
Monte Carlo

very next free flight are accumulated after
each collision.

T he Monte Carlo method has proven
to be a powerful and useful tool. In

fact, "solitaire games" now range from
the neutron- and photon-transport codes
through the evaluation of multi-dimen-
sional integrals, the exploration of the
properties of high-temperature plasmas,
and into the quantum mechanics of sys-
tems too complex for other methods.

by Tony Warnock

rs have applications in many as: simulation, game-playing,
cryptography, statistical sampling, evaluation of multiple integrals, particle-
transport calculations, and computations in statistical physics, to name a few.

Since each application involves slightly different criteria for judging the "worthiness"
of the random numbers generated, a variety of generators have been developed, each
with its own set of advantages and disadvantages.

Depending on the application, three types of number sequences might prove
equate as m numbers.'' From a purist point of view. of course, a series of
mbers ge a truly random process is most desirable. This type of sequence

a random-number sequence, and one of the key problems is deciding whether
or not the generating process is, in fact, random. A more practical sequence is the
pseudo-random sequence, & series of numbers generated by a deterministic process
that is intended merely to imitate a random sequence but which, of course, does not
rigorously obey such things as the laws of large numbers (see page 69). Finally, a 1
@St-randm sequence is a series of numbers that makes no pretense at being random
but that has important predefined statistical properties shared with random sequences.

Physical Random-Number Generators 1
Games of chance are the classic examples of random processes, and the first

inclination would to use traditional gambling devices as random-number generators.
Unfortunately, these dev are rather slow, especially since the typical computer
application may require ms of numbers per second. Also, the numbers obtained

cards may be imperfectly shuffled,
, and so forth. However, in the early
digit table of random numbers using
slots, of which 12 were ignored; the

only because of our ignorance of initial 1
terninistic Newtonian physics. Another

advantage of the Heisenberg
g decays of a radioactive

h of these methods have been used to
0th suffer the defects of slowness and

order of magnitude than

I
Los Alamos Science Special Issue 1987

Monte Carlo

For instance, although each decay in a radioactive source may occur randomly
and independently of other decays, it is not necessarily true that successive counts in
the detector are independent of each other. The time it takes to reset the counter,
for example, might depend on the previous count. Furthermore, the source itself
constantly changes in time as the number of remaining radioactive particles decreases
exponentially. Also, voltage drifts can introduce bias into the noise of electrical devices.

There are, of course, various tricks to overcome some of these disadvantages. One
can partially compensate for the counter-reset problem by replacing the string of bits
that represents a given count with a new number in which all of the original 1-1 and 0-0
pairs have been discarded and all of the original 0-1 and 1-0 pairs have been changed
to 0 and 1, respectively. This trick reduces the bias caused when the probability of a
0 is different from that of a 1 but does not completely eliminate nonindependence of
successive counts.

A shortcoming of any physical generator is the lack of reproducibility. Repro-
ducibility is needed for debugging codes that use the random numbers and for making
correlated or anti-correlated computations. Of course, if one wants random numbers
for a cryptographic one-time pad, reproducibility is the last attribute desired, and time
can be traded for security. A radioactive source used with the bias-removal technique
described above is probably sufficient.

Arithmetical Pseudo-Random Generators

The most common method of generating pseudo-random numbers on the computer
uses a recursive technique called the linear-congruential, or Lehmer, generator. The
sequence is defined on the set of integers by the recursion formula

xn+i = Axn + C (mod M).

where xn is the nth member of the sequence, and A, C , and M are parameters that can
be adjusted for convenience and to ensure the pseudo-random nature of the sequence.
For example, M, the modulus, is frequently taken to be the word size on the computer,
and A, the multiplier, is chosen to yield both a long period for the sequence and good
statistical properties.

When M is a power of 2, it has been shown that a suitable sequence can be
generated if, among other things, C is odd and A satisfies A = 5 (mod 8) (that is, A - 5
is a multiple of 8). A simple example of the generation of a 5-bit number sequence
using these conditions would be to set M = 32 (5 bits), A = 21, C = 1, and xo = 13.
This yields the sequence

Los Alamos Science Special Issue 1987

Monte Carlo

Los Alamos Science Special Issue 1987 139

Monte Carlo

and

yield

Of course, if Seq. 3 is carried out to many places, a pattern in it will also become
apparent. To eliminate the new pattern, the sequence can be XOR'ed with a third
pseudo-random sequence of another type, and so on.

This type of hybrid sequence is easy to generate on a binary computer. Although
for most computations one does not have to go to such pains, the technique is especially

attractive for constructing "canonical" generators of apparently random numbers.
A key idea here is to take the notion of randomness to mean simply that the

sequence can pass a given set of statistical tests. In a sequence based on normal
numbers, each term will depend nonlinearly on the previous terms. As a result, there
are nonlinear statistical tests that can show the sequence not to be random. In particular,
a test based on the transformations used to construct the sequence itself will fail. But,
the sequence will pass all linear statistical tests, and, on that level, it can be considered
to be random.

What types of linear statistical tests are applied to pseudo-random numbers?
Traditionally, sequences are tested for uniformity of distribution of single elements,
pairs, triples, and so forth. Other tests may be performed depending on the type of
problem for which the sequence will be used. For example, just as the correlation
between two sequences can be tested, the auto-correlation of a single sequence can be
tested after displacing the original sequence by various amounts. Or the number of
different types of "runs" can be checked against the known statistics for runs. An
increasing run, for example, consists of a sequential string of increasing numbers
from the generator (such as, 0.08, 0.21, 0.55, 0.58, 0.73, . . .). The waiting times
for various events (such as the generation of a number in each of the five intervals
(0,0.2), (0.2,0.4), . . . , (0.8,l)) may be tallied and, again, checked against the known
statistics for random-number sequences.

If a generator of pseudo-random numbers passes these tests, it is deemed to be a
"good" generator, otherwise it is "bad." Calling these criteria "tests of randomness" is
misleading because one is testing a hypothesis known to be false. The usefulness of
the tests lies in their similarity to the problems that need to be solved using the stream
of pseudo-random numbers. If the generator fails one of the simple tests, it will surely
not perform reliably for the real problem. (Passing all such tests may not, however, be
enough to make a generator work for a given problem, but it makes the programmers
setting up the generator feel better.)

Los Alamos Science Special Issue 1987

Monte Carlo

Los Alamos Science Special Issue 1987 141

