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ABSTRACT

Comparisons of convergence rates for several possible
eigenfunction source strategies led to the selection of the
"straight" analog of the analytic power method as the source
strategy for Monte Carlo eigenfunction calculations. To
insure a fair game strategy, the number of histories per
iteration increases with increasing iteration mumber. The
estimate of eigenfunction uncertainty is obtained from a
modification of a proposal by D. B. MacMillan and involves
only estimates of the usual purely statistical component
of uncertainty and a serial correlation coefficient of
lag one.

I. INTRODUCTION

Tt is convenient to consider each possible Monte Carlo eigenfunction
strategy as composed of two basic parts. The first part is the totality of
the Monte Carlo procedures that would be involved in a fixed source calcula-
tion. The second part is the eigenfunction source shape strategy that con-
nects successive generations.

The construction of an efficient overall eigenfunction strategy requires
that the fixed source procedures, and the method of connecting successive
generations, each be made efficient. Methods for improving the efficiency,
j.e. reducing the standard deviation per unit machine time, in fixed source
procedures have been frequently investigated and developed. In contrast,
methods for reducing the variance arising from the source shape strategy
have received relatively little attention; even the basic requirements for
a "fair game" strategy appear to have been little understood.

All source shape strategies considered in this report are required by
the authors to be "fair game" strategies. Thus, the first subsection of
Section IT is & discussion of "fair game" requirements. This subsection also
includes a description of a "reference" strategy which is used to provide a
comparison of relative convergence rates of all other strategies. The re-
mainder of Section II describes various source shape strategies considered;
they include strategies using Green's funetion, strategies using

162



163

extrapolation factors, and strategies using importance sampling. The final
subsection of Section II discusses the details of the source strategy
selected.

Having selected & definite strategy, Section IIT of the report then
describes the approsch that led toc the means of assigning eigenfunction un-
certainties. The resulting uncertainty formuls is partly empirical, and for
that reason.it required extensive numerical testing. The results of these
tests are also presented in Section III.

I1. EIGERFUNCTION SOURCE STRATEGY
The investigation that led to the selected source shape strategy is
described in this section. First, however, the "fair game" requirements for
& general eigenfunction strategy are discussed and a reference strategy is

defined.

8. Requirements for Fair Game and a Reference Strategy

The presentation in this subsection will summarize some results given in
detail in Ref. [1].

First, we introduce for convenience the term "limit in probability" de-
noted by the symbol "PLim." Thus ELim Xy = X means that for the sequence of
=400

random variables Xy, and for some parameter X, the condition

Lim [P{|Xy-X|< €}] = 1 1s met for any arbitrarily chosen positive e. In this
case we say that the sequence of random variables, Xy, converges in proba-
bility to X. The concept of repeatability involved in determining

P{|Xy-X|< €} for & given value of N = N, where Xy is & sequence of dependent
random variables, is to repeatedly return to the calculation beginning with
new sets of random numbers and obtain a sequence of values for XNO. The

fraction of such values for which |XN -X|< € is an estimste of the desired
probability. o

We may write any overall Monte Carlo eigenfunction strategy using a
neutron production Green's function as

n+l n n
vt . Zcij K(sT).
J

The three random variables in this equation are defined as follows:

1) G? is an estimate of the fission neutron production rate in
elementaré volume 1 due to & unit fission source in elementary volume j in
the n*P iteration. Possible values of this random variable are determined
by starting one or more neutrons in elementary volume j and determining the
neutron production rate per start neutron in elementary volume i by Monte
Carlo tracking. Consequently, the number of neutron histories in a value of
GfJ will be the number of starting neutrons in elementary volume j in the
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nth iteration. If the number of histories in & value of Gn approaches

infinity, then the limit in probability of G¥j is Gij wherngiJ is the
analytic Green's function over elementary volumes.

2) tg*l is an estimate of the fission neutron production rate in ele-
mentary volume i at the nth iteration of the iteration process used. As
implied by the above equation, w?‘l is a dependent random variable.

3) Kn(sn) is another estimate of the fission neutron production rate in
elementary vglume J at the nth iteration, but in general, is only relative
to other elementary volumes. sD alone is another estimate of the fission
neutron production rate in elemgntary volume j at the nth iteration, and is
obtained in some manner, yet to be specified, from previous iteration re-
sults. One possible means of doing this is the analog of the analytic power
method, 1.e. set S% = ¢%. The symbol K?(s) denotes an operator K" acting
of Sn. In general, the operator K® involves a sampling process and a nor-
maligation process, although one or both of these processes may be absent.
The sampling operator KB in the Monte Carlo eigenfunction iteration process
defines the means by which neutron starting sites and weights are determined
in the ath iteration. For example, a possible definition of the operator K*
which involves both sampling and normalization processes is as follows:
First a finite number of negtron starting sites are distributed among the

S
J as the frequency distribution function and

Zs‘?
J

using a set of random numbers designated by the index n. Second, the sum of
neutron weights (say unity per site) over the starting sites are normalized
to unity. If we let N" be the number of neutron histories in iteration n,
and if we let SJ be a source strength per elementary volume J that is inde-
pendent of n (i.e. &8 fixed source), then we may write

il\ln K'(s;)
PLim| D=
R
n=1

vhere S, are normalized values of S;5 ieee §:§J=l.
J

elementary volumes using

J

The only sampling operator used in this report is that given above as
an example. In the discussion of this particular operator, we did not
identify the precise means by which starting sites are selected using
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gh
—d as the frequency distribution function. For example, a purely
n
S
L5
J

random sampling could be used, or one that is purely systematic, or some
combination of both (semi-systematic). We do not need to be concerned with
these details, since all that is required to demonstrate a fair game is that
the above PLim equation is satisfied; that is, the sampling operator will
properly treat a fixed source.

We will now exhibit the condition to be met for a fair game in a Monte
Carlo eigenfunction strategy. ILet ¥4 be the fundamental mode eigenfunction
neutron production rate over elementary volume i from analytic transport
theory. Thus, Y4 satisfies the equation

J

where Gi P is the analytic Green's function over elementary volumes, and

— Y
where \PJ - - Here the eigenvalue, A, is a normalization factor, i.e.
Z"J
J

A= z?d. Using PId.mité, the condition to be met for a fair game in an
J

eigenfunction strategy where iteration results are accumilated with weights
equal to mutber of histories per iteration, X%, is given by

R
21«“
n=l

As discussed previously, Y? satisfies an equation of the fom

n+l ¢ n n
¥, =ZGU x“(sj).
J

It may be observed at this point that it will generally be desirable to

accumulate iteration results with weights equal to number of histories per
iteration, since this will result in minimm variance in a fixed source
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calculation.

The simplest Monte Carlo eigenfunction strategy is the analog of the
analytic povwer method, i.e. set sg = \yg This strategy will be taken as the

reference strategy, i.e. all other strategies will be compared to the power
method to judge relative convergence rates. As shown in Ref. [1], this
power method strategy is not a fair game if the number of histories per
iteration, N, is a constant independent of n. (The appendix of this report
gives a weighting scheme for neutron starting weights such that a fair game
is obtained in this case). A sufficient set of conditions to insure a fair
game in the power method strategy are:

(1) Iim¥W =o .

I1=¥co

(2) The sampling operator properly treats a fixed source.
Since the mumber of histories per iteration becomes large as
n increasses (condition 1), we must have PLim Kn(SJ) = 8.

n=—w

(3) Beceause the strategy is a Markov process, we must require that
all iterations used in the calculation produce progeny. This
is easily done with the device that should an iteration not
produce progeny, then the first prior iteration with progeny is
used to continue the process.

(4) The physical problem under consideration must be one for which
the analytic neutron transport equation has a unique fundamental
mode eigenfunction. That is, certain sufficient "connectivity"
conditions among the elementary volumes are met which insure such
& unique eigenfunction. These connectivity conditions will be met
Por all reactor problems of practical interest.

With these conditions, it follows essentially by definition that the
resulting "power method" strategy is a fair game. This is easily seen by

considering the representation of the nth jteration of the Monte Carlo
calculation, i.e.

n+l - n n
¥y ;Gi‘j Kn(‘YJ.).

Because of conditions (3) and (4), we know that the PLim V¥; does exist. Let
its value be ¥y Taking PLimits of both sides of the above equation, we

immediately obtain

¥, =Zcij v,
J

This is the analytic neutron transport equation over elementary volumes.
Since negative neutrons are not permitted to be born at fission sites, and
since the triviasl zero solution is not possible because of condition (3),
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then the above ¥, must be the fundamental mode eigenfunction. Thus the
general condition for a fair game is met, i.e.

n
an\Y?
PLim| 22X ) -y |
n—e n 1
LY
n=l

where ¥, is the fundamental mode eigenfunction over elementary volumes from
analytic transport theory.

All of the source shape strategies considered in the remainder of this
section are made fair games by the same approach used for the power method
described above. That is, the nmumber of histories per iteration will in-
crease with increasing iteration number.

The subsequent subsections will describe the new eigenfunction strat-
egies that were considered and the results of comparing their convergence
rates to the reference strategy. In order to make these comparisons more
meaningful, a source guess accuracy requirement was adopted. However, there
is another obvious reason for adopting such a requirement. That is, in any
conceivable eigenfunction strategy, one cannot permit an arbitrarily poor
source guess in a large core and obtain satisfactory convergence in reason-
able computing times. Thus in all strategies considered, we will require
that the eigenfunction guess be within about 2 P.E.'s of the true eigen-
function, where the P.E. is computed for the number of histories in the lst
iteration. This condition can be easily met, since such a guess is not
highly accurate. A workable method of verifying that the source guess is of
this accuracy for practical size cores is to campare the eigenfunction
estimate at the end of the problem with the guess. Should this comparison
reveal that the guess was not within 2 P.E.'s, then a sequence of initial
iterations should be omitted until the source accuracy condition is met.
This procedure will be carried out in all subsequent testing of eigenfunc-
tion strategies.

b. Source Strategles Using Green's Function

An accumulated neutron production Green's function in an eigenfunction
Monte Carlo calculation, say an ¢, is defined as the estimate of the fission
neutron production rate in region j due to a unit fission source in region
J’. This matrix is the result of nomalizing an accumulative matrix formed
by adding to a corresponding matrix element the fission neutron production
as each neutron collision occurs. The normalization is performed by row;
the normalization factor for the j’ row being the reciprocal of the total
number of neutrons born in region j’. The index n indicates the total
number of iterations contributing to the accumulation. Thus if the Monte
Carlo eigenfunction calculation is a fair game, i.e. capable of converging

to the true transport theory solution, then at any stage of sych a calcula-
tion an estimate of the region integrated eigenfunction, say Pj, and an
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estimate of the eigenvalue, say \, mAY be made using the above Green's func-
tion. OFf course these estimates would be in addition to those already
available directly from the Monte Carlo calculation. The relative merits of
these two types of estimates will be discussed later.

Knowing &gg%, at the end of iteration n-1, we may obtain the estimated,

i.e. projected, eigenvector P; and the projected eigenvalue i by the analytic
power method. That is, we de%ine Pj as,

The above iterative process is carried out by starting with some eigenvector
guess and continuing until some convergence criterion for the eigenpvector is
met. Iet L be the total mumber of iterations so performed. Then 3 is the

projected eigenvector and

5:%% is the projected eigenvalue.

J

Using the representation of a general Monte Carlo eigenfunction
strategy from subsection (a), i.e.

=) oy Ky
J

we may hopefully define an accelerated strategy by setting the source for the
nth iteration as

sfj’:%g‘-

Of course, this could be done with some chosen regularity during the course
of the calculation rather than every iteration.

Use has been made of the projected eigenvalue, and the quantity L in con-
junction with the O5R Monte Carlo program. For example, G. W. Morrison,
J. T. Mihalczo, and D. C. Irving [2] use the quantity I to decide how many
initial Monte Carlo iterations do not have a sufficiently converged source in
order that they may be excluded from the eigenfunction accumlation. Of
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course, in this application, the eigenvector guess, by region j, would be
taken as the original source guess in the Monte Carlo calculation.,

The projected, i.e. matrix, eigenvalue has been used in connection with
O5R criticality calculations. This estimated eigenvalue is of interest since
it 1s a separate estimate from that obtainable directly fraom the Monte Carlo
calculation, i.e. the ratio of total neutron production to total source. Of
course these two estimates are not independent. Mihalezo, in his OSR calcu-
lations of delayed-critical assemblies [3], found that the matrix eigenvalue
was always within a standard deviation of that computed from the ratio of
total neutron production to total source. A similar conclusion was arrived
at by M. R. Mendelson in his Monte Carlo criticality calculations using the
KAPL version of O5R [4]. Mendelson found that if a reasonable source guess
was used, then the matrix eigenvalue does not appear 1o be any better than
that obtained from a ratio.

The idea of using a Green's function in Monte Carlo eigenfunction calcu-
lations to obtain better estimates of the eigenfunction and eigenvalue has
been frequently discussed by Monte Carlo workers. It appears to have
originated with K. W. Morton [5] and was further developed by E. L. Kaplan
[6]); however, it also appears that their work was purely theoretical. This
idea is especially appealing if one views it as follows: , Consider a reactor
broken up into a finite mmber of gross regions over which a Green's function
matrix is tabulated. In applying the analytic analog of the power method to
such a problem, the eigenfunction error would consist principally of the
first overtone component.

It intuitively seems that the matrix eigenfunction should enable rapid
removal of the lower overtone modes, since they would be easily sensed over
gross regions. After local nomalization, deviations from the eigenfunction
interior to a gross region would be more dependent on the higher overtones,
which die out rapidly. Thus it would seem that if the projected eigenfunc-
tion over gross regions at iteration n were used to determine the source for
iteration n+l, then a considerable gain in convergence rate would be obtained.
This differs from the approach used with O5R calculations, since knowledge of
the projected eigenfunction was not used to determine the source for the sub-
sequent iteration.

This idea has been more recently discussed by L. L. Carter and N. J.
McCormmick (7). Again, however, it was not actually tried in a Monte Carlo
calculation. Instead, they constructed what was believed to be a reasonable
analytic representation of the Monte Carlo procedure using diffusion theory.
In their analysis of convergence rates with this model, they considered the
straight power method, the use of the Green's function as in O5R, and the use
of the Green's function at iteration n to determine the source shape over
gross regions for iteration n+l. They found that the O5R approach gave
faster convergence than the power method and that the last approach above
gave much faster convergence than the power method. It should be noted that
the first part of their conclusion is in conflict with actual Monte Carlo
calculations as performed by Mihalczo [3] and Mendelson (L.

Because of the intuitive appeal of using the Green's Pfunction at itera-
tion n to determine source shape over gross regions for iteration n+l, the
technique was tried. The projected eigenfunction as described earlier was
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used to determine the source shape over gross regions in the power method.
Semi-systematic sampling of actual sites within & gross region was used to
accurately obtain the desired source strength by gross region. Also, the
projected eigenfunction was made with a variety of periods, that is every
iteration, every 2nd iteration, every 5th iteration, every 10th iteration.

In all cases that were tested, which covered & variety of core sizes, no
gain in eigenfunction convergence rates could be detected relative to the
straight power method. Since this Green's function procedure was more elab-
orate than the corresponding procedure used for O5R by Mihalczo and Mendelson,
then by inference we have verified their conclusion of no gain in convergence
rates with the simpler procedure. We must also conclude that the analytic
modeling of Monte Carloc by Carter and McCormick was much too crude to permit
reasonable estimates of gains in convergence rates using Green's functions.

Tn view of the complete failure of the Green's function approach, one
might ask what is wrong with the intuitive argument that was given to support
it. The best way to answer this is to state a proper view of the Green's
function approach which is as follows: Within the straight Monte Carlo analog
of the power method, the eigenfunction by gross region may be estimated by
either the total cumulated source or the total cumulated fission neut{ﬁn pro-
duction. Since in the power method, the neutron production for the n*" itera-
tion becames, within statistics resulting from the semi-systematic sampling,
the source for tﬁe n+15% iteration, then it follows that the total cumulated
source at the nth jteration will be very close in shape to the cumulated
fission neutron production. This will occur even for n small if a reasonable
source guess is made. The Green's function matrix elements are formed from
the same neutron histories that contribute to the cumulated neutron produc-
tion. The eigenvector from this matrix, by definition, is & source that will
yield a neutron production of the same shape. But based on the information
content of the matrix, i.e. all histories, this is already nearly the case
since the cumilated source is very close in shape to the cumulated neutron
production. Thus the elgenvector from the matrix will always be close to
that obtained by the power method after very few iterations. That is, the
Green's function approach cannot provide a worthwhile improvement is con-
vergence rate relative to the pover method in Monte Carlo.

c. Source Strategies Using Extrapolation Factors

The success of extrapolation factors in accelerating eigenfunction con-
vergence in analytic diffusion theory calculations is well known; this
suggests the application of such factors in Monte Carlo eigenfunction calcu-
lations.

First we will consider the use of a single linear extrapolation factor
in the reference strategy, that is, a straight analog of the analytic power
method. This will be done by obtaining the form of this factor for the
analytic power method and applying it directly in a series of Monte Carlo test
calculations. Making use of the neutron production Green's function, Gij, &S
in subsection (a), we may write the analytic power method for the fundamental
mode, using matrix notation and using subscripts for region indices, as

& TE = 6435 for the 4-15% 1teration,




where Xé is the multiplication factor for the 2™ iteration, i.e. ké = 'wf,
— s
and where bars denote normalization, e.g. mg =._Elz_ . When a single linear
. PN
i

extrapolation factor, w, is used in the power method to obtain the fundamental
mode eigenfunction, then the above procedure is altered as follows. After

obtaining Gij\!;g'l from the £-15Y iteration, we nommalize it by dividing by
the miltiplication factor, xé, and define

—£4-1
G, .V,
& =T ol 1323 _Ez-l),
IR
L-1
—4-1 Gy 4
=% (l-w) + o ijz .

2o

This wz is then used on the right hand side of the equation for the Eth
iteration, i.e.

L+l A+1 4

For the Monte Carlo eigenfunction calculation, a corresponding procedure

may be defined as follows. First write a general eigenfunction strategy as
in subsection (a), i.e.

n+l _ n n
¥ -2% K'(s3)-
J
After obtaining ?2 from the n-lSt iteration, we define

S? for the nth iteration as,
n . yh-1 : wn-1
s{ =¥ + o (V%)

The value of the extrapolation factor, w, in the analytic calculation is
defined by the following considerations. Let Yi be a general eigenfunction
of A\Yy = GiJWJ. When the extrapolation procedure is used, the corresponding
elgenfunction equation with eigenvalues u is,
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’

W = Yi(l-w) +w

4
where XO is the fundamental mode eigenvalue, i.e. XO = Lim KO'

4= o

We may rewrite this equation as

Cpel
‘..E_—-HD \y..:Gi\y.

AN 1 373

§ 0 ‘

That is, the eigenfunction is the same but the eigenvalues py have undergone a
linear transformation,

W= A+ 1-w.

Let )\, be the eigenvalue associated with the n®P moge eigenfunction of

xwi = Ginj. We know that 30 > Al > xa > eee xn > ..o > 0 and for large

n,Ap — 0 (this is known from physical considerations; not mathematical ones).
Since the fundamental mode eigenfunction error for w = 1 and large {4 is pro-

portional to (&l )E then we may make use of the linear transformation to

o
reduce the size of this quantity. If n can take on large values then the
optimum transformaticn occurs when By = - for n large, since in this case

we will have the mini~um value of Max (M, n=1,2,...). The value of w to

achieve this transformation is obtained as follows. For n large udilqn(w>»l).

A
Also we know that Yy = w.il + l-w. Thus the desired w is given by w-1 =
C

Ay _ 2 A
W=+ 1-w Or ® =2 ( —= is called the dominance retio).

A
o -1

o

The fundamental mode eigenfunction exrror for large £ in the analytic pro-

Mooy N
. : My |4 | X 1|4
cedure is now proportional to |— = (w-1)" = instead of |—| .
Ho M %
Ao

A series of test problems were carried out using the single linear ex-
trapolation factor. The indices i and j refer to different fuel composi-
tions. The values of w used Were set by the dominance ratio as described




above and the w was applied every iteration. The test problems demonstrated

that no gain in convergence rates could be obtained relative to the reference
strategy. This failure occurs because the difference required in the extrap-

olation, (?2 - ??"l), is dominated by statistical fluctuations; this happens

even when only & few gross regions (i.e. compositions) are used and with as
many as 2000 histories per iteration. In all tests, the source accuracy
conditions -were met as described in subsection (a).

In spite of the failure of the use of a single linear extrapolation
factor in the reference strategy, the gquestion still remains as to whether a
more elsborate extrapolation scheme could provide a gain in Monte Carlo eigen-
function convergence rates. One of the more elaborate extrapolation schemes
involves the use of multiple linear extrapolation factors, i.e. the Chebyshev
polynomial scheme such as that applied in diffusion theory calculations [8].
In this scheme the above extrapolation equation,

G -u—,f:-l 1
4 _ gh-1 13°3 341
\yi - \I'i + w ———r—— - \yi
»
is replaced by,
—AL-1
G, .Y.
= 41 A5 Gt el ohe?
b Sl L e a1 *e (T -,

%

Here a, and 5z are functions of the iteration number £ and of the dominance
A

ratio .
L

The expressions for o, and B, are

p )/

; £_>_2:

o, = b cosh [£-1)v] ] , B, = cosh [4-2)vy]
Al ) cosh [ 4y] cosh [ 4y
ol

where y = cosh'l 2 -11.

%
Ao

Thus, if repeated applications of Chebyshev polynomials of degree one are

made then the scheme is identical to the previous one with a single extrapo-

lation factor. 1In general applicatlons o, and 8, would approach values given
by
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Lim o, =-——£——— , Idm 8, = 1. It is now clear that if the use of
L= o [)\1“ f= ©
% |

the single extrapolation factor fails because of statistical fluctuations in
the difference

¢, 347t
e P A ot I
2 1

e

then the Chebyshev polynomial approach must fail also (it will fail all the
more because oy > W) .

In rejecting both of the above extrapolation schemes for Monte Carlo cal-
culations, we have rejected successful schemes for analytic calculations.
One still might raise the question as to whether an extrapolation scheme could
be devised for Monte Carlo that could overcome the difficulties caused by
statistical fluctuations. In attempting to answer this question, it is con-
venient to use some concepts from information theory. First, however, let us
recall that the Chebyshev polynomial scheme iriginated b% asking the follow-
ing question: 1Is it possible when forming ¢~ for the Lt iteration to take
as the value of ¢* a linear combination of wz and all previous {'s and there-
by accelerate convergence? That is, if we write

4
z .
v o= }Jaznmn, then can we choose constants 840 independent of source

n=0

guess, such that this @z is closer to the fundamental mode eigenfunction?
The answer is yes, and although the a;,, are not obtained explicitly, the re-
sulting procedure is the three-term Chebyshev polynomial extrapolation de=-
seribed above.

There is an analogous guestion we may ask when considering a Monte Carlo
eigenfunction procedure, and as stated earlier it can be developed using some
notation from information theory. Iet the eigenfunction estimate from the
zth iterat%on be written as, mz = Sz + Nz, where st represents & wanted signal
from the £ h jteration and N4 is a random nzise. Consider now a prediction of
the eigenfunction at iteration £ + n, say 84 yritten as a linear combina-
tion of %, m=l,...,%. That is:

L
§£+n = Z})’n‘hl-m+l’

m=1

where the constants h, are to be chosen such that.§£+n is closer in some
sense to the fundamental mode eigenfunction. Here the are called a linear
filter. The problem of finding an optimum linear filter has been considered
by N. Wiener [9]. In particular, he solves for h, which will minimize




B {[S£+n - §Z+n]2 } ,

vwhere E denotes expected value. What is required then, is an extension of
the linear Pilter approach which will have the property that if the noise
approaches zero (i.e. mmber of histories per iteration becomes large), then
the 's become similar to those that are obtained from the Chebyshev poly-
nomial approach. If the signal is constant (}.e. a fixed source problem),
then clearly minimum variance will oceyr fgr S4*n if the hy's are propor-
tional to the mumber of histories in ¢ 2%,

Initial iterations, with on the order of 500 histories each, will be
closer to the latter case than to the former. That is, the initial itera-
tions will be more like constant signal with random noise than like variable
signal with zero noise. But the reference strategy already weighs iteration
results by the number of histories per iteration. Of course, the noise to
signal ratio does diminish with increasing iteration number because of the
increasing number of histories per iteration.

If the above extension of linear filter theory were obtained, its use
might not result in large gains in Monte Carlo eigenfunction convergence

rates; nevertheless this approach has some promise [10], but is outside the
scope of this study.

d. Source Strategies Using Importance Sampling

Importance sampling offers a general means of reducing the Monte Carlo
uncertainty in a specified neutron reaction rate. For example, if an
approximate solution of the adjoint transport equation is known, where the
adjoint source is the space-energy dependent cross section for the desired
reaction rate, then one may alter the frequency distribution functions in the
normal Monte Carlo process (and introduce weights to retain a fair geme) in
such a way that the standard deviation for the desired reaction rate is de-
creased per history. As the approximate adjoint solution approaches the true
adjoint solution, this standard deviation per history approaches zero; if
the approximate solution becomes too crude, the standard deviation can be-
come larger than that from a normal Monte Carlo calculation.

In addition to the difficulty of obtaining a sufficiently accurate
approximate solution of the adjoint transport equation, the importance
sampling approach described above has another serious drawback. Namely, one
may choose only one neutron reaction rate per calculation to be obtained with
small standard deviation. In general, importance sampling may be viewed as
a process where the reduction of variance for a reaction of interest is ob-
tained at the cost of increasing the variance for other reactions. Thus,
such a process would not be generally acceptable when attempting to obtain
the eigenfunction shape by Monte Carlo.

However, one may still raise the question as to whether there are ime-
portance sampling techniques that could significantly improve the definition
of the overall eigenfunction shape by reducing the ratio of the source shape
uncertainty to the statistical uncertainty and by reducing the total
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uncertainty. A definitive answer to this question is outside the scope of
this study, but the answer is conjectured to be no. For example, consider

the following limited form of importance sampling, a form that may be called
"source" importance sampling. Start with the observation that neutrons from
the high energy part of the fission spectrum are more important in determining
overall eigenfunction shape than those from the low energy part. Thus,

source importance sampling that would start more neutrons at high energy

(with adjusted weights to retain the proper source spectrum) could result in
some reduction of source shape uncertainty, but would increase statistical
uncertainty because of the non-constant starting weights. Intuitively, wve

feel that such a process could not result in a significant reduction of total
ejgenfunction uncertainty.

More generally, several specialized forms of importance sampling sare
frequently available for fixed source problems that could be used in eigen-
function celculations. These are available in splitting and Russian
Roulette. Such forms of importance sampling have not been used in test
calculations because again we intuitively believed that significant reduc-
tions in total eigenfunction uncertainty would not occur« An exception,
which is used routinely in eigenfunction calculation, is Russian Roulette in
the thermal group in large water reflectors.

3. A Reference Strategy

In the preceding subsections, we have discussed several possible source
strategies including a reference strategy, ie. the straight analog of the
analytic power method with an increasing number of histories per iteration.
The strategies discussed include: 1) those using a Green's function approach,
2) those using extrapolation factors, and 3) those using importance sampling.
The test calculations performed in this study did not reveal any strategy
superior to a reference strategy, which will be described. Also from this
study, the approach that has been deemed most likely to offer some improve-
ment in Monte Carlo eigenfunction convergence rates relative to the reference
strategy is the extension of linear filter theory discussed in subsection
(c); but, as stated earlier, this is beyond the scope of this work.

Some important operational detalls of the reference strategy are as
follows; Because all neutrons in a given iteration are processed through an
energy group before proceeding to the next energy group, then the calcula-
tional time per history becomes shorter if the problem has fewer iterations
with more histories per iteration. On the other hand, it is desirable in an
eigenfunction calculation to have as wmany iterations as possible. Thus, re-
ducing the number of histories as far as possible without losing too much
machine efficiency in initial iterations led the authors to adopt 500 as the
minimum number of histories per iteration. Because of correlated sampling,
it is desirable that all eigenfunctim problems have the same number of
histories per iteration.

The reference strategy uses an increase of 10 histories per iteration in
successive iterations. Thus in the Nth iteration, the number of histories
per iteration would be 500 + 10 N and the total number of histories through
the NI jteration would be SOON + SN(N+1).
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The rate of increase of 10 histories per iteration was arrived at as
follows: From the work of Lieberoth [11], it is known that the eigenfunction
error that results from an infinite number of power iterations, each with a

constant number of histories per iteration, decreases as = . Thus, the de-
N

sire to keep the total mumber of iterations as large as possible for a fixed
total number of histories, and at the same time to insure & reasonable re-
moval rate for the eigenfunction error that would result from a fixed number
of histories, led the authors to adopt the rate increase of 10 histories per
iteration. From the discussion of this error removal in Ref. [1], it is
evident that this error will tend to cause the approach to the eigenfunction
to be on the side in which there is some power shift toward regions of low ke,
and that the eigenvalue will tend to converge from below rather than above.
However, calculations for realistic types of reactors have not shown such s
discernible trend. This suggests, for realistic calculations, that in general
such a component of the source shape uncertainty is smell relative to the
statistical uncertainty.

There 1s orie final important operational detail connected with the eigen-
function strategy adopted; the procedure to be used to obtain an estimate of
the total eigenfunction uncertainty. The remainder of this report will deal
with arriving at such & procedurs.

ITI. EIGENFUNCTION UNCERTAINY

This section presents the arguments that led to a formuls for total
elgenfunction uncertainty for the strategy adopted. As in previous sections,
it will again be convenient to consider the overall strategy as composed of
the same two parts. That is, the first part is the totality of the Monte
Carlo procedures that would be involved in a fixed source calculation; the
uncertainties in this part are called statistical. The second part is the
eigenfunction source strategy that connects successive generations; the un-
certainties in this part are called source shape uncertainties. It is
obvious that in any eigenfunction calculation, the uncertainties from these
two parts are connected. However, this breakdown is convenient here simply
because uncertainties that arise from fixed source calculations are very
easily obtained and are an integral part of all fixed source Monte Carlo
calculations. Some insights as to the nature of the source shape uncertain-
ties can be obtained by considering some properties of the statistical un-
certainties. This is done in subsection (a). Subsection (b) formalizes these
observations through use of serial correlation coefficients and arrives at a
formula for total elgenfunction uncertainty by a modification of an approach
proposed by D. B. MacMillan. Because the overall formula for eigenfunction
unicertainty is partly empirical, subsection (c¢) then gives some results of
its verification by numerical testing.

a. Some Properties of the Statistical Uncertainties

There are two commonly used methods in Monte Carlo to provide estimates
of statistical uncertainties. The first is a variance calculation based on
a history by history basis; i.e. each experiment is taken to be one history.
This estimate is an accurate estimate of the purely statistical uncertainty,
since it ylelds the identical result that one would obtain from a



nypotheticsl fixed source problem where the totsl sampling from the fixed
source yields the total set of source sites from all iteratioms in the
eigenfunction calculatione.

The second estimate of statistical uncertainty thet is commonly used
apoesrs superficially to be & correct combination of source shape uncertainty
ané statistical uncertainty. This estimate is thet obtained from & veriance
calculation on an iterstion by iteration basis. This estimste eppears to in-
clude the source shape uncertainty, because within the power method the itera-
tion source change is by iteration. However, test calculations which compare
these two estimastes of uncertainty have shown that their magnitudes are
ressonably close to each other. Since the first estimste iec without question
the purely statistical uncertainty, then we must consider the second estimate
the same uncertainty as the first.

The above observations suggest the following srgument. Since the un-
certainty calculation on an iteration by iteration basis does sense the
changing source shape, this uncertainty could be of the same magnitude as the
statistical uncertainty only if there exists a correlation among iteration
scurce shapes such that there is almost a cancellation of the source shape
component of uncertainty. But the existence of such & correlation suggests
thet asymptotically (i.e. after a large number of iterations) the source
shape uncertainty is some constant times the statistical uncertainty. Stated
differently, after a large number of iterations we can visualize that the
sampling of possible source shapes lags behind the sampling of possible
neutron production shapes based on these source shapes, and that the ratio of
saxpling rates tends to some constant.

0f course, the above argument, which suggests that the ratio of source
shape and statistical uncertainties tends to a constant for a large number
of iterations, is of little value unless the magnitude of this constant can
he estimated. This ratio strongly depends on the type of quantity being
edited in the Monte Carlo calculetion; for example, let us consider the
region dependence of the ratio for neutron producticn rates. If the region
size starts to approach the whole reactor, then because the neutron produc-
tion shape error will most likely consist of the lower overtones which will
roughly integrate to zero, the ratic of source shape and statistical un-
certeinty decreases. Stated differently, there are negative correlations
gmong neutron production rates over some large subregicns of a reactor. At
the cther extreme of a region size becoming smell, it is obvious that again
the ratio of source shape and statistical uncertainties decresses. Thus, one
concludes that the ratio becomes a maximm for some intermediste sized region.

5
~

An early approach taken by the authors for cbtaining the asymplotic
source shape uncertainty was to obtain a maximm ratic of source shape and
statistical uncertainties from test calculations and use this constant
wniversally [127. Thus, in practice we computed the usual statistical un-
certainty, and applied a constant multiplicative factor to obitain the source
shape uncertainty. When continuing calculations revealed that this factor
was greater than 10 for some edit quantities, this approach was dropped since
it would force unreasonable conservatism in the uncertsinties for most edit
gquantities.




b, Eigenfunction Uncertasinty Using Serial Correlstion

The conjecture of the previous subsection, that in the asymptotic range
the source shape uncertainty is some constant times the statistical uncer-
tainty, may be formalized as follows: Let x, be an estimate of some neutron
reaction rate from iterstion n in an eigenfunction calculation. Accumilating
iteration results for N iterations yields the Monte Carlo estimate of this
reaction rate, say Ry, Where

N\
By = E,anxn’

n=1l
Ny
where a8, =N , and Nn is the number of neutron histories in iternaticn n.
L%
n=l
As discussed in Section II, the eigenfunction strategy insures that PLim Ry

N~
is the transport theory value of the reactlon rate. Following a well-known
derivation using expected value notation, we may write

o?(Ry) = E [Ry - E(Ry)1Z.

Let y, = E(x_), then we aave

02(RN) E fal(xl-ul) * . aN(xN-pN)-!E

N

}J(ag E(xn-un)2 te E:anam E[:(xn-“n)(xm'“m)]'
n=1 n<m

But 02(xn) = E(Xn‘Lh)e; and the correlation coefficient between x, and x ,
S8Y s is defined by,

P ©(%5) 0 (£ ) =Bl (xq-un) (xgmpm) 1,
Thus we may write,

N

o (By) =) |en (1) + 2 Janem pamo(xn)oCum) | -
n=1 n<m

Let og(RN) be the purely statistical component of variance for Ry, after N
iterations; then in the asymptotic range we must have
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02(x,) = —— o2 .
(xp) an US(RN)

We may write

02(RN)=°§(RN)[1*2§ 2\/}? \/%Tonm].
n=l n< m

Now if the source shape uncertainty 1s some constant times the statistical
uncertainty, then this only implies that

N
PlLim f E; E; Van Vag Pnm ] exists. However, if the

N~ o L
n=l n€ m

1l
mmber of histories per iteration were a constant, that is, a, = 8y =

then it is also obvious that in the asymptotic range the correlation co-
efficient, pppm, is a function only of the difference in n and m. The expec-
tation that this should be true even when the number of histories per
iteration increases with iteration mmber has been verified by test calcula-
tions. Thus, if we set k =.n-m, then we may write

where p is called the serial correlation coefficient of lag k.

The expression for oe(RN) now becomes

N-1 ;N-k
2 _ - '
o?(Ry) = E(Ry) |1 + 2 2 2 Von Voo Pk ]
k=1 ‘n=1
Let us define
N-1 ;N-k
A=)l L
\/én \[an-’-k Pk

k=1 \ n=1

We may note in passing, that if we assume that the purely statistical un-
certainty and source shape uncertainty are independent, then \/ 2A os(RN)
is the magnitude of the source shape uncertainty.

Attempts by the authors to use the above expression for oQ(RN) in test
eigenfunction calculations did not prove to be workable. For example, for
some edit quantities the series that defines A was alowly converging, and the
Pk involved appeared erratic for larger values of k even after a few hundred
iterations. Also, there are practical difficulties in this approach because
of the machine storage requirements in obtaining a large number of serial
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correlation coefficients for every edit quantity.

A workable slternstive to this approach was proposed by D. B. MacMillan
[13]. He proposed that only the serial correlation coefficient of lag 1 be
calculated explicitly and that those of higher labs be inferred. He argues
on a physicsl basis that an upper bound on the value of Py maY be obtained by

writing

b

_?\_]__)k-l

"k”l(xo

A
vhere Tl is the dominance ratio.
G
Test calculations by MacMillan as well as subsequent tests by the suthors
have shown that this argument is sound. Thus with MacMillan's approach we
have upper estimates for all px once we have estimated py &nd supplied a
value of M. We will now consider Iim A with values of px Obtained from
N- o
MacMillan's conjecture. Because of the fixed increase in number of histories
per iteration, we may write

N-k
Lim Vay Vapgy =1

N=

ne=l

for any value of k. Thus we have

Lim A i = g kL Py

A
k=1 k=1 1 2

MacMillan'’s formula for total eigenfunction uncertainty in reaction rate Ry
becames

olfy) = og(Ry) /7T Top .

R

A modification of this approach for estimating o(Ry) was developed by the
authors for two reasons. First, the above approach requires supplying the
dominance ratio, which is not always easy to obtain. Second, test calcula-
tions reveal that the estimated o(RN) is conservative if p, is small in a
core with large M. . Recall from the discussion in subssction (a) that we

can expect, for a core with a given daminance ratio, there will be reaction
rates for which the ratio of source shape and statistical uncertainties will
be a maximum and hence py ¥ill be & maximm. Further, this maximm value of
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A
P will increase as -1 increases. The authors concluded by test calculations

that MacMillan's formuls is not overly conservative in its estimate of c(RN)
for reaction rates for which py is & maximum. These same test calculations
have revealed that for reaction rates for which p; is much less than its
maximum value, the values of py decline with increasing k more like p%'l than
)\l)k-l

- . That is,

Ao

like

k-1
o = p1(pq)  ~ (for small p,).

This would lead to

f1
Lim A =~ (for small o).
N- 1l - pl

A
But since the maximum value of pq depends on -x-]:, we may hopefully scale this
0

expression such that we obtain a reasonable value of Lim A for the maximm
N— o
value of Py This scale factor was empirically determined to be about 5.
Thus we have
501
Lim A &~ —= (for meximum pl).
N—-) o l" pl

We may now linearly connect the values of Lim A for maximm Py and for small

N-

at the values Py = 1l and Py = 0.2 by writing

2
5
LimAﬁ_ﬁ-—o
l-p1

Py

This gives an alternate formula for o(Ry), i.e.

2
10
o(Ry) = o (By) V1 +—% .

1-pq

As & result of test calculations which will be described in the next sub-
section, this formula for o(Ry) was adopted.

¢. Numerical Testing of Formula for Total Eigenfunction Uncertainty

The formula for total eigenfunction uncertainty in a reaction rate Ry
is given in the previous subsection as

lopl
Ry) = o.(R +
o(Fy) = og(Ry) |/:L ool
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vhere oS(RN) 1s the purely statistical standard deviation, and p; is the

serial correlation coefficient of lag 1. Some details of the calculational
steps are as follows: If the estimate of the reaction rate Ry is given by

N
RN = Eanxn,

n=1l

then the purely statistical variance og(R_N) is given by

N
og(RN) =1%I zan(xn'RN)2'

. n=1
Since for convenience we desire to use the above Ry and cg(RN) in ob-

taining p;, we may introduce the number of histories per iteration, Ny, as
weights in the definition of pj; as follows:

N
l
e S T - )
s\'N n=p
N N
vhere ar;-l =3 n-1 s ar;' =_-Nn———
ZNn_l ZNn
n=2 n=2
N
Ry = za:'l.-lxn-l’
n=2
N
Rﬁ' = Zaé' X .

n=2

By making use of the approximations

1

N
r z F
Ry }: Vagy Ve, Xnaf Ty
n=2' 7 77
z van-l v &n

n=2




}

N
~ < 1
and Ry’ = z Vep_p VelT xy % s
Kl A4
Vén-l Van

n=2

n=2

we obtain the expression used, that is

1

O
]
1

N N
‘/ 7 ’ 117 f'i— r-T'T_
EL ®n-1 Ya, *n-1®*n ] - RN RN E: an-l &
n=2

2
Ncs(RN) n=p

The eigenfunction test calculations may be described as follows: The
cross sections and fixed source procedures are such that a zero variance re-
sults in an infinite medium calculation. In particular, the cross sections
are energy independent and purely absorbing. The Monte Carlo eigenfunction
calculations were performed for a series of eight slab cores with dominance
ratios ranging from 0.36 to 0.995. Although the dominance ratio,

A
Yo
for each of the slab cores in the following manner: The neutron flux distribu-

tion, say ¢(x), due to a plane unit source at x=0 in an infinite_ purely

absorbing medium with constant cross section is given by o(x) =.% El(lel).
1

322

Using well known results from two-group diffusion theory, we may write

, is not required in the uncertainty formula adopted, it is estimated

The neutron flux age, J, is then

th 1l 2 '

the n""! wode eigenvalue as proportional to where B_ 1s the geometric
€ prop 1+J82 €€ %n €

buckling for the n®! mode eigenfunctions. For a slab reactor, Bg = C%—)g

and Bi = GEE—), where H is the effective slab width, given as the actual slab

width plus tw%ce the extrspolation distance. The extrapolation distance may
be taken aS-§§- . Thus the dominance ratio may be estimated as

M
Y

1T 2
i 1 +,§(H2 )

L2
1+ S(HZ )

For each slab core calculated, 17 different region edits of the neutron
production rate were obtained and compared to accurate production rates. The
17 regions are: 2 symmetrically placed slab regions of volume fraction 0.0l
each, 10 uniform slabs of volume fraction 0.1 each, 2 symmetrically placed

slab regions of volume fraction 0.3 each, 2 symmetrically placed slab regions
of volume fraction 0.3 each, 2 symmetrically placed slab regions of volume
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fraction 0.5 each, and the whole core. The accurate production rates were
obtained by averaging resultg in symmetrically placed regions after Loo
{terstions and a total of 10° histories. In all calculations, the source
guess accuracy requirement was met as Aiscussed in subsection (b) of Part II.

The eigenfunction uncertainties for the five different sizes of regions,
in each of the eight cores, are tabulated at multiples of 50 iterations up to
250 iterations in Table I. The eigenfunction uncertainties are tabulated
using naively the purely statistical standard deviation as well as using the
standard deviation obtained with the formula, The method of uncertainty tab-
ulation is by use of a figure of merit, f. For example, the figure of merit
for the regions of size 0.1 1s the number of the ten regions with a neutron
production rate error greater than one probable error, plus the number of the
ten regions with an error greater than two probable exrrors, etc. to an in-
finite sum. Thus, in this case the expected figure of merit, £, is 7.58.

A value much grester than this indicates that the uncertainty estimates are
too small, and & smaller value indicates & conservative estimate. Shown in
Table I is the expected figure of merit plus 2¢. An acceptable means of
estimating eigenfunction uncertaintie# is defined to be one with a figure
of merit less than this.

A .
Table I shows that for a very small core,-ik = .36, an acceptable estimate

of uncertainties is provided by the purely statistical standard deviation,

and that the formula gives only a slightly more conservative result. As the
cores become larger, we see that the purely statistical estimate of uncer-
tainty becomes, in general, unacceptable, whereas the formula gives acceptable
results. We may note that in the special case of the neutron production over
the whole core, i.e. the eigenvalue, the purely statistical standard devia-
tion for all cores 1s acceptable and that the formula gives essentially the
same standard deviation. For the case of the largest core, A = .995, the

unacceptable results Prom the formula when the number of iterfitions is 50 or
100 1s because the magnitude of the serial correlation coefficient, py, 1S
not reasonably estimated for a large core unless more than 100 iterations are

rformed. Although more Then 100 iterations appears to be necessary to
o%fEIn acceptable eigenfunction shape uncertainties, this is not required if
only an acceptable eigenvalue uncertainty is desired.

One final observation will be made concerning the approach of an estl-
mated Monte Carlo eigenfunction shape to the true eigenfunction shape. When
viewing an accumulation by jteration of a neutron reaction rate, one almost
naturally looks for an oscillation about the true reaction rate as the number
of iterations increases. Of course this tendency also exists when viewing a
#Ixed source calculation. The properties of accumulated results by ‘teration
in a fixed source calculation are those of the classical random walk problem.
W. Peller [147 points out that in such a problem, the most probable number
of times that the estimated reaction rate crosses the true reaction rate is
zero, and that zero times is more probable than one time, etc. Further, the
mean number of iterations between crossings approaches infinity as the number
of iterations increases.

These same properties exist in & somewhat more severe form in a Monte
Carlo eigenfunction calculation even though the number of histories increases
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with increasing iteration number. This is because of the positive correla-
tion between successive iteration reaction rates. Thus, if the neutron source

shape at one iteration tends to make a single iteration reaction rate too
high, then more Tikely than not the source shape of the next iteration will

tend to make the next single Iteration reaction rate too high. In contrast,
for a fixed source calculation, each single iteration result, assuming a
symmetrical frequency distribution function, is equally likely to be sbove or
below the true reaction rate. By analogy to the classical random walk prob-
lem, we conclude for the eigenfunction calculation that the mean number of
iterations between crossings of the estimated and true reaction rates
approaches infinity as the number of iterations increases.
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APPENDIX

As discussed in Section II, the strategy adopted is &an analog of the
analytic power method, with an increasing number of histories per iteratiom.
A question that naturally arises is whether neutron weights could be intro-
duced in an analog of the power method with a fixed number of histories per
jteration so as to make it a falr game. This appendix glves & procedure for
doing this and a proof that the result is a fair game. '

we know from Section II.a that the equation describing the analog of the
power method with an increasing number of histories per iteration, i.e.

- Z;G‘;J & (4

results in the analytic transport equation,

J

upon taking the P Lim as n= ©.

Suppose now we have a system that is supercritical and follow all
progeny such that the number of histories increases with iteration number
(continuation of the Markov process must be assured as discussed in Section
II.a. This process may be represented in a power method analog with a fixed
number of histories per iteration by the use of weights as follows: ILet
be the multiplication factor for the nPP iterstion, i.e. the total neutron
production divided by the total starting weight in the n'® iteration. Then
the supercritical process could be represented by having the weight for

n-1
iteration n, say W _ determined by W_ = 1, w = I k,. Suppose for the
n o) nooso i
moment there are no statistical fluctuations in the multiplication factor k ,
then asymptotically (n large) kp becomes & constant, say k. In this case

the weight wn will have an exponential increase, i.e., we may write wn+1 =

E? _ &P uhere g = 1n K. With such a weighting, the effective number of

histories contributing to any estimated reaction rate remains finite as n
increases and hence the process cannot be a fair game. This is easily seen by
observing that the effective number of histories contributing to a reaction
rate is proportional to the mean value of n for a fixed number of histories
per iteration; that is the mean value of n, say n, over previous iterations
up to iteration N. But,
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= [ o(N-n) ( = 1 -o/N
n ¢ N-n)dn = [1 - e™T(oN+1)7,
i *

and

Lim n =
n=-3;
0/2 ’

Nt o

hence the effective mmber of histories contributing to a reaction rate is
finite as N~ o (of course the same occurs in a suberitical reactor).

If we did not have statistical fluctuations in the asymptotic multi-
plication factor k, then a scaling of v (neutrons per fission) such that
X = 1 and hence ¢ = O will produce the basic requirement that the effective
number of histories contributing to a reaction rate approaches « as N~ «.
In this case ‘the weight W, would be,

n-1l
ar ki
i=0
W o=,
n n-1
(%)

Because of the statistical fluctuations in ki, the estimated multiplication
factor for iteration i, caused by a finite mumber of histories in the Monte
Carlo calculation, a reactor that is just critical as defined by the analytic
transport equation is suberitical in reality and the neutron density will
approach zero as the iterations approach (this also occurs in & real
reactor). This may be easily seen as follows: A reactor that is just crit-

{cal mathematically (i.e. continuous neutron density in the linear transport
equation) will meet the condition:

1 N
PLim — = 1.
i=1

We may write ky = 1 - Ai where Ay are the statistical fluctuations and
asssume without loss of generality

NI
ZAi = 0.
1=1

The amplitude of the spatially integrated neutron density after N iterations
is then proportional to
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We may write

N N ‘N \ N
1 (l-Ai) =1 - EJAi + 0 E;Ai + 4, Ein +...+O(A3).
i=3

-=l
* i=1 120
Making use of
N N
=3

1=2 is

we may write
N
N 1 2 3
By (l-Ai) =1 -= [ E_A. ] + 0(8”) < 1.
. 2 71
i=1 {21

Hence it is clear that the expected neutron density amplitude will approach
zero as N— o. The degree of supercriticality required to keep the expected
neutron density amplitude at a constant for a large number of generations,
N, in a reactor with finite neutron density, is obtained by scaling v by

1

¥\
ok,
1=1

Thus the desired neutron weight at iteration n in a problem with a total of N
iterations is given by

n-1 1
- i nere K ( N ¥
w N = ) where = -n- .
" -1 \1=1

(This weighting was first suggested by D. B. MacMillan, private communica-
tion).

The proof that the use of the above weight, W _(N), in the Monte Carlo
process produces a fair game may be summarized as ?ollows: Using the
definitions of Section II.a, we may write the Monte Carlo process as

n+l _ n n n
ot ;G” W R,

Suming both sides of this equation over n, we have
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N i
- .
; ) G5 Ha (MK .
1 T el n=1 1V s
L% T ) N T L (K (43)
=] J ’ =1
’ ) V(K" (43) "
L. ‘n=1 -

The quantity in the parenthesis sbove is simply a weighted average of the
estimated neutron production in elementary volume i due to a neutron born in
elementary volume j; hence, its PLim as N— « is the analytic neutron pro-
duction Green's function G:.. All that is additionally required to show
that the above equation reéﬂces to the analytic transport equation,

N
P - 1 ¥\ n#l
=y L0ty vhere by STMR W LY
n=

is to show that

N
n 11 Con+l
wn(N)Kn (“’3) = PLim 3 § Z% ’

~=

1
PLim N

N~

=]
L]
'—l
o]
U]
’—l

where
N
X n+l
PLim 'ﬁ “Ji
N~ n=1l
A= L
N
X 1
Fan § ) wy(n)
o & )

The desired result is immediately obtained by recognizing that the product,
Wy(N) times the sampling operator K?, defines simply a Russian Roulette
operator.

The weights W_(N) and a fixed number of histories per iteration were
not used, since the weight for the nth jteration continually changes as the
total number of iterations increases, thereby destroying the ability to use
accumulative counters for internal editing of reaction rates (this diffi-
culty would not exist for post editing).



TABLE I

Slab Core Eigenfuncticn Unce: tainties
<o

Values of f, for-i-\; = .36
e
Region No. of Iterstions
Dats 50 100 56 T 20C 250
Pract. ; ! _ _
No. | Size |Stat.|ForStat.|For|Stat. |For|Stat.|For|Stat. [For] fy |fp+2c
2| .01 1 1)1 11z =B 3] 1 T 11.51 | 4.b4h
10 | .1 10 9 | ¢ & 12 12, &5 5 11C 10 |7.58 [1k4.12
21 .3 1 e el 310 G| 1 113.51 | L4.hi
21 .5 0 0Oie {213 3001 11 L {1.51 | 4.4k
1/]1.0 o} 0 1 101 1101 11 1| .76 2.82
|
|
As
Values of f for — = .68
e
Region No. of Iterations
Data 50 100 150 200 250
Fract. _
No. | Size |Stat. |For!Stat. |For|Stat. |For|Stat | For|Stat. |For| fin | fy+20
2| .01 1 1]0 0| 2 21 2 21 3 3 11.51 | L.44
10| .1 10 L 110 € |16 9 |15 g 113 7 17.58 | 14.12
21 .3 2 ol 2 ol &L 11 5 el 5 2 |1.51 ] b4.h4k
21| .5 1 o} o0 0|1 ol 1 0 5 2 11.51 | 4.hb
1 (1.0 1 1] 1 116 01 C O © o .76 | 2.82
o
Values of f for —= = .81
A
C
Region No. of Iterations
Date 50 100 150 200 250
Fract.
No. |_Size |Stat. |For|Stat |For|Stat. |ForjStat | For| Stat.|For|fm | Fp*S0
r 2| .01 2 010 c |z 10 0! 1 L {1.51 | h.'4h
j10 | .1 13 6 |18 T 117 6113 6 {17 8 [7.58 {1412
L 2] .3 3 O | & 1] 6 1103 1) 6 1)1.50 | b.uk
2| .5 0 c ! 6 C |1 GG 0! 1 O |1i.50 | L.uk
11/1.0 0 0|1 il 21 11 1| .76 2.82




TABLE I - (Cont'd)
A
Values oifm for x5 = ,92
Region No. of Tterations
Data 50 100 1 200 250
Fract. _ _
No. | Size |Stat. [For|Stat. For Stat.| For |Stat. For|Stat.|For | fy |fp*20
2| .01 4 3 7 6 L 3| 4 L 5 L {21.51] L.uh
10 | .1 16 6|28 |13 |27 |11 |38 |14 | 33 |10 | 7.58|1k.12
2| .3 12 3| 19 6 | 21 6 | 25 71 10 1 |1.51] 4.h4
2 1.5 9 2| 16 |11 2 | 23 h 8 0 | 1.51 4.k
1 [1.0 o] 0 1 0 1 1 1 1 1l 1 .76 2.82
Val £ £ T M 96
alues O m or -%- = ,
Region No. of Iterations
Data 50 100 150 200 250
Fract. B _
No. | Size |Stat. For|Stat.|For |Stat.|For |Stat.|For|Stat.| For |fm m+2co
2| .01 2 2 2 2 1 1 3 3 L 3 | 1.5 L4.hk
10 | .1 36 6| 43 9 | |8 | 9| 36 9 | 7.58 14.12
21| .3 12 1| 13 1 4 o] 1 0 5 0 | 1.51 L.k
2| .5 18 o| 28 2 118 1|19 2 | 26 2 | 1.51 4.4k
1 |1.0 1 1 1 1 0 o] o] 0 1 1 .74 2.82
M
Values of £, for = = .98
Ao
Region No. of Iterations
Data 50 100 150 200 250
Fract. . L _
Eg_ Size |Stat.|For| Stat.|For [Stat.|For Stat. [For|Stat.| For|fj fm+20
2 .01 1 1 2 2 3 2 3 2 3 2 11.51| 4.4k
10 .1 61 16| 53 |12 | 45 8 | 26 6| o |10 [7.58] 14.22
2 .3 33 71 19 2 |14 1 {212 1118 2 {1.51] L4.uk4
2 .5 36 (13| 24 4 |12 o] 2 o} 0 0 [1.51] h.l4h
1] 1.0 1 1 1 1 o] o] 0 0 o] 0] .T6| 2.82
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Gelhard: You say that iz ome case rum ar ¥malls Atomic FPower Laiborafory
(KABL) it was chserved thar there was & temth of a percemt bize in the elgem-

people at KAPL. Their approsach was simply to go to approsimerely 2000 his—
tories per iterstiom en the sssunptiomw that the bias would ther: drop te O.025%.

Celbard: Did they have other irformatien abowt other problems? For
exanple, was this @.1% particulsrly large or was it typiecal of the preblems

Gast: Thetr comclusion was that it could be typical.

Fazlos: 1 was there at the time. They were to compute k's te about
.17 amd they wanted thelr erreors td be small with that.

Kzlog: I hawe a grest mamy CONMETES, becamse I think that this was a
very sti atimg, careful, amd interestimg paper. First of all, omce you hawe
decided for various reasons you must meke your simrlated system super—
critteal, why insist om amy restrictions om mmbrer of histories im succes—
sive gemeratioms, or om the mmber of Fiestoms? Woy not simply let these mum—
bers vary freely amt prepare yourself ta comtend with the mild programmimg

andlimg lists of variable lemgtrh. The lists will probably go out
m discs anyway, and you totally remowe the bias. The biss associated with
mcmmmgmmrmmwmiﬁmﬂm&plmhlm, and the game is fairer still. It
stamdimg amd amzlyzimg errors. As L remarked to you before, a scheme for
amalynmgerrmdm&tlfmxiseﬂns to wore im sttustioms of this kind is to de
the following. Assume that [ am going to do 120 iteratiems, of which the
first twemty are to be igmored. I them divide the rematming 100 imto
of 20, and I calculate a mean for each gromp. This, of course, is a biased
mezm, amd hias is different from the bias of the grama ensemble MEAD.
Them I compute the standard deviatiom of the individual means, estimafe serial
correlatiom coefficiemts between each group, and infer s statistical error for
the whole probhlem. It is a razther simple strategy.

Galbard: Let me comment om ome of the suggestioms that ¥azlas was making.
The suggestion seems to be essentially that, when you average over generations,
you do this without nermalizing the eigemvectors per generation. You them emd
up with am arbitrarily nermalized eigemvector which yow may nermalize, of
course, after you are finished. Suppose that is what vou dc. New that you
have normalized you will introduce a bias again, becamse the bias comes from
the Fluctuation in the denominator wiem you normalize. That is the conclusion
that comes out of the analysis that we are goimg to tzlk abeut in our mext
paper. The bias comes from nonlinear terms in the iteration equations, the
nonlinear terms being introduced by the denominator in the normalization pro-
cess. Sao, if the bias is to be decreased by the process that you described,
the amplitude of the fluctuations in the denominator must be decreased. New,
you might expect that they would be decreased because the denominator DOW
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comes, not from one generation, but from a sum over all of the generations
which are being averaged. In other words, if you take as your estimate of the
eigenfunction a sum over, let us say 100 generations, then to normalize, you
divide by the volume integral of this sum. You might expect that the denomina-
tor, being a mean over many generations, might not fluctuate much. Mal, do

you disagree?

Kaloe: 1 disagree with the whole argument. There is no fundamental nor-
malization here for the eigenfunction anyway.

Gelbard: That's the real question. What I am asserting is that when you
go to use the eigenvector, you always find yourself forced to normalize it in
some way. You may want to estimate ratios between the eigenvector at ome
point and another, and when you find these ratios, you are adopting a particu-
lar normalization procedure. The simplest normalization to adopt, in princi-
ple, is the one where you normalize the final average to one.

Kalos: But in estimating ratios my procedure introduces no bias.

Gelbard: That is where I disagree. I disagree because any estimate you
make eventually is based on a normalized eigenvector.

Kalos: But the normalization drops out.

Gelbard: Why does it drop out? You divide the vector you are getting by
an integral of that vector. ‘

Kalos: Suppose 1 decided to divide the eigenvector by 73.

Gelbard: 1If you always divided it by 73 you would again have an unnor-
malized eigenfunction. '

Kalos: Right!

Gelbard: And you could not compare the value at one point with the value
at another point. To make a comparison of values at one point with values at
another point, you always must, in one way or another, introduce a normaliza-
tion.

Kalos: 1 am afraid I don't understand that remark at all.

Gelbard: What I am saying is that you cannot get away from normalizing
the eigenvector that comes out of a Monte Carlo code calculation. I am say-
ing that the value of the eigenvector at a point, unnormalized, is not useable,
is not what you are after. You are after a value at a point normalized in some
way, or else the value at one point divided by the value at another point.

Kalos: Well, if it is the value at one point divided by value at another
point, then obviously the normalization is irrelevant.

Gelbard: Well, I would say that the normalization then is the normaliza-
tion to the value at the point at which you are getting the ratio. But another
way of doing the same thing, of comparing different eigenvectors, or eigen-
vectors at different points, is to normalize the eigenvector so that its
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integral is one. This is the most convenient way of normalizing; and once you
normalize in this way, you are taking the eigenfunction and dividing it by a
fluctuating denominator, and you have a bias again. So 1l think that the elimi-
nation of the bias in this way, although it sounds attractive at first glance,
is really an illusion. I think that you must normalize the eigenvector, even-
tually, when you use it for any practical purpose, and when you do, you will
again introduce a bias. The question is whether you have diminished the bias
by normalizing in this modified way.

Coveyou: Are you talking about taking the value of the eigenfunction at
two different points and comparing them?

Gelbard: 1 say that that is what you usually do when you compute the
eigenvector.

Cachwell: Isn't it clear then that, when you take the ratio, normaliza-
tion cancels out?

Kalos: Therefore, the bias that comes from the denominator is totally

irrelevant, and if you bring it into the analysis of variance you are making
a mistake?

Gelbard: Let me then define an alternative way of normalizing. I will
take one point in the problem and normalize to ome. That is another way of
normalizing. I also say that it is a biased way of ‘normaiizing.

Kaloe: All ways of normalizing are biased.

Gelbard: So, I am saying that you cannot get away from a normalization
procedure of one kind or another and when you introduce a normalization proce-
dure, whether you like it or not, you will come back with a bias.

Kalos: It is true that the ratio of the two estimates of the eigenfunc-
tion, being a ratio, is very likely to be a biased quantity. But, one must
deal with the bias in that ratio directly, and in fact the bias introduced by
another normalization factor, is totally irrelvant.

Gelbard: What I am saying is that some sort of normalization of the

eigenvector is inescapable when you go to use OT exhibit your results; and

atever normalization you use will introduce bias. Every time that you in-

sduce a normalization procedure, you introduce the bias again. The question

: How large is the bias for different normalization procedures? Suppose
you normalize in the way I described, namely you get the sum over many many
unnormalized generations, then divide by that sum.  You now have an alternate
way of normalizing. Now, you may ask, how is this mean biased, compared to
the other mean? I think that is a question that you have to look at if you
are going to propose this procedure. I think you have to recognize that the
end result is going to be normalized; the most convenient way to normalize is
to divide by the integral. You can ask: what kind of bias you have once that
normalization is carried out. Is it smaller than the bias you would get by
normalizing each eigenvector and averaging? This I think is a question one
ought to be able to answer.
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*es, but still, the question is: What is biased? The estimate
enfunction is biased, each estimate separately. The ratic
the eigenfunction is biased also. But, the second is
first one is biased. The ratio is biased because it is

NS?malzzlrg to a value at one point is one way of normalizing.
i and also perfectly satisfactory way, is t nermaliz
ne. In any case you must normalize to exhibit your
:, and then you come back with a bias. The question
whether one of these approaches gives you less bias in
than the other. My suspicion is that the bias in this
. which does sound attractive when you think about it
gmaller than the bias in the conventional normalizatior.

ze

2 make cne point about normalization. In our RECAT
...i0n can be represented, either by the accumuliated neu~
ut at the beginning of each iteration, or by the ac:

ration, the neutron production. You can visualize

the generation. We always normalize the input. To

eeps the total starting weight of all neutrons the same
ou want to normalize the output, the neutron produc-
wnether you were referring to this), the process be-

T

p
e

r

:3
l

£ ‘f.“ Fhop

Fn

7 of avoiding bias in the eigenvector is to keep =2
per generation but, when you average, to assign each
ie weight being equal to the eigenvalue coming from
this approach is very closely related to what is in
. But I suspect, again, that when you try to use the
ced to normalize it. And, when you normalize it, you
de by a fluctuating denominator, and again I think
when you finally do normalize. It is just hard toc
the unnormalized shape: every time you try to use it
izlize in one way or another. Well, anymore ccmments?

would like to comment on the subject of importance sampi-
that there is no other form of importance sampling which
ication to the reduction of variance of the eigenfunc-
the acceleration of the iterative procees. This is
form of importance sampling, at least, in theory.
impurtance sampling originally goes back to Goad and

cf their method was published by me in a paper presented
Meeting in Kiamesha Lake. There I pointed out that if you
ansport equation, and if you use the fundamental mode of
as an importance function then, in the limit where

ing is carried out exactly, you get zero variance

at any point you care to choose to start the history.
in one generation and, therefore, you have an accelera-
technique at the same time. The estimates you need to
of the power. Thus you have the possibility of start-
ion and, perhaps, doing a multi-stage sampling in which
esg are fed back. I have no idea how this would work
least,; in theory, there is an importance sampling method

ng
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which reduces variance and accelerates convergence. It is of the same general
character as those you have looked at, but the point of view is quite different.

Gast: Our feeling was that because we need the flux or the power over
many edit regions, that in trying to get a shape we would be confronted with
a sequence of adjoints, and we ....

Kalos: No, it is one adjoint only — there is a single adjoint. There
is a single adjoint which gives the flux at any point in the reactor with zero
variance.

Gast: At a prechosen point. Then you have to do many points.
Kalos: Yes, yes.

Gast: It is our intuitive feeling (though we intend to look into this in
more detail, by the way) that we could probably not gain very much relative to
a normal forward run.

Gelbard: Because of the number of points you are interested in?

Gast: Yes, but 1 am very interested in your feelings as to what the gain
could be.

Kaloe: 1 wish I had feelings as to what the gain could be.

Cashwell: My experience has been mainly with shielding problems, not
criticality problems, but my guess is that almost any method of getting an
approximate adjoint function will help a lot. Whether that is true for the
reactor, for the criticality problem, I do not know, but I see no reason why
it would not be true.
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