 neutrons in a certain zone, and the probability p 

ture in this zone is desired with 5s accuracy. 

Then t = 3.72678 and f(t) = erf(t/p) = erf(2,635) > ,9998. The 
error I R I  in using f(t) for P((M/N - pI < 6 )  does not exceed .0001. 

of cap- 

Let p = .l, e = .05p = .005. 

This is, of course, far higher probability of safety than one can 

usually hope for. 

of about .01 with a maximum error of 1$, 

t = ,225,and Here 

it appears that a simple-minded Monte Carlo is quite ineffective, To be 

sure, these requirements are far more stringent than are usually encoun- 

tered, but such problems do arise, notably in counter design, and one sees 

clearly the necessity for very large samples combined with ingenious de- 

vices f o r  improving statistics by use of weights in such cases. 

Consider for contrast the extreme case of a capture p 
-4 Then B = LO , and for N = 50,000, 

f(t) = erf(t/P) = erf(.175) E ,18, with IRI < .018. 

3. The central limit theorem. The preceding remarks apply 

strictly only to Monte Carlo procedures of the most straightforward 

kind where no weights are employed, and a single, non-multiplying source 

particle is followed until it ends its history in some terminal category. 
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It may then be considered as a physical particle undergoing an experiment 

insofar as the random numbers employed may be regarded as truly random. 

However, we have mentioned many devices employing weighted par- 

ticles. In such cases, it is clear that the total weight M terminating 

in a given category C after such procedures no longer represents the 

number of successes out of N trials, that is, out of the processing of 

N source particles, each initially of weight 1, and we can no longer 

apply the theorem of §1. 

called the central limit theorem, of which we shall give here a very 

special case , (20) which does apply t o  the weight method, 

There is, however, a well-known generalization 

Instead of the simple experiment which results in 1 with prob- 

ability p and in 0 with probability q, let us consider an experiment 

which can result in K different ways, to which we assign definite red 

numbers W1, ..., WK, with probabilities pl, ..., pK, respectively, 

pl+ ... + pK being unity. 
we may say that Wk has probability pk, k = 1, ..., K. In such a case, 

we define the mean 

= I2 p W2 - a . Suppose now that N trials are made of this experiment, 

In a single trial of the experiment, therefore, 

2 
a = 2 pk Wk and the dispersion b = iT pk(Wk - a) 

2 
k k  

and M is the sum of N weights so determined. Then our theorem states 

that the probability 

('*)J. V. Uspensky ( IC), page 294; cf. footnote (18). 



where t = B and p N t  0 as N t 00, The estimation of PN is 

given in terms of the third moment of the W-distribution. 

Notice that the Bernoulli case is contained in this, since f o r  

that case, we have p1 =: p, W1 = 1; p2 = q, We = 0,  a = P 1 + q 0 = P, 

b = (p  l2 + q 0 ) - a 2 2 2 = p - p = p(1 - p) = pq, and the sum M of 

the weights 1 and 0 recorded in the N trials is simply the number 

of 1's (successes) in this sequence. 

4. Application to problems using weights. Consider now a per- 

fectly general Monte Carlo problem (21 ) in which weighted particles may 

be used, each particle leaving the source with weight 

we congider the weights limited to a finite set of numbers, which is, in 

fact, the case in machine computation. Each possible history assigns a 

definite weight Wk to the particular terminal category C. Moreover, 

it is clear that each such weight W, has a definite probability p, 

of realization upon the trial of a random source particle, namelsthe 

probability of a history which assigns W, to C, Thus the mean 

a = pk Wk is the expected weight terminating in C pes source par- 

ticle. If we process N particles in a Monte Carlo problem, tallying 

the weight W(T) 

T =  1, 2, ..., N, the final sum Z d T )  is the M of the theorem, and 

M/N may be used as an approximation t o  The difficulty in applying 

1. For simplicity, 

contribuwd to category C by each trial particle 

a. 

' 21 'Multiplicative processes are not excluded, When they are involved, 
we speak of the "expectation" a of termination in catebory C 
rather than the probability whexher weights different from unity 
are used or not. 



the  theorem l ies i n  the f a c t  t h a t  we do not o rd ina r i ly  have at hand an 

estimate f o r  the dispers ion b. In  the simple Bernoulli case, we s a w  

that b w a s  expressible i n  terms of p, but,  i n  general, a does not 
N 2 determine b. Since b = C pk Wk - a2, w e  could use (WT)2/N - 
7 =1 

as a guess f o r  b 

(WT)2 as w e l l  as the  (W') 

i f  we  had provided i n  the problem f o r  t a l l y i n g  the  

f o r  each trial p a r t i c l e  7 = 1, . , ., N. 
Note t h a t  i n  case of capture, one squares the t o t a l  of capture 

contr ibut ions from all co l l i s ions  of the  p a r t i c l e ;  i t  i s  not cor rec t  t o  

simply cumulate the squares of each weight captured. 

I n  a problem which does not involve mult ipl icat ion ( f i s s ion ,  (n-2n) 

react ions,  e t c . ) ,  the  weight procedure i s  b e t t e r  than tha t  not employing 

weights, a t  a given s tage N, and f o r  a given e r r o r  c ,  t o  the ex ten t  t h a t  

the upper l i m i t  of in tegra t ion  exceeds LP, the  probabi l i ty  i n  
P4 

the l e f t  member being identical ,  t h a t  i s ,  the gain is based on the degree 

t o  which b is lesg than pq. Now b = Cpk Wk - a , pq = p - p , and 

the  expectation of category C 

2 2  2 

i n  such a problem i s  i ts  probabi l i ty ,  

i.e., a = p. Hence, f i n a l l y  the  improvement rests on the f a c t  that 

z p k  W E S  p = a = "k 'k 

which is  c l e a r  s ince Wk $ 1 f o r  a11 k. However, the degree of 

improvement can be calculated only i n  the  most t r i v i a l  examples. It 

i s  at  least c l ea r  why the improvement i s  so great i n  cases of small 

quan t i t i e s ,  since,  then, the Wk are qui te  small and e<< Wk. 



It may also be remarked t h a t  the theorem of sect ion (3)  appl ies  

per fec t ly  w e l l  i n  f inding the expected number 

of p a r t i c l e s  terminating i n  a pa r t i cu la r  category C, while the theorem 

of 51 does not. 

of the former theorem i s  t h a t  one has no simple way of knowing the 

dispers ion b. 

a (per source p a r t i c l e )  

The unfortunate feature  involved i n  the appl icat ion 

Problems of the complexity i n  p rac t ice  usually forbid 

complete tabulat ions of W"'s f o r  purely s ta t is t ical  s tudies  Actually 

one provides the bes t  weight t r i c k s  one can think of and tries t o  judge 

the r e l i a b i l i t y  of an output r a t i o  by i t s  convergence and s t a b i l i t y  as 

N increases.  

5 .  I l l u s t r a t i v e  examples. We include some extremely t r i v i a l  

examples which nevertheless may help t o  f i x  the ideas involved i n  the 

preceding sections.  

(1) Consider the non-multiplicative problem defined by the 
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We may limit random numbers to be either 0 or 1. The upper 

bound 

the total number Y of such sequences is 

following results: 

on lengths of sequences of random numbers required is 2, and 

2* = 4. In fact, we have the 

00 implies termination in A 

01 implies termination in A 

10 implies termination in B 

11 implies termination in C 

If we fix attention on C, we find that the number a of sequences 

favorable to C is 1, and the probability of termination in C is 

a / Y  = 1/4. Hence, relative to this category, we have p = 1/4 for 

W = 1 and q = 3/4 for W = 0, with dispersion pq = 3/16. 

Suppose for comparison that we decide to use a weight method for 

this problem as indicated below. 

1 - W + B - B  
2 

1 I 
r - -  7 i Z ~ ~ + - . *  2 

- w + c - c  

@‘Q 
Now sequences of random numbers are limited to length Y = 1, and 

we have the results 
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0 implies A = 1/2 B = 1/2 

1 implies A = 1/2 C = 1/2 

Again f,ixing attention on C, 

= 1-12 f o r  w1 = O P1 

and 

a = p  W + p  W =1/4 1 1  2 2  

b = p1 W: + p2 WE - a2 = 1/16 < pq = 3/16 

which illustrates in this very trivial example the type of improvement 

discussed in the preceding section. 

(2 )  Now suppose we have the simple multiplicative system in- 

dicated by the following scheme: 
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Thus a source particle may terminate in A with probability 1/2 

or,in the contrary case, it may either terminate in 

1/2 or produce - two particles with probability L/2. The two progeny 

thereupon have equal chances of terminating in A or B. 

B with probability 

Here the maximum length 1 of random number sequences of 0's and 

1's is 4, Y = 2 = 16, and we have the following correspondence between 4 

random number sequences and terminal weights: 

0000 

0001 

0010 

0011 
0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

---- 

---- 

---- 

A = l  B = O  

A = l  B = O  

A = l  B = O  

A = l  B = O  
A = l  B = O  

A = l  B = O  
A = l  B = O  
A = l  B = O  
A = O  B = l  

A = O  B = l  
A = O  B = l  

A = O  B = l  

A = 2  B = O  

A = l  B = l  

A = l  B = l  

A = O  B = 2  

Let us consider only category B. We have by inspection the weights 

and corresponding probabilities 
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= 9/16 wo = o 

= 6/16 w1 = i 
PO 

p1 

p2 = 1/16 wg = 2. 

The expectation and dispersion are 

a =  ~p w =1/2 k k  

2 2  b = X p  W - 8  = 3 / 8  k k  

Let us compare this procedure with one which, in the event of 

multiplication, processes one particle Of weight 2 rather thantwo 

particles each of unit weight, as indicated below. 

W t A - A  

W t B - B  

-201- 



We now obtain the results 

000 A = l  B = O  

001 A = l  B = O  
010 A - 1  B = O  
011 A - 1  B - 0  

100 A - 0  B - 1  
101 A = 0  B - 1  
110 A = 2  B = O  
111 A - 0  B - 2  

--- 

and f o r  category B, 

Po = 5/8 

p2 = 110 

wo = 0 

= 210 w1 = 1 

w2 = 2 

a = z p i  wi = 112 

b = C pk Wg - a* = 1/2 

It will be noted that the revision has resulted In Increasing the 

dispersion. That this is not an inevitable consequence of employing 

weighted multiplication, the reader may verify by observing that the 

dispersion for category B becomes 0 in the following treatment of 

the same problem: 

-202- 



-203- 



APPENDIX 

SUMMARY OF CERTAIN PROBLEMS RUN ON MANIAC I 

Introduction. We conclude thi’s repor t  with a very b r i e f  summary 

of some of t h e  Monte Carlo t y p e  problems which w e  have set up and run 

on t h e  MANIAC I a t  Los Alamos during the  past  th ree  years. 

f o r  these problems has been done by some extremely rapid and resourceful 

coders a t  Group T-7 of t h i s  laboratory, whom we wish t o  thank co l lec-  

t ively,  and t o  whom we refer individual ly  i n  t h i s  appendix and LA-2121. 

It is  hoped t h a t  t he  reader unfamiliar with the  method w i l l  f ind  

in t h i s  b r i e f  l i s t  of problems some indica t ion  of t h e  a c t u a l  s i t u a t i o n s  

i n  which t h e  methods of t he  t e x t  f ind  appl icat ion.  It may a l s o  perhaps 

he lp  those contemplating use of t h e  method i n  problems of t h e i r  own t o  

form some judgment of i t s  p o s s i b i l i t i e s .  

The coding 

The co l l ec t ion  included here na tura l ly  omits t he  many c l a s s i f i e d  

problems which have been completed. 
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Problem 1 

COMPTON COLLISIONS IN A SPHERICAL SHELL 

Coder: R. G. Schrandt 

Requester: G. H. Best and H. C. Hoyt 

Medium: 

- 

Free-electron "gas" in spherical shell of radii Ro < R1. 
Source: Monoenergetic photons directed radially outward from R . 
Various initial energies were studied. 

0 

I 
Photon parameters: x, y, z, u, v, w, E, g. 

Physical processes: 

Output: 

together with totals lost to core and lost to energy cutoff. 

impinging on the inner boundary Ro was considered absorbed. 

Remarks: "Forced first collision" device was used. The angular distsi- 

bution desired was that of Ch. V I I I ,  Fig. 53. 

Compton collisions of photons with free electrons. 

Correlated energy and angle distribution of photons escaping R1, 

Any photon 

I 

Problem 2 

COMPTON COLLISIONS IN A SOLID SPHERE 

Coder: R. G. Schrandt 
__li 

Requester: G. H. Best and H. C. Hoyt 
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Medium: Free e lec t ron  gas i n  s o l i d  sphere of radius  R1. 

Source, photon parameters, - and physical processes: As i n  Problem 1. 

Output: A s  i n  Problem 1 with exception of core losses. 

Remarks: It w a s  desired t o  study the e f f e c t  of the core on the escape 

d i s t r ibu t ion  by comparison of the r e s u l t s  of Problems 1 and 2. Actually, 

by su i t ab le  devices i n  the f l o w  diagram, it w a s  po'ssible t o  combine the 

two problems in to  a s ingle  code, keeping two sets of terminal category 

r eg i s t e r s  and following a photon path fu r the r  fa r  purposes of Problem 2, 

after it had h i t  the core and been l o s t  fo r  Problem 1. This i s  a device 

which cuts  machine time almost i n  ha l f .  

Problem 3 

NEUTRONS I N  A SPHERICAL SHELL 

Coder: J. M. Kister 

Requester: J. R.  Beyster 

Medium: Hollow spherical  s h e l l  of heavy nuclei. 

Source: Monoenergetic i so t ropic  point  source a t  center  of sphere. 

Neutron parameters: R ,  w, v .  

Physical processes: I n e l a s t i c  sca t te r ing ,  regarded as terminal, e l a s t i c  

s ca t t e r ing  according t o  given lab.  system d i f f e r e n t i a l  cross section, 

attended by no energy loss. 
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Output: 

neutrons escaping after u collisions, V = 0, 1, . . ., 10, and u 2 11, 
Number of neutrons lost to inelastic collision, number of 

Remarks: The distribution function P. was tabulated for scattering at 

a cosine a => a 
range. 

J 
f o r  32 strategically chosen intervals of the cosine 3 

The problem was run as a check on an analytic method of' 

H. A. Bethe based on transport cross sections, the results of the 

latter being computed by J. R. Beyster. The Monte Carlo procedure 

was coded in two different ways, one using the weight method f o r  in- 

elastic termination, the other not, The results were in excellent 

agreement and checked Bethe's result. Transmission was obtained 

without forced first collision and agreed closely with the analytic 

value. 

mination of the Escape Fraction for a Scattering Spherical Shell with 

Cent ra l  Point Source, 

The problem is written up in LA-1583, A Monte Carlo Deter- ---- 
-- -- -- 
- 

Problem 4 

ENERGY INDEPENDENT SCATTERING IN A CYLINDER 

Coder: R. L. Bivins 
7 

Requester: M. Walt 

Medium: Solid cylinder of homogeneous material. Problem run fo r  many 

heavy elements. 
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Source: Monoenergetic neutrons in parallel beam incident on lateral 

surface of cylinder in direction normal to axis. 

Neutron parameters: x, y, z, u, v, w, W, v .  

Physical processes: Inelastic collision, treated as terminal, elastic 

scattering at source energy governed by differential cross section. No 

energy loss assumed on elastic scattering, 

Output: Transmission, loss to inelastic collision, number of emergent 

scattered neutrons not hitting detector band, classification of neutrons 

hitting band zone i with u = 1, 2, 3, and v 2 4 collisions,' Detector 
band was coaxial with cylinder and calibrated in 5' zones. Geometry 

w a s  khat of Fig. 55. 

Remarks: Weights were used for transmission and inelastic losses, 

Elastic scattering probabilities P were used as indicated in Problem 3. 

It will be noted that many of the problems included are of this general 

nature, the Monte Carlo results being used in correcting experimentally 

determined differential cross sections and cross sections of other 

processes for multiple collision effects in thick targets. 

J 

Problem 5 

ENERGY DEPENDENT SCATTERING IN A CYLINDER 

Coder: R. L. Bivins 

Requester: M, Walt 
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Medium: Solid cylinder of homogeneous material. Many light elements 

were run. 

Source: Same as Problem 4. 

Neutron parameters: x, y, z ,  u, V, w, E, g, W, V .  

Physical processes: 

scattering governed by differential cross sections ( P )  in C.M. system. 

Inelastic collision regarded as terminal, elastic 

Output: Transmission, loss t o  inelastic collision, O g  loss to I energy cutoff, 
emergent neutrons failing to hit detector band (same geometry as in 

Problem 4 and Fig, 55), and those hitting band in zone i with IJ = 1, 2, 

and u 2 3 collisions. 

> 

Remarks: 

and for inelastic losses. 

the von Neumann device using (I ( g , p )  = A 

in Ch, V, S5. Tables stored for free path and f o r  coefficients 

Weights used for transmission (forced first collision device) 

Differential elastic scattering handled by 

g g  g 
* + B Cr + C P 2  as indicated 

65 

C f o r  suitable energy groups g. 
Bg’ 63 

Problem 6 

CYLINDRICAL SHELL WITH PARALLEL SOURCE 

Coder: R ,  G. Schrandt 

Requester: J. D, Seagrave 

Medium: Cylindrical shell of homogeneous material. Problems run for 

CD2, C, and CH2 shells. 

- 
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Source: Monoenergetic parallel beam of neutrons incident on lateral 

surface of cylinder in direction normal to axis. Various source energies 

were studied. 

Neutron parameters: x, y, z, u, v, w, E, g, W, V .  

Physical processes: 

differential cross sections oe(p). Such scattering on H was assumed 

isotropic; C scattering was treated by a fit u (g,fl) = A + C N 2 ;  

while for D, the double interpolation method of Ch. V, 05 (Fig. 37) was 

used on the basis of a stored table 

Elastic scattering on C, D, H according to C.M. 

g * 
@ ; &  

* 

Output: 

emergent undegraded scattered neutrons failing to hit band, and clas- 

sification of scattered undegraded neutrons hitting the band (geometry 

of Fig. 5 5 )  into the following categories: 

Transmission, loss of "degraded" neutrons to energy cutoff, 

i (a) hits on band zone i with energy above given ,upper bound r 
(b) hits on band zone i with energy below given lower bound Li 

(c) hits on band zone i with energy between ei and Ti with V = 1 

(d) hits on band zone i with energy between Li and Ti with V > 1. 

Problem 7 

14 MEW NEUTRONS IN A CYLINDRICAL SHELL 

Coder: R. G. Schrandt - 
Requester: L. Rosen and L. Stewart 
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Medium: Solid cylinder of homogeneous scattering material. Problems run 

for two heavy elements (Bi, Ta) . 
Source: 

base of cylinder. Geometry of Fig. 52, 

Neutron parameters: 

scattering differential cross section purposes), g (group index for free 

path and probability of elastic scattering constants) , h (group index 
for escape classification) . 
Physical processes: At most, two collisions were permitted, escape being 

forced after a second collision, with the direction obtaining as a result 

of that collision, 

assumptions made for the types of collisions were as follows: 

- 

Parallel beam of monoenergetic (14 MeV) neutrons incident on 

- 
x, y, z, u, v, w, Y ,  E, f (group index for elastic 

The branching process of Fig, 61 was involved, The 

(a) Elastic collision: no energy loss, lab. differential cross 

sections of(a) fo r  five energy ranges f. 

(b) d-process. Energy of emergent neutron equidistributed between 

5 and 12 MeV. 

cross section given for  lab. angle a. 

Process occurs only at 14 MeV. One differential 

(c) (n-2n) process. Two neutrons emerge with energy distributions 

- E '  exp(- E'/T~) and n2 = E' ea(- E~/T*) on o I: E' 6 5 .  nl - 
Isotropic emergence in lab. system. Process occurs only at 

14 MeV. (Cf. Ch. V, 815#for method.) 



(d) Inelastic collision. One neutron emerges, isotropically in 

lab. system, with energy distribution n = E' em(- E/T) where 

T = k fw). 
§ll, for method . ) 

Process occurs only below 12 MeV. (Cf. Ch. V, 

r 

E = 14 Mev 

Fig, 61 

Output: 

Remarks: 

counter was at infinite distance so that the optimum conditions of 

Energy and angle distribution of escape. 

Symmetry of system about source distribution obtains, and 

Fig. 52 obtained. (Cf. discussion of Ch. V I I I ,  83.) 
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Problem 8 

CYLINDRICAL SHELL W I T H  POINT SOURCE 

Coder: R. L. Bivins - 
Requester: L. Cranberg 

Medium: Cyl indrical  s h e l l  of homogeneous material. Various heavy 

elements run. 

Source: Monoenergetic point source incident  on lateral  surface of cyl- 

inder  from an ex terna l  point  midway between base planes,  

85d, and Fig,  11.) 

( C f .  Ch. 11, 

Neutron parameters: x, y, z ,  u, v, w, E ( three  d i sc re t e  values El, E*, 

E$. 

Physical  processes: 

l e v e l s  a t  A 

with energy E co l l id ing  with the nucleus can thus s c a t t e r  e l a s t i c a l l y ,  

A typ ica l  element ( B i )  had two exci ted state energy 

A neutron = .9 and A 2  = 1.65 Mev above the  normal state. 

with no energy loss, or i n e l a s t i c a l l y ,  emerging w i t h  energy E - A l  i f  

E => A 

2.5 MeV, the  h i s t o r i e s  of Fig. 62 were possible.  

or with energy E - A i f  E 2 A 2 ,  Since the  source energy was 1 
I n e l a s t i c  s ca t t e r ing  

was assumed iso t ropic  i n  the lab. system, while e l a s t i c  s ca t t e r ing  was 

assumed t o  obey a given d i f f e r e n t i a l  cross sec t ion  a ( a )  applicable a t  

a11 energies involved. 
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E = 2.5 E' = 1.6 

Fig, 62 

Output: At most, two collisions were allowed. Neutrons having a third 

collision were classified in a terminal category L 

elastic collision was permitted. 

collision were classified in a terminal category 12. 

neutrons emerge with one of three possible energies El, E2, E3. 

these, the neutrons hitting the detector band (geometry of Fig, 55) in 

angular zone i and energy E were tabulated as Ni(E) for each E. 

At most, one in- 3' 
Neutrons suffering a second inelastic 

Thus a11 escaping 

Of 

Also recorded were the transmission, escapes not hitting the band, 

total hitting band after - one elastic collision, and the - total hitting 

the band after - one collision of any kind. 
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Problem 9 

A SCINTILLATION COUNTER 

Coder: R. L. Bivins 

Requester: R, F. Taschek and N. J, Terrell 

Medium: 

Source: 

with various deterministic directions. 

_. 

Cylindrical shell  containing various compounds of H, C, 0, and Cd. 

Monoenergetic point source at center of cylindrical hole (vacuum) 

Neutronjparameters: x, y, z, u, v, w, E, g.  

Physical processes: 

in C.M. system for H, 0, Cd, and according to a differential cross section 

H-capture, Cd-capture, elastic scattering isotropic 

2 = A  -t C P for C. 
g g 

Output: 

energy cutoff classified according to 6 radiaL and 12 height zones. 

Loss from she l l  surface, H-capture, Cd-capture, and losses to 

Remarks: 

distribation of degraded neutrons referred to, for use as input in a 

subsequent age theory calculation (not performed by us) connected with 

sensitivity of a scintillation counter design. 

The purpose of the problem was the determination of the space 



Problem 10 

A "LONG COUNTER" 

Coder: R .  L.  Bivins 

Requester: A. W ,  Schardt 

Medium: 

ta in ing  B (gaseous boron compound under pressure) and vacuum space, and 

- 

Cd cylinder (medium m = I, parts p = 1, 2, 4 of Fig. 63) con- 

surrounded by a hydrocarbon (medium m = 2, parts p = 3,5) i n  cylindricaZ 

outer container as shown. 

m - 2  
p = 5  

m - 2  I p = 3  

I m  = 1 , p  = 11 
I 

P P' 

Fig, 63 
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Source: Monoenergetic neutrons in parallel beam impinging on various 

radial zones ( p ,  p ' )  of base of outer container. 

studied 

Various source energies 

Neutron parameters: x, y, z, u, v, w, E, g, W, m, p. 

Physical processes: E-capture, Cd-capture, B-capture, elastic scattering 

on H, Cd isotropic in C.M. system, C as in Problem 9. 

Output: 

surface (p = 3, 5), H-capture, Cd-capture, B-capture, losses to energy 

and weight cutoff, 

Escape from Cd-base (p  = 1, p = 4), escape from hydrocarbon 

Remarks: The purpose was to estimate the efficiency of B-capture as a 

function of source energy and distance from axis in connection with 

design of a long counter. Weights were used throughout, neutrons 

passing through B cylinder were attenuated exponentially, and the 

multiplication device of Ch. V, 616, was used. This  problem probably 

represents the most demanding one statistically that we have set up. 

Enormous samples were involved, and the actual running of the machine 

was done by Schardt and co-workers. 

Problem 11 

A PROBLEM CONNECTED WITH NEUTRINO DETECTION 

Coder : - R. L. Bivins 
Requeste,r: F. Reines and C, L, Cowan 



Medium: Plane s l ab  of homogeneous CH 

with Cd-layer a t  z = 0. 

The s lab  thickness 2H was es sen t i a l ly  in f in i t e .  

on the 2- interval  - H <= z 5 H, 1.5 
Two d i f f e ren t  thicknesses of Cd were studied. 

Source: Monoenergetic neutrons a t  various heights z and with various 

d i rec t ions  from OZ. A series of source energies was studied. 

Neutron pamameters: 

of the neutron r e l a t i v e  t o  two problems run simultaneously. 

z, w, E, 7 ,  W, and a parameter indicat ing the status 

(See Remarks,) 

Physical processes: 

e l a s t i c  s ca t t e r ing  on H i so t ropic  i n  C.M. system a t  energies above 

thermal, and i so t ropic  i n  lab.  system at thermal with no fu r the r  energy 

loss .  Elastic sca t t e r ing  on C w a s  assumed i so t ropic  i n  the labe system 

with no energy l o s s  a t  a11 energies. 

H-capture at thermal energy (only),  Cd-capture, 

Output: Class i f ica t ion  of Cd-captures i n  .2 psec in t e rva l s  from t i m e  

( t  = 0 )  of leaving source t o  time cutoff of 30 psec, 150 intervals i n  

a l l ,  hydrogen capture, loss  t o  t i m e  cutoff .  

Remarks: 

The thicker  wall captures all neutrons impinging on it at  energies 

The following conventions on Cd w a l l  capture were adopted. 

< .4 ev, 

energies <.34. 

while the thinner  w a l l  captures - all neutrons impinging a t  

The th ick  and t h i n  Cd-wall problems were run simulta- 

neously by keeping separate counters N1, ...? N 

fo r  t h e  two t i m e  d i s t r i b u t i o n s  and following the path of a neutron 

fu r the r  for purposes of the th in  w a l l  problem after it had been c las -  

and N i ,  ..., Ni5,- 150 

s i f i e d  terminally as captured i n  the th ick  w a l l  problem. 
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Problem 12 

AN Iy DETERMINATION 

Coder: J. M. Kister 

Requester: R .  B. Lazarus 

Medium: Bare homogeneous Oy sphere. 

Source: I n i t i a l l y  an a r b i t r a r y  d i s t r i b u t i o n  of neutrons i n  energy 

groups g = 1, 2, 3, radial zones z = 1, ..,, 10, and cosine in t e rva l s  

j = 1, ...) 10, 300 categories  i n  a l l .  

Neutron parameters: R,  w, V = VE, g. 

Physical processes: 

treated by the t r a n s f e r  matrix method of Ch. V, g12. 

The usual processes for  a fissionable element were 

Output: The problem w a s  run i n  cycles of f ixed time length A T ,  the 

output N 

processed i n  category ( g , ~ ,  j )  during the  next. 

Close t o  c r i t i c a l ,  so t h a t  no re-normalization was involved. 

68,and ~ h ,  SV, 59.) 

of one cycle serving as the  number of neutrons t o  be 
g,z,J 

The problem run was 

(cf* Ch. 11, 
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Problem 13  

NEUTRON FLUX I N  A I R  

Coder: R. G. Schrandt 

Requester: 

- Medium: 

radii R1< R2 < R3. 

- 
J. Hall, R .  G. Wagner, and G. M. Wing 

Sphere of homogeneous air zoned for computational purposes by 

Source: Monoenergetic isotropic point source at center R = 0. Various 

initial energies were studied. 

Neutron parameters: R, w, E, g, W, Z. 

Physical processes: Elastic scattering on 0 and N assumed isotropic in 

C.M. system. 

Output: 

loss to weight cutoff. 

Loss to energy cutoff in each zone, loss from system (at R >, 3 
How- These were the only terminal categories. 

ever, the purpose of the problem was to determine total flux at R1, R2, 

R Counters were, therefore, provided t o  tallr all neutrons crossing 

each boundary R 
3' 

in each energy group g in outward direction and in I 
inward direction. (Cf. Ch. IV, S4.) 

Remarks: 

Ch. V, %7,for avoiding loss of trajectories to energy cutoff. 

Weights were used in connection with the device discussed in 

Thus no 

3' trajectory terminated until loss to weight cutoff or loss from R 
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Problem 14 

ESCAPE DISTRIBUTION FROM A CARBON SLAB 

Coders: M. B, Wells and R, G, Schranat 

Requester: T. B. Taylor 

Medium: 

Source: 

distribution. 

Plane slab of C on Q <= z <= Z, 
Monoenergetic neutrons upwardly directed at z = 0 in cosine 

___c 

Neutron parameters: z ,  w, E, g". 

Physical processes: 

cross section of form 0 ( g , p )  = A + C c1 . 
Elastic scattering on C governed by a differential. 

96 2 
@ ; G  

Output: 

Energy cutoff losses classified according to position in five sub- 

intervals, 

13 energy group classification escapes at z = 0 and z = Z .  

Problem 1 5  

ESCAPE DISTRIBUTION FROM A SPHERICAL SHELL 

Coders: M. B. Wells and R.  G. Schrandt 

Requester: C . L Longmire 
_IC Medium: 

_Lc 

Spherical shell of hydrocarbon on R1 <= R 5 R2. 
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Source: 

d i s t r ibu t ion .  

Monoenergetic neutrons d i rec ted  i n t o  s h e l l  a t  R1 i n  cosine 

Neutron parameters: R ,  w, E, g ” .  

Physical processes: 

on carbon as i n  Problem 1 4 ,  

E l a s t i c  s ca t t e r ing  on H i so t rop ic  i n  C.M. >ystem, 

Output: 

R2, l o s s  t o  energy cutoff .  

13  energy group c l a s s i f i c a t i o n  of escapes at R1, escapes a t  

Problem 16 

A ROCKET MOTOR 

Coder: R ,  L. Bivins 
I__ 

Requesters: G. I. B e l l  and C.  L.  Longmire 

Medium: Cylindrical  container of C y  U, H, with C of uniform densi ty ,  

H and U of prescribed dens i t i e s  i n  each of a set of s h e l l  zones, de- 

f ined by 7 r a d i a l  and 15 height in te rva ls .  This cylinder was  sur- 

mounted by a coaxial cyclinder of H and Be at  specif ied dens i t i e s ,  

and these two cyl inders  were surrounded by a cy l ind r i ca l  s h e l l  of Be. 

The U-density d i s t r i b u t i o n  w a s  subject  t o  change from problem t o  

problem, of which a whole series was run. ( C f .  Fig. 64.) 
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Z 

Be -'H 

p = 12 
I 

I 
H ' i  
C j 

p =  I 1 
i I 

Be 

p = 3  

Fig, 64 

Source: I so t ropic  source i n  f i s s i o n  energy spectrum, s p a t i a l l y  d i s t r ib -  

uted as prescribed among the lo5 zones. 

varied with the  problem and was so normalized t h a t  i n t e g r a l  numbers 

of neutrons were involved i n  each source. 

The spatial d i s t r ibu t ion  also 
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Neutron parameters: 

p = 1, 2, 3 .  

which define the associated radial and height zones. 

x, y, z, u, v, w, E, g,y, W, and a sector parameter 
(See Fig. 64.) The zone parameter is really a pair i,j 7 

Physical processes: Be-capture at "thermal" energy; U-capture, fission, 

elastic and inelastic scattering; elastic scattering on C and Be assumed 

isotropic in lab. system, using transport cross sections for free path 

contributions but with correct energy losses. Elastic scattering on H 

isotropic in C.M. system, 

Output: 

Be-capture; U-capture; number N' of fissions in each of the lo5 spatial 

zones. Fission was regarded as a terminal event. 

Losses from system classified according to surface of escape; 

7 

Remarks: There was no loss to energy cutoff; neutrons degrading to 

"thermal" energy were allowed to scatter isotropically in the lab. 

system without further loss of energy. 

capture, fission, or escape occurred. The purpose of the problem was 

to determine a U-density distribution together with a fission source 

distribution in space which would produce a steady state in the sense 

that the output N' and input N should satisfy the equations 

A neutron was followed until 

7 7 
-1 

" 'a' = u o  Nr 
where y o  is the fission multiplication constant. Such problems arise 

in the design of nuclear rocket motors, the hydrogen of the problem 

being present in the form of a propellant gas. 
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Problem 17 

PHOTON DIFFUSION IN A REACTOR 

Coder: R. G. Schrandt 

Requesters: M, E. Battat and B. M. Carmichael 

Medium: 

and top and bottom reflectors of given electron densities. 

- 

Cylindrical assembly consisting of inner fuel region, tamper, 

Source: Prompt Y -rays in exponential energy distribution n(E)dE 

= k exp(- 1.01 E)m, .2 5 E <= 5 MeV, isotropic in direction, and with 
given radial and heightwise photon density distributions throughout 

the fuel. 

Photon parameters: 

region of occupancy: 

defining radial and height boundaries of region m. 

x, y, z, u, v, w, E, Q, m (medium index indicating 

fuel, tamper, or reflectors), R I ~ ,  R " ~ ,  H ' ,  HI' 

Physical processes: Compton scattering of photons on electrons with 

energy losses due to such scattering and to cutoffs (varying with m) 

chosen at the point where the photoelectric effect becomes an 

effective absorption, 

Output: 

outer surfaces, energy deposition within the system in 82 spatial 

regions. 

Distribution in energy and angle of photons escaping each of 
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Problem 18 

A T H I C K  Z r  TARGET PROBLEM 

Coder: R. G. Schrandt 

Requesters: L. P. Stewart and L.  P. Rossn 

Medium: Sol id  Z r  cylinder. 

Source: P a r a l l e l  beam of monoenergetic (14 MeV) neutrons incident  on 

base of cylinder.  

Physical processes: 

was replaced by a more general process involving production cross 

sect ions f o r  neutrons i n  each of two energy d is t r ibu t ions  with a 

t o t a l  expectation of 2.32 neutrons. 

Those of Problem 7 except t h a t  the &2n) process 

Output: A s  i n  Problem 7. 

Remarks: 

problem ci ted.  

The problem was handled by a revis ion of the code of the  

Problem 19 

A THICK C TARGET PROBLEM 

Coder: R. G. Schrandt - 
Requesters: L. P. Stewart and L. P. Rosen 
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Medium: Sol id  carbon cylinder.  

Source: Monoenergetic (14.1 MeV) neutrons i n  parallel beam incident on 

base of cylinder.  

Neutron parameters: u, v, w, x, y, z ,  E, g, V .  

Physical processes: E l a s t i c  s ca t t e r ing  according t o  given d i f f e r e n t i a l  

cross  sect ions curves on four  ranges between 14  and 0 Mev; capture; 

i n e l a s t i c  s ca t t e r ing  f o r  l eve l s  4.4, 7.6, 9.6, and 11.2 MeV ( the  la t te r  

an average f o r  l e v e l s  > 9.6), i n e l a s t i c  s ca t t e r ing  a t  4.4 l e v e l  f o r  

incident  energy >10 MeV governed by given u (E,€)), a l l  o ther  i n e l a s t i c  

s ca t t e r ing  assumed iso t ropic  i n  C,M.  system. 

Output: 

(with v e r t i c a l )  of neutrons escaping after one o r  two co l l i s ions ,  

t o t a l  number of second co l l i s ions ,  

Dis t r ibu t ion  i n  28 energy groups and 10' angular i n t e rva l s  

Remarks: F i r s t  co l l i s ion  forced, neutrons forced out after a second 

co l l i s ion ,  Method of Ch. V, 69,used to  determine parameters after 

i n e l a s t i c  co l l i s ion .  

Problem 20 

HEAVY WATER EXPEXIMENT 

Coder: R ,  G. Schrandt 

Requester: J. N. Grundl 

-227- 



Medium: Heavy water in (A) spherical shell, (B) hemispherical shell. 

Both problems run simultaneously. A series of runs involved various 

inner and outer radii. 

Source: Isotropic point source at center of system in fission-neutron 

energy distribution, .1 5 E 5 10 MeV. 

Neutron parameters: 

traJectory lost relative to problem (B) or not). 

u, v, w, x, y, 2, E, g ,  I( (parameter indicating 

Physical processes: 

C.M. system; transport cross section based on this assumption used fo r  

Elastic scattering on D and 0 assumed isotropic in 

free path. 

Output: 

cutoff, classification in 25 energy groups of neutrons re-entering central 

cavity with normal angles in each of four angular ranges. 

For problems (A) and (B), loss to outer surfaces, loss to energy 
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