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very next free flight are accumulated after 
each collision. 

T he Monte Carlo method has proven 
to be a powerful and useful tool. In 

fact, "solitaire games" now range from 
the neutron- and photon-transport codes 
through the evaluation of multi-dimen- 
sional integrals, the exploration of the 
properties of high-temperature plasmas, 
and into the quantum mechanics of sys- 
tems too complex for other methods. 

by Tony Warnock 

rs have applications in many as: simulation, game-playing, 
cryptography, statistical sampling, evaluation of multiple integrals, particle- 
transport calculations, and computations in statistical physics, to name a few. 

Since each application involves slightly different criteria for judging the "worthiness" 
of the random numbers generated, a variety of generators have been developed, each 
with its own set of advantages and disadvantages. 

Depending on the application, three types of number sequences might prove 
equate as m numbers.'' From a purist point of view. of course, a series of 
mbers ge a truly random process is most desirable. This type of sequence 

a random-number sequence, and one of the key problems is deciding whether 
or not the generating process is, in fact, random. A more practical sequence is the 
pseudo-random sequence, & series of numbers generated by a deterministic process 
that is intended merely to imitate a random sequence but which, of course, does not 
rigorously obey such things as the laws of large numbers (see page 69). Finally, a 1 
@St-randm sequence is a series of numbers that makes no pretense at being random 
but that has important predefined statistical properties shared with random sequences. 

Physical Random-Number Generators 1 
Games of chance are the classic examples of random processes, and the first 

inclination would to use traditional gambling devices as random-number generators. 
Unfortunately, these dev are rather slow, especially since the typical computer 
application may require ms of numbers per second. Also, the numbers obtained 

cards may be imperfectly shuffled, 
, and so forth. However, in the early 
digit table of random numbers using 
slots, of which 12 were ignored; the 

only because of our ignorance of initial 1 
terninistic Newtonian physics. Another 

advantage of the Heisenberg 
g decays of a radioactive 

h of these methods have been used to 
0th suffer the defects of slowness and 

order of magnitude than 

I 
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For instance, although each decay in a radioactive source may occur randomly 
and independently of other decays, it is not necessarily true that successive counts in 
the detector are independent of each other. The time it takes to reset the counter, 
for example, might depend on the previous count. Furthermore, the source itself 
constantly changes in time as the number of remaining radioactive particles decreases 
exponentially. Also, voltage drifts can introduce bias into the noise of electrical devices. 

There are, of course, various tricks to overcome some of these disadvantages. One 
can partially compensate for the counter-reset problem by replacing the string of bits 
that represents a given count with a new number in which all of the original 1-1 and 0-0 
pairs have been discarded and all of the original 0-1 and 1-0 pairs have been changed 
to 0 and 1, respectively. This trick reduces the bias caused when the probability of a 
0 is different from that of a 1 but does not completely eliminate nonindependence of 
successive counts. 

A shortcoming of any physical generator is the lack of reproducibility. Repro- 
ducibility is needed for debugging codes that use the random numbers and for making 
correlated or anti-correlated computations. Of course, if one wants random numbers 
for a cryptographic one-time pad, reproducibility is the last attribute desired, and time 
can be traded for security. A radioactive source used with the bias-removal technique 
described above is probably sufficient. 

Arithmetical Pseudo-Random Generators 

The most common method of generating pseudo-random numbers on the computer 
uses a recursive technique called the linear-congruential, or Lehmer, generator. The 
sequence is defined on the set of integers by the recursion formula 

xn+i = Axn + C (mod M ). 

where xn is the nth member of the sequence, and A, C ,  and M are parameters that can 
be adjusted for convenience and to ensure the pseudo-random nature of the sequence. 
For example, M,  the modulus, is frequently taken to be the word size on the computer, 
and A, the multiplier, is chosen to yield both a long period for the sequence and good 
statistical properties. 

When M is a power of 2, it has been shown that a suitable sequence can be 
generated if, among other things, C is odd and A satisfies A = 5 (mod 8) (that is, A - 5 
is a multiple of 8). A simple example of the generation of a 5-bit number sequence 
using these conditions would be to set M = 32 (5 bits), A = 21, C = 1, and xo = 13. 
This yields the sequence 
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and 

yield 

Of course, if Seq. 3 is carried out to many places, a pattern in it will also become 
apparent. To eliminate the new pattern, the sequence can be XOR'ed with a third 
pseudo-random sequence of another type, and so on. 

This type of hybrid sequence is easy to generate on a binary computer. Although 
for most computations one does not have to go to such pains, the technique is especially 

attractive for constructing "canonical" generators of apparently random numbers. 
A key idea here is to take the notion of randomness to mean simply that the 

sequence can pass a given set of statistical tests. In a sequence based on normal 
numbers, each term will depend nonlinearly on the previous terms. As a result, there 
are nonlinear statistical tests that can show the sequence not to be random. In particular, 
a test based on the transformations used to construct the sequence itself will fail. But, 
the sequence will pass all linear statistical tests, and, on that level, it can be considered 
to be random. 

What types of linear statistical tests are applied to pseudo-random numbers? 
Traditionally, sequences are tested for uniformity of distribution of single elements, 
pairs, triples, and so forth. Other tests may be performed depending on the type of 
problem for which the sequence will be used. For example, just as the correlation 
between two sequences can be tested, the auto-correlation of a single sequence can be 
tested after displacing the original sequence by various amounts. Or the number of 
different types of "runs" can be checked against the known statistics for runs. An 
increasing run, for example, consists of a sequential string of increasing numbers 
from the generator (such as, 0.08, 0.21, 0.55, 0.58, 0.73, . . .). The waiting times 
for various events (such as the generation of a number in each of the five intervals 
(0,0.2), (0.2,0.4), . . . , (0.8,l)) may be tallied and, again, checked against the known 
statistics for random-number sequences. 

If a generator of pseudo-random numbers passes these tests, it is deemed to be a 
"good" generator, otherwise it is "bad." Calling these criteria "tests of randomness" is 
misleading because one is testing a hypothesis known to be false. The usefulness of 
the tests lies in their similarity to the problems that need to be solved using the stream 
of pseudo-random numbers. If the generator fails one of the simple tests, it will surely 
not perform reliably for the real problem. (Passing all such tests may not, however, be 
enough to make a generator work for a given problem, but it makes the programmers 
setting up the generator feel better.) 
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